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ABSTRACT
The turn-by-turn route descriptions provided in the existing navi-
gation applications are exclusively derived from underlying road
network topology information, i.e., the connectivity of edges to
each other. Therefore, the turn-by-turn route descriptions are sim-
plified as metric translation of physical world (e.g. distance/time
to turn) to spoken language. Such translation that ignores human
cognition of the geographic space, is frequently verbose and redun-
dant for the drivers who have knowledge of the geographical areas.
In this paper, we study a Personalized Route Description system
dubbed PerRD - with which the goal is to generate more customized
and intuitive route descriptions based on user generated content.
PerRD utilizes a wealth of user generated historical trajectory data
to extract frequently visited routes in the road network. The ex-
tracted information is used to make cognitive customized route
description for each user. We formalize this task as a problem of
finding the optimal partition for a given route that maximizes the
familiarity while minimizing the number of partitions, and finding
a proper sentence to describe each partition. For empirical study,
our solution is applied to three trajectory datasets and users’ real
experiences to evaluate the performance and effectiveness of PerRD.

1 INTRODUCTION
Navigation applications that determine optimal routes and corre-
sponding turn-by-turn directions in road networks are one of the
most used applications in a wide variety of domains. While the
problem of computing optimal route has been extensively studied
and many efficient techniques have been developed over the past
several decades, the turn-by-turn direction computation techniques
have have remained unchanged. With the fast-paced development
of mobile Internet, the applications related to route description
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are increasingly used in people’s daily lives, and these application
providers will record a large number of user’s driving data, i.e,
trajectory data, every day. These data are particularly useful for
producing more effective and cognitive turn-by-turn directions.
Figure 1(a) shows an example of a user who expects to go to ‘9

Figure 1: Personalized route descriptions.

Guanghua Rd, Guomao’ (marked as B) from her home (marked as
A). The route from A to B is denoted by the red line, while the route
from A to her work (marked as C) is indicated by the green line.
We can see that the two routes share most parts, route from A to D.
Figure 1(b) shows the description of route A to B provided by navi-
gation systems. The route description is of the turn-by-turn route
description strategy which is computed by taking into account in-
herent cost measures (i.e., distance and/or travel time) and turn
angles (e.g., left or right) between the edges of the underlying road
network. Thus the turn-by-turn directions are inevitably verbose
even if the details are quite familiar to a particular driver. Moreover,
no cognitive summary (e.g., landmarks leading to main turns in the
route) is available to the driver, which may be tremendously helpful
to perceive the route at once. One way to generate more laconic
and intuitive route description is to present the routing information
using higher level objects such as routes and landmarks that are
frequently traveled by the driver while omitting details which are
already familiar to her, such as location C.
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Typically, experienced urban commuters have good knowledge
of the city and are familiar with certain parts of the city such as
their living regions and working regions. Continuing with our ex-
ample shown in Figure 1, the driver frequently travels on the green
route and hence the navigation system should replace redundant
navigation instructions in red rectangle of Figure 1(b) with a sin-
gle sentence ‘Drive towards work via DongSan Road until exit
for Jingguang Bridge’, demonstrated in Figure 1(c). Since familiar
routes and more cognitive information are involved to describe
the routing directions, navigation information becomes easier for
the driver to understand. We call the route description strategy
which describes routes utilizing user-familiar semantic locations
‘personalized route description’. With these two kinds of descrip-
tion strategies compared, it is easy to find out that the target route
created by personalized route description is closer to user’s travel
habits than turn-by-turn route description. Furthermore, person-
alized route description requires less resources (e.g., screen space)
to explain the entire route in a more intuitive way with high level
information. Despite the clear advantage shown by personalized
route descriptions, there remain few papers working on it. [10] is
the only paper that has addressed the problem. Nevertheless, it has
some strict requirements, as a result of which not many navigation
routes can be personalized described. Besides, [10] only the nearest
POI is used to describe route partitions, which is not a good solution
in some cases.

Thus in this paper, we propose a new personalized route descrip-
tion system called PerRD based on users’ historical trajectory data.
In order to achieve personalized route description for the users,
there are some challenges we have to overcome. The first one is how
to convert the user’s history trajectories to the available knowledge
appropriately. The second one is how to find an optimally parti-
tioning a given route based on the knowledge. The third one is how
to generate a good personalized description. To address these chal-
lenges, we propose a two-phrase framework, i.e., route partition
and partition description. In route partition, we first measure users’
knowledge of the network by utilizing users’ historical trajectories.
The routes that a user know well will be extracted. Based on the
routes known to a user, we divide a given route into several parti-
tions. In partition describing phase, we first develop the template
of description and then transform the route description problem
into that of finding destination marker problem. In order to solve
the problem, we propose a two-step method which firstly detect
the types of regions. Then based on the region type, we select a
proper landmark to be the destination marker.

In summary, the contributions of this paper are as follows:

• We propose a system PerRD to provide higher-quality per-
sonalized route descriptions for urban commuters by lever-
aging historical trajectory data. We formalize the route de-
scription problem, and then propose efficient algorithms to
solve them optimally.

• We propose an approach to finding the most suitable loca-
tion word to describe a route partition. To the best of our
knowledge, this paper is the first to use location words to
describe routes.

• We conduct extensive experiments based on both real dataset,
and as demonstrated by the results, with a proper amount

of known routes, PerRD can reduce the number of route
descriptions while still providing sufficient information for
user to follow the route.

The remainder of the paper is structured as follows. We review
the related work in Section 2. Section 3 introduces the preliminary
concepts and the work-flow of the proposed system. The route par-
titioning phase is described in Section 4. In Section 5, we elaborate
the detail of the proposed route summarization algorithms. The
experimental studies are presented in Section 6. Section 7 concludes
the paper.

2 RELATEDWORK
The problem referred to in this work is relevant to trajectory
process- ing and trajectory querying issues, including trajectory
summarization, trajectory compression with semantic meaning,
personalized travel recommendation.
Trajectory Summarization. Given a set of trajectories, [7] a solu-
tion is proposed cluster the trajectories into several groups, and rep-
resent each group is represented by its most central trajectory. [1]
summarized a set of trajectories are summarized by providing a
symbolic route to represent the cardinal trajectory directions. The
output of both [7] and [1] is a trajectory rather than sentences.
[17, 18] proposed a framework to construct summary for raw tra-
jectories to describe behaviors of drivers while our work focuses
on describing a route based on the drivers’ path preferences.
Trajectory Compression with Semantic Meaning. Our work
is also related to trajectory compression [14, 24]. A series of re-
searches consider trajectory compression with the constraints of
transportation networks [9, 15]. We can simplify the description as
long as the moving object is traveling on the shortest path. Though
this approach is effective in trajectory compression, the shortest
path may not be intuitive or even confusing to users, making it
unfit for our application.
Personalized Travel Recommendation. Themethod to discover
personalized routes from trajectories is proposed in [2], while the
approach to finding popular routes is investigated in [4]. In [5, 11,
19, 20], the algorithms to recommend routes based on historical
trajectories are described. In these applications, the input usually
consists of a source and destination and the output is the best route
from source to destination based on some criterion, e.g., popular-
ity, safety, while in the input is a route and the output is a route
summary. Personalized travel recommendation is a specialized navi-
gation system that aims at finding a route that best matches a user’s
historical preference. On the contrary, our work is orthogonal to the
underlying navigation system and thus can be integrated with any
navigation system. That is to say, our system can take an arbitrary
route generated by a navigation system and map it to a summary
based on a user’s historical travel patterns.

[10] is the only work which also attempts to use the routes fa-
miliar to users to describe routes. However, [10] is too ideal that
the given route can only utilize a user’s knowledge when the start-
ing point and ending point of the given route are precisely in the
knowledge route; while in this work the given route can utilize a
user’s knowledge when the given route shares the same sub-route
with the knowledge route. In other words, this work can increase



the using probability of a user’s knowledge. Moreover, in summa-
rization phase [10] only uses the nearest POI to describe a route
segment, while in this work we mine semantic locations for each
user and utilize a more proper semantic location to describe a route
segment even though the semantic location may be distant from
the route partition.

3 PROBLEM STATEMENT
In this section, we introduce some preliminary concepts, and for-
mally define the personalized route description process. Table 1
summarizes the major notations involved in the rest of the paper.

Table 1: Summarize of notations

Notation Definition
T a trajectory
l a landmark in the space
l .s the significance of a landmark
R a route in a road network
RS a route segment
RP a route partition
d (RP ) a description of a route partition RP
d (R) a description of a route R

3.1 Preliminary
Definition 1 (Landmark). A landmark l is a geographical point

in the space, which is stable and independent of trajectories.

A landmark can be either a Point Of Interest (POI) or a turning
point of the road network.

Definition 2 (Trajectory). A trajectory T is a finite sequence
of locations sampled from the original route of a moving object and
their associated time-stamps, i.e., T = [(l1, t1), (l2, t2), · · · , (ln , tn )].

A raw trajectory T is a finite sequence of locations sampled
from the original route of a moving object and their associated
time-stamps, i.e., T = (l1, t1), (l2, t2), · · · , (ln , tn ), where pi denotes
a location specified by latitude and longitude and ti indicates the
corresponding timestamp. To facilitate analysis of the trajectories,
we use map-matching and anchor-based trajectory calibration [16]
to transform the raw trajectory T into a landmark-based trajectory,
by treating landmarks as anchor points. After calibration, these
trajectories are aligned based on landmarks, fow which a calibrated
trajectory can be considered as a sequence of landmarks, i.e., a
route.

Definition 3 (Route). A route R in a road network is defined as
a sequence of landmarks R = [l1, l2, · · · ln ] which connect a starting
point and destination.

A route segment RSi of a route R is a sub-route which connects
two consecutive landmarks li and li+1 of R. For a given route R, it
includes |R | − 1 segments R1, R2, · · · , Rn−1. These segments are the
basic atoms constructing R. Two segments are named contiguous
segments if they share the same landmark as the start and the
destination respectively, i.e., R2 and R3 sharing landmark l3.

Definition 4 (Route Partition). A partition of a route R is PR
such that

• Each partition RP ∈ PR is a sub-route of R made up of contigu-
ous route segments, i.e.,

RP = [RSi ,RSi+1, · · · ,RSi+j ]

•
⋃
RP ∈PR

RP = R

• RP i ∩ RP j = ∅,∀i, j.
Clearly, each route segment of a route is covered by exactly one

partition. |PR | indicates how many partitions are in PR . Obviously,
navigation systems provide route descriptions by partitioning a
route into route partitions and then describe each partition, e.g.,
shown in Fig. 1(b). Thus we can formally define route description as
follows:

Definition 5 (Route Description). A description of a route R
is d(R) so that

• A descriptiond(RP) of a route partitionRP is a human readable
sentence which describes the adjacent relations between roads
covered by RP .

• d(P) is list of sequences that d(P)=
∑

RP ∈PR

d(RP).

All navigation systems only utilize features and topologies of
roads without personal information to generate route descriptions.
In a road network, a route segment has multiple road features,
e.g., street name, grade of road, road width and traffic direction.
Navigation systems split a route into route partitions, and within
each partition route segments share similar road features. Then
navigation systems describe a route in a turn-by-turn manner which
is computed by taking into account inherent cost measures (i.e.,
distance and/or travel time) and turn angles (e.g., left or right)
between the edges of the underlying road network. In this way,
the description of every route is independent of specific commuter,
and we define it as turn-by-turn description dturn . For example, in
Figure 1(b), ‘Head east on Baijiazhuang Road toward DongSanHuan
North Road’ is an example of turn-by-turn description. For a given
route R = [l1, l2, · · · ln ] and its corresponding route partition PR , its
route partition can be denoted by d(R) = dturn (RP1) + dturn (RP2) +
· · · + dturn (RP |PR |). Thus the regular expression of a turn-by-turn
manner route description is dturn (·)∗.

In reality, a urban commuter is always familiar with certain
landmarks and routes, e.g., routes from her home to work place
or routes from her work place to a shopping center. We call such
user familiar routes knowledge routes. In Figure 1(a), the route from
home to the work is an example of a knowledge route. Our system
splits a route into route partitions, and within each partition route
segments belong to a knowledge route or share similar road fea-
tures. Then our system describes a route in a personalized manner if
there is a route partition belonging to a knowledge route. In doing
so, the description of every route is dependent on specific com-
muter. We define it as personalized description dper . For example, in
Figure 1(c), ‘Drive towards work via DongSan Road until exit for Jing-
Guang Bridge’ is an example of personalized description. For a given
route R = [l1, l2, · · · ln ] and its corresponding route partition PR ,
the regular expression of a personalized manner route description
is (dturn (·)|dper (·))∗. As a personalized partition always contains



Figure 2: System Overview

more than one turn-by-turn partition, the personalized manner
becomes more concise, i.e., less number of route partitions, and
more familiarity to drivers than the turn-by-turn manner.

3.2 PerRD System
Figure 2 presents the overview of the proposed PerRD system,
which basically consists of two parts: route partitioning and route
description. In route partitioning phase, we first measure users’
knowledge trees of the network by utilizing users’ historical tra-
jectories. Knowledge trees can be constructed off-line as it is inde-
pendent of data input. Based on users’ knowledge trees, we split
a given route into multiple partitions. In route description phase,
we first devise the template of description and then transform the
route description problem into that of finding destination marker
problem. In order to address the problem, we propose a two-step
method which firstly detects the types of regions and based on
the region type we select a proper landmark to be the destination
marker. We will detail the discussion on each part in the next two
sections.

4 ROUTE PARTITIONING
In this section, we first present our algorithm to explain how to
extract users’ knowledge based on historical trajectories. The output
will be several tree structures which capture the relationship of
known routes for each user with corresponding familiarity score.
Then we will partition a given route based on a user’s knowledge
trees.

4.1 User Knowledge Measurement
It is a common sense that if a user visits a POI or travels through
a route several times, the user has a high likehood to be familiar
with the POI or the route. A user’s historical trajectories capture
her travel history. Thus, by mining her historical trajectories, we
can detect her familiar POIs and routes, i.e., user knowledge. We
represent this user knowledge as another metric onto the map.
Besides its route distance, traffic condition, etc., we associate each
route segment RS with scores measuring a user’s familiarity with
it. Before we give the formal definition of the familiarity measure,
we would like to emphasize an important observation about the
property of such a familiarity measure. For instance, imagining a
user takeing a specific road to commute to work every day so is
very familiar with it, however, she may not know how to get to a

place she has never visited via that road. From this observation, we
can see that a user’s familiarity with a route segment is depending
on which route we are talking about. Besides the familiarity score
is not additive, i.e., getting more familiar with a route segment
for a certain route does not mean an increase in familiarity when
talking about a different route. Therefore, it is argued that the
familiarity score should take the form fu (RS |R), i.e., the familiarity
of a particular user u with a particular route segment RS is subject
to a particular route R. In this paper, we simply define fu (RS |R) as
the frequency of user u to visit RS in R. Clearly, given a user u, for
each RS there are multiple familiarity scores, { fu (RS |R),∀R,RS ∈ R},
attached to it. In the rest of this subsection we will introduce how
to measure user knowledge of a user u by giving her historical
trajectories T. We first cluster all the trajectories of a user u and
manage them in a succinct data structure—knowledge trees. Then
we traverse the collection of knowledge trees built to extract the
familiarity scores, and annotate them onto the map.

T1 = [l1, l4, l8, l13, l18, l19] and T2 = [l1, l5, l6, l10, l11, l16, l21, l25]
are two trajectories of T, denoted by the green line and blue line
in Figure 3(a) respectively. For trajectories with the same starting
point, i.e., l1, we can easily construct a knowledge tree with the
root l1 in the following steps:

• Add each landmark of trajectories T1 and T2 to the vertex
set V .

• Add the starting point l1 as the root and a directed edge from
li to lj , denoted by e(li , lj ), if there exists a road segment
connecting li to lj directly in T1 and T2.

• Each edge e(li , lj ) is annotated with how many times the
user passes e(li , lj ) in T1 and T2. The annotated number is
named familiarity score.

The constructed treeTRl1 of landmark l1 is illustrated in Figure 3(b).
Similarly, given a trajectory T3 = [l4, l5, l6, l10, l15, l20, l24] denoted
by the red line in Figure 3(a), we can construct a tree TRl4 shown
in Figure 3(c). However, an experienced driver, who has traveled
a region or a city many times, may have plenty of starting points.
It may cause the construction of many knowledge trees, i.e., high
space complexity, even through some starting points are very close
spatially, e.g., l1 and l4 in Figure 3(a). In order to reduce the space
complexity, we need to make changes to the raw trajectories in the
following steps:

• Cluster all the starting points and determine a centering POI
for each starting point cluster. For a starting point cluster
L and its corresponding center lc , we construct a new tree
TRlc and add lc as the root.

• For a starting point cluster L and its corresponding center lc ,
Tlc denotes all the trajectories with a starting point l where l
belongs to cluster L. For every trajectory T = [l1, l2, · · · , ln ]
∈ Tlc , we insert lc to T utilizing the insert method intro-
duced by [8]. This method ensures that its result trajectory is
shorter than any other inserted trajectory. Thus the inserted
trajectory can be denoted as T = [l1, l2, · · · , li , lc , lj , · · · , ln ].
We retain the landmarks from lc to ln , which in other words
the retained trajectory is T = [lc , lj , · · · , ln ].

With the method above, we can change all the trajectories, of which
starting points belong to the same cluster, to have the same starting
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Figure 3: Example of conducting a knowledge tree

point, i.e., the cluster center. Then we can utilize the tree con-
structing method introduced at the beginning of this subsection to
construct a new knowledge tree. Figure 3(d) demonstrates the new
knowledge tree of Figure 3(a).

By using the above explained method, we can establish a collec-
tion of knowledge trees {TR1, · · · ,TRk } for a user u, each TRi
representing a group of trajectories with a shared starting point src
as the tree root, and the leaf nodes as different destination points
dest , and each inner node as a route segment. Then for each TRi ,
we perfrom a post-order traverse on the tree. During the traversal
for each inner node we visit, we maintain the list of trajectories
(src,dest) it belongs to and the corresponding frequencies. It is
noteworthy that this can be done easily, as the contained trajectory
destinations of a route segment are simply all the leaf nodes in the
subtree rooted at the corresponding inner node. In each way, we
can annotate each route segment on the map with a list of route
and familiarity score pairs {(R = (src,dest), fu (RS |R))}, as shown
in Figure 3(e).

4.2 Partitioning Algorithm
In this section, we introduce the route partition algorithm in PerRD.
Although any partition of a route R can lead to a summary, not all of
them are suited to a good one. Firstly, it is better for each partition
to be intuitive and easy for a user to understand. For example, if a
route partition is comprised of route segments with high familiarity
scores, a user can have a clear view of how to travel along the route.
Secondly, it is easier to generate more compact descriptions if the
number of partition size is small. Based on the above intuitions, we
define the quality of a partition P as follows:

Qu (P(R)) =
∑

RS i ∈P(R)

fu (RSi |R) − λ |P(R)|

where |P(R)| indicates the number of route segments in this par-
tition, λ denotes a non-negative constant specified by users, with
penalty added to the number of segments in the generated route
partition. Thus, finding the optimal route partition P∗(R) is to find
the partitioning scheme that maximizes Qu (P(R)).

P∗(R) = argmax
P(R)∈all partitions

Qu (P(R))

One naïve approach to find P∗(R) is to enumerate all the possible
combinations of route segments and choose the onewith the highest
quality. Nevertheless, the time complexity of this naïve approach is

exponential with the number of links in the route. In the following
part, we will demonstrate that dynamic programming can be used
to find the optimal route partition with polynomial time complexity.

Considering a route R = l1, l2, · · · , ln , we use R(1,k)) to denote
its prefix subsequence l1, · · · , lk . Clearly, P∗(R) = P∗(R(1,n)). Given
a prefix subsequence R(1,k), we define its conditional optimal route
partition P∗(R |R′) as the optimal route partition of R with the last
route segment equals to R′. The optimal partition of R(1,k) is the
best conditional optimal route partition among all candidates and
belongs to the route of the last route segment. That is,

P∗(R(1,k)) = argmax
∀R′∈R(R(k−1,k ))

Q
(
P∗(R(1,k)|R′

)
We can recursively derive P∗(R(1,k)) from P∗(R(1,k − 1)), and ul-
timately derive P∗(R(1,n)) and thus P∗(R). The derivation can be
summarized as follows:

Q(P∗(R(1, k ) |R′)) = max
∀R′′∈R(R(k−2,k ))

Q(P∗(R(1, k − 1) |R′′)) + fu (R(k − 1, k ) |R′)

if R′ = R′′

Q(P∗(R(1, k − 1) |R′′)) + fu (R(k − 1, k ) |R′′) − λ

if R′ , R′′

(1)

(2)

ComplexityAnalysis: therewill be totallyN sub-problems, where
N = |R | is the number of links in R. Each subproblem can be solved
by considering |R| candidates from the previous sub-problem,where
|R| is the average number of candidate routes for a given link
that is usually quite small (≤ 5). Therefore, the time complexity is
O(N · |R|).
Space Complexity: as the algorithm only has to store the infor-
mation on the conditional optimal partitions of two adjacent steps,
thus the total space complexity is O(|R|).

5 ROUTE SUMMARIZATION
After discussing the route partitioning strategy, we now shift focus
to how to generate its corresponding personalized route descrip-
tion in this section. As mentioned above, the personalized route
description will describe a turn-by-turn partition with turn-by-turn
description dturn and describe a personalized partition with per-
sonalized description dper . Thus, for a given route R = [l1, l2, · · · ln ]
and its corresponding route partition PR , the regular expression of
a personalized route description is (dturn (·)|dper (·))∗.
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Figure 4: Example of finding a proper destination marker.

For a route description template shown below, there are three
types of key information, i.e., ‘action’, ‘current location’ and ‘desti-
nation marker’.

‘action’ on ‘source location’ to ‘destination marker’

Action is used to indicate the next step of the user’s behavior such
as ‘turn left’, ‘turn right’, ‘make a U-turn’ and so on. Source location
reveals the current location (POIs or roads) of a user. Destination
marker represents the destination which can be a POI or a road.
As shown in Figure 1(b), ‘head east’ is an action, ‘Baijiazhuang
Road’ is the source location and ‘Dongsanhuan North Road’ is the
destination marker. Apparently, action and source location are the
inherent attributes of topologies of routes, so that there is no dif-
ference between descriptions of action and source location in both
turn-by-turn description and personalized description. On the con-
trary, destination markers between turn-by-turn description and
personalized description can be starkly different. For instance, desti-
nation markers of turn-by-turn description are mostly street names,
while destination markers of personalized description are semantic
locations such as prominent landmarks and even aliases indicating
locations (e.g., home, work, school and so on). The well-known
landmarks (e.g., the Times Square) and users’ location aliases often
make urban commuters recall routes leading to these destinations.
Thus, the route description process is filling the route description
template by finding proper ‘action’, ‘source location’ and ‘destina-
tion marker’ for each route partition. As finding proper ‘action’
and ‘source location’ has been well studied, our work will
focus on how to find a proper ‘destination marker’ for each
route partition in personalized route description.

In practice, there are some location words that users are fully
aware of without giving detailed geographic information such as lo-
cation word ‘home’. It is the best way to use these personal location
words as destination markers cause using location words that can
avoid using detailed geographic description. It is worth noting that
a user always parks her car near her destination ldes not exactly
ldes . Besides, a user does not always park her car in the same place
every time she arrive ldes . For example, a user may park her car in
a different parking lot not far from her workplace. Therefore, we
cannot simply use the ending point of a trajectory as a destination
marker. Based on the idea that a user’s subsequent behavior pat-
terns are similar when the stay points are within a certain range,
we cluster a user’s destinations into clusters [cs1, cs2, . . . , csm ]. The
red circles of Figure 4(a) denote the destination clusters of Fig. 3(d).

As there are many roads and landmarks within each cluster, we
propose a two-step method to find a proper location word w(cs)
to represent each cluster. The first step is to detect the most likely
location word type of a cluster and the second step is to select the
most significant landmark falling into the location word type. In
the following section we will detail the two-step algorithm.

5.1 Detect Location Type
To facilitate practical use, we define five types of locations: Home,
Work, Restaurant, Recreation and Others. There are several works
[21–23] as attempt to detect the activities of a trajectory. For the
activity-oriented detecting purpose, these methods are designed
to have a higher probability to classify a cluster as the type of
recreation. Besides, our application scenario is detecting the type of
a destination cluster instead of a sole destination. Thus, to solve this
problem, we propose a new classification model which leverage the
of power of both spatio-temporal features of destination clusters
and sequential features of trajectories:

5.1.1 Spatio-temporal Features of Destination Clusters . The user’s
behavior pattern has a close relationship with the spatio-temporal
characteristics. For instance, people have a great tendency to stay at
home for a long time in the evening, and go to work in the weekday
morning. Moreover, people may be shopping or eating in a business
intensive place, and visiting a friend’s home in a residential area.
Thus we endow every cluster csi with a temporal feature vector
to capture a user’s living habits in the region and a spatial feature
vector to describe region characteristics. We list some features as
follows:

Temporal feature:
• Arrival time and departure time: a certain visit of a region has
its concrete arrival time and departure time. In this paper, we
use the time of a trajectory entering a region as the arrival
time and the time of a trajectory leaving a region as the
departure time.

• Duration: the visit duration indicates how long a user has
stayed in a region. It can be calculated from arrival time
and departure time. Notably, a user does not record location
at any time. Therefore, when system does not get a user’s
location for a long time, like one day, the duration will not
be calculated.

• Visit pattern: the visit pattern of a region indicates the fre-
quency and distribution of visits. We extract the most fre-
quent visits in a week (Monday, Tuesday, · · · , Sunday), the
most frequent visits in a day (1:00am , 2:00am, · · · , 12:00pm),
the distribution of visits of a week and the distribution of
visits of a day in this paper.

Spatial feature: The spatial feature used in paper is the function
of a region (e.g., residence, supermarket, etc.), which in other words
is the main category of POIs within a region. The TF-IDF idea is
conducive to exploring the main categories of POIs within a region.
A POI category vector is defined as < v1,v2, . . . ,vk >, where k
represents total number of categories and vi indicates tf-idf value
of i-th POI category. vi is defined as follows:

vi =
ni
N

× loд
T

ti



where ni denotes the number of POIs belonging to category i , N
indicates the total number of POIs in this region, T refers to the
total number of POIs in the POI database, and ti indicates the total
number of i-th category POIs. The greatervi is, the more significant
the i-th category POIs are in this region.

We choose XGBoost [3] as the classifier in this step, which is a
concrete implementation of Gradient Boost Decision Tree (GBDT)
algorithm, in view of its excellent classification performance and
the great modeling ability for the missing values in the features.
For each cluster csi , in order to make the train data more robust,
we discretize some temporal features (e.g., duration is divided into
high, medium, and low), and calculate the corresponding statistical
characteristics such as mean, variance, maximum and minimum.
We take both spatial features and temporal features as the input of
the classification. Once the XGBoost is trained, from a input vector
we can obtain a probability vector ®Pr = [Pr1, Pr2, . . . , Prt ], where
Pri indicates the probability of a cluster cs belonging to the i-th
predefine type. If cs is in a continuous visit sequence, then in step
(2), sequence constraint is applied to further determine the type
of csi , otherwise the category is the result in ®Pri with the highest
probability.

5.1.2 Sequential Features of Trajectories. All of the features de-
scribed above are independent attributes of the clustering region.
However, human’s behavior is usually sequential, e.g., people usu-
ally go shopping before going back home, and they probably won’t
go eating next from a restaurant gathering area. Thus, the type of
each cluster in the visit sequence is affected by its front and rear
elements.

In order to achieve the desired effect, we decide to use Bi-directional
Long Short-Term Memory (BILSTM) to trajectory sequential pat-
tern problem. LSTM [6] is a highly popular neural network, and
it has achieved remarkable results in voice recognition, sequence
labeling and other tasks. The basic idea of BILSTM is to merge two
LSTM networks (one is forward, another is backward) by connect-
ing them to the same input layer and output layer. So this structure
is capable to provide the complete past and future context infor-
mation to predict each point in the input sequence, that is, it can
naturally help us achieve the effect of sequence constraint.

Inspired by the idea of model stacking, we take the probability
vector ®Pr as the new input data in this part. The reason is that
it can preserve the first step classifier’s effect while reducing the
dimensionality of the feature vector to BILSTM.

Firstly, we use a user’s daily behavior to create a vector sequence
[χ1, χ2, . . . , χt ] as the input of neural network. Here t indicates
the number of clusters which a user visits continuously, and χi de-
notes the feature vector of i-th cluster. Then. the back-propagation
through time algorithm (BPTT) can be applied to optimize parame-
ters in the BILSTM.With softmax layer as the output layer, once the
BILSTM is trained, from an input vector sequence, we can obtain a
probability vector ®Prj = [Pr1, Pr2, . . . , Prt ], in each step, where Pri
is the probability of j-th cluster in the user’s visit sequence falling
into the i-th pre-define type. We choose the maximum one as the
result. Neverthless, the same cluster csi may be classified into differ-
ent pre-types in different sequences. We adopt the voting method
to select the most frequently occurring pre-type as its final forecast
type. Figure 4(b) illuystrates the location types of Figure 4(a).

5.2 Select Significant Landmark
In route description, two aliases home andwork are sufficiently in-
tuitive to use straightaway, while restaurant , recreation and others
need to be replaced with certain POIs (e.g., recreation is replaced
with Times Square). Therefore, in this paper, we need to select a
proper landmark for type restaurant, recreation and others. It is a
common sense that landmarks have a different significances. For
instance, the White House is famous globally, but Pennsylvania
Ave, where the White House is located, is only known to the locals
in Washington DC. The selected landmark should have a high sig-
nificance, so that users can recall the route to it accurately. In this
work, we utilize trajectories of cars in the target city to infer the
significance of landmarks. By regarding the travelers as authorities,
landmarks as hubs, and check-ins/visits as hyperlinks, we can lever-
age a HITS-like algorithm such as [27] to infer the significance l .s
of a landmark l . Thus for cluster cs and its location type cs .type , it
is easily to obtain the landmarks (denoted by Lcs ) which are of type
cs .type within region of cs . The selected landmark lopt is defined
as follows:

lopt = argmax
l ∈Lcs

l .s

Figure 4(c) presents the selected landmark of Figure 4(b). Using
this two-step method, we can take aliases home and work or lopt
as destination marker in personalized route description.

6 EXPERIMENT
In this section, our experimental results are presented to evalu-
ate the performance of proposed route description system PerRD.
PerRD is performed using Java and Python on Ubuntu 16.04. All
the experiments are conducted on a computer with Intel Core i7-
4770K(3.9GHz) CPU and 16GB memory.

6.1 Experimental Setup
Road Network: we use two road networks (Beijing and Chengdu)
from OpenStreetMap to carry out the experiments. The first road
network contains 71,646 vertices and 107,396 edges, while the other
contains 29,214 vertices and 66,541 edges. Meanwhile, for each city,
we have a POI database. There are approximately 1 million POIs in
Beijing and 200 thousand in Chengdu.

Trajectory dataset: three groups of real trajectory datasets
have been used in these experiments: (1) Geolife dataset [25? , 26]:
This is a Microsoft Research Asia project which collects 182 users’
trajectories in a period of over three years. We only select the GPS
sequences whose label is “Car", “Taxi" or “Bus" here. (2) Beijing taxi
trajectory dataset: a real-world trajectory dataset that is generated
by more than 33,000 taxis in Beijing over four months and contains
about 100,000 trajectories. (3) Chengdu trajectory dataset: we col-
lected nearly 800 navigation trajectories from 20 volunteers within
one month in Chengdu. As each volunteer carried a mobile phone
with the GPS recording application, the program was set to record
a time-stamped latitude-longitude pair every 5 seconds. Besides,
in order to simulate the real data samples collected by navigation
system in the actual using process, they just activate the software
to record the GPS trajectory when navigation is in use. Eventually,
they are required to label a predefined type for each stay point. In
addition, we also use the routing engine OSRM [12] to generate
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Figure 5: (a) An example of personizlied route description, and (b) landmark ranking in finding proper destination marker.

(a) (b) (c)

(d) (e) (f)

Figure 6: (a)(b) Information compression results on Geolife dataset and Taxi dataset, respectively. (c) Effect of parameter in
route summarization. (d)(e)(f) Comparison of location type detection algorithms on precision, recall and F1-score, respectively.

about 1000 virtual trajectories to expand the dataset, and label a
predefined type for each stay point.

Baselines: we compare our proposed Knowledge-based RoUte
partitioningmethod (KRU) and destinationmarker selectingmethod
with the following algorithms:

• Optimal Route Partition (ORP) [? ] uses natural routes, which
are constructed by connecting adjacent road segments with
the same characteristics, and mines routes known users so
as to reduce the number of segments in the path by dynamic
programming.

• Semantic Place Recognition (SPR) [13] is a comprehensive
recognition approach that only exploits the temporal features
to train a classifier in the first place. The prediction result
of the classifier and the spatial features are weighted to
calculate the probability that the current place belongs to
each type. Then according to the sequence of the places
visited by user in the trajectory, the category probabilities of
these places are treated as new features for further prediction
by HMM.

Parameters Setting: the penalty for new route segment λ is set
to 3 in our method, while it is set to 0.2 in ORP. For SPR, considering

the difference of the actual application scenarios, we continue use-
ing the temporal features mentioned in this paper to train classifier.
In the following experiments, parameters are set to default values
if unspecified.

6.2 Case Study
Before assessing the performance of the system, we peform a case
study to show the effectiveness of the personalized route description
system. Figure 5(a) presents a case study where known routes are
used to generate more concise route descriptions. It is assumed that
the route represented by the bluish line from the point A to the
point F is a route navigated by navigation systems for the user. By
analyzing historical trajectory data, PerRD finds that the user is very
familiar with the route RAD from A to D and route RDE from D to
E. RAD represents the route connecting A to the user’s ‘home’, RDE
denotes the route connecting D to E and the region E is identified
as type ‘others’. As a result, instead of providing verbose turn-by-
turn directions, PerRD generates the description “Drive towards
Home" to be the description of RAD . Figure 5(b) shows the top five
landmarks belonging to type of ‘others’, which are 416 Hospital,
Xinxingyuan and so on, ranked according to the significance of the
landmarks. All of these buildings are conspicuous enough to make



driver recall the roads around there and know where she needs
to go in this step. When to describe RDE , PerRD finds the most
significant landmark belonging to the type of ‘others’, that is ‘416
Hospital’. It can be seen that the personalized route description is
concise and intuitive to users. As for the remaining parts of the
route from E to F that the driver is unfamiliar with, PerRD still
provides the detailed turn-by-turn description.

6.3 Performance Evaluation
In this section, we test the methods proposed previously by collect-
ing users’ subjective feelings and validating the objective trajectory
data. To make the evaluation purpose, we use the first two datasets
(Geolife and Taxi) to perform the same experiments to test the effect
of route partitioning and route description, while the third dataset
(Chengdu) is used to examine the result of destination marker se-
lecting. Users’ historical trajectories are split into two parts. The
first 80% of trajectory data is taken as training data to mining the
users’ familiarity with each road while the rest 20% is treated as
new input routes to test the effect of system.

6.3.1 Effectiveness of route partitioning. InformationCom-
pression As discussed above, using users’ knowledge can make
the route description more concisely with fewer sentences. Gen-
erally, each route partition needs one sentence to describe it, and
we use the number of route partitions to approximate the number
of sentences. We randomly choose 1000 source and destination
pairs from the testing data, then using OSRM routing engine to
generate routes. The average length of the route returned by the
navigation system is around 15km. To demonstrate the effect of the
information compression, for each dataset, we combine trajectories
created by different users into one trajectory dataset and treat it as
new commuter’s trajectory to ensure that each person has at least
100 historical trajectories. Figure 6(a) and 6(b) show the average
number of route segments generated by the turn-by-turn approach,
ORP and our algorithm in the case of different number of user’s
known routes. To simplify the description, we use |P∗t |, |P

∗
o |and |P∗b |

to represent the number of route partitions of ‘turn-by-turn’, ‘ORP’
and ‘KRU’ respectively. From Figure 6, we have the following three
main observations: (1) all |P∗o | and |P∗b | are smaller than |P∗t |, which
means that user’s knowledge can really help us build more concise
route descriptions. When the number of known routes reaches 100,
|P∗b | is less about 1/3 of |P

∗
t |. (2) |P

∗
b | is significantly smaller than

|P∗o |, which is because ORP can use knowledge routes only when
the starting point and the destination of a knowledge route must
be on the given route. Thus the probability of utilizing knowledge
route is low as compared to our method. (3) with the increase of
known routes, the rates of descent of |P∗b | are gradually slowing
down.

Effect of λ: λ is used to constrain the number of route segments
in a route. Figure 6(c) shows the relationship between the known
routes and the number of route partitions, which is the average of
route partition results on both two datasets with different λ. In this
experiment, it is observe that: with the increase of λ, the number
of route partitions decreases and the magnitude of the decrease
is gradually reduced, which is because when balancing the user’s
familiarity score with the route and the number of segments, the

constraining force of the latter gradually reaches its peak. If λ is
overly large, the algorithm will ignore the familiarity of routes.

6.3.2 Effectiveness of destination marker selecting. In this section,
we use the volunteers’ navigation trajectories and virtual trajecto-
ries to perform the experiment. We obtain 2,804 stay points from
these trajectories, and 253 clusters are obtained ultimately. To pre-
vent the test set containing too little data, we use the 5-fold cross
validation to calculate the effect of destination marker selection.
Destination marker selecting consist of two steps, detecting loca-
tion type and selecting significant landmark. As the selection of
significant landmark utilizes existing algorithm, we only test the
effectiveness of location type detection.

We first compare location type detecting method only utilizing
spatio-temporal features. We compare different variations of our
algorithm (XGBoost, XGBoost+HMM, XGBoost+LSTM) with base-
lines (SVM and random forest). Figure 6(d)-6(f) show the precision,
recall and F1 score (F1 = 2 × Precision×Recall

Precision+Recall ) of the labeling re-
sults in different cases. It can be seen that all XGBoost methods have
higher precision and F1 in most cases. Thus it indicates that XG-
Boost is more suitable in this application scenario. This is because
the tree-based models are usually superior in dealing with missing
values in features and historical trajectory data is sparse and of
low-quality. Furthermore, XGBoost+LSTM outperforms others in
most cases with precisions consistently 70%. For the type of ‘home’
and ‘work’, its precision can reach 90%. This is because the forward
and backward LSTM can well capture the contextual information.

Feature importance: Figure 7(a) plots the top eight most im-
portant features for location type detecting, by computing how
many times a feature is used for dividing the training samples by
XGBoost. As shown, all the top three are temporal features. It is
expected that f requency can reflect the importance of a location
to the user, while duration and arrive time can reveal the user’s
living habits in this place. As spatial features, the TF-IDF values of
restaurant and residence can be used to infer the user’s possible ac-
tivities here, so as to assist the type detection in making the correct
judgment. The remaining three features are also useful indicators,
providing considerable weight for place classification.

6.3.3 Efficiency Evaluation. We also evaluate the time cost of our
route description algorithm, which is especially important for on-
line description systems. The time cost mainly depends on the size
(number of landmarks) of the given route. Thus we tune the size
of the given route, and record the average time cost for describing
a single route. The result is shown in Figure 7(b), from which it is
observed that the route can be described within tens of milliseconds.
With the increase of the size, the time cost increases slightly.

6.3.4 Subjective Experiments. Based on users’ historical trajecto-
ries, our personalized route summarization aims at providing them
with a more intuitive view of their trips. Thus, to make a compari-
son between the personalized route description and turn-by-turn
description manner, we perform a subjective experiment where
we choose 20 volunteers residing in Chengdu, then generate their
historical trajectories and label the personally semantic places with
the assistance of routing engine. It is noteworthy that during the
experiment, volunteers use the personalized route description and
turn-by-turn route description manner simultaneously, and their
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Figure 7: (a) Importance of different features in location type detecting. (b) Time cost. (c) User preference.

preferences (“personalized route description", “traditional turn-by-
turn descriptionmanner" or “no strong preference") will be recorded.
According to these records, as Figure 7(c) shows, we can find out
that a majority of the volunteers prefer our personalized route de-
scription, while only 15% volunteers prefer the original ones, and
about 25% volunteers have no preference. This experiment result
suggests the tremendous convenience brought by the personalized
route description system in guiding the users to their destination so
that percolating to most volunteers’ satisfaction. It’s because com-
pared with turn-by-turn instructions, using personally semantic
places and POIs are more intuitive for route description.

7 CONCLUSIONS
In this paperwe have proposed a new personalized route description
system based on users’ historical trajectory data is proposed, which
is capable to make navigation instructions more customized and
laconic. The system first extracts knowledge trees from historical
trajectory, then uses these knowledge trees to partition a given
route, select a proper destination marker for each partition and
finally generates the corresponding route description. We have
conducted extensive experiments on three real trajectories data and
the user’s real experience. As demonstrated by the experimental
results, in most cases, compared with traditional turn-by-turn route
description, the system framework is effective in providing users
with clearer and better route description experience.
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