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Abstract—The rapid development of smart devices has fostered
the growth of Spatial Crowdsourcing (SC), where workers
complete spatial tasks by traveling to specific locations. Task
assignment is a key issue in SC due to the inherent complexity
of matching workers with these spatial tasks efficiently. Previous
studies on task assignment have primarily focused on optimizing
worker-task matching within a single, centralized area, often
ignoring scenarios that involve multiple independent service
centers across an area. To address this gap, we introduce
a collaborative multi-center task assignment problem, which
focuses on scenarios where an SC platform manages multiple
independent service centers within an area, shifting the focus
from worker-level cooperation to exploring the solutions specific
to multi-center coordination. We target the imbalances between
available workers and unassigned tasks among different centers,
aiming to maximize the total number of assigned tasks and
minimize unfairness in inter-center collaboration. In particular,
we propose an Iterative Multi-center Task Assignment and
Optimization (IMTAO) framework. IMTAO operates in two
phases: (1) center-independent task assignment based on an
efficient sequential task assignment algorithm, and (2) inter-
center workforce transfer based on a game-theoretic multi-center
collaboration algorithm that ensures fair collaboration through
bi-directional optimization. Extensive experiments demonstrate
the efficiency and effectiveness of IMTAO in enhancing task
assignment and improving collaboration fairness compared to
baseline methods.

Index Terms—multi-center collaboration, task assignment, spa-
tial crowdsourcing

I. INTRODUCTION

The development of smart devices and the growth of the
sharing economy have contributed to the market of Spatial
Crowdsourcing (SC) [1]–[6]. As a key component in SC, task
assignment involves the process of matching and assigning
spatial tasks, which are posted by task requesters on an SC
platform, to workers capable of traveling to specific locations
to complete them [7]–[9].

In the field of task assignment in SC, most existing studies
focus on task assignment in an integrated area, where workers
are free to move to various locations to perform accessible
tasks [10]–[12]. While this scenario of task assignment is
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practical for many applications [13]–[16], we identify another
scenario where an SC platform operates multiple distribution
centers across a city, such as supermarket delivery (e.g., Fre-
shippo and Walmart) and logistics service (e.g., JD Logistics
and DoorDash). In this scenario, the platform divides the
service area into regions, each managed by a distinct center,
and tasks are assigned to centers based on their geographic
locations. A center manages a group of workers working on
the center’s tasks, while tasks of all centers need to be com-
pleted before their respective expiration times. However, the
dynamic nature of task distribution often leads to imbalances,
where some centers experience a surplus of tasks (i.e., these
centers have more tasks than available workers) while others
may face a shortage (i.e., these centers have more available
workers than tasks). To fill the gap between available workers
and unassigned tasks, it is necessary for an SC platform to
build collaboration among centers by strategically managing
the workforce. This involves dispatching available workers
from their located centers to those experiencing high task
demand, contributing to the overall number of assigned tasks.
In addition, ensuring fairness in collaboration is crucial when
handling workforce transfer across centers. If some centers
are treated unfairly during the multi-center collaboration, they
may opt out of future collaboration, which harms the overall
task assignment performance of the SC platform.

In this paper, we explore a collaborative task assignment
problem across multiple centers within an SC platform,
called Collaborative Multi-Center Task Assignment (CMCTA).
Specifically, given a set of centers each with workers and tasks,
CMCTA aims to optimize the task assignment across centers
by maximizing the total number of assigned tasks while
minimizing collaboration unfairness among centers through
strategic inter-center workforce transfers. JD Logistics is a
typical CMCTA application, which manages multi-center task
assignments by allocating orders (i.e., tasks) based on in-
ventory, distance, and urgency. When a center is overloaded,
collaboration across centers is optimized through worker real-
location and route planning to ensure efficient deliveries.

While there are existing studies on cooperation in SC
task assignments, our research diverges significantly in both
problem settings and objectives. Previous studies [17], [18]



have focused on cooperation between different platforms that
share the same service area and provide same services, e.g.,
ride-sharing platforms. These studies generally address inter-
platform cooperation to enhance overall service efficiency. In
addition, Cheng et al. [17] and Zhao et al. [19] study the
cooperation among workers, particularly in scenarios where
tasks require collective effort from multiple workers for com-
pletion. These studies concentrate on the dynamics of worker
cooperation within the same service area. Recently, Zhao
et al. [20] have explored task assignments across centers,
where tasks located in one center can be assigned to another.
However, they do not consider collaboration among different
centers, which may result in poor worker resource utilization.
Different from previous studies, we focus on the collaboration
among centers through inter-center workforce transfers on an
SC platform. The centers responsible for task execution remain
fixed, while only workers can be dispatched between centers
to facilitate task completion.

We provide an example in Fig. 1 to illustrate the CMCTA
problem within a service area divided into three regions (e.g.,
three universities in Chengdu city), which are managed by
their own distribution centers, i.e., c1, c2, and c3. The regions’
boundaries are generated by a Voronoi diagram [21], presented
by dashed grey lines. A total of six tasks are required for
delivery (i.e., s1, s2, · · · , s6). An intuitive and typical method
is to assign tasks to suitable workers within each center
independently, without considering inter-center collaboration.
This method generates a center-independent task assignment,
{(w1, s1), (w3, s2), (w4, s5)}, with worker w2 from center c1
unused. We quantify unfairness by the difference of task
assignment ratios ρc across centers, where the ratio ρc is the
proportion of tasks assigned by center c to its total tasks. In
the center-independent task assignment, center c1 assigns all
tasks (i.e., s1), achieving a ratio of ρ1 = 1.0. Centers c2 and c3
achieve ratios of 0.5 and 0.33, respectively. Consequently, this
task assignment completes three of the six tasks (i.e., s1, s2,
and s5), resulting in a collaboration unfairness score of 0.45
(computed by Eq. 3). However, if we dispatch surplus workers
(e.g., w2) to assist in other centers, we can potentially enhance
the total number of tasks assigned and reduce collaboration
unfairness. Specifically, by dispatching worker w2 to center
c3 and reassigning tasks in c3, we can get a task assignment
{(w1, s1), (w2, s5), (w3, s2), (w4, s6)}. The total number of
assigned tasks is increased from three to four, updating the
task assignment ratios for centers c1, c2, and c3 to 1.0,
0.5, and 0.67, respectively. This task assignment reduces the
collaboration unfairness score from 0.45 to 0.33 and assigns
more tasks simultaneously.

Based on the above motivations, we propose a novel
framework for collaborative task assignment across multiple
centers, namely Iterative Multi-center Task Assignment and
Optimization (IMTAO). This framework is structured into two
phases: center-independent task assignment and inter-center
workforce transfer. In the first phase, we focus on maximizing
task assignments based on the distribution of workers and
tasks. Specifically, we deploy a sequential task assignment
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Fig. 1. A toy example for multi-center collaboration

algorithm that prioritizes efficiency over the complexities of
an optimal task assignment approach, aiming to maximize the
number of assigned tasks independently in each center. In the
second phase, we apply principles of game theory to optimize
inter-center workforce transfer for collaboration, aiming to
improve collaboration fairness, i.e., reduce the difference in
task assignment ratios across centers. Specifically, we transfer
the CMCTA problem into a multi-player game, treating each
center as an individual player. A game-theoretic multi-center
collaboration algorithm is proposed to utilize the best-response
mechanism and achieve fair collaboration across centers,
where a bi-directional optimization strategy is incorporated.
The bi-directional optimization strategy enables continuous
adjustments to workforce distribution and task assignment. It
involves iteratively dispatching available workers to support
task assignments at other centers, followed by reapplying the
sequential task assignment algorithm in each center.

In this paper, we make the following contributions.
• We identify and study a novel task assignment problem in

spatial crowdsourcing, called collaborative multi-center task
assignment (CMCTA).

• We propose a sequential task assignment algorithm to en-
hance efficiency of the center-independent task assignment.

• We propose a game-theoretic multi-center collaboration
algorithm for inter-center workforce transfer, incorporating
a bi-directional optimization process that simultaneously
considers workforce transfer and task assignment to achieve
fair and balanced collaboration.

• We conduct extensive experiments that illustrate the effec-
tiveness and efficiency of the proposed framework. The con-
vergence of the game-theoretic algorithm is also analyzed.
The remainder of this paper is organized as follows. The

preliminary concepts and problem statement are introduced in
Sec. II. We then present the framework overview in Sec. III.
The proposed center-independent task assignment and inter-
center workforce transfer methods are given in Sec. IV and
Sec. V, respectively, followed by the experimental results in
Sec. VI. Sec. VII surveys the related work, and Sec. VIII
concludes this paper.

II. PROBLEM STATEMENT

In this section, we provide the necessary preliminaries and
formally define the problem.

Definition 1 (Distribution Center): A distribution center is
represented as c = (l, S,W ), consisting of a center location



c.l, a set of tasks c.S assigned to center c, and a set of workers
c.W managed by center c.

An SC platform has a set of distribution centers, denoted
as C = {c1, c2, . . . , c|C|}. Each distribution center functions
as a hub for assigning delivery tasks to workers. When the
context is clear, we use “distribution center” and “center”
interchangeably. In this work, the delivery region for each
center is determined by utilizing a Voronoi graph [21], where
the service area (e.g., a city) is divided into non-overlapping
regions based on the proximity to each center. This ensures that
each center manages an independent delivery region within
the overall service area. We will give more details about the
Voronoi graph technique in Sec. IV-A.

Definition 2 (Worker): A worker is denoted as w =
(c, l,maxT ), where w.c indicates a distribution center that
worker w primarily works for, w.l is the current location of
w, and w.maxT denotes the maximum number of tasks that w
can be assigned. In our work, workers can also be dispatched
to other centers to assist when needed.

Definition 3 (Spatial Task): A spatial task is denoted as
s = (c, l, e, r), including a distribution center s.c that s
is associated with, a delivery location s.l, a task expiration
deadline s.e, and a reward s.r offered by the task requester.

For example, a spatial task s is requested by a task requester
from a distribution center and needs to be delivered to a spe-
cific location (e.g., the requester’s home) before its expiration
time (e.g., 11 a.m.). A worker who completes the task will
receive a reward offered by the task requester. We use the
single-task assignment model [22], where each task is assigned
to only one worker. Without loss of generality, we assume that
the processing time of tasks (e.g., food delivery and goods
delivery) is zero. Assuming that a worker can head to the next
task’s location upon finishing the current task, we focus on
the spatial task assignment aspects of the problem. When the
task process time is considered, the proposed framework can
easily adapt to the scenario by incorporating the process time
into workers’ travel time.

Definition 4 (Task Delivery Sequence): Given a worker w
and a set of tasks Sw assigned to worker w in a center c (either
the located center or another center where the worker assists),
we define the delivery sequence on Sw as R(Sw), representing
the order in which w completes tasks in Sw. The time taken
by w to finish a task si ∈ Sw can be calculated as follows:

tw,c,R(si.l) =

{
tt(w.l, c.l) + tt(c.l, si.l) if i = 1,

tw,c,R(si−1.l) + tt(si−1.l, si.l) if i > 1,
(1)

where tt(la, lb) is the travel time from location la to location
lb, and tw,c,R(si.l) is the total time required to complete task
si after worker w picks up deliveries at center c and proceeds
according to the delivery sequence R(Sw).

Definition 5 (Valid Task Delivery Set): For worker w, a set
of tasks Sw is considered a valid task delivery set (VTDS),
denoted as VTDS (w), if each task s ∈ Sw can be completed
before its expiration time, i.e., ∀s ∈ Sw, t(s.l) ≤ s.e). When
more than one delivery sequences exist for a given VTDS (w),
we choose the one with the minimal travel time.

Given the random emergence of tasks in each center, it
is necessary to dispatch surplus workers from their located
centers to nearby, busier centers for assistance while retaining
workers in their located centers whenever possible. Hence,
worker dispatching is managed at the center level, called
inter-center workforce transfer, where source centers send
out surplus workers and recipient centers receive additional
workers from other centers.

Definition 6 (Inter-center Workforce Transfer): Inter-center
workforce transfer refers to the reallocation of workers from
one center, known as the source center csi , to another center,
known as the recipient center crj , to assist with task demand.
We denote this dispatch as a tuple (csi , c

r
j , w), where w denotes

the worker being sent from csi to crj .
As the example shown in Fig. 1, center c1 is a source

center, while center c2 and c3 are two recipient centers. The
workforce transfer of w2 from center c1 to c3 can be referred
to as (c1, c3, w2).

Definition 7 (Borrowing Worker Set): For recipient centers,
we denote the set of workers that a center crj borrows from
other centers as BWS(crj), which consists of workforce
transfer tuples.

A recipient center may have a few candidate BWS, which
serve as the strategies of a center in the game-theoretic
multi-center collaboration in Sec. V. For example, there are
two different BWS for center c3 in Fig. 1, BWS(c3)1 =
{(c1, c3, w2)}, and BWS(c3)2 = ∅.

Definition 8 (Center-specific Spatial Task Assignment):
Given a distribution center c with a set of workers and tasks to
be assigned, a spatial task assignment in center c is denoted
as A(c), which consists of a set of (w,VTDS ) pairs. Due
to the inter-center workforce transfer, a source center csi uses
some of its workers csi .W , while a recipient center crj uses its
workers crj .W and workers in the BWS(crj).

Definition 9 (Task Assignment Ratio): To evaluate the level
of task assignment in each center ci, we define the task
assignment ratio ρi in center ci as follows.

ρi =
|A(ci).S|
|ci.S|

(2)

where |A(ci).S| and |ci.S| are the total number of assigned
tasks and the total number of tasks in center ci, respectively.

Definition 10 (Collaboration Unfairness): To capture the
difference in task assignment ratios across centers and reflect
the collaboration unfairness among them, we define the col-
laboration unfairness metric Uρ, calculated in Eq. 3.

Uρ =

∑
1≤i≤|C|,1≤j≤|C|,i̸=j |ρi − ρj |

|C|(|C| − 1)
(3)

where ρi is the task assignment ratio in center ci, |C| is
the total number of centers and higher values of Uρ indicate
greater unfairness in the distribution of tasks.

Collaborative Multi-Center Task Assignment (CMCTA)
Problem Statement. Given a set of centers C, each with
a set of tasks to be assigned, and a set of workers on
an SC platform, the CMCTA problem aims to find a task
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Fig. 2. Framework overview of Iterative Multi-center Task Assignment and Optimization (IMTAO)

assignment Aopt = {A(c)}c∈C for all the centers by inter-
center workforce transfer, which satisfies the following goals:

1) primary optimization goal: maximize the total number
of assigned tasks, i.e., ∀Ai ∈ A (|Ai.S| ≤ |Aopt.S|), where
A denotes all possible assignments and |Ai.S| denotes the
number of assigned tasks in task assignment Ai; and

2) secondary optimization goal: minimize the collaboration
unfairness by reducing Uρ.

III. FRAMEWORK OVERVIEW

The Iterative Multi-center Task Assignment and Opti-
mization (IMTAO) framework contains two phases, center-
independent task assignment and inter-center workforce trans-
fer, as shown in Fig.2.
Center-independent Task Assignment. In this phase, we
handle each center’s task assignment independently and focus
on the primary optimization goal (i.e., maximizing the total
number of assigned tasks). The task assignment process is in-
herently complex due to both spatial and temporal constraints,
as well as the limited availability of workers. To address
the computational complexity of optimal task assignments,
we introduce a sequential task assignment algorithm that
prioritizes efficiency over an exhaustive search for the optimal
solution. Specifically, the algorithm iteratively assigns tasks to
workers c.W at each center c, and generates task assignment
A(c) without the need for intensive global optimization.

However, since centers operate independently, task assign-
ments ignore the worker availability across centers, which
potentially leads to underutilization or overloading of workers
at certain centers. As a result, some centers act as source
centers with unused workers, while others act as recipient
centers facing a worker shortage. To address this challenge, we
define a task assignment ratio ρc for each center, and identify
an available worker set containing workers with a null VTDS
(i.e., unused workers with no tasks assigned) which can be
dispatched in the next phase.
Inter-center Workforce Transfer. In the following phase,
we aim to narrow the demand-supply gap (i.e., tasks and
workers) across centers by establishing workforce transfer
among centers. The main objective is to minimize collab-
oration unfairness, which arises when recipient centers are
not allocated a reasonable share of workers. The challenge
here is twofold: conflicts among recipient centers for available
workers and the need for fair workforce transfer. Since there

may be more than one recipient center, conflicts can arise
as they compete for workers in the available worker set.
To achieve the fairness-oriented goal, we propose a game-
theoretic multi-center collaboration algorithm, modeling each
center as a player. The borrowing worker set BWS (c) is
the strategy set of center c, and the utility of center c is
based on punishment for unfairness. Due to the challenges
in balancing fairness and task completion, we apply a best-
response mechanism to carefully dispatch workers among
centers. Workers are transferred iteratively to recipient centers
to reduce the imbalance in task assignment ratios ρ.

Instead of decoupling the two phases of IMTAO, we use
bi-directional optimization and perform the two phases iter-
atively to further enhance the task assignment performance.
Specifically, when a recipient center c receives a dispatched
worker, we fine-tune the task assignment A(c) for assigning a
VTDS to the dispatched worker. Then we update the source
and recipient centers generated in the first phase, which are fed
into the second phase as players. The task reassignment helps
improve the task assignment ratio and narrow the demand-
supply gap, thereby contributing to the optimization of both
the primary and secondary goals.

IV. CENTER-INDEPENDENT TASK ASSIGNMENT

The center-independent task assignment phase includes two
modules, service area partition and spatial task assignment
in centers independently. Specifically, we utilize Voronoi di-
agrams to partition the whole service area into |C| delivery
regions, each with a distribution center. Therefore, the center-
independent task assignment is decomposed into |C| individ-
ual spatial task assignments. Each center strives to maximize
its total number of assigned tasks, which is independent of
other centers in this phase. We illustrate the complexity of
spatial task assignment problem in a center and then introduce
a sequential task assignment algorithm to solve it efficiently.

A. Service Area Partition

As described in Sec. II, a distribution center c consists of
a set of tasks c.S and a set of workers c.W . Considering
practical applications, such as logistics or food delivery ser-
vices, it is common practice to assign workers and tasks to
the nearest distribution center. This strategy can significantly
enhance delivery efficiency by reducing travel distances and
times, thereby improving service responsiveness and minimiz-
ing travel costs.



Algorithm 1 Voronoi-based Service Area Partition
1: Input: C, S,W
2: Output: C.S,C.W
3: C.S ← ∅
4: C.W ← ∅
5: for each center ci ∈ C do
6: ci.S ← {s ∈ S : ci is the nearest center to s}
7: ci.W ← {w ∈W : ci is the nearest center to w}
8: S ← S \ ci.S
9: W ←W \ ci.W

10: end for
11: C.S ←

⋃
ci∈C ci.S

12: C.W ←
⋃

ci∈C ci.W
13: return C.S,C.W

To implement this strategy effectively, we employ Voronoi
diagrams [21], [23] to partition the service area into distinct
regions. A Voronoi diagram partitions a plane into regions
based on the distance to a set of predefined sites, which creates
regions termed Voronoi cells. Each cell encompasses all points
that are closer to its predefined site than to any other site.
Applying Voronoi diagrams in the service area partition, we
regard distribution centers as sites, while taking workers and
tasks as points. As illustrated in Algo. 1, we effectively divide
a service area into |C| regions and assign tasks and workers to
their respective region centers (lines 5–10). Algo. 1 receives
centers, tasks, and workers as input, and generates the tasks
and workers of each center.

B. Center-independent Spatial Task Assignment

In an SC platform that operates multiple centers within a
service area, a straightforward approach to task assignment is
to treat each center independently [11], [24]. After the service
area partition, each center has its own tasks and workers to
be assigned. In this section, we give the hardness analysis
of the spatial task assignment problem for a specific center,
defined in Definition 8, and then introduce a sequential task
assignment algorithm, which is designed to efficiently assign
tasks within an individual center.
Hardness Analysis. The task assignment problem in SC is
inherently classified as NP-hard, as highlighted in studies by
Cheng et al. [17] and Zhao et al. [25]. This complexity also
extends to task assignments with a distribution center, which
reduces from the problem of Capacitated Vehicle Routing
Problem with Time Windows (CVRPTW), a well-known NP-
hard problem. In the CVRPTW problem, the objective is to
optimize vehicle routes to serve a group of customers while
satisfying the capacity constraints of the vehicles and the time
constraints of customers. Now we reduce an instance of the
CVRPTW problem to the spatial task assignment problem with
a center. We can regard the departure point for vehicles as the
distribution center c, each customer destination as a spatial
task s, and each vehicle as a worker w. The vehicle capacity
limitation and the time window for customers in CVRPTW
can move to the limited number of tasks of workers w.maxT
and the expiration times of tasks s.e, respectively. If we can

Algorithm 2 Sequential Task Assignment
1: Input: c = (l, S,W )
2: Output: A(c), c.Wleft, c.Sleft

3: Initialize A(c)← ∅, c.Wleft ← ∅, c.Sleft ← c.S
4: Sort c.W in the descending order of tt(w.l, c.l)
5: for each worker w ∈ c.W do
6: Sw ← ∅
7: tw,c,RSw = tt(w.l, c.l)
8: w.l← c.l
9: while tw,c,RSw < e and |Sw| < w.maxT do

10: Get the nearest unassigned task si ∈ c.Sleft to w
11: if tw,c,RSw + tt(w.l, si.l) < e then
12: c.Sleft ← c.Sleft \ {si}
13: Sw ← Sw ∪ {si}
14: w.l← si.l
15: end if
16: end while
17: A(c)← A(c) ∪ (w,VTDS (w))
18: if Sw is ∅ then
19: c.Wleft ← c.Wleft ∪ {w}
20: end if
21: end for
22: return A(c), c.Wleft, c.Sleft

solve the task assignment problem with a distribution center in
polynomial time, we can solve any instance of CVRPTW by
transforming it into a corresponding task assignment instance
and then solve the instance of CVRPTW in polynomial time
as well. This contradicts the fact that the CVRPTW problem is
NP-hard [26], which means that the task assignment problem
instance cannot be solved in polynomial time. Hence, we can
affirm the NP-hard nature of spatial task assignment with a
distribution center.

Sequential Task Assignment Algorithm. To enhance the ef-
ficiency of task assignment within a center, we propose a se-
quential task assignment algorithm that considers both spatial
and temporal constraints, significantly speeding up the process
of task assignment to workers. Previous task assignment
studies [17], [25] generate all candidate tasks set for each
worker and subsequently resolve assignment conflicts where
tasks may overlap among workers, where the complexity
reaching O(2|c.S| · |c.S|3) and |c.S| denotes the number of
tasks in center c. However, we recognize that the primary
difference among workers lies in their arrival times at the
center for picking up deliveries. This motivates us to achieve
the optimization goal (i.e., maximize the number of assigned
tasks) in a center by adopting a more streamlined approach.
Specifically, by assigning tasks sequentially, we generate the
task delivery sequence R(Sw) for each worker w individually.

Algo. 2 illustrates the sequential task assignment algorithm,
which takes the location, tasks, and workers of a center
c = (l, S,W ) as input and task assignment A(c), unused
workers c.Wleft, and unassigned tasks c.Sleft as output. It first
initializes task assignment A(c) and unused workers c.Wleft

as an empty set, and unassigned tasks c.Sleft as the whole



tasks c.S (line 3). Algo. 2 consists of two primary sequences:
the worker sequence and the task delivery sequence assigned to
each worker. We observe that marginal workers (i.e., workers
located far from the center) are inferior in task assignment due
to having less time for delivery (i.e., e− tt(w.l, c.l), where e
denotes the expiration time of tasks and tt(w.l, c.l) denotes
the travel time from the worker’s location to the center’s
location. If no tasks are achievable within their constraints,
these marginal workers are left unutilized, reducing the overall
number of assigned tasks and impacting the optimization goal
negatively. To address this issue, we strategically prioritize
marginal workers in the task assignment process. Workers are
sorted by their distances from the center, with those farthest
away being given precedence (line 4).

Once a worker is selected, we then generate a task sequence
for the worker (lines 6–16). Given that the task execution time
is assumed to be negligible, we focus on minimizing the travel
durations between consecutive tasks in the task sequence.
Task assignments start by calculating the travel time from the
worker’s initial location to the center (lines 7–8). Following
the arrival at the center, the nearest unassigned tasks are
assigned to the worker sequentially according to the worker’s
current location (lines 9–16). The process continues until the
worker reaches her task capacity or the expiration time for task
completion, which means that the task set of the generated task
sequence R(Sw) is a VTDS (w). The pair of (w,VTDS (w))
is then add in task assignment A(c) (line 17). After task
assignment, we can get some unused workers c.Wleft and
unassigned tasks c.Sleft in center c (lines 18–20). Overall, this
sequential task assignment algorithm ensures optimal use of
each worker’s time and capabilities by minimizing unnecessary
travel, thereby maximizing the number of assigned tasks
within the time constraints.

C. Complexity Analysis
We analyze the complexity of the sequential task assignment

algorithm. The complexity of sorting workers according to the
descending sort is O(|c.W | · log|c.W |), where |c.W | denotes
the number of workers in center c. The complexity of getting
the task sequence R(Sw) for a worker w is O(w.maxT ·|c.S|)
since a worker may need to check all task points to find
the nearest unassigned task, where w.maxT denotes the
maximum number of deliveries for worker w. Hence, the
total computational complexity is O(|c.W | · log|c.W |+ |c.W | ·
w.maxT · |c.S|).

V. INTER-CENTER WORKFORCE TRANSFER

In this section, we design a game-theoretic approach to solve
the inter-center workforce transfer problem, while taking the
secondary optimization goal (i.e., the fairness of collaboration)
into consideration. We introduce the approach in terms of
motivation, unfairness punishment, game formulation, and
game-theoretic multi-center collaboration.

A. Motivation
Following the center-independent task assignment phase,

there remain some inefficiencies, such as unused workers

c.Wleft in source centers and unassigned tasks c.Sleft in
recipient centers. This demand-supply gap lays the foundation
of multi-center collaboration, where unused workers can be
dispatched to recipient centers to deliver unassigned tasks.
Fairness Objective in Multi-center Collaboration. While
multi-center collaboration can help increase the total number
of assigned tasks, it introduces the risk of collaboration
unfairness. In the center-independent phase, each center c
equips an initial task assignment A(c) and achieves a task
assignment ratio ρc, which is the proportion of tasks assigned
relative to the total tasks in center c. However, the objective
of multi-center collaboration is not merely to increase task
completion but also to preserve or reduce unfairness across
centers. To achieve this balance, it is crucial to manage the
multi-center collaboration by reasonably dispatching available
workers to recipient centers in a fair and effective manner.
Core Issues in Collaboration. The fundamental essence of
multi-center collaboration is that a recipient center needs
to choose a set of available workers to deliver tasks while
interacting with other centers for the division of available
workers. Two issues occur in the multi-center collaboration.

(1) Center Selection. Among multiple recipient centers
needing additional workers, which center should be prioritized
to reduce the unfairness of collaboration?

(2) Worker Dispatching. Once a recipient center is selected,
which workers from the pool of available workforce should
be dispatched to maximize efficiency and fairness?

No existing method can effectively solve these collaboration
issues for two main reasons. First, the number of workers
required at each center is unknown since task assignment
depends heavily on the positions of workers and tasks. Hence,
the CMCTA problem cannot be reduced to a maximum flow
problem, which requires prior knowledge of surplus and
shortage of workers. Second, the CMCTA problem is more
complex than typical spatial task dispatching problems, e.g.,
taxi dispatching, where a taxi serves a single order, while a
worker can deliver multiple tasks from a center. To address
these issues, we design a game-theoretic method. By modeling
the interaction between centers as a multi-player game, each
center acts as an independent player with a workforce transfer
strategy (i.e., the borrowing worker set BWS(c)). This allows
us to optimize the fairness of task assignment ratios by decid-
ing how to dispatch workers to recipient centers. In the rest
of the paper, we use “player” and “center” interchangeably.

B. Unfairness Punishment

Focusing on fairness across collaboration, we adopt the
concept of unfairness punishment [27]–[29] to quantify imbal-
ances in task assignment ratios among centers. For example, if
a collaboration strategy significantly increases the total number
of tasks assigned but fails to support centers with low task
assignment ratios, it may potentially harm future cooperation
in the SC platform.



In the game of multi-center collaboration, we define the
Utility of Unfair Punishment (UUP) as follows.

UUP (ci, BWS(ci)) = ρi −
∑

1≤j≤|C|,j ̸=i ρj

|C| − 1
(4)

where UUP (ci, BWS(ci)) represents the utility for center
ci with a workforce transfer strategy BWS(ci). The utility
calculation contains two parts: the first part ρi is the task
assignment ratio of ci assuming it adopts BWS(ci), and the
second part quantifies the average task assignment ratio of
all other centers, excluding center ci. This utility helps assess
how center ci’s ratio ρi compares to the average of the other
centers’ ratios, thereby representing the unfairness punishment,
i.e., the degree of unfairness.

C. Game Formulation

In this section, we introduce the game formulation and the-
oretical analysis of Nash Equilibrium to illustrate the stability
of multi-center collaboration through workforce transfer.
Game Components. The game of multi-center collaboration
can be formulated as an |C|-player strategic game, denoted as
G = (C,ST,U), consisting of the following components:

(1) Players. C = {c1, c2, . . . , c|C|} represents a finite set of
centers involved in the game, each as an independent player.

(2) Strategy Spaces. The strategy space of the game, ST =
∪1≤i≤|C|STi, is the union of all strategy sets across players
(i.e., all possible workforce transfer decisions across centers).
Next, STi = {BWS(ci)} is a finite set of all candidate worker
transfer strategies for center ci, which contains ci’s all possible
BWS sets, such as borrowing a specific set of workers or
choosing not to borrow any workers at all. A joint strategy for
the game is defined as s⃗t = (st1, st2, · · · , st|C|) ∈ ST, where
sti ∈ STi is the strategy selected by player ci.

(3) Utility Functions. The utility functions are defined by
U = ∪1≤i≤|C|Ui, where Ui is the utility function of player
ci. The utility for each center based on the joint strategy s⃗t is
calculated as follows.

Ui(s⃗t) = UUP (ci, BWS(ci)) (5)

where Ui(s⃗t) measures the utility of center ci when the
workforce transfer strategy BWS(ci) is applied as part of
the joint strategy s⃗t.
Establishment of Exact Potential Game. We prove that the
multi-collaboration game conforms to an exact potential game
(EPG), which has at least one pure Nash Equilibrium (NE).
EPG is a specific type of game in game theory characterized
by a direct relationship between a player’s utility changes and
a global potential function, which is defined as follows.

Definition 11 (Exact Potential Game): A strategic game G =
(C, ST,U) is an EPG if there exists an exact potential function
Φ, such that any change in a player’s strategy results in an
identical change in both the player’s utility and the potential
function, as shown below:

Ui(st
′
i, s⃗t−i)− Ui(sti, s⃗t−i) = Φ(st′i, s⃗t−i)− Φ(sti, s⃗t−i) (6)

where sti and st′i are the strategies chosen by player ci before
and after a workforce transfer strategy BWS(ci) change,
respectively, s⃗t−i is the joint strategy of other players except
for player ci, and Φ is the exact potential function to quantify
the performance of the entire game.

Lemma 1: The multi-center collaboration game is an exact
potential game which has at least one pure Nash Equilibrium.

Proof 1: We define the exact potential function in the multi-
center collaboration game as follows.

Φ(s⃗t) =
∑

1≤i≤|C|

Ui(s⃗t) =
∑

1≤i≤|C|

UUP (ci, BWS(ci)) (7)

where the exact potential function Φ(s⃗t) denotes the sum of
utilities of all centers in C. Now we can obtain:

Φ(st′i, s⃗t−i)− Φ(sti, s⃗t−i)

= (UUP (ci, BWS′(ci)) +
∑

1≤j≤|C|,i ̸=j

UUP (cj , BWS(cj)))

− (UUP (ci, BWS(ci)) +
∑

1≤j≤|C|,i ̸=j

UUP (cj , BWS(cj)))

= UUP (ci, BWS′(ci))− UUP (ci, BWS(ci))

= Ui(st
′
i, s⃗t−i)− Ui(sti, s⃗t−i)

(8)

where the BWS selected by player ci before and after the
strategy change are BWS(ci) and BWS′(ci), respectively.
Since the multi-center collaboration game meets the require-
ments of EPG in Definition 11, it is an EPG with at least one
pure Nash Equilibrium.

D. Game-Theoretic Multi-Center Collaboration

In this section, we utilize the best-response mechanism [30],
[31] to guide the multi-center collaboration game towards
a pure Nash Equilibrium (NE). The best-response mecha-
nism involves players continuously revising their strategies
in reaction to the most recent strategies of other players.
Each player selects the strategy that maximizes their personal
utility given the current strategic environment. Importantly,
if the game is an exact potential game, the iterative strategy
updates facilitated by the best-response mechanism not only
converge to a local maximum of the potential function, but
also inherently lead to a Nash Equilibrium for the game. We
propose a multi-center collaboration algorithm that leverages
the best-response mechanism to solve the two core issues men-
tioned in Sec. V-A. The algorithm includes three main steps,
worker transfer strategy updating, task assignment updating,
and recipient center selection.
Worker Transfer Strategy Updating. The input of Algo. 3
is tasks C.S, workers C.W , unused workers C.Wleft, and task
assignment A = {A(c)c∈C} in the first phase for all centers;
while the output is task assignment A of all centers after
the inter-center workforce transfer. We first identify recipient
centers as C ′ and their worker transfer strategies BWS(c)
based on the available workers (lines 3–10). The strategy for
each recipient center BWS(c) is initialized as no worker
transferring in it (line 6). We use η to denote the iteration
of the game, which is set as η = 1 initially (line 11).



Algorithm 3 Game-Theoretic Multi-Center Collaboration
1: Input: C.S, C.W , C.Wleft, A
2: Output: A
3: C ′ ← C
4: for each center ci do
5: if ρi < 1 then
6: Obtain BWS(ci) and BWS(ci)← ∅
7: else
8: C ′ ← C ′ − ci
9: end if

10: end for
11: η ← 1
12: repeat
13: Pick a center ci ∈ C ′ with argmin ρi
14: Get the best-response BWS(ci) from BWS(ci) with

one more dispatched worker wmove in C.Wleft

15: Check the ratio ρηi of task assignment A(ci) with
workers ci.W ∪ {w ∈ BWS(ci)} in Algo. 2

16: if ρηi > ρη−1
i then

17: sti ← BWS(ci)
18: Update the task assignment A(ci) in A
19: C.Wleft ← C.Wleft \ {wmove}
20: else if ρηi ≤ ρη−1

i then
21: C ′ ← C ′ \ {ci}
22: end if
23: η ← η + 1

24: until s⃗t
η
= s⃗t

η−1

25: return A

Algo. 3 iteratively updates a selected center’s strategy sti
by incorporating one newly dispatched worker wmove from
the available worker set C.Wleft (lines 12–24). The strategy
updating is based on the current joint strategies of other centers
s⃗t−i and maximizes the selected center’s utility, which follows
the best-response mechanism (line 14). The process of Algo. 3
is iterated until a Nash Equilibrium (NE) is achieved (line 24),
defined as the state where no center can increase its utility by
updating its own strategy independently.
Task Assignment Updating. Once the worker transfer strat-
egy of a center BWS(c) is updated, the task assignment of
this center A(c) also needs to be updated to incorporate the
newly dispatched worker wmove. A straightforward approach
is to simply assign unassigned tasks c.Sleft to worker wmove.
We refer to this approach as the decomposed collaboration
(DC), which leaves the initial task assignment from the first
phase unchanged. However, this decomposed collaboration
might not fully leverage the combined capabilities of both
existing workers at the center (i.e., the original worker c.W
and previously dispatched workers in center c) and the newly
dispatched worker wmove. Taking Fig. 1 as an example, if
we use DC, only the three unassigned tasks (i.e., s3, s4, s6)
are considered for available worker w2. However, due to the
limitation of expiration time compared to the travel time, none
of these unassigned tasks is reachable for worker w2.

To more effectively utilize the workforce, we reapply the
Algo. 2 to reassign tasks among all workers in a recipient

center (i.e., ci.W ∪ {w ∈ BWS(ci)}) (line 15). We term this
approach as bi-directional collaboration, where the workforce
transfer in the phase of collaboration fine-tunes the results
of the task assignment phases. This ensures a comprehensive
redistribution that potentially maximizes efficiency and task
completion rates. After reassigning tasks, we evaluate the task
assignment ratio, ρc, in this center (lines 16–22). If ratio
ρc is enhanced, we remove worker wmove from the pool of
available workers and update the workforce transfer strategy
BWS(c) accordingly. If ratio ρc remains unchanged, we put
worker wmove back to the available worker set and exclude
center c from recipient centers, since no workforce transfer
can enhance task assignment of center c (lines 20–21).
Recipient Center Selection. We observe that the selection
of the recipient center in each iteration affects the collab-
oration results. For example, in Fig.1, if we use a random
bi-directional collaboration method, the center c2 might be
selected first, with worker w2 as the dispatched worker to cen-
ter c2. Consequently, the collaboration results are 4 assigned
tasks, task assignment ratio in three centers as [1.0, 1.0, 0.33],
and collaboration unfairness as 0.45. While the total number
of assigned tasks increase, collaboration unfairness remains
unchanged compared to center-independent task assignments.

To enhance the efficiency and effectiveness of the game-
theoretic multi-center collaboration, we strategically select
recipient centers based on their current needs for assistance,
rather than a random selection. For example, in Fig.1, the
center c3 is selected. Specifically, we select the recipient center
with the lowest task assignment ratio at the current time
(line 13), which is supported by the following two reasons.
First, in the phase of multi-center collaboration, we want
to maximize the total number of assigned tasks while also
minimizing the collaboration unfairness. This strategy ensures
that resources are allocated where they are most needed,
thereby directly reducing imbalances in task assignment ratios.
Second, from the view of the potential function and utility, this
strategy contributes positively to the overall potential function
of the system. In essence, by elevating the center with the
lowest ratio, this strategy effectively raises the minimum value
of UUP across centers.

E. Discussion

One key limitation is our assumption of task predictabil-
ity [32]–[36], where tasks are typically pre-scheduled and
known in advance, as seen in supermarket deliveries and
logistics services. However, tasks may arrive dynamically or
with uncertainty in real-world settings. Relaxing this assump-
tion would introduce additional challenges but also enhance
the model’s adaptability. Another important assumption is
worker compliance [37], [38], where we assume that tasks
are relatively simple and that workers are fully available
for assignments. In practice, workers may have varying par-
ticipation levels or possess different skill sets, with certain
tasks requiring specific expertise. Future work could explore
multi-skilled worker assignments and integrate skill-based task
matching to improve applicability in more diverse settings.



VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Datasets. The experiments are conducted using both real and
synthetic datasets to validate the robustness and scalability of
our approach. (1) The real dataset utilized is the gMission
dataset (referred to as GM), an open-source SC dataset [39].
In GM, each task is treated as a delivery point with a specific
location, and similarly, each worker is associated with a
geographical location. Since the GM dataset does not include
predefined distribution centers, we simulate |C| distribution
centers by randomly generating their locations. (2) For the
synthetic dataset (referred to as SYN), we build scenarios that
mirror real-world settings but allow for controlled variability in
key parameters. The locations of distribution centers, workers,
and delivery points were uniformly generated within a 2D
space bounded by [0, 2000]2. The default setting is underlined
in Table I.
Baselines. In the few related studies of task assignments
with multi-centers, no study sets the same problem definition
or proposes a method that can solve the CMCTA problem,
with no suitable sota baseline. Instead, we compare several
approaches as discussed in this paper.

In the phase of center-independent task assignment, we
study the following algorithms.
• Seq. The sequential task assignment algorithm in Algo. 2

for center-specific task assignment.
• Opt. The optimal task assignment method achieves the

highest number of assigned tasks in each center, which
first generates all possible VTDS for each worker and then
handles the conflicts in task assignment.
In the phase of multi-center collaboration, we study the

following algorithms.
• BDC. BDC is the proposed bi-directional collaboration

approach that fine-tunes the task assignment in the center-
independent task assignment phase, with consideration of
all workers in a recipient center.

• RBDC. RBDC is a bi-directional collaboration approach that
randomly selects a recipient center in each iteration.

• DC. DC is an approach that merely considers the unassigned
tasks for unused workers, which leaves the initial task
assignment from the first phase unchanged.

• w/o-C. The approach excludes collaboration, activating only
the center-independent task assignment phase.
Hence, combining the methods of these two phases, we

compare the proposed methods Seq-BDC with other baselines
(i.e., Seq-RBDC, Seq-DC, Seq-w/o-C, Opt-BDC, Opt-RBDC,
Opt-DC and Opt-w/o-C).
Settings. All tasks share the same reward (i.e., s.r = 1) and
the same expiration time e. For simplicity, we assume that all
workers share the same delivery speed and the capability of
delivery task w.maxT = 4, which means a worker can deliver
at most four tasks. We implement our methods and baselines
in Python 3.8. All the experiments are conducted on Intel(R)
Xeon(R) Silver 4214 CPU @ 2.20GHz, 256GB memory, and
4 NVIDIA GeForce RTX 3080.

TABLE I
EXPERIMENT PARAMETERS

Parameter Value
Number of tasks |S| in GM 400, 500, 600, 700, 800
Number of tasks |S| in SYN 400, 500, 600, 700, 800
Number of workers |W | in GM 80, 90, 100, 110, 120
Number of workers |W | in SYN 100, 125, 150, 175, 200
Number of centers |C| in GM 20, 30, 40, 50, 60
Number of centers |C| in SYN 20, 30, 40, 50, 60
Expiration time of tasks e (h) in GM 1.00, 1.25, 1.50, 1.75, 2.00
Expiration time of tasks e (h) in SYN 1.00, 1.25, 1.50, 1.75, 2.00

Evaluation Metrics. Three main metrics are used for the
above methods. We use the number of total assigned tasks
and collaboration unfairness, Uρ, to reflect the primary and
secondary optimization goals, respectively. We use CPU time
to imply the efficiency of finding the task assignments in the
multi-center collaboration scenario.

B. Experimental Results
The experiments explored the effect of varying key parame-

ters on the effectiveness and efficiency of task assignment and
collaboration fairness, including the number of tasks |S|, the
number of workers |W |, the number of centers |C|, and the
task expiration time e.
Effect of |S|. We study the effect of |S|. From Figs. 3
and 4, we can see that with the increase of |S|, the number
of assigned tasks and CPU time of all methods exhibit a
similar upward trend. The reason for this phenomenon is that
a larger |S| means that more tasks can be chosen during
the task assignment process. Note that to clearly show the
curve trend for CPU time in the figures, we show the CPU
time values in two groups due to the significant difference
in the magnitudes. From Figs. 3(c) and 4(c), methods with
optimal task assignment (i.e., Opt-BDC, Opt-RBDC, Opt-
DC, and Opt-w/o-C) cost thousands of seconds in calculation
time, while other methods with sequential task assignment
merely occupy tens of milliseconds. This illustrates that the
sequential task assignment algorithm can efficiently process
center-independent task assignments, and achieve a compara-
ble number of assigned tasks to an optimal task assignment. As
for the detailed performance of task assignment, the methods
with multi-center collaboration (i.e., Seq-BDC, Seq-RBDC,
and Seq-DC) enhance at most 5.6% and 6.7% task assignment
than Seq-w/o-C on GM and SYN, respectively, supporting
the effectiveness of enhancing the overall task assignment
by workforce transfer. In particular, the proposed Seq-BDC
continuously outperforms other baselines with sequential task
assignment (i.e., Seq-RBDC, Seq-DC, Seq-w/o-C), in terms
of the number of assigned tasks and collaboration unfairness.

In addition, multi-center collaboration can also reduce the
unfairness of task assignment ratio across centers, as we can
see Seq-BDC reduces at most 46% unfairness and reduces
30.5%-7.3% compared to Seq-w/o-C on GM and SYN, re-
spectively. Notably, the Seq-RBDC sometimes performs worse
than the Seq-w/o-C in collaboration unfairness, since it ran-
domly picks a recipient center to receive assistance in each
iteration, and potentially harms the collaboration unfairness.
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Fig. 3. Effect of |S| on GM
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Fig. 4. Effect of |S| on SYM
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Fig. 5. Effect of |W | on GM
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Fig. 6. Effect of |W | on SYM

Effect of |W |. We study the effect of |W | as shown in Figs. 5
and 6. With the increase in the number of workers, both task
assignment and collaboration fairness perform better, where
ultimately all tasks are assigned and collaboration unfairness
reduces to zero with multi-center collaboration. The reason
behind this phenomenon is that when the tasks remain the
same, the large number of workers contributes to the center-
independent task assignment and the inter-center workforce
transfer. In this experiment of |W |, the Seq-DC is generally
inferior to the Seq-BDC, which illustrates the importance
of bi-directional optimization. Specifically, with bi-directional
optimization between task assignment and workforce transfer,

the center-specific task assignment achieves better perfor-
mance since all workers are reassigned with a VTDS. On the
contrary, the improvement of task assignment with decoupled
collaboration is limited by the travel cost of available workers
to unassigned tasks.
Effect of |C|. We study the effect of |C|, which is presented in
Figs. 7 and 8. The gap between no collaboration baselines (i.e.,
Seq-w/o-C and Opt-w/o-C) and other collaboration baselines
expands compared to tuning |S| and |W |. Specifically, as the
number of centers |C| increases from 20 to 60, the number
of assigned tasks with Seq-w/o-C reduces from 351 to 279,
and from 324 to 280 on GM and SYN, respectively. Simul-
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Fig. 7. Effect of |C| on GM
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Fig. 8. Effect of |C| on SYM

taneously, the score of collaboration unfairness deteriorates
from 0.18 to 0.44 and from 0.29 to 0.44 on GM and SYN,
respectively. The Opt-w/o-C performs a similar degeneration
as Seq-w/o-C, although it applies better center-independent
task assignments than Seq-w/o-C. This degeneration in Seq-
w/o-C and Opt-w/o-C is because as the |C| increases, the
demand-supply gap (i.e., the distribution tasks and workers)
across centers also enlarges, where more available workers and
unassigned tasks are left after the phase of center-independent
task assignment. In addition, with more centers, the Seq-
RBDC tends to cause approximately double collaboration
unfairness compared to the Seq-BDC, since the random se-
lection of recipient centers has potential risks the multi-center
collaboration, especially with more centers.
Effect of e. We study the effect of e, which is the expiration
time for tasks. Not surprisingly, as shown in Figs. 9 and 10, the
number of assigned tasks in no collaboration baselines (i.e.,
Seq-w/o-C and Opt-w/o-C) increases at first and then remains
stable; while other baselines with multi-center collaboration
exhibit an increasing trend. On the contrary, the performance
of baselines in collaboration unfairness shows oppositely. This
is because each worker tends to have fewer reachable tasks
with e = 1.0 initially, while a worker can expand her delivery
range along with the expiration time e increase, which benefits
both task assignment and multi-center collaboration. However,
this enhancement of the delivery range is limited by the break
of center-independent task assignments in no collaboration
baselines, where a worker cannot deliver beyond her located
center. In addition, the fluctuation in collaboration unfairness
with Seq-RBDC and Opt-RBDC is due to the random selection
of recipient centers.
Convergence of Game-Theoretic Collaboration. We also il-
lustrate the convergence of the game-theoretic collaboration to
support that utilizing the best-response mechanism can achieve

an NE. To provide a fine-grained optimization process with
more iterations, we conduct experiments with the proposed
Seq-BDC methods with |C| = 50 instead of the default
|C| = 20 on datasets GM and SYN, while other parameters
follow the default setting. As illustrated in Fig. 11, we present
the detailed number of assigned tasks (i.e., the blue dotted
line) and collaboration unfairness (i.e., the red cross line) in
each iteration of the game. We can observe that during the
iterations, both these two metrics are optimized consistently.
The consistent optimization shows that in every iteration of the
multi-center collaboration game, a newly dispatched worker
from a source center to a recipient center not only contributes
to the task assignment in the recipient center, but also reduces
the overall collaboration unfairness across all centers.

VII. RELATED WORK

Spatial Crowdsourcing (SC) has attracted attention in the
field of spatial-temporal data [40]–[46] and database [47]–
[49] in recent years. Research proposes different applica-
tion scenarios in in task assignments of SC, such as taxi
dispatching [7], [24], [50], [51] and delivery routing [52]–
[54]. In this section, we mainly introduce some works solving
cooperation [17]–[19], [55]–[58] and fairness [25], [59]–[62]
in task assignments.
Cooperation in Task Assignment. Chen et al. [17] study a
problem of cooperation-aware spatial crowdsourcing (CA-SC),
where spatial tasks are time-constrained and require more than
one worker. With the consideration of the different cooperation
relationships among workers, this work aims to maximize the
overall cooperation quality revenue in the CA-SC problem.
Zhao et al. [19], [58] propose another study that focuses
on the coalition between workers. It proposes a novel SC
problem, namely coalition-based task assignment, to maximize
the overall rewards of workers. Li et al. [55] define the
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autonomy and coordination task assignment problem, where
orders are shared with multiple similar platforms. It aims
to solve the imbalance between supply and demand through
cooperation and to maximize global revenue and fairness and
proposes a framework consisting of public order sending, local
matching, global conflict adjustment, and result notification.
Fairness in Task Assignment. Chen et al. [59] define worker
fairness by extending a common concept, Fagin-Williams
share. It aims to assign tasks, considered as a resource in
short supply, to individual spatial workers in a fair manner
and formally defines an online bi-objective matching problem,
namely the fair and effective task assignment problem. Zhao et
al. [25] study the problem of fairness-aware task assignment
in SC, where tasks are assigned to achieve fairness across
workers. In particular, it aims to minimize the payoff differ-
ence among workers while maximizing the average worker
payoff. Shi et al. [60] propose learning to assign with fair-
ness, an effective and efficient task assignment scheme that
optimizes both utility (i.e., the expected accumulated earnings
across all drivers till batch time) and fairness (i.e., temporal
earnings fairness among workers). It adopts reinforcement
learning to make assignments holistically and proposes a set
of acceleration techniques to enable fast and fair assignments.

Shi et al. [60] propose a fair task assignment method in
spatial crowdsourcing, but it differs from our method in terms
of fairness definition and multi-center collaboration scenario.
More recently, Cheng et al. [17] developed an advanced game-
theoretic model for solving cooperation between workers.
However, this model is not directly applicable to our problem
due to the different cooperation targets.

VIII. CONCLUSION

In this paper, we introduce a Collaborative Multi-Center
Task Assignment (CMCTA) problem where multiple distribu-
tion centers are managed by a spatial crowdsourcing platform.
Specifically, CMCTA tackles the imbalance of workers and
tasks across centers, which aims to maximize task assignment
while ensuring fair collaboration across multiple centers. To
address CMCTA, we propose the Iterative Multi-center Task
Assignment and Optimization (IMTAO) framework, which
is designed to leverage workforce transfer among centers
to alleviate the gaps in worker and task distribution among
centers. IMTAO integrates a two-phase optimization: center-
independent task assignment with an efficient sequential task
assignment algorithm, and inter-center workforce transfer with
a multi-center collaboration game that both enhances task
assignment and reduces collaboration unfairness through bi-
directional optimization. Experiments validate the effective-
ness and efficiency of IMTAO, showing significant optimiza-
tion in task assignment efficiency and collaboration unfairness
compared to baseline methods.
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