
PeriodicMove: Shift-aware Human Mobility Recovery with
Graph Neural Network

Hao Sun∗
sunhao9908@gmail.com

University of Electronic Science and
Technology of China
Chengdu, China

Changjie Yang∗
yangcj12138@gmail.com

University of Electronic Science and
Technology of China
Chengdu, China

Liwei Deng∗
denglw0830@gmail.com

University of Electronic Science and
Technology of China
Chengdu, China

Fan Zhou
zhoufan31@gmail.com

University of Electronic Science and
Technology of China
Chengdu, China

Feiteng Huang
huangfeiteng@huawei.com

Huawei Cloud Database Innovation
Lab

Chengdu, China

Kai Zheng†
zhengkai@uestc.edu.cn

University of Electronic Science and
Technology of China
Chengdu, China

ABSTRACT
Human mobility recovery is of great importance for a wide range
of location-based services. However, recovering human mobility
is not trivial because of three challenges: 1) complex transition
patterns among locations; 2) multi-level periodicity and shifting
periodicity of human mobility; 3) sparsity of the collected trajectory
data. In this paper, we propose PeriodicMove, a neural attention
model based on graph neural network for human mobility recov-
ery from lengthy and sparse trajectories. In PeriodicMove, we first
construct a directed graph for each trajectory and capture complex
location transition patterns using graph neural network. Then, we
design two attention mechanisms which capture multi-level pe-
riodicity and shifting periodicity of human mobility respectively.
Finally, a spatial-aware loss function is proposed to incorporate
spatial proximity into the model optimization, which alleviates the
data sparsity problem. We perform extensive experiments and the
evaluation results demonstrate that PeriodicMove yields signifi-
cant improvements over the competitors on two representative
real-life mobility datasets. In addition, by providing high-quality
mobility data, our model can benefit a variety of mobility-oriented
downstream applications.

CCS CONCEPTS
• Information systems→ Location based services; •Human-
centered computing → Ubiquitous and mobile computing
design and evaluation methods.

∗These authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482284

KEYWORDS
human mobility; trajectory recovery; graph neural network; atten-
tion mechanism

ACM Reference Format:
Hao Sun, Changjie Yang, Liwei Deng, Fan Zhou, Feiteng Huang, and Kai
Zheng. 2021. PeriodicMove: Shift-aware Human Mobility Recovery with
Graph Neural Network. In Proceedings of the 30th ACM International Con-
ference on Information and Knowledge Management (CIKM ’21), November
1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3459637.3482284

1 INTRODUCTION
The widespread adoption of location-based services have accumu-
lated large-scale human mobility data, which is of great importance
in a broad spectrum of applications, ranging from personalized
location recommendation [6, 41, 51] to urban transportation plan-
ning [47]. However, data quality issues (e.g., geolocation informa-
tion missing, unreal check-ins, data sparsity) in real-life mobility
data harm the performance of downstream applications. For ex-
ample, with a limited number of trajectory records per day, it is
difficult for recommender system to recommend a proper point
of interest [39]. As for urban transportation planning, the missing
data problem remains a challenge because most existing analyzing
methods rely on complete data [15]. Therefore, it has become a
pressing need to recover individual trajectories by understanding
the mobility pattern from existing human mobility data.

A common solution to the task of human mobility recovery is
to impute the missing location by treating individual trajectories
as two-dimensional time series with latitude and longitude at each
timestamp. Smoothing filters [1, 25] and LSTM-based methods [2,
34] have been proposed with acceptable performances when only a
small percentage of locations are missing. However, in highly sparse
scenarios, their performances deteriorate significantly because they
fail to effectively model complex human mobility patterns. Another
line of study focuses on adopting mobility prediction methods [30,
44] for human mobility recovery. However, these methods only
consider the locations visited before and ignore the locations visited
after themissing time slot. Recently, more researchers turn tomodel-
based methods [39, 40]. They leverage attention mechanism and

https://doi.org/10.1145/3459637.3482284
https://doi.org/10.1145/3459637.3482284

sequential statistical models (e.g., recurrent neural network) to
capture the mobility regularity of users and model spatial-temporal
dependency among different locations so as to generate the missing
locations.

Last Week This Week

Day-level Periodicity

+0:10 -0:30

Week-level Periodicity

Shifting Periodicity

10:508:509:209:10 9:00 11:00

Figure 1: A running example of multi-level and shifting pe-
riodicity of human mobility.

Despite the inspiring results of the model-based methods men-
tioned above, human mobility recovery is still challenging for the
following reasons: (1) Firstly, previous work [9] reveals that human
mobility exhibits complex location transition patterns, but these
methods always model simple transitions between consecutive lo-
cations and neglect more complex transitions in broader contexts,
i.e., other locations in the trajectory. Thus, complex transitions
among distant locations are often overlooked by these methods. (2)
Secondly, human mobility periodicity is often hard to capture due
to its multi-level and shifting nature. Consider the following run-
ning example shown in Figure 1, during weekdays, a person goes
to work every morning, which shows the day-level periodicity of
human mobility. However, when it comes to weekend, he would go
to park for fun, which shows the week-level periodicity of human
mobility. In fact, human mobility’s periodicity of daily routines,
weekly leisure and yearly festivals can be completely different,
which demonstrates the multi-level nature of human mobility peri-
odicity. Besides, the specific time this person arrives at workplace
shifts from 9:10 to 9:20 and from 9:20 to 8:50, which shows the
shifting nature of human mobility periodicity caused by environ-
mental factors (e.g., traffic jams). Thus, a model which can capture
the two natures of human mobility periodicity simultaneously is
needed. (3) Thirdly, human mobility data is sparse because most
data recording human mobility is low-sampling in nature, and the
location information is recorded only when the user accesses the
location service. Such sparsity hinders us from capturing spatial
relations among locations, which is an important factor since it is
impossible for people to go far away within a short period of time.

To deal with the challenges mentioned above, we propose Peri-
odicMove, a novel model to recover human mobility from lengthy
and sparse individual trajectories. For clarity, we define the target
day’s trajectory as the current trajectory and any trajectory before
the target day as historical trajectories. In PeriodicMove, we firstly
construct a directed graph for each trajectory. Based on the graph,
GNN is capable of capturing complex location transition patterns
and generate location embedding correspondingly, followed by
a temporal embedding layer to integrate spatial-temporal depen-
dency. To capture the shifting periodicity of human mobility, we
design a cross attention layer to process each historical trajectory
separately and distill shifting periodicity from them. Specifically,

cross attention mechanism yields attention weights to select loca-
tions from all the time slots of each historical trajectory based on
current mobility status, and thus incorporate shifting periodicity
information into the current time slot of each historical trajectory.
To capture the multi-level periodicity of human mobility in a prin-
cipled way, soft attention layer is trained to select the historical
trajectories that are highly related to the current trajectory. Finally,
a trajectory recovery layer is designed to fuse the features from
historical trajectories and current trajectory, and generate the miss-
ing locations. Better still, we design a spatial-aware loss function
to incorporate spatial proximity information into the model and
alleviate the data sparsity problem.

Our contributions can be summarized as follows:

• We propose a novel neural attention model based on graph
neural network called PeriodicMove, to recover human mo-
bility from lengthy and sparse individual trajectories. Our
model captures complex location transition patterns, multi-
level periodicity and shifting periodicity of human mobility
in a principled way. To the best of our knowledge, Period-
icMove is the first model that simultaneous combines these
important features for accurate human mobility recovery.

• We leverage graph neural network for complex location
transition patterns modeling. We design two attention mech-
anisms that are tailored to capture the multi-level periodicity
and shifting periodicity of human mobility respectively. We
propose a spatial-aware loss function to incorporate spatial
proximity into the model, which alleviates the data sparsity
problem.

• We perform extensive experiments on two representative
real-life mobility datasets. Results show that PeriodicMove
outperforms state-of-the-art models in terms of improving
recovery accuracy by 2.9%∼9.0%, which is quite remarkable
due to the challenging nature of this task.

2 RELATEDWORK
2.1 Human Mobility Recovery
Human mobility recovery is an important problem for it can benefit
a wide range of downstream tasks. Existing works can be divided
into three lines. The first line is to treat human mobility recov-
ery problem as time series data recovery problem [21], which has
been studied extensively. However, these models’ performances
are not acceptable in highly sparse scenarios due to its inability to
capture human mobility patterns. The second line focuses on adopt-
ing mobility prediction models for human mobility recovery [9].
Their performances are acceptable when only a small percentage
of locations are missing. However, their performances also decline
in highly sparse scenarios because they only leverage the histori-
cal information before the missing location and fail to model the
spatial-temporal dependency between the missing location and the
locations visited afterwards. As such, models for mobility data re-
covery have been particularly studied. This line of work focuses on
adopting model-based methods [39, 40], which can capture human
mobility patterns. However, most existing works along this line
can only model simple transition patterns and cannot capture the
multi-level and shifting nature of human mobility periodicity.

Overall, both the general time series data recovery methods, the
mobility predictionmethods and the existing mobility data recovery
methods are incapable of tackling the instinctive challenges of the
human mobility recovery problem. By contrast, we propose an
attentional neural model based on graph neural network, which can
model complex transition patterns among locations and capture the
multi-level nature and shifting nature of humanmobility periodicity
simultaneously.

2.2 Neural Network on Graphs
Nowadays, neural network has been applied on graph structured
data such as social network and knowledge bases. Extending the
word2vec [23], an unsupervised algorithm DeepWalk [27] is pro-
posed to learn representations of graph nodes based on random
walk. Following DeepWalk, unsupervised network embedding al-
gorithms LINE [31] and node2vec [11] are two most representative
methods. Besides, the classical neural network CNN and RNN are
also employed on graph structured data. For example, [8] designs
a convolutional neural network that operates directly on graphs
of arbitrary sizes and shapes. A scalable approach [13] chooses
the convolutional architecture via a localized approximation of
spectral graph convolutions, which is an efficient variant and can
operate on graphs directly as well. However, these methods can
only be implemented on undirected graphs. Previously, in form
of recurrent neural networks, Recurrent Graph Neural Networks
(RecGNNs) [28] are proposed to operate on directed graphs. As
a modification of RecGNNs, gated GNN [17] is proposed to op-
erate on directed graphs, which uses gated recurrent units and
employs back-propagation through time (BPTT) to compute gradi-
ents. Since then, gated GNN has established new state-of-the-art
benchmarks in a wide range of applications including script event
prediction [18], situation recognition [16], image classification [22]
and recommender system [29, 38, 41].

Previous studies [38, 41] have shown the ability of gated GNN to
capture complex transition among nodes. In this paper, we leverage
gated GNN to capture complex transition patterns among locations.
To the best of our knowledge, we are the first to adopt the graph
neural network to capture the complex location transition patterns
in human mobility.

3 PRELIMINARIES
In this section, we first introduce the definitions we use in this paper
followed by the formal definition of the investigated problem.

Definition 1 (Trajectory). A trajectory is defined as a user’s
chronologically ordered location sequence in one day. Let T𝑛𝑢 : 𝑙𝑛,1𝑢 →
𝑙
𝑛,2
𝑢 ... → 𝑙

𝑛,𝑡
𝑢 ... → 𝑙

𝑛,𝑇
𝑢 denote user 𝑢’s 𝑛-th day’s trajectory, where

𝑙
𝑛,𝑡
𝑢 ∈ L is the most frequently visited location of 𝑡-th time slot for a
given time interval (e.g., every 30 minutes) and 𝑇 is the number of
time slots. Note that if the location of time slot t is unobserved, 𝑙𝑛,𝑡𝑢 is
denoted by null, named missing location.

Definition 2 (Current and Historical Trajectory). Given a
target day 𝑁 and user 𝑢’s trajectory T𝑁

𝑢 , we define T𝑁
𝑢 as the user’s

current trajectory, and the historical trajectories are defined as 𝑢’s
trajectories in the past days, i.e.,{T 1

𝑢 ,T 2
𝑢 , ...,T𝑁−1

𝑢 }.

Table 1: Summary of Notations.

Notation Definition
𝑢,𝑈 A user and the set of users
𝑙 , L A location and the set of locations

T𝑛𝑢 , T𝑁
𝑢 The 𝑛-th historical trajectory of user 𝑢 and the

current trajectory of user 𝑢
𝑇,TM The number of time slots in one trajectory and

the set of missing time slots
MI,MO The incoming matrix and outgoing matrix of the

trajectory graph
e𝑙 The embedding of location 𝑙

e𝑛,𝑡𝑢 The transition-aware location embedding of the
𝑡-th time slot in user 𝑢’s 𝑛-th trajectory

ě𝑡 The temporal embedding of the 𝑡-th time slot
ē𝑛,𝑡𝑢 The temporal-aware embedding of the 𝑡-th time

slot in user 𝑢’s 𝑛-th trajectory
𝛼
(ℎ)
𝑡,𝑘,𝑛

The similarity between the 𝑡-th time slot of the
current trajectory and the 𝑘-th time slot of the
𝑛-th historical trajectory under the ℎ-th head

ê𝑛,𝑡𝑢 The shift-aware embedding of the 𝑡-th time slot
in user 𝑢’s 𝑛-th trajectory

𝛼𝑛,𝑡 The similarity between the 𝑡-th time slot of the
current trajectory and the 𝑡-th time slot of the
𝑛-th historical trajectory

ē𝑡𝑢 The final representation of user𝑢’s 𝑡-th time slot
𝑁𝐾 (𝑦𝑖), �̃�𝐾 (𝑦𝑖) The nearest K locations for the target location

𝑦𝑖 and other locations
𝑃𝑡𝑢 (𝑙), P𝑡𝑢 The normalized probability that user 𝑢 visits lo-

cation 𝑙 at time slot 𝑡 and the probability of all
locations visited at time slot 𝑡

𝐿𝑐 , 𝐿𝑑 The cross-entropy loss and distance loss
𝜔, 𝜆 The weight of distance loss and regularization
𝜃 General notation for model parameters

Now we give the formal definition of the investigated human
mobility recovery problem.

Problem Statement.Given user𝑢’s current trajectoryT𝑁
𝑢 with

the historical trajectories {T 1
𝑢 ,T 2

𝑢 , ...,T𝑁−1
𝑢 }, we aim to recover

the missing locations, i.e., ∀ null in T𝑁
𝑢 to rebuild the current day’s

complete trajectory.

4 THE PERIODICMOVE MODEL
To solve the above defined problem, we devise a novel neural atten-
tion model PeriodicMove, whose architecture is illustrated in Figure
2. In PeriodicMove, we first construct a directed graph for each tra-
jectory and gated graph neural network is applied on the graph for
complex location transition patterns modeling, followed by a tem-
poral embedding layer for spatial-temporal dependency modeling.
Then, in order to capture the shifting nature of human mobility
periodicity, historical trajectories are fed into cross attention layer
for shifting periodicity distilling based on current mobility status.
In the following soft attention layer, multi-level nature of human
mobility periodicity is captured by selecting the historical trajecto-
ries that are highly related to the current trajectory. Finally, to fuse

Graph
N

euralN
etw

ork
Layer

…

Historical Trajectories

Current Trajectory

Tem
poral Em

bedding Layer

CrossAttention Layer

SoftAttention Layer

Trajectory Recovery Layer

… … Current Complete Trajectory

!𝒆!
",∗

!𝒆!
%,∗

!𝒆!
&'",∗

!𝒆!
&,∗

#𝒆!
",∗

#𝒆!
%,∗

#𝒆!
&'",∗ !𝒆!

&,∗

#𝒆!∗

Figure 2: Main architecture of the PeriodicMove, where ∗ denotes all the time slots. In PeriodicMove, the historical trajectories
and the current trajectories are first processed separately and then are fused to generate locations for missing time slots.

the features of historical trajectories and current trajectory, and
generate missing locations as recovery, trajectory recovery layer is
proposed as the final component.

4.1 Graph Neural Network Layer
Previous studies [38, 41] show that gated GNN is capable of cap-
turing complex transition patterns among nodes, which makes
gated GNN suit our problem. In the graph neural network layer, we
process each trajectory separately to capture complex transition
patterns hidden in each trajectory. Specifically, we first construct a
directed graph for each trajectory and then gated GNN is applied
on each directed graph to update the location embedding, which
incorporates transition patterns into the model.

Graph Construction. The first part of graph neural network
layer is to construct a meaningful graph for each historical trajec-
tory and current trajectory. Given a trajectory T : 𝑙1 → 𝑙2 ... → 𝑙𝑇 ,
we treat each location 𝑙𝑖 as a node and (𝑙𝑖−1, 𝑙𝑖) as an edge which
represents that a user visits location 𝑙𝑖 after 𝑙𝑖−1 in the trajec-
tory T . Therefore, each trajectory can be modeled as a directed
graph. The graph structure is updated by promoting communica-
tion among different nodes. Specifically, let MI,MO ∈ R𝑑×𝑑 denote
weighted connections of incoming and outgoing edges in the tra-
jectory graph, respectively. For example, considering a trajectory
T : 𝑙1 → 𝑙2 → 𝑙4 → 𝑙3 → 𝑙2, the corresponding graph and the
matrix (i.e., MI,MO) are shown in Figure 3. Since several locations
may appear in the trajectory repeatedly, we assign each edge with
a normalized weight, which is calculated as the occurrence of the
edge divided by the outdegree of that edge’s start node.

Location Embedding Updating. Next, we present how to up-
date embeddings of locations via gated graph neural network. We
first embed each location 𝑙 ∈ L into an unified low-dimensional la-
tent space and the location vector e𝑙 ∈ R𝑑 denotes a 𝑑-dimensional
real-valued latent vector of location 𝑙 .

For each location 𝑙 at step 𝑠 in the trajectory graph, given by the
connection matrices M𝐼 and M𝑂 , the information propagation can
be formalized as:

a𝑠 = 𝐶𝑜𝑛𝑐𝑎𝑡 (M𝐼
𝑖 ([e1, ..., e𝑁]W𝐼

𝑎 + b𝐼),

M𝑂
𝑖 ([e1, ..., e𝑁]W𝑂

𝑎 + b𝑂)),
(1)

where W𝐼
𝑎,W𝑂

𝑎 ∈ R𝑑×𝑑 are learnable parameters. b𝐼 , b𝑂 ∈ R𝑑
are the bias vectors. 𝑁 is the number of unique locations in the
trajectory. M𝐼

𝑖
,M𝑂

𝑖
are the 𝑖-th row of incoming matrix and outgo-

ing matrix corresponding to location 𝑙 . a𝑠 extracts the contextual
information of neighborhoods for location 𝑙 .

𝑙!
Outgoing Matrix

1 2 3 4

0 1 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1

2

3

4

Incoming Matrix

1 2 3 4

0 0 0 0

1/2 0 1/2 0

0 0 0 1

0 1 0 0

1

2

3

4

𝑙" 𝑙#

𝑙$

𝐌𝐈 𝐌"

Figure 3: An example of a trajectory graph structure and the
connection matrices MI and MO.

Then, two gates, i.e., update gate z𝑠 and reset gate r𝑠 , decide what
information to be preserved and discarded respectively. After that,
we construct the candidate state ẽ𝑠 by the previous state e𝑠−1, the
current state a𝑠 , and the reset gate r𝑠 as described in Equation 4. The
final state e𝑠 is then the combination of the previous hidden state
e𝑠−1 and the candidate state ẽ𝑠 , under the control of the update gate
z𝑠 . After updating all nodes in trajectory graphs until convergence,
we can obtain the transition-aware location embeddings.

z𝑠 = 𝜎 (W𝑧a𝑠 + U𝑧e𝑠−1), (2)

r𝑠 = 𝜎 (W𝑟 a𝑠 + U𝑟 e𝑠−1), (3)

ẽ𝑠 = 𝑡𝑎𝑛ℎ(Wℎa𝑠 + U𝑜 (r𝑠 ⊙ e𝑠−1)), (4)

e𝑠 = (1 − z𝑠) ⊙ e𝑠−1 + z𝑠 ⊙ ẽ𝑠 , (5)

where W𝑧 ,W𝑟 ,Wℎ ∈ R𝑑×2𝑑 ,U𝑧 ,U𝑟 ,U𝑜 ∈ R𝑑×𝑑 are learnable
parameters. 𝜎 (·) represents the sigmoid function and ⊙ denotes
element-wise multiplication.

4.2 Temporal Embedding Layer
To integrate spatial-temporal dependency, we jointly embed the
time and location into dense representation as the input of the
following layers. Specifically, we set up embeddings for time slots.
Following [32], for each time slot 𝑡 , we generate its embedding as
follows: {

𝑒𝑡 (2𝑖) = 𝑠𝑖𝑛(𝑡/100002𝑖/𝑑),
𝑒𝑡 (2𝑖 + 1) = 𝑐𝑜𝑠 (𝑡/100002𝑖/𝑑), (6)

where 𝑖 denotes the 𝑖-th dimension. The time embedding vectors
have the same dimension 𝑑 with location embedding.

Finally, for the 𝑡-th time slot in user 𝑢’s 𝑛-th trajectory, we ob-
tain its temporal-aware representation, denoted as ē𝑛,𝑡𝑢 ∈ R𝑑 , by
calculating the sum of time and location embedding vectors:

ē𝑛,𝑡𝑢 = e𝑛,𝑡𝑢 + ě𝑡 , (7)

where e𝑛,𝑡𝑢 is the transition-aware location embedding of the 𝑡-th
time slot in user 𝑢’s 𝑛-th trajectory.

4.3 Cross Attention Layer
Periodicity shifting is a common feature existed in human mobility
data. For example, during weekday, people may arrive at workplace
at different time due to some environmental factors (e.g., traffic
jam). To detect the shifting behavior existed in each historical tra-
jectory, one good solution is to process each historical trajectory
separately, compare the current mobility status in current trajectory
with all historical mobility statuses in each historical trajectory, ag-
gregate all historical information according to their similarity and
obtain a shift-aware embedding for each time slot of each historical
trajectory.

Multi-head attention is proposed by [33] to stabilize the learn-
ing process and incorporate more information into the network.
Here we also implement 𝐻 independent heads to calculate the em-
beddings. Specifically, we define the similarity between the 𝑡-th
time slot of the current trajectory and the 𝑘-th time slot of the 𝑛-th
historical trajectory, i.e., between ē𝑁,𝑡𝑢 and ē𝑛,𝑘𝑢 , under head ℎ as
follows:

𝛼
(ℎ)
𝑡,𝑘,𝑛

=
𝑒𝑥𝑝 (𝜙 (ℎ) (ē𝑁,𝑡𝑢 , ē𝑛,𝑘𝑢))∑𝑇
𝑔=1 𝑒𝑥𝑝 (𝜙 (ℎ) (ē𝑁,𝑡𝑢 , ē𝑛,𝑔𝑢))

, (8)

𝜙 (ℎ) (ē𝑁,𝑡𝑢 , ē𝑛,𝑘𝑢) =< W(ℎ)
𝑄

ē𝑁,𝑡𝑢 ,W(ℎ)
𝐾

ē𝑛,𝑘𝑢 >, (9)

where W(ℎ)
𝑄

,W(ℎ)
𝐾

∈ R𝑑×𝑑 are the transformation matrices under
head ℎ and <, > denotes the inner product function.

Then, for the 𝑡-th time slot of user 𝑢’s 𝑛-th historical trajectory,
we obtain its shift-aware embedding ě𝑛,𝑡𝑢 by aggregating the infor-
mation from all the time slots of the 𝑛-th historical trajectory by

𝑛-th historical trajectory

current trajectory

0.3

0.1

0.4

…

Cross Attention Layer!𝒆!
",$

!𝒆!
%,& !𝒆!

%,'!𝒆!
%,(… …

𝑾!
(#)

𝑾%
(#)

𝑾&
(#)

#𝒆!
%,$(*)

Query

Key

Value

𝜶$,∗,%
(*)

Figure 4: The architecture of proposed cross attention layer
under one head, where the new representation is a combina-
tion of embeddings of value time slots conditioned on atten-
tion weights 𝜶𝑡,∗,𝑛 from query and key time slots. Note that
superscript 𝑛 denotes the 𝑛-th historical trajectory while 𝑁

denotes the current trajectory.

the similarity 𝜶 (ℎ)
𝑡,∗,𝑛 .

ě𝑛,𝑡 (ℎ)𝑢 =

𝑇∑
𝑔=1

𝛼
(ℎ)
𝑡,𝑔,𝑛 (W

(ℎ)
𝑉

ē𝑛,𝑔𝑢),

ě𝑛,𝑡𝑢 = ě𝑛,𝑡 (1)𝑢 ∥ě𝑛,𝑡 (2)𝑢 ∥ . . . ∥ě𝑛,𝑡 (𝐻)
𝑢 ,

(10)

where W(ℎ)
𝑉

∈ R𝑑×𝑑 is also a transformation matrix under head ℎ.
Finally, a standard residual connection is added to preserve cur-

rent mobility information and obtain a shift-aware embedding for
each time slot of historical trajectories.

ê𝑛,𝑡𝑢 = 𝑅𝑒𝐿𝑈 (W1ě𝑛,𝑡𝑢 + ē𝑁,𝑡𝑢) (11)

4.4 Soft Attention Layer
Human mobility’s periodicity of daily routines, weekly leisure and
yearly festivals can be completely different, which demonstrates
multi-level nature of human mobility periodicity. To capture multi-
level periodicity of human mobility, we need an auto-selector to
choose the highly related historical records of current mobility sta-
tus from the historical trajectories as the periodicity representation.

Specifically, we leverage soft attention mechanism to calculate
the similarity between the corresponding time slot of the current
trajectory and each historical trajectory, and aggregate time slot
embeddings of historical trajectories based on the similarity to
obtain the periodicity representation for each time slot.

𝛼𝑛,𝑡 = q𝑇𝜎 (W2ê𝑛,𝑡𝑢 + W3ē𝑁,𝑡𝑢 + c),

ê𝑡𝑢 =

𝑁−1∑
𝑛=1

𝛼𝑛,𝑡 ê𝑛,𝑡𝑢 ,
(12)

where ê𝑛,𝑡𝑢 is the shift-aware embedding of the 𝑡-th time slot in the
𝑛-th historical trajectory, ē𝑁,𝑡𝑢 is the current mobility embedding of
the 𝑡-th time slot in the current trajectory, parameter q ∈ R𝑑 and

W2,W3 ∈ R𝑑×𝑑 control the weight of historical trajectories and
current trajectory respectively.

4.5 Trajectory Recovery Layer
To generate the final representation of the 𝑡-th time slot denoted by
ē𝑡𝑢 , we apply a linear transformation over the concatenation of the
periodicity representation ê𝑡𝑢 and current mobility representation
ē𝑁,𝑡𝑢 .

ē𝑡𝑢 = W4 [ê𝑡𝑢 ∥ē𝑁,𝑡𝑢] (13)
Once we obtained ē𝑡𝑢 , we are able to calculate the probability

that user 𝑢 visits location 𝑙 at time slot 𝑡 as follows:

𝑃𝑡𝑢 (𝑙) =
< ē𝑡𝑢 , e𝑙 >∑

𝑘∈L < ē𝑡𝑢 , e𝑘 >
, (14)

where 𝑃𝑡𝑢 (𝑙) denotes the normalized probability that user 𝑢 visits
location 𝑙 in current trajectory’s 𝑡-th time slot. In practice, the
location with the maximum probability is identified as the missing
location.

4.6 Training
Existing trajectory recovery models usually adopt the following
cross-entropy loss function for model training:

𝐿𝑐 = −
∑
𝑢∈𝑈

∑
𝑡 ∈TM

y𝑡𝑢𝑙𝑜𝑔(P𝑡𝑢), (15)

where y𝑡𝑢 is the one-hot representation of user 𝑢’s location in cur-
rent trajectory’s 𝑡-th time slot, P𝑡𝑢 ∈ R |L | denotes the probability
of all locations visited in current trajectory’s 𝑡-th time slot and TM

denotes the set of missing time slots.
However, in highly sparse scenarios, the proposed cross-entropy

loss cannot capture the spatial proximity well which is an important
feature for human mobility recovery. So we propose a distance loss
to incorporate spatial proximity information into the model. And
Noise Contrastive Estimation (NCE) is adopted to accelerate the
training. Specifically, for a target location 𝑦𝑖 , we find the nearest K
locations (i.e., 𝑁𝐾 (𝑦𝑖)) and treat these locations as positive neigh-
bors and others as negative ones (i.e., �̃�𝐾 (𝑦𝑖)). Then, we randomly
choose one positive sample 𝑝 ∈ 𝑁𝐾 (𝑦𝑖) and one negative sample
𝑞 ∈ �̃�𝐾 (𝑦𝑖), and calculate the NCE-based distance loss as follows:

𝐿𝑑 =

|𝑦 |∑
𝑖=1

𝑤𝑝𝑦𝑖 𝑚𝑎𝑥 (| |e𝑦𝑖 − e𝑝 | |2 − ||e𝑦𝑖 − e𝑞 | |2 +𝑚, 0), (16)

𝑤𝑝𝑦𝑖 =
𝑒𝑥𝑝 (−𝐷𝑖𝑠𝑡 (𝑝,𝑦𝑖))∑

𝑥 ∈𝑁𝐾 (𝑦𝑖) 𝑒𝑥𝑝 (−𝐷𝑖𝑠𝑡 (𝑥,𝑦𝑖))
, (17)

where 𝑦 is the set of all unique locations in one training batch,𝑚
is a margin hyper-parameter, | | · | |2 is the 2-norm of vector and
𝐷𝑖𝑠𝑡 (·) is the distance between two locations.

Finally, we have the spatial-aware loss function as follows:

𝐿𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑀𝑜𝑣𝑒 = 𝐿𝑐 + 𝜔𝐿𝑑 + 𝜆∥𝜃 ∥2, (18)

where 𝜔 is distance weight that balances cross entropy loss and
distance loss, and 𝜆 is a hyper-parameter that controls the power
of regularization.

Training algorithm is illustrated in Algorithm 1, and the process
is done through batch gradient descent over shuffled mini-batches

across AdamW [20]. In addition, our model is implemented by
Python and Pytorch [26]. All the models are implemented on a
linux server with 48-cores Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz 256GB RAM and one TITAN Xp GPU.

Algorithm 1: Training Algorithm for PeriodicMove
Input: Trajectory sets {T1,T2, ...,T𝑈 }
Output: Trained Model 𝜃
// Construct training instances D
// Train the model: initialize the model parameters 𝜃
for 𝑖 ∈ {1, 2,..., EPOCH} do

Shuffle the training instances D into mini-batches
for 𝑗 ∈ {1, 2,..., BATCH NUM} do

Construct trajectory graphs according to section 4.1
Forward propagation and calculate the
cross-entropy loss 𝐿𝑐 according to Equation 15
Select unique locations and calculate the distance
loss 𝐿𝑑 according to Equation 16

Calculate the loss function according to Equation 18
and Update 𝜃 by minimizing 𝐿𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑀𝑜𝑣𝑒

Stop training when criteria is met
Output trained model 𝜃

5 EXPERIMENT
5.1 Datasets

• Geolife1: This dataset [48–50] is collected in (Microsoft Re-
search Asia) Geolife project by 182 users from April 2007
to August 2012. A GPS trajectory of this dataset is repre-
sented by a sequence of time-stamped points, each of which
contains the information of latitude, longitude and altitude.

• Foursquare2: This dataset [42] is collected from Foursquare
API from April 2012 to February 2013. Every record in the
dataset consists of user ID, timestamp, GPS location and
POI ID. We normalize the timestamp into one week while
keeping the original order of the trajectory.

Table 2: Basic statistics of mobility datasets.

Dataset City Duration #Users #Loc #Traj Pair

Geolife Beijing 5 years 83 1124 3912
Foursquare Tokyo 11 months 841 1411 2286

Pre-processing: To represent the location, we adopt a simple
strategy that is used commonly in spatial data analytics [4, 7, 12,
35, 45, 46], i.e., we partition the geographical space into grid cells
of equal size and all the locations within the same grid cell are
considered to be the same location. Specifically, each grid cell has
the side length of 500m for both datasets. Following [3], we set time
interval as 30 minutes. For fair comparison, we first filter out the
locations appearing less than 5 times and then filter out trajectories
1https://www.microsoft.com/en-us/research/project/geolife-building-social-
networks-using-human-location-history/
2https://sites.google.com/site/yangdingqi/home/foursquare-dataset/

Table 3: Overall performance comparison in terms of Recall@K, Distance@K and MAP.

Recall@1 Recall@5 Recall@10 Distance@1 Distance@5 Distance@10 MAP

Geolife

Top 0.1148 0.2451 0.3166 7863 6259 5176 0.1812
Markov 0.1417 0.3263 0.3974 6909 4974 4259 0.2304
PMF 0.1941 0.3436 0.4059 6506 4389 3555 0.2752
LSTM 0.2086 0.3917 0.4720 6318 3928 3068 0.2965
BiLSTM 0.2285 0.4538 0.5773 6209 3620 2255 0.3298

DeepMove 0.3045 0.5380 0.6371 5370 2052 1358 0.4131
AttnMove 0.3920 0.6696 0.7213 5342 2007 975 0.5046

PeriodicMove 0.4199 0.6893 0.7681 4209 1443 863 0.5385
%Improv. 7.1% 2.9% 6.5% 21.2% 28.1% 11.5% 6.7%

Foursquare

Top 0.0865 0.1673 0.2268 8427 4919 3483 0.1347
Markov 0.1090 0.2010 0.2575 8345 4402 3125 0.1792
PMF 0.1215 0.2468 0.2887 8116 3971 3229 0.2358
LSTM 0.1393 0.2540 0.3143 7913 3804 2801 0.2519
BiLSTM 0.2323 0.3968 0.4703 6206 2745 1849 0.3154

DeepMove 0.2612 0.4631 0.5337 5189 2648 1649 0.3789
AttnMove 0.2975 0.5172 0.5746 4942 2396 1482 0.4078

PeriodicMove 0.3125 0.5534 0.6264 4704 1758 1197 0.4245
%Improv. 5.0 % 7.0% 9.0% 4.8% 26.6% 19.2 % 4.1%

with less than 36 time slots and the users with only one trajectory.
The final detailed statics of two mobility datasets are summarized
in Table 2.

5.2 Baselines
We compare the proposed method with several representative base-
lines. Among them, the first three are directly based on our knowl-
edge about human mobility and the last four are the state-of-the-art
deep learning models which can extract more complex mobility
features:

• Top: This is a simple counting-based method, which directly uses
the most popular location in the training set as recovery for each
user.

• Markov [10]: This is a widely used method for human mobility
prediction, which regards all the visited locations as states and
builds a transition matrix to capture the first order transition
probabilities between them.

• PMF [24]: Based on user location matrix, this is one of the state-
of-the-art models for conventional collaborative filtering.

• LSTM [19]: This is a deep learning model which models the
forward sequential transitions of mobility by recurrent neural
network and uses the prediction for next time slot as recovery.

• BiLSTM [44]: It extends LSTM by bidirectional RNN to consider
the spatial-temporal constraints given by all observed locations.

• DeepMove [9]: This is a state-of-the-art model which jointly
models user preferences and spatial-temporal dependency for
next location prediction. We use the prediction result for recov-
ery.

• AttnMove [40]: This is the latest trajectory recovery method
which leverages various attention mechanisms to model the reg-
ularity and periodical patterns of user’s mobility.

5.3 Experimental Settings
To evaluate the performance, we mask some time slots as ground-
truth to recover. Since about 20% locations aremissing, we randomly
mask 10 time slots per day for Geolife dataset and Foursquare
dataset. We sort each user’s trajectory by time and take the first
60% as the training set, the following 20% as the validation set and
the remaining 20% as the test set.

To prevent the model from overfitting, we apply dropout mech-
anism in trajectory recovery layer. The dropout rate is set to be
0.3. Besides, distance weight 𝜔 is initialized as 0.1, regularization
factor 𝜆 is initialized as 1 × 10−5 and margin hyper-parameter𝑚 is
initialized as 1.

We employ the widely used metrics Recall@K and Mean Av-
erage Precision (MAP). Recall@K is 1 if the ground truth location
appears in the top-K ranked list; otherwise is 0. The final Recall@K
is the average value over all testing instances. MAP is a global
evaluation for ranking tasks, so we use it to evaluate the quality of
the whole ranked lists including all locations. The larger the values
of these two metrics are, the better the performance will be. We
also make use of the metric of Distance@K, which is the smallest
geographical distance between the centers of locations in the top-K
ranked list and the ground truth location. The final Distance@K is
the average value over all testing instances. The smaller the value
of Distance@K is, the better the performance will be. We report
Recall@K and Distance@K with K = 1, 5 and 10 in our experiments.

5.4 Experiment Results
5.4.1 Overall Performance. From the results shown in Table 3, sev-
eral observations can be made:

Firstly, Rule-based methods fail to achieve high accuracy with
the worst performance for all evaluation metrics on both datasets.
Though utilizing knowledge about human mobility are helpful for
recovery, their performances are not acceptable because they fail

816 32 64 128 256

Hidden Size

0.1

0.2

0.3

0.4

0.5

0.6

V
a
lu

e

Recall@10

Recall@5

MAP

Recall@1

816 32 64 128 256

Hidden Size

1000

2000

3000

4000

5000

6000

7000

V
a
lu

e

Distance@1

Distance@5

Distance@10

(a) Impart of hidden size 𝑑 (𝐻 = 4)

1 2 3 4 5 8

Head Number

0.1

0.2

0.3

0.4

0.5

0.6

V
a
lu

e

Recall@10

Recall@5

MAP

Recall@1

1 2 3 4 5 8

Head Number

1000

2000

3000

4000

5000

6000

7000

V
a
lu

e

Distance@1

Distance@5

Distance@10

(b) Impart of head number 𝐻 (𝑑 = 128)

Figure 5: Sensitivity of hyper-parameters.

to capture the complex transition patterns among locations and
periodical patterns of human mobility.

Secondly, RNN-based methods perform better than rule-based
methods because they can model simple transition patterns among
locations. And bidirectional ones perform better than unidirec-
tional ones, which indicates the importance of spatial-temporal con-
straints for human mobility recovery. State-of-the-art deep learning
methods including DeepMove and AttnMove achieve satisfactory
performance because they can capture simple location transition
patterns and single level periodicity of human mobility. However,
our PeriodicMove achieves further performance gain over the best
deep learning methods because PeriodicMove can capture complex
location transition patterns and multi-level periodicity of human
mobility simultaneously.

Thirdly, PeriodicMove outperforms all the baselines for all evalu-
ation metrics on both datasets. Specifically, Recall of PeriodicMove
outperforms the best baseline AttnMove by 2.9%∼7.1% on Geolife
dataset and 5.0%∼9.0% on Foursquare dataset respectively. Dis-
tance of PeriodicMove outperforms the best baseline AttnMove
by 11.5%∼28.1% on Geolife dataset and 4.8%∼26.6% on Foursquare
dataset respectively. MAP of PeriodicMove outperforms the best
baseline AttnMove by 6.7% onGeolife dataset and 4.1% on Foursquare
dataset respectively. These great improvements indicate that our
proposed PeriodicMove can well model location transition patterns
and periodicity of human mobility.

To conclude, our PeriodicMove model achieves preferable results
compared with both rule-based and deep learning-based methods.
This verifies our model’s effectiveness in capturing complex transi-
tion patterns among locations and periodicity of human mobility,
which demonstrates its powerful ability to rebuild fine-grained
individual trajectories.

5.4.2 Ablation Study. We analyze the effects of each model compo-
nent. We create ablation by removing them one by one. Specifically,
we remove graph neural network layer, temporal embedding layer,
cross attention layer, replace weighted average with arithmetic
mean in soft attention layer and eliminate distance loss, respec-
tively.

As expected, PeriodicMove outperforms all the ablations, which
indicates the importance of each component in improving recovery
accuracy. Specifically, the performance drops the most significantly
when we remove soft attention layer, which captures multi-level pe-
riodicity of human mobility. This is because soft attention layer can
identify historical trajectories that are highly related to the current

Table 4: Impact of each component on Foursquare dataset,
where Δ denoted the performance decline.

Ablation Recall@10 (Δ) Distance@10 (Δ) MAP (Δ)

Graph Neural Network Layer 0.6068 (-3.1%) 1286 (-7.4%) 0.4193 (-1.2%)

Temporal Embedding Layer 0.6114 (-2.4%) 1308 (-9.3%) 0.4184 (-1.4%)

Cross attention Layer 0.6050 (-3.4%) 1285 (-7.4%) 0.3983 (-6.2%)

Soft attention Layer 0.5598 (-10.6%) 1427 (-19.2%) 0.3764 (-11.3%)

Distance Loss 0.5984 (-4.5%) 1276 (-6.6%) 0.4237 (-0.2%)

trajectory. By giving higher weight to the highly related historical
trajectories, the noise from unrelated historical trajectories can
be reduced, and thus improve the model performance. It is worth
noting that the performance drop on recall@10 is not significant
when we remove temporal embedding layer. A plausible reason is
that the sequential order information that the temporal embedding
layer hopes to convey has been partially modeled by graph neural
network layer during the construction of directed graphs, which
again verifies the effectiveness of graph neural network layer.

5.4.3 Sensitivity of hyper-parameters. We also investigate the sen-
sitivity of two important hyper-parameters including hidden size 𝑑
and head number 𝐻 . Here we only report the results on Foursquare
dataset, we observe a similar trend on Geolife dataset.

Firstly, we observe the performance change by tuning the hid-
den size 𝑑 in the range of {8, 16, 32, 64, 128, 256}. From the result
presented in Figure 5(a), we can see: as the hidden size increases,
the performance is gradually improved, and when it is larger than
a value, the performance starts to decline. In most cases, the value
is 128, which is also the reason why we select default hidden size
as 128. This observation actually agrees with many previous stud-
ies [5, 14, 43]. One reason can be that: in our dataset, a small number
of parameters are enough for capturing transition patterns among
locations and periodicity of human mobility, using redundant di-
mensions will increase the model complexity and force the model
to overfit the training set, which may degrade our model’s general-
ization capability on the test set.

Then, we tune the head number 𝐻 in the range of {1, 2, 3, 4, 5,
8} and Figure 5(b) shows the performance change. As we can see,
the change of performance with regard to head number does not
demonstrate a clear trend in most cases, which implies the impart
of head number is not significant. Considering more heads leads
to stronger model expressiveness and more computational cost, to

make a compromise between performance and efficiency, we finally
fix the head number at 4.

5.4.4 Visualization Analysis. Apart from the above quantitative
analysis, we also conduct a visualization on Foursquare dataset to
verify the effectiveness of distance loss in capturing spatial correla-
tion among the locations.

(a) Result without distance loss (b) Result with distance loss

Figure 6: Visualization results.

We cluster the locations by using their embedding e𝑙 as features
via k-means with Euclidean distance and the same color indicates
the same cluster. Figure 6(a) and Figure 6(b) demonstrate the cluster-
ing result of model trained without distance loss and with distance
loss, respectively. As we can see, in the cluster result trained with
distance loss, adjacent locations generally share the same color in-
dicating they are also closed in the embedding space, which demon-
strates that the spatial adjacent relation has been modeled. But in
the cluster result trained without distance loss, no clear features
can be observed, which verifies the important role of distance loss
in capturing spatial correlation among the locations.

5.4.5 Robustness Analysis. We also conduct experiments to evalu-
ate the robustness of PeriodicMove towards data sparsity problem.
To simulate the effect of data sparsity, we increase the percent-
age of missing locations in historical trajectories from 20% to 80%.
We compare our model PeriodicMove with state-of-the-art model
AttnMove and the result is demonstrated in Table 5.

Table 5: Performance w.r.t missing ratios on Foursquare
dataset.

Missing Rate 20% 40% 60% 80%

AttnMove
Recall@10 0.5596 0.5501 0.5357 0.5269
Dist@10 1579 1668 1874 1937
MAP 0.4014 0.3942 0.3809 0.3783

PeriodicMove
Recall@10 0.6132 0.6082 0.5961 0.5827
Dist@10 1244 1283 1361 1380
MAP 0.4194 0.4133 0.3987 0.3944

From the result, we can see: as the missing rate increases, both
PeriodicMove and AttnMove’s performances on all evaluation met-
rics drop. However, PeriodicMove still outperforms AttnMove on
all missing rates consistently. In fact, the performance of our Pe-
riodicMove on Foursquare dataset with 80% missing rate is better
than the performance of AttnMove on Foursquare dataset with 40%

missing rate, which demonstrates the robustness of our proposed
model towards data sparsity problem. This is because AttnMove
aggregates all the historical trajectories into one trajectory by sim-
ply picking the most frequently visited location for each time slot,
which ignores rich information hidden in historical trajectories. In
contrast, PeriodicMove processes each historical trajectory sepa-
rately to capture the location transition patterns and periodicity of
human mobility hidden in each historical trajectory, and aggregates
these information in the final trajectory recovery layer. Moreover,
the proposed spatial-aware loss function incorporates spatial prox-
imity into the model optimization, which further alleviates the data
sparsity problem.

6 CONCLUSION
In this paper, we propose PeriodicMove, a neural attention model
based on graph neural network for human mobility recovery from
lengthy and sparse individual trajectories. We leverage graph neu-
ral network for complex location transition patterns modeling. We
design a cross attention layer to capture shifting behavior of human
mobility periodicity. We use a soft attention layer to capture the
multi-level nature of human mobility periodicity. To handle the
data sparsity problem, we design a spatial-aware loss function to
incorporate the spatial proximity into the model. Extensive exper-
iment results on two real-life mobility datasets demonstrate the
superiority of PeriodicMove compared with the state-of-the-art
baselines.

As for future work, we plan to incorporate semantic information
like point of interests [36, 37] into the model so that our model
can not only recover the missing locations, but also understand the
underlying motivation of user’s movement.

ACKNOWLEDGMENTS
This work is partially supported by Natural Science Foundation of
China (No. 61972069, 61836007 and 61832017).

REFERENCES
[1] Layth C Alwan and Harry V Roberts. 1988. Time-series modeling for statistical

process control. Journal of business & economic statistics 6, 1 (1988), 87–95.
[2] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. 2018. Brits:

Bidirectional recurrent imputation for time series. arXiv preprint arXiv:1805.10572
(2018).

[3] Guangshuo Chen, Aline Carneiro Viana, Marco Fiore, and Carlos Sarraute. 2019.
Complete trajectory reconstruction from sparse mobile phone data. EPJ Data
Science 8, 1 (2019), 30.

[4] Meng Chen, Yan Zhao, Yang Liu, Xiaohui Yu, and Kai Zheng. 2020. Modeling
spatial trajectories with attribute representation learning. TKDE (2020).

[5] Xu Chen, Yongfeng Zhang, and Zheng Qin. 2019. Dynamic explainable recom-
mendation based on neural attentive models. In AAAI, Vol. 33. 53–60.

[6] Yue Cui, Hao Sun, Yan Zhao, Hongzhi Yin, and Kai Zheng. 2021. Sequential-
knowledge-aware Next POI Recommendation: A Meta-learning Approach. TOIS
(2021).

[7] Liwei Deng, Hao Sun, Rui Sun, Yan Zhao, and Han Su. 2021. Efficient and Effective
Similar Subtrajectory Search: A Spatial-aware Comprehension Approach. TIST
(2021).

[8] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Con-
volutional networks on graphs for learning molecular fingerprints. arXiv preprint
arXiv:1509.09292 (2015).

[9] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng
Jin. 2018. Deepmove: Predicting human mobility with attentional recurrent
networks. InWWW. 1459–1468.

[10] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez.
2012. Next place prediction using mobility markov chains. In Proceedings of the
first workshop on measurement, privacy, and mobility. 1–6.

[11] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable feature learning for
networks. In KDD. 855–864.

[12] Ralf Hartmut Güting and Markus Schneider. 1995. Realm-based spatial data types:
The ROSE algebra. The VLDB Journal 4, 2 (1995), 243–286.

[13] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] Dongsheng Li, Chao Chen, Qin Lv, Junchi Yan, Li Shang, and Stephen Chu. 2016.
Low-rank matrix approximation with stability. In ICML. PMLR, 295–303.

[15] Li Li, Yuebiao Li, and Zhiheng Li. 2013. Efficient missing data imputing for traffic
flow by considering temporal and spatial dependence. Transportation research
part C: emerging technologies 34 (2013), 108–120.

[16] Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, and Sanja
Fidler. 2017. Situation recognition with graph neural networks. In ICCV. 4173–
4182.

[17] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[18] Zhongyang Li, Xiao Ding, and Ting Liu. 2018. Constructing narrative event
evolutionary graph for script event prediction. arXiv preprint arXiv:1805.05081
(2018).

[19] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the next
location: A recurrent model with spatial and temporal contexts. In AAAI, Vol. 30.

[20] Ilya Loshchilov and Frank Hutter. 2018. Fixing weight decay regularization in
adam. (2018).

[21] Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, and Xiaojie Yuan. 2018. Mul-
tivariate time series imputation with generative adversarial networks. In NIPS.
1603–1614.

[22] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta. 2016. The more
you know: Using knowledge graphs for image classification. arXiv preprint
arXiv:1612.04844 (2016).

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
arXiv preprint arXiv:1310.4546 (2013).

[24] Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic matrix factorization.
NIPS 20 (2007), 1257–1264.

[25] Steffen Moritz and Thomas Bartz-Beielstein. 2017. imputeTS: time series missing
value imputation in R. R J. 9, 1 (2017), 207.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. 701–710.

[28] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[29] Hao Sun, ZijianWu, Yue Cui, Liwei Deng, Yan Zhao, and Kai Zheng. 2021. Person-
alized Dynamic Knowledge-Aware Recommendation with Hybrid Explanations.
In DASFAA. 148–164.

[30] Ke Sun, Tieyun Qian, Tong Chen, Yile Liang, Quoc Viet Hung Nguyen, and
Hongzhi Yin. 2020. Where to go next: Modeling long-and short-term user prefer-
ences for point-of-interest recommendation. In AAAI, Vol. 34. 214–221.

[31] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. arXiv preprint arXiv:1706.03762 (2017).
[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[34] JingyuanWang, NingWu, Xinxi Lu, Xin Zhao, and Kai Feng. 2019. Deep trajectory
recovery with fine-grained calibration using Kalman filter. TKDE (2019).

[35] ZhengWang, Cheng Long, Gao Cong, and Yiding Liu. 2020. Efficient and effective
similar subtrajectory search with deep reinforcement learning. arXiv preprint
arXiv:2003.02542 (2020).

[36] Fei Wu and Zhenhui Li. 2016. Where did you go: Personalized annotation of
mobility records. In CIKM. 589–598.

[37] Fei Wu, Zhenhui Li, Wang-Chien Lee, Hongjian Wang, and Zhuojie Huang. 2015.
Semantic annotation of mobility data using social media. In WWW. 1253–1263.

[38] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In AAAI, Vol. 33.
346–353.

[39] Dongbo Xi, Fuzhen Zhuang, Yanchi Liu, Jingjing Gu, Hui Xiong, and Qing He.
2019. Modelling of bi-directional spatio-temporal dependence and users’ dynamic
preferences for missing poi check-in identification. In AAAI, Vol. 33. 5458–5465.

[40] Tong Xia, Yunhan Qi, Jie Feng, Fengli Xu, Funing Sun, Diansheng Guo, and
Yong Li. 2021. AttnMove: History Enhanced Trajectory Recovery via Attentional
Network. arXiv preprint arXiv:2101.00646 (2021).

[41] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen
Zhuang, Junhua Fang, and Xiaofang Zhou. 2019. Graph Contextualized Self-
Attention Network for Session-based Recommendation. In IJCAI, Vol. 19. 3940–
3946.

[42] Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. 2014. Modeling
user activity preference by leveraging user spatial temporal characteristics in
LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 1 (2014),
129–142.

[43] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W Bruce Croft. 2017. Joint repre-
sentation learning for top-n recommendation with heterogeneous information
sources. In CIKM. 1449–1458.

[44] Jing Zhao, Jiajie Xu, Rui Zhou, Pengpeng Zhao, Chengfei Liu, and Feng Zhu.
2018. On prediction of user destination by sub-trajectory understanding: A deep
learning based approach. In CIKM. 1413–1422.

[45] Yan Zhao, Shuo Shang, YuWang, Bolong Zheng, Quoc Viet Hung Nguyen, and Kai
Zheng. 2018. Rest: A reference-based framework for spatio-temporal trajectory
compression. In SIGKDD. 2797–2806.

[46] Kai Zheng, Yan Zhao, Defu Lian, Bolong Zheng, Guanfeng Liu, and Xiaofang Zhou.
2019. Reference-based framework for spatio-temporal trajectory compression
and query processing. TKDE 32, 11 (2019), 2227–2240.

[47] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing:
concepts, methodologies, and applications. TIST 5, 3 (2014), 1–55.

[48] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. 2008. Under-
standing mobility based on GPS data. In UbiComp. 312–321.

[49] Yu Zheng, Xing Xie, and Wei-Ying Ma. 2010. Geolife: A collaborative social
networking service among user, location and trajectory. IEEE Data Eng. Bull. 33,
2 (2010), 32–39.

[50] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. 2009. Mining interesting
locations and travel sequences from GPS trajectories. In WWW. 791–800.

[51] Hao Zhou, Yan Zhao, Junhua Fang, Xuanhao Chen, and Kai Zeng. 2019. Hybrid
route recommendation with taxi and shared bicycles. Distributed and Parallel
Databases (2019), 1–21.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Human Mobility Recovery
	2.2 Neural Network on Graphs

	3 Preliminaries
	4 The PeriodicMove Model
	4.1 Graph Neural Network Layer
	4.2 Temporal Embedding Layer
	4.3 Cross Attention Layer
	4.4 Soft Attention Layer
	4.5 Trajectory Recovery Layer
	4.6 Training

	5 Experiment
	5.1 Datasets
	5.2 Baselines
	5.3 Experimental Settings
	5.4 Experiment Results

	6 Conclusion
	Acknowledgments
	References

