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ABSTRACT
The pervasiveness of GPS-enabled devices and wireless communi-
cation technologies flourish the market of Spatial Crowdsourcing
(SC), which consists of location-based tasks and requires workers
to physically be at specific locations to complete them. In this work,
we study the problem of Worker Churn based Task Assignment in
SC, where tasks are to be assigned by considering workers’ churn.
In particular, we aim to achieve the highest total rewards of task
assignments based on the worker churn prediction. To solve the
problem, we propose a two-phase framework, which consists of
a worker churn prediction phase and a task assignment phase. In
the first phase, we use an LSTM-based model to extract the latent
feelings of workers based on the historical data and then estimate
the idle time intervals of workers. In the assignment phase, we de-
sign an efficient greedy algorithm and a Kuhn-Munkras (KM)-based
algorithm that can achieve the optimal task assignment. Extensive
experiments offer insight into the effectiveness and efficiency of
the proposed solutions.
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1 INTRODUCTION
Crowdsourcing is a computing paradigm, where humans actively
or passively participate in the procedure of computing, especially
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for tasks that are intrinsically easier for humans than for com-
puters [32]. Many successful crowdsourcing platforms exist, e.g.,
Amazon Mechanical Turk (MTurk)1 and Wikipedia2. Along with
the ubiquity of GPS-equipped networked devices such as smart-
phones, a new class of crowdsourcing, called Spatial Crowdsourcing
(SC), has drawn increasing attention in both academia and indus-
try. With SC, requesters can issue spatial tasks (e.g., monitoring
traffic conditions or picking up passengers) to SC servers that then
assign workers to these tasks (called task assignment). The workers
complete their tasks by physically moving to the specified loca-
tions. Spatio-temporal information (e.g., location, mobility, and the
associated contexts) plays a crucial role in SC. Due to its natural
connection to the physical world, SC is relevant to a wide spectrum
of daily applications, including real-time ride-hailing services (e.g.,
Uber3), and on-wheel meal-ordering services (e.g., GrubHub4).

Research on SC [5–8, 32, 34–36, 38–42] has gained momentum in
recent years; consequently, many techniques of task assignment are
proposed for various application scenarios. For example, Cheng et
al. [10] study a reliable diversity-based spatial crowdsourcing (RDB-
SC) problem in SC, which aims to maximize the diversity score of
assignments. Zhao et al. [37] propose a tensor-decomposition-based
algorithm to learn worker preferences, based on which they assign
tasks by transforming the assignment problem into a Minimum
Cost Maximum Flow (MCMF) problem. The study [17] aims to
maximize the number of performed tasks for a worker with an
optimal schedule, where they combined two optimization problems:
task-matching and task-scheduling.

However, the existing researches focusmainly on spatio-temporal
availability of workers and tasks, thus leaving challenges related
to effective and efficient task assignment largely unaddressed. For
example, the above studies fail to consider user churn (i.e., worker
churn) in task assignment, which describes worker defection from
an SC service provider. Studies on user churn started fromCustomer
Relation Management, and have been proposed in various service
fields [1, 12, 18, 20, 31]. For example, considering user churn as a
real and serious business problem, several machine learning meth-
ods and artificial neural networks have been proposed to address
the problem by telecommunication companies [2, 12, 23]. Besides,

1https://www.mturk.com/
2https://www.wikipedia.com/
3https://www.uber.com/
4https://get.grubhub.com/
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studies on user churn prediction in these fields, such as banks and
websites, have been carried out as well [1, 18, 20]. Traditionally, the
user churn prediction is treated as a classification problem based
on labeled data and feature engineering, where users are generally
divided into the churn and non-churn categories [33]. As the SC
market saturated due to the globalization of services and fierce com-
petition, the cost of worker acquisition is rising rapidly. Therefore,
it is crucial to predict the worker churn and take some measures to
retain workers.

In this work, we investigate a task assignment problem in spatial
crowdsourcing, called Worker Churn based Task Assignment (WC-
TA). To be more specific, given a set of workers and a set of tasks, it
aims to achieve the highest total rewards of task assignments based
on the worker churn prediction.

In order to tackle the proposed WC-TA problem, we propose a
two-phase framework, which includes a worker churn prediction
phase and a task assignment phase. The first phase aims to predict
the worker churn in the future. More specifically, we capture the
latent feelings of workers using an LSTM-based model based on the
historical data and then predict the idle time interval of workers,
which are compared with a time threshold. In the assignment phase,
we propose a greedy and a KM-based method to achieve the task
assignment. Specifically, the greedy method aims to assign tasks to
workers greedily, and the KM-based method is to find the maximum
weight matching on a bipartite graph (composed of workers and
tasks) in which the workers that are more likely to be churned are
given higher priority.

In summary, our work has four primary contributions:
1) To the best of our knowledge, this is the first work in SC that

predicts the worker churn and performs task assignment based on
the predictions.

2) We propose an LSTM-based model to extract the workers’
latent feelings that are used to learn workers’ idle time intervals
from the historical task-performing data.

3) We propose greedy and optimal algorithms for achieving the
task assignment to trade off the efficiency and effectiveness.

4) Extensive experiments are conducted to verify the efficiency
and effectiveness of the proposed methods.

The remainder of this paper is organized as follows. Section 2
introduces the related work and Section 3 provides notations and
the proposed problem. In Section 4, a brief introduction of the
framework overview is given first, then, we present an LSTM-based
model for worker churn prediction and two task assignment algo-
rithms, followed by the experimental results in Section 5. Finally,
we conclude the paper in Section 6.

2 RELATEDWORK
2.1 Task Assignment in Spatial Crowdsourcing
Spatial Crowdsourcing (SC) can be deemed as one of the main
enablers to complete location-based tasks [11, 13, 24, 25, 27–30].
According to the task publish mode, SC can be classified into two
categories, namely server assigned tasks mode (SAT) and worker
selected tasks mode (WST) [21]. In SAT mode, the server assigns
proper tasks to nearby workers based on the system optimization
goals, e.g., maximizing the number of assigned tasks [9, 17, 21, 22].
While in WST mode, the server publishes various spatial tasks

online, and workers can select any tasks based on their own prefer-
ences without the need to coordinate with the server [16, 17].

Most existing studies adopt the SAT mode, where an SC server
takes charge of the task assignment process. For example, Cheng
et al. [10] propose a reliable diversity-based spatial crowdsourc-
ing (RDB-SC) problem in SC, where an SC server assigns tasks to
suitable workers in order to maximize the diversity score of assign-
ments. Zhao et al. [37] propose a preference-based task assignment
problem and design a tensor-decomposition-based algorithm to
learn worker preferences, based on which they assign tasks by
transforming the assignment problem into a Minimum Cost Max-
imum Flow (MCMF) problem. However, the above studies focus
mainly on spatio-temporal availability of workers and tasks, which
do not consider user churn (i.e., worker churn) that describesworker
defection from an SC service provider.

2.2 User Churn Prediction
User churn prediction is a hot spot in both academia and industry.
Traditionally, the problem of user churn prediction is treated as a
classification problem, where users are generally divided into the
churn and non-churn categories.

In order to solve the problem of user churn prediction, it is
necessary to take into account the users’ characteristics, including
state sequences, behavior sequences, and other features extracted
from the historical user profile. Recent studies make great efforts
to predict user churn. For instance, Bahnsen et al. [3] introduce a
new finance-based approach and develop a cost-sensitive customer
churn prediction model, which enables classification algorithms
to serve business objectives. Hudaib et al. [19] hybrid a K-means
algorithm, Multilayer Perceptron Artificial Neural Networks (MLP-
ANN), and Self-Organizing Maps (SOM) to establish a two-stage
loss prediction model to predict user churn, where the effectiveness
of the solutions is demonstrated on real data. However, due to
the data sparsity, the spatio-temporal characteristic, and uncertain
churn criteria in SC applications, the aforementioned methods can
not be applied to the worker churn in SC directly. In this work,
we will combine different models (i.e., LSTM and Fully Connected
Neural Network) under different criteria to address the worker
churn prediction problem considering SC characteristics.

3 PROBLEM DEFINITION
We proceed to present necessary preliminaries and then define the
problem addressed. Table 1 lists the notations used throughout the
paper.

Definition 1 (Spatial Task). A spatial task, denoted by 𝑠 =

(𝑙, 𝑝, 𝑒, 𝑟 ), has a location 𝑠 .𝑙 , a publication time 𝑠 .𝑝 , an expiration time
𝑠 .𝑒 , and a reward 𝑠 .𝑟 .

With spatial crowdsourcing, the query of a spatial task 𝑠 can
be answered only if a worker is physically located at that location
𝑠 .𝑙 . Besides, considering the expiration time, a spatial task 𝑠 can
be completed only if a worker arrives at 𝑠 .𝑙 before its deadline 𝑠 .𝑒 .
Note that with the single task assignment mode [21], an SC server
should assign each spatial task to only one worker. For simplicity
and without loss of generality, we assume the processing time of
each task is 0, which means that a worker will go to the next task
upon finishing the current task.
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Figure 1: Framework Overview

Table 1: Summary of Notation

Notation Definition
𝑠 Spatial task
𝑠.𝑙 Location of spatial task 𝑠
𝑠.𝑝 Publication time of spatial task 𝑠
𝑠.𝑒 Expiration time of spatial task 𝑠
𝑠.𝑟 Reward of spatial task 𝑠
𝑤 Worker
𝑤.𝑙 Current location of worker 𝑤
𝑤.𝑑 Reachable distance of worker 𝑤
𝑆𝑤 A historical task-performing sequence of 𝑤
𝑤.𝜏 Idle time interval of worker 𝑤
𝐴 A spatial task assignment
𝐴.𝑟 Total reward in task assignment𝐴
A Spatial task assignment set
𝜇 Time threshold

Definition 2 (Worker). A worker, denoted by 𝑤 = (𝑙, 𝑑), has
a location 𝑤.𝑙 , and a reachable distance 𝑤.𝑑 . The reachable range
of worker𝑤 is a circle with 𝑤.𝑙 as the center and 𝑤.𝑑 as the radius,
within which𝑤 can accept assignments.

A worker can be in either online or offline mode. A worker is
online when being ready to accept tasks. In our work, a worker can
handle only one task at a certain time instance, which is reasonable
in practice. Once the SC server assigns a task to aworker, the worker
is considered being offline until the assigned task is completed.

Definition 3 (Idle Time Interval). Given a worker𝑤 who has
performed 𝑛 tasks in a time period, we define the task-performing
history of 𝑤 as a time-ordered task sequence, 𝑆𝑤 = (𝑠1, 𝑠2, ..., 𝑠𝑛).
The idle time interval of worker𝑤 is the time interval between two
adjacent performed tasks, i.e., 𝑤.𝜏𝑖 = 𝑠𝑖+1 .𝑡𝑠 − 𝑠𝑖 .𝑡𝑒 (𝑖 > 0), where
𝑤.𝜏𝑖 denotes the idle time interval of 𝑤 between 𝑠𝑖 and 𝑠𝑖+1, 𝑠𝑖+1 .𝑡𝑠
denotes the start time (i.e., time of assignment) of 𝑠𝑖+1, and 𝑠𝑖 .𝑡𝑒 is the
completion time of 𝑠𝑖 .

In the rest of the paper, we will use the terms idle time interval
and idle interval interchangeably.

Definition 4 (Worker Churn). Given a time threshold 𝜇, if a
worker𝑤 is neither online nor performing tasks within a time period
that exceeds 𝜇, worker𝑤 is regarded as a churned worker.

Definition 5 (Spatial Task Assignment). Given a set of worker
𝑊 = {𝑤1,𝑤2, ...,𝑤 |𝑊 |} and a set of tasks 𝑆 = {𝑠1, 𝑠2, ..., 𝑠 |𝑆 |}, we
define𝐴 as the spatial task assignment, denoted by𝐴, consists of a set
of tuples of form (𝑤, 𝑠), where a spatial task 𝑠 is assigned to worker
𝑤 , satisfying all the workers’ and tasks’ spatio-temporal constraints.

We use 𝐴.𝑟 to denote the total reward in task assignment 𝐴. The
problem investigated can be stated as follows.

Worker Churn based Task Assignment (WC-TA) Problem
Statement. Given a set of online workers𝑊 and a set of tasks 𝑆 at
the current time instance on an SC platform, our problem is to find
an optimal task assignment 𝐴𝑜𝑝𝑡 that achieves the following goals:

1) primary optimization goal: maximize the total reward among
workers, i.e., ∀𝐴𝑖 ∈ A (𝐴𝑜𝑝𝑡 .𝑟 ≥ 𝐴𝑖 .𝑟 ), where A denotes all possible
assignments; and

2) secondary optimization goal: minimize the worker churn rate.

4 ALGORITHM
4.1 Framework Overview
Our framework (cf. Figure 1) is comprised of two components:
worker churn prediction and task assignment.

The first component aims to predict workers’ churn by calcu-
lating the idle time intervals for all the workers based on workers’
historical task-performing data. To this end, we utilize a Latent Feel-
ing Capture (LFC) model, which is a regression model that predicts
the idle time intervals of workers. More specifically, we extract the
latent feeling of each worker from the historical data, including
worker ID, reward, time interval and spatial distance between two
adjacent tasks, and geographic locations of tasks. Taking the data
related to latent feelings of each worker as input, the LFC model
generates a worker idle time interval tensor 𝑋 , where each entry
is the prediction of a worker’s idle time interval in a certain time
slot. Given a time threshold 𝜇, e.g., a month, if the predicted idle
time interval of a worker exceeds 𝜇, the worker is judged to be a
churn-prone worker, otherwise, the worker is regarded as an active
one.

In practice, it is necessary for an SC server to take measures
to retain the churn-prone workers to ensure continuous and high
worker participation and satisfaction. The measures include assign-
ing the churn-prone workers high-value tasks, such as tasks with
high rewards or tasks with good positions. Therefore, in the assign-
ment component, by considering trip constraints including workers’
reachable region and tasks’ expiration time, we assign tasks to the
suitable workers giving high priority to the churn-prone workers.
For the sake of efficiency, we propose a Churn-aware Greedy algo-
rithm that tries to assign tasks to the suitable workers who are most
likely to churn. We also develop a Churn-aware KM algorithm to
maximize the total reward while giving priority to the churn-prone
workers when assigning tasks.
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4.2 Worker Churn Prediction
In this section, we estimate the idle time intervals for each worker
using a Latent Feeling Capturing (LFC) model, based on which we
obtain the churn-prone workers by introducing a time threshold.

4.2.1 Behavior-based Modeling for Worker Churn Prediction. Tra-
ditionally, the problem of user churn prediction is treated as a
classification problem with labeled data [33]. However, in the fields
like SC, the standards of worker churn are not always the same
and it is hard to tell if a worker is really churned. Besides, we can
not get labeled data in SC. To solve these issues, we transform
the worker churn problem into a behavior-based problem and in-
troduce a BMM-UCP (Behavior-based Modeling for User Churn
Prediction) method [33]. Different from traditional methods of user
churn prediction, BMM-UCP converts the classification problem
into a regression problem, which predicts the idle time intervals of
users. More specifically, given a time threshold 𝜇, BMM-UCP is to
train a model𝑀 that maximizes the accuracy defined as Equation 1.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑𝑁
𝑖 𝑙 ( (𝜏𝑖 > 𝜇 ∧ 𝜏∗𝑖 > 𝜇) ∨ (𝜏𝑖 ≤ 𝜇 ∧ 𝜏∗𝑖 ≤ 𝜇))

𝑁
(1)

𝑙 (𝑥) =
{

1 if 𝑥 = 𝑇𝑟𝑢𝑒

0 otherwise (2)

where 𝑙 (𝑥) is an indication function (cf. Equation 2), 𝜏𝑖 is the
predicted idle time interval of worker𝑤𝑖 , 𝜏∗𝑖 is the true value of the
time interval, ∧ is logical AND operation, ∨ is logical OR operation,
and 𝑁 is the number of workers.

4.2.2 Worker Churn Prediction based on Latent Feeling Capturing
(LFC) Model. In this part, we introduce the proposed Latent Feeling
Capturing (LFC) model from three aspects, i.e., input, latent feeling
capturing, and output, the structure of which is shown in Figure 2.

Input. In this part, we introduce the input of LFC. In prac-
tice, it is obvious that workers’ idle time intervals are affected
by workers’ latent feelings such as satisfaction and passion. There-
fore, we introduce two kinds of vectors as the input of LFC, i.e.,
satisfaction-related vector and passion-related vector. For worker
𝑤 , the satisfaction-related vector, denoted by (𝑟𝑡 , 𝑑𝑡 , 𝑙𝑜𝑡 , 𝑙𝑎𝑡 ), where
𝑟𝑡 represents the reward of the 𝑡th task in the historical data of
𝑤 , 𝑑𝑡 represents the geographical distance between the 𝑡th task
and the 𝑡 − 1th task, 𝑙𝑜𝑡 represents the longitude of the 𝑡th task,
and 𝑙𝑎𝑡 represents the latitude of the 𝑡th task. Passion is a feeling
similar to satisfaction, which is denoted by (𝑟𝑡 ,𝑤𝑡𝑡 , 𝑙𝑜𝑡 , 𝑙𝑎𝑡 ), where
𝑤𝑡𝑡 represents the time interval between the 𝑡 th task and the 𝑡 −1th
task in the historical data of𝑤 , and the remaining three elements
(i.e., 𝑟𝑡 , 𝑙𝑜𝑡 and 𝑙𝑎𝑡 ) have the same meanings as the correspond-
ing elements in satisfaction-related vector. LFC is an LSTM-based
model, as a result of which we set the time-step length to 10, i.e.,
an input instance consists of 10 satisfaction-related vectors and 10
passion-related vectors.

Latent FeelingCapturing.Aswe discussed above, the idle time
interval is related to a worker’s latent feelings. It is obvious that a
worker’s satisfaction/passion after performing the 𝑡 th task is related
to her satisfaction/passion before the 𝑡 th task and some attributes
of the 𝑡 th task. We regard the latent feelings (e.g., satisfaction and
passion) as sequential data, which means that the latent feelings
have sequential dependencies. As shown in Figure 2, LFC contains

two-way LSTM, where one way is used to capture satisfaction and
the other way is used to capture passion.

We will first introduce the process of capturing satisfaction. We
take 𝑁𝐿 as a non-linear translation. Given the historical data of
worker 𝑤 , denoted by 𝑆𝑤 = {𝑠1, 𝑠2, ..., 𝑠𝑛}, the satisfaction after
performing task 𝑠𝑡 depends on features of the spatial task 𝑠𝑡 and
previous satisfaction. So, we can calculate the satisfaction of the
current moment by the satisfaction-related vector we have got and
previous satisfaction as shown in Equation 3.

S𝑡 = 𝑁𝐿𝑠𝑡 (𝑠𝑡 ) + 𝑁𝐿𝑠𝑠 (S𝑡−1) (3)

where S𝑡 is worker𝑤 ’s satisfaction after performing the 𝑡 th task.
The process of calculating passion is similar to that of calculating

satisfaction, which is shown in the following.
P𝑡 = 𝑁𝐿𝑝𝑡 (𝑠𝑡 ) + 𝑁𝐿𝑝𝑝 (P𝑡−1) (4)

where P𝑡 is worker𝑤 ’s passion after performing the 𝑡 th task.
As discussed above, both satisfaction and passion have sequential

dependencies. LSTM solves the long-term dependency problem
through three gate mechanisms and has excellent performance
when processing sequential data. So, we introduce LSTM [4] into
our model to capture satisfaction and passion.

Next, we illustrate the LSTM-based satisfaction capturing, which
is shown in the following equations.

𝑓 𝑠𝑡 = 𝜎 (𝑊 𝑠
𝑓
· [𝐻𝑠

𝑡−1, 𝑣
𝑠
𝑡 ] + 𝑏𝑠𝑓 ) (5)

𝑖𝑠𝑡 = 𝜎 (𝑊 𝑠
𝑖 · [𝐻𝑠

𝑡−1, 𝑣
𝑠
𝑡 ] + 𝑏𝑠𝑖 ) (6)

𝐶𝑠
𝑡 = 𝑡𝑎𝑛ℎ (𝑊 𝑠

𝑐 · [𝐻𝑠
𝑡−1, 𝑣

𝑠
𝑡 ] + 𝑏𝑠𝑐 ) (7)

𝑜𝑠𝑡 = 𝜎 (𝑊 𝑠
𝑜 · [𝐻𝑠

𝑡−1, 𝑣
𝑠
𝑡 ] + 𝑏𝑠𝑜 ) (8)

S𝑡 = 𝑓 𝑠𝑡 ∗ S𝑡−1 + 𝑖𝑠𝑡 ∗𝐶𝑠
𝑡 (9)

𝐻𝑠
𝑡 = 𝑜𝑠𝑡 ∗ 𝑡𝑎𝑛ℎ (S𝑡 ) (10)

where 𝑓 𝑠𝑡 indicates what to forget, and the concatenation of
satisfaction-related vector 𝑣𝑠𝑡 and filtered satisfaction𝐻

𝑠
𝑡−1 from the

last time step are taken as input. We use a sigmoid function as the
activation function when calculating 𝑓 𝑠𝑡 . Next, 𝑖

𝑠
𝑡 indicates what to

update, the input and activation function are the same as those of
calculating 𝑓 𝑠𝑡 but parameters are different. Further, 𝐶𝑠

𝑡 is a candi-
date satisfaction, which is calculated by taking the concatenation
of 𝑣𝑠𝑡 and filtered satisfaction 𝐻𝑠

𝑡−1 as input and selecting a tanh
function for activation. Then, the new satisfaction is an addition of
the values remembered from S𝑡−1 (calculated by 𝑓 𝑠𝑡 ∗S𝑡−1) and the
values that need to be updated from the candidate satisfaction 𝐶𝑠

𝑡

(calculated by 𝑖𝑠𝑡 ∗𝐶𝑠
𝑡 ). Finally, 𝑜

𝑠
𝑡 indicates what to output, which

is based on our cell state. The filtered satisfaction 𝐻𝑠
𝑙𝑎𝑠𝑡

of the last
time step will be used as the output of LSTM for idle time interval
calculation. The structure of the LSTM-based satisfaction capturing
is shown in Figure 3.

The process of capturing passion is similar to that of satisfaction,
which is omitted due to space limit.

Output. As discussed above, the idle time interval is related
to the latent feelings including satisfaction and passion. So, the
satisfaction and passion output by the two-way LSTM will be con-
catenated and then pass through a fully connected layer, by which
the predicted idle time intervals are output. The idle time intervals
are concatenated into an idle time interval tensor 𝑋 . Detailed steps
are shown in Equations 11 and 12.

𝜏𝑤 =𝑊𝑠𝑝 [S𝑤 , P𝑤 ] + 𝑏𝑠𝑝 (11)
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𝑋 = [𝜏1, 𝜏2, 𝜏3, ...] (12)

where 𝜏𝑤 is the predicted idle time interval of worker𝑤 ,𝑊𝑠𝑝 is the
weight matrix, and 𝑏𝑠𝑝 is the bias.

Given a time threshold 𝜇, if the corresponding entry of worker
𝑤 , 𝑋 [𝑤], exceeds 𝜇,𝑤 is judged as a churn-prone worker.

4.3 Task Assignment
In a real-time scenario, where workers and tasks arrive dynamically
and require immediate responses from an SC server, it is challenging
to achieve the global optimal solution for WC-TA problem. Since
an SC server only has local knowledge of the available tasks and
workers at any instance of time instead of a global view of all the
workers and tasks, we will optimize the task assignment locally
at every time instance by maximizing the current assignments
and giving higher priorities to workers who are more likely to
be churned. We propose two task assignment algorithms on this
basis, a Churn-aware Greedy Algorithm and a Churn-aware KM
Algorithm.

4.3.1 Churn-aware Greedy Algorithm. Taking workers’ idle time
intervals as the priority of task assignment, we propose a basic
greedy solution to solve the WC-TA problem.

Specifically, given a set of online workers, 𝑊 = {𝑤1,𝑤2, ...-
,𝑤 |𝑊 |}, and a set of available tasks, 𝑆 = {𝑠1, 𝑠2, ..., 𝑠 |𝑆 |} at the
current time, the available workers for spatial task 𝑠 (𝑠 ∈ 𝑆),
denoted as 𝐴𝑊 (𝑠) , should satisfy the following two conditions:
∀𝑤 ∈ 𝐴𝑊 (𝑠), 𝑠 ∈ 𝑆 ,

1) 𝑑𝑖𝑠 (𝑤.𝑙, 𝑠 .𝑙) ≤ 𝑤.𝑑 , and

2) 𝑡𝑛𝑜𝑤 + 𝑡 (𝑤.𝑙, 𝑠 .𝑙) ≤ 𝑠 .𝑒 ,
where 𝑑𝑖𝑠 (𝑤.𝑙, 𝑠 .𝑙) is the distance (e.g., Euclidean distance) be-

tween 𝑤.𝑙 and 𝑠 .𝑙 , and 𝑡 (𝑤.𝑙, 𝑠 .𝑙) is the travel time from 𝑤.𝑙 to
𝑠 .𝑙 . Further, |𝐴𝑊 (𝑠) | denotes the number of available workers for
spatial task 𝑠 . For the sake of simplicity, we assume that all the
workers share the same speed, so the travel time cost between
two locations can be estimated with their Euclidean distance, e.g.,
𝑡 (𝑤.𝑙, 𝑠 .𝑙) = 𝑑𝑖𝑠 (𝑤.𝑙, 𝑠 .𝑙). However, our proposed algorithms are
not dependent on this assumption and can handle the case where
workers are moving at different speeds.

The task assignment algorithm is shown in Algorithm 1. Given
a worker set𝑊 and a task set 𝑆 , the LFC model first predicts the
idle time intervals of each worker (lines 2–3). Second, Algorithm 1
calculates the set of available workers for each task according to the
conditions described above (line 5). Then, we sort the workers in
the available worker set for each task in descending order according
to workers’ idle time interval (line 6). Finally, each task is assigned
to the worker with the largest idle time interval (line 7).

Algorithm 1: Churn-aware Greedy Algorithm
Input:𝑊,𝑆

Output: 𝐴
1 𝐴← ∅;
2 for each worker 𝑤 ∈𝑊 do
3 Predict the idle time interval 𝜏 of 𝑤;

4 for each task 𝑠 ∈ 𝑆 do
5 𝐴𝑊 (𝑠) ← Find the set of available workers of 𝑠 ;
6 ˜𝐴𝑊 (𝑠) ← Sort 𝐴𝑊 (𝑠) in descending order of 𝜏 ;
7 𝐴 ∪ [(𝑠, ˜𝐴𝑊 (𝑠) [0]) ];
8 return 𝐴;

4.3.2 Churn-aware KM Algorithm. In this part, we transform the
WC-TA problem to a Bipartite MaximumWeight Matching problem
and apply the KM algorithm to solve it. The Bipartite Maximum
Weight Matching is based on a graph, which is represented by
𝐺 = (𝑉 , 𝐸) with𝑉 corresponding to the set of vertices and 𝐸 the set
of edges. Given a set of online workers,𝑊 = {𝑤1,𝑤2, ...,𝑤 |𝑊 |}, and
a set of available tasks, 𝑆 = {𝑠1, 𝑠2, ..., 𝑠 |𝑆 |}, the number of𝑉 and the
number of 𝐸 are fixed to |𝑊 | + |𝑆 | and∑ |𝑊 |

𝑖=1 𝑚𝑖 , respectively, where
𝑚𝑖 is the number of worker 𝑤𝑖 ’s adaptive available assignments,
which is a subset of worker𝑤𝑖 ’s available assignments 𝐴𝑆 (𝑤𝑖 ) and
is positively related to the predicted idle time interval of𝑤𝑖 . 𝐴𝑆 (𝑤)
should meet the conditions mentioned in Section 4.3.1. For the
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Figure 4: Worker-Task Bipartite Graph

vertices construction, the entire point set𝑉 is divided into two sets
𝑉𝑊 and 𝑉𝑆 , where 𝑉𝑊 ∩𝑉𝑆 = ∅. Each worker𝑤𝑖 maps to a vertex,
𝑣𝑊
𝑖
, and each spatial task 𝑠 𝑗 maps to a vertex, 𝑣𝑆

𝑗
.

Due to the spatio-temporal constraints, we add an edge from
𝑣𝑊
𝑖

mapped from 𝑤𝑖 ∈𝑊 to the vertex 𝑣𝑆
𝑗
mapped from 𝑠 𝑗 ∈ 𝑆 if

𝑠 𝑗 can be assigned to𝑤𝑖 , i.e., 𝑠 𝑗 ∈ 𝐴𝑆 (𝑤𝑖 ). For each edge (𝑣𝑊
𝑖
, 𝑣𝑆

𝑗
),

its weight (denoted by 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑊
𝑖
, 𝑣𝑆

𝑗
)) can be measured as the

weighted sum of the time interval 𝜏𝑖 and the reward of the spatial
task 𝑠 𝑗 , i.e.,𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑊𝑖 , 𝑣𝑆

𝑗
) = 𝑤𝑐 ∗𝑋 [𝑖] +𝑤𝑟 ∗ 𝑠 𝑗 .𝑟 , where𝑤𝑐 is the

weight of𝑤𝑖 ’s predicted idle time interval and𝑤𝑟 is the weight of
𝑠 𝑗 ’s reward. Figure 4 depicts an example of a graph for five workers
and three tasks.

Algorithm 2: FindTask Algorithm
Input: 𝑤𝑜𝑟𝑘𝑒𝑟 𝑤, 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 𝑑𝑒𝑒𝑝𝑡ℎ

Output: 𝐵𝑜𝑜𝑙
1 𝑣𝑖𝑠𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] = 𝑇𝑟𝑢𝑒 ;
2 if 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 𝑑𝑒𝑒𝑝𝑡ℎ > 𝜆 then
3 return 𝐹𝑎𝑙𝑠𝑒 ;

4 else
5 for each task 𝑠 is adjacent to 𝑤 in𝐺 do
6 if 𝑣𝑖𝑠𝑡𝑎𝑠𝑘 [𝑠 ] then
7 continue;

8 𝑔𝑎𝑝 ← 𝑒𝑥𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] + 𝑒𝑥𝑡𝑎𝑠𝑘 [𝑠 ] − 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑊𝑤 , 𝑣𝑆𝑠 ) ;
9 if 𝑔𝑎𝑝 = 0 then
10 if A[s]=-1 𝑜𝑟 FindTask(A[s],𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 𝑑𝑒𝑒𝑝𝑡ℎ+1)

then
11 A[s]=𝑤;
12 return𝑇𝑟𝑢𝑒 ;

13 else
14 𝑠𝑙𝑎𝑐𝑘 [𝑠 ] =𝑚𝑖𝑛 (𝑠𝑙𝑎𝑐𝑘 [𝑠 ], 𝑔𝑎𝑝) ;

15 return 𝐹𝑎𝑙𝑠𝑒 ;

To improve efficiency, we limit the number of edges in the graph.
Each worker node 𝑣𝑊

𝑖
has an adaptive upper limit 𝑢𝑖 . It means that

the number of edges associated with a worker node cannot exceed
𝑢𝑖 , which is calculated by 𝜌 ∗ 𝑋 [𝑖], where 𝜌 is a hyperparameter.

For the same consideration, the number of associated edges of each
task node cannot exceed 𝑢𝑠 , in order to reduce the competition
among workers and the recursion depth of the algorithm. 𝑢𝑠 is a
hyperparameter as well.

TheWC-TA problem is now converted into a Bipartite Maximum
Matching problem in the direct graph 𝐺 , which is to achieve the
maximum weight matching of 𝐺 . In our work, we use the KM
algorithm with a limit of recursion to find the maximal weight
matching.

For better understanding, before introducing the Churn-aware
KM algorithm, we will introduce the FindTask algorithm first. Find-
Task algorithm is a depth first search (DFS) algorithm to find a task
for a worker. In the algorithm, we calculate the difference between
the weight of the edge associated with the two vertices and the
sum of expectations of the worker and the task. If the difference
is equal to 0, the task can be assigned to the worker (line 8). If the
task has been assigned to another worker, we try to assign another
task to that worker (line 9–12). But the depth of recursion cannot
exceed the upper recursion limit 𝜆 (line 2–3).

Algorithm 3: Churn-aware KM Algorithm
Input:𝐺
Output: 𝐴

1 𝐴← [−1,−1, ...];
2 𝑒𝑥𝑡𝑎𝑠𝑘 ← [0, 0, ...];
3 𝑠𝑙𝑎𝑐𝑘 ← [𝐼𝑁𝐹, 𝐼𝑁𝐹, ...];
4 for each worker 𝑤 ∈𝑊 do
5 𝑒𝑥𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] ←𝑚𝑎𝑥 (𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑊𝑤 , 𝑣𝑆𝑠 )) ;
6 for each worker 𝑤 ∈𝑊 do
7 while 𝑒𝑥𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] > 0 do
8 𝑣𝑖𝑠𝑡𝑎𝑠𝑘 ← [𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒, ...];
9 𝑣𝑖𝑠𝑤𝑜𝑟𝑘𝑒𝑟 ← [𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒, ...];

10 if FindTask(𝑤,0) then
11 break;

12 else
13 d=𝐼𝑁𝐹 ;
14 for each task 𝑠 ∈ 𝑆 do
15 if ! 𝑣𝑖𝑠𝑡𝑎𝑠𝑘 [𝑠 ] then
16 d=min(d,𝑠𝑙𝑎𝑐𝑘 [𝑠 ]);

17 for each worker 𝑤 ∈𝑊 do
18 if 𝑣𝑖𝑠𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] then
19 𝑒𝑥𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ]− = 𝑑 ;

20 for each task 𝑠 ∈ 𝑆 do
21 if 𝑣𝑖𝑠𝑡𝑎𝑠𝑘 [𝑠 ] then
22 𝑒𝑥𝑡𝑎𝑠𝑘 [𝑠 ]+ = 𝑑 ;
23 else
24 𝑠𝑙𝑎𝑐𝑘 [𝑠 ]− = 𝑑 ;

25 return 𝐴;

The KM task assignment algorithm is shown in Algorithm 3.
Given the bipartite graph𝐺 , which is composed of two vertices sets
𝑉𝑆 and 𝑉𝑊 . First, for each vertex in 𝑉𝑊 , its expectation is equal to
the largest weight among the edges associated with it in graph 𝐺
(lines 4–5). Second, Algorithm 3 recursively finds matching tasks for
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worker𝑤 through the FindTask function (line 10). Third, if𝑤 fails
to match a task, we adjust the expectations of workers and tasks
involved in the last matching to change the competitive relationship
among workers so that more workers can be assigned (lines 12–24).

The original KM algorithm is used to find the perfect matching
of a weighted bipartite graph. However, considering that a perfect
matchingmay not exist in aworker-task bipartite graph, we propose
some optimization strategies to improve the KM algorithm. In the
original KM algorithm, it will not stop trying to match tasks for a
worker until a successful match, which may cause an endless loop
in our problem. Therefore, in our algorithm, if the expectation of𝑤
is less than 0, we stop matching tasks for the worker (line 7).

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We use a check-in dataset from Yelp to simulate our problem, which
is a common practice in evaluation of SC platforms [9, 15, 16]. In
order to make the user data more representative, we filter the data,
where we only use the data of users with number of reviews ex-
ceeding 20 and the number of reviews before 2019-05-14 23:22:59
exceeding 10. The resulting dataset provides check-in data from 8
metropolitan areas in the USA, which includes 160,585 POIs and
31,262 users. We assume that we assign tasks to workers in a certain
time slot in the near future i.e., 2019-05-14 23:22:59. For our exper-
iments, we assume that the users are the workers of SC systems
since users who check in to different spots are good candidates
to perform spatial tasks in the vicinity of those spots, and their
locations are those of the most recent check-in points. We assume
that all users in the testing set will be online in that time slot. For
each POIs, we use its location and stars as the location and reward
of a task, respectively. Checking in a POI is equivalent to accepting
a task. The distance is calculated by the Euclidian distance. The
values of all parameters used in our experiments are summarized in
Table 2, where the default values of all parameters are underlined.
All the algorithms are implemented on an Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40GHz, and NVidia GeForce RTX 2080Ti GPU.

Table 2: Experimental Parameters

Parameter Values
Number of tasks |𝑆 | 1000, 2000, 3000, 4000, 5000
Number of workers |𝑊 | 1000, 2000 , 3000, 4000, 5000
Reachable distance of workers 𝑑 0.05, 0.1, 0.5, 1.0, 5.0
Valid time of tasks 𝑒 − 𝑝 0.05, 0.1, 0.3, 0.5, 0.7
Limit coefficient 𝑘 2.0, 4.0, 6.0, 8.0, 10.0

5.2 Experiment Results
5.2.1 Performance of Worker Churn Modeling. We first evaluate
the performance of worker churn prediction.

To evaluate the accuracy of worker churn prediction, we adopt
the metric, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, shown in Equation 1. We randomly remove
20% of the reviews from the review data set, which are used as
the testing set to evaluate the inferred values and will be used as
simulation data for the experiments of the task assignment phase.
The remaining 80% are used as the training data.

Table 3: Accuracy of Worker Churn Prediction

Methods Time threshold
half a month one month two months three months

LR 37.91 57.16 77.66 84.08
MC 36.89 57.23 77.89 83.99
LFC 61.37 67.97 78.92 84.72

Two baseline algorithms are introduced to compare with our
LFC method, a linear regression (LR) algorithm [26] and a multi-
layer fully connected neural network (MC) algorithm [14]. The
linear regression algorithm is a statistical analysis method that
uses regression analysis in mathematical statistics to determine the
quantitative relationship between two or more variables. Its expres-
sion is 𝑦 = 𝑤𝑥 + 𝑏, where 𝑥 is historical data, and 𝑦 denotes the
predicted idle time interval in our problem. The multi-layer fully
connected neural network is a computing model, which is com-
posed of a large number of nodes (or neurons) connected to each
other. Each node represents a specific output function, called an
activation function. Each connection between two nodes represents
a weighted value for the signal passing through the connection,
called a weight, which is equivalent to the memory of an artificial
neural network. The output of the network is different depending
on the connection method of the network, the weight value and
the activation function. The network itself is usually an approxi-
mation of a certain algorithm or function in nature, or it may be an
expression of a logic strategy.

Table 3 shows the evaluation results. When the time threshold 𝜇

is set to half a month, one month, two months and three months,
LFC always performs the best among the methods. This demon-
strates the superiority of LFC for predicting the worker churn.

5.2.2 Performance of Task Assignment. For the performance of task
assignment, we study the following algorithms.

1) Greedy: The greedy task assignment algorithm that does not
consider the worker churn.

2) KM: The KM task assignment algorithm that does not consider
the worker churn.

3) Greedy+WC: The greedy task assignment algorithm based on
the worker churn predicted by LFC.

4) KM+WC: The KM task assignment algorithm based on the
worker churn predicted by LFC.

Three metrics are compared among the methods: 1) CPU time:
the CPU time cost for finding the task assignment; 2) total reward;
3) assignment ratio of churn-prone workers (marked by AR): pro-
portion of workers who are prone to churn that are assigned to
tasks, i.e.,

𝐴𝑅 =
𝑁 (𝑊assign ∩𝑊churn)

𝑁 (𝑊churn)
(13)

where 𝑁 (𝑊assign ∩𝑊churn) denotes the number of the assigned
churn-prone workers, and 𝑁 (𝑊churn) denotes the number of the
churn-prone workers.

Effect of |𝑆 |. To study the scalability of the proposed algorithms,
we generate 5 datasets containing 1000 to 5000 tasks by random
selection from the Yelp dataset. As shown in Figure 5(a), for Greedy
and Greedy+WC, the CPU time increases as |𝑆 | increases, but for
KM-based algorithms, the CPU time is not simply positively corre-
lated with |𝑆 |. When |𝑆 | is small, the competition among workers is
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Figure 5: Performance of Task Assignment: Effect of |𝑆 |
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Figure 6: Performance of Task Assignment: Effect of |𝑊 |

intense, which may increase the recursion depth of the algorithms
(e.g., KM and KM+WC). For example, the algorithm wants to as-
sign task 𝑠1 to worker 𝑤1, but 𝑠1 has been assigned to 𝑤2, so the
algorithm will try to assign task 𝑠2 to 𝑤2. Due to the small num-
ber of tasks, 𝑠2 may also have been assigned to another worker.
In this case, the recursion depth will be large. Figure 5(b) shows
the total reward and as the number of tasks increases, the total
rewards obtained by the four algorithms increase. Since the greedy
algorithm is an algorithm that only focuses on the local optimal
solution, its performance is always worse than those KM-based
algorithms (including KM and KM+WC). However, in the bipartite
graph of KM+WC, churn-prone workers can be associated with
more task vertices, which changes the competitive relationship
among workers. So, the reward of KM+WC is more than that of the
original KM algorithm. At the same time, as depicted in Figure 5(c),
KM+WC and Greedy+WC have better performances in assignment
ratio (AR). As the number of tasks increases, more workers can be
assigned to tasks, so the AR of the four algorithms increase. Since
Greedy+WC and KM+WC consider worker churn and give higher
priority to churn-prone workers, they have greater assignment ra-
tios. Especially for KM+WC, its assignment ratio is about 5% − 20%
higher than those of other baseline algorithms.

Effect of |𝑊 |. To study the effect of |𝑊 |, we generate 5 datasets
containing 1000 to 5000 workers by random selection from the
testing set. As depicted in Figures 6(a) and 6(b), as |𝑊 | increases,
more tasks can be assigned to workers and more workers can get
tasks, so the total rewards increase. At the same time, in KM and
KM+WC, as |𝑊 | increases, the competition among workers be-
comes more intense. That means the algorithms need to recurse
multiple times when assigning tasks to them. At the same time,
although |𝑊 | increases, the number of tasks does not change, and

some tasks cannot be assigned to workers due to the constraints of
workers and tasks. Therefore, the AR of the four algorithms drops,
which is shown in Figure 6(c). But KM+WC and Greedy+WC still
have better assignment ratios than other methods. For example, the
assignment ratio of KM+WC is about 10% − 20% higher than those
of other baseline algorithms, which shows the superiority of our
proposed algorithm.

Effect of 𝑑 .We also study the effect of workers’ reachable dis-
tances 𝑑 by changing it from 0.05 km to 5 km. From Figure 7(a) we
can see that, the CPU times of KM and KM+WC increase faster
than those of Greedy and Greedy+WC as 𝑑 increases. This is be-
cause that as 𝑑 increases, there are more available tasks for each
worker and the competition among workers will be more intense,
which will increase the recursion depth of algorithms. Moreover,
workers with larger reachable distances tend to have more available
task assignments, which leads to more edges in the graphs of KM
and KM+WC. As a result, the AR and total reward increase as 𝑑
increases, which is shown in Figures 7(c) and 7(b). However, limited
by the number of tasks and workers, as 𝑑 increases, its effect on
algorithms tends to be saturated. As shown in Figure 7, all the four
methods remain unchanged after 𝑑 exceeds 0.5km.

Effect of 𝑒 − 𝑝. We then study the effect of the valid time 𝑒 − 𝑝
of tasks. In Figure 8, when 𝑒 − 𝑝 increases, tasks can be assigned
to more workers. Each worker has a greater probability of being
assigned to tasks, so the total reward and assignment ratio of churn-
prone workers increase. As depicted in Figure 8(a), the CPU time of
all methods increase. The CPU time of KM and KM+WC algorithms
increase faster, with the similar reason of the effect of 𝑑 . Similar to
𝑑 , limited by |𝑆 | and |𝑊 |, all the four methods remain unchanged
after 𝑒 − 𝑝 exceeds 0.5h.
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Figure 7: Performance of Task Assignment: Effect of 𝑑
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Figure 8: Performance of Task Assignment: Effect of 𝑒 − 𝑝
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Figure 9: Performance of Task Assignment: Effect of 𝑘

Effect of 𝑘 . Finally, we study the effect of 𝑘 , which limits the
number of edges associated with worker vertices in KM+WC algo-
rithm. As 𝑘 increases, in the graph of KM+WC, each worker can be
associated with more tasks, in this way, workers have more oppor-
tunities to be assigned to tasks, but the competition among workers
is more intense as well, leading to an increase in CPU time, which
is shown in Figure 9(a). But at the same time, as 𝑘 increases, KM can
find a matching with greater weights. So the assignment ratio of
churn-prone workers and total reward increase, which is shown in
Figure 9(b) and 9(c). 𝑘 is a parameter only for KM+WC. The curves
of other algorithms in Figure 9 are the results with default values, in
order to show the effect of 𝑘 better. Experimental results show that,
our proposed KM+WC algorithm does have superior performances
and can perform better as 𝑘 increases.

6 CONCLUSION AND FUTUREWORK
The ubiquity of mobile devices with high-fidelity sensors and the
sharp decreases in the cost of ultra-broadband wireless networks

flourish the market of Spatial Crowdsourcing (SC), which consists
of location-specific tasks and requires workers to physically be
at specific locations to complete them. In this paper, we study a
novel task assignment problem in SC, namely Worker Churn based
Task Assignment (WC-TA). We address a few challenges by propos-
ing different strategies to identify the workers who are easy to
churn, and consider their feelings when assigning tasks, so that
they can get a better experience on SC platforms. To the best of
our knowledge, this is the first work in SC that predicts the worker
churn and performs task assignment based on the predictions. Ex-
tensive experiments demonstrate the effectiveness of our proposed
solutions.
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