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ABSTRACT
The largest portion of urban congestion is caused by ‘phantom’
traffic jams, causing significant delay travel time, fuel waste, and air
pollution. It frequently occurs in high-density traffics without any
obvious signs of accidents or roadworks. The root cause of ‘phan-
tom’ traffic jams in one-lane traffics is the sudden change in velocity
of some vehicles (i.e. harsh driving behavior (HDB)), which may
generate a chain reaction with accumulated impact throughout the
vehicles along the lane. This papermakes the first attempt to address
this notorious problem in a one-lane traffic environment through
velocity control of autonomous vehicles. Specifically, we propose
a velocity control framework, called PATROL (sPAtial-Temporal
ReinfOrcement Learning). First, we design a spatial-temporal graph
inside the reinforcement learning model to process and extract
the information (e.g. velocity and distance difference) of multiple
vehicles ahead across several historical time steps in the interactive
environment. Then, we propose an attention mechanism to charac-
terize the vehicle interactions and an LSTM structure to understand
the vehicles’ driving patterns through time. At last, we modify the
reward function used in previous velocity control works to enable
the autonomous driving agent to predict the HDB of preceding
vehicles and smoothly adjust its velocity, which could alleviate
the chain reaction caused by HDB. We conduct extensive experi-
ments to demonstrate the effectiveness and superiority of PATROL
in alleviating the ‘phantom’ traffic jam in simulation environments.
Further, on the real-world velocity control dataset, our method
significantly outperforms the existing methods in terms of driving
safety, comfortability, and efficiency.
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1 INTRODUCTION
With the rapid growth in urbanization, most major cities around the
world suffer from traffic congestion, resulting in serious travelling
inefficiency [13], significant fuel waste and air pollution [11]. It is
reported that in the US alone, urban congestion costs 8.8 billion
hours of travel delay, and 3.3 billion gallons of wasted fuel per
year [27], the largest portion of which is caused by the ‘phantom’
traffic jam phenomenon [8, 17, 22]. It is a type of traffic jams com-
monly encountered in high-density traffics, without any obvious
signs such as accidents, roadwork, closed lanes and so on. The root
cause of ‘phantom’ traffic jam is the sudden changes in velocity
(such as sudden braking and accelerating) of some vehicles [9],
which are referred to as harsh driving behavior (HDB) in the field
of transportation. In high-density traffic, one driver’s HDB may
generate a ‘butterfly effect’, create a chain reaction for the following
vehicles, causing a series of sudden brakes and accelerations. This
chain reaction will propagate with increasing delay time for the
vehicles along the lane, leading to traffic congestion. Solving the
phantom traffic jams is of vital importance to improving the urban
traffic condition and fuel efficiency.

Traditionally, dealing with the ‘phantom’ traffic jams is almost
impossible because it is impossible to regulate human drivers’ be-
haviors. The rapid development of autonomous vehicles and ad-
vanced assisted driving technology provides a promising way to
solve the ‘phantom’ traffic jam challenges by controlling the ve-
locity of the one autonomous vehicle in the lane and breaking the
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Figure 1: Two common harsh driving behaviors in a single
lane. The red car is controlled by velocity control models,
the black cars is the conventional cars, the red area of the
road represents unsafe following distance. The results of
time 𝑡 + 1 describe the difference between our model and the
existing models, in which the red car with dotted lines is
controlled by our model.
entire chain reaction. Unfortunately, the existing velocity decision
(i.e. velocity control) algorithm of autonomous vehicles can not
effectively address this problem. Specifically, the velocity decision
models can be classified into two categories: imitation-based, and
car-following based. The imitation based models, such as [36], take
a supervised learning approach. They aim at learning ML models
to minimize the difference between the behavior of autonomous
vehicles and the labeled human driver behaviors, trying to make
autonomous vehicles mimic the travel patterns of human-driven
vehicles. Therefore, the imitation based approaches heavily rely on
real human driving behaviors as training data, which inevitably
imitate the human HDBs in the training data. On the other hand,
the car-following based models try to follow the vehicle in front
by maintaining a safe distance, and at the same time optimize the
efficiency and comfortability of the autonomous vehicle using ei-
ther rule-based or ML-based methods. Since these approaches only
consider the state of the car immediately in front, ignoring the
cars further ahead and their historical travel behaviors in, vehicles
controlled by these algorithms will imitate the HDBs of the car
ahead of it.

We provide an example in Figure 1 to illustrate the limitation
of existing velocity decision algorithms. In Case 1, car 𝐶1 accel-
erates continuously without maintaining a proper distance from
the cars in front. Obviously, car 𝐴 should not accelerate to follow
car 𝐶1 because 𝐶1 will have to brake in the near future to avoid a
collision. However, since the existing velocity control methods can
only observe the state of the first car immediately ahead, they will
instruct car 𝐴 to blindly follow car 𝐶1 to accelerate. In Case 2, car
B ahead suddenly brakes despite that the overall traffic ahead is
relatively smooth. Under the existing velocity control methods, car
A will take the same sudden brake. Yet, a more reasonable way is to
gradually slow down and wait for the stabilization of the traffic flow
ahead. In both cases, a chain reaction would occur if every car in the
lane blindly follows the car ahead. Specifically, if a car traveling at a
constant velocity suddenly brakes and it takes 𝑥 seconds to recover
back to its previous velocity, it will take more than 𝑥 seconds for
the car behind it to recover since there naturally exists a delay in
human reaction. This effect will propagate and accumulate along
with the cars in the lane, causing the ‘phantom’ traffic jams.

This paper makes the first effort to solve the notorious ‘phantom’
traffic jam problem through the velocity control of autonomous

vehicles. Specifically, we focus on a simplified environment of a
single lane with no overtaking. In our PATROL framework, we pro-
pose a novel reinforcement-learning-based velocity control model,
called LADDPG (Deep Deterministic Policy Gradient equipped with
LSTM and Attention mechanisms) to tackle the ‘phantom’ traffic
jam problem. In order to alleviate the chain reaction caused by HDB,
we find that the autonomous driving vehicle must gather informa-
tion of various vehicles ahead across various historical time steps
to detect the abnormal behavior and adjust its velocity accordingly
and smoothly. Therefore, our LADDPG method first formulates
this information into a spatio-temporal graph and then designs
a novel model architecture to process this graph. To distill use-
ful spatial information from the graph, we propose two attention
mechanisms VR-Att and DR-Att to learn the interactions and ef-
fects of different vehicles ahead on the target autonomous vehicle.
To extract meaningful temporal information from the graph, we
propose a LSTM structure to understand the historical driving be-
haviors of these vehicles and detect their abnormal behaviors (HDB
events) beforehand. These novel model designs in LADDPG bring
the autonomous vehicle a wholistic view of the driving patterns of
multiple vehicles ahead along the lane and equip it with the ability
to detect and predict HDB events of these vehicles in order to adjust
its driving velocity smoothly. We conduct extensive experiments to
demonstrate the superiority of our method in alleviating the ‘phan-
tom’ traffic jam in simulation environments. Further, on real-world
velocity control datasets, our method significantly outperforms
the existing methods in terms of driving safety, comfortability and
efficiency.

In summary, our contributions are listed as follows.
•We identify the importance of the ‘phantom’ traffic jam problem
and make the first effort to tackle this problem through velocity
control.
• We propose a novel velocity control model LADDPG for au-
tonomous vehicles to break the chain reaction caused by HDB, thus
alleviating the ‘phantom’ traffic jam.
•We conduct extensive experiments to evaluate the effectiveness
of our method.

2 BACKGROUND AND RELATEDWORK
The largest portion of urban congestion is caused by ‘phantom’
traffic jams, which frequently occur in high-density traffics. In a
specific one-lane dense-traffic scenario, a ‘phantom’ jam begins
when a vehicle hits the brake too hard or gets too close to the
leading vehicle (HDB event), which causes the chain reaction that
the vehicle follows this vehicle slows down even more. This slow-
down in speed creates a chain reaction that propagates backward
throughout the lane with increasing delay, causing the ‘phantom’
traffic jam. It has a notorious effect on traveling time and fuel
waste, so it is particularly meaningful to alleviate or solve the
‘phantom’ traffic jam problem. In this paper, we consider optimizing
the velocity of autonomous vehicles to deal with the chain reaction
caused by HDB in a one-lane road, so as to alleviate ‘phantom’
traffic jams and improve road capacity.

In the field of autonomous driving, numerous researches have
proposed to study the impact of controlling autonomous vehicles’
velocity on the stability of traffic flow [7, 30, 37]. Specifically, the



velocity control problem describes the response in driving speed
of an autonomous vehicle with respect to the traffic conditions
ahead. In the following, we provide the details of the three kinds of
existing velocity control methods.
Traditional Methods:The traditional velocity control models con-
sider the information (i.e. distance and velocity difference) between
two consecutive vehicles, then use specific mathematical functions
to map the information into an optimal velocity decision. Specifi-
cally, [6, 29] deign linear dynamical equations to model Adaptive
Cruise Control (ACC) i.e. the autonomous vehicle keeping the con-
stant distance with the preceding vehicle. [4, 32, 33] propose intel-
ligent driver models (IDM), which considers the expected velocity,
the expected following distance, and additional restrictions (i.e. the
minimum spacing, maximum vehicle acceleration). Unfortunately,
the traditional velocity control models have inherent shortcomings:
mathematical equations or rules can hardly consider all influencing
factors and generalizable to rare cases, so it is difficult to apply to
real-world complex scenarios.
Machine Learning (ML) based Methods: With the rapid devel-
opment of ML techniques, many researches adopt data-driven ML
methods to imitate human driver’s behavior from the massive real-
world field data. For example, [36, 42] uses the deep neural networks
to model the historical trajectory data and predict the acceleration
of the vehicle in the next time step. [18, 41] present a learning-
based framework for autonomous driving which can learn from
human demonstrations, replicating what a human driver would
do in the same situation to output acceleration through estimating
the relevant features representing the driving situation. Although
these ML-based models have produced great achievements in mi-
croscopic traffic simulation, they have two key limitations when
applied to autonomous vehicle planning: 1) the learning-based net-
work structures will inevasible modeling errors, which can lead to
dangerous traffic accidents; 2) the training label of human driving
data may have inappropriate behaviors (i.e. HDB), which affects
the stability of traffic flow.
Reinforcement Learning (RL) based Methods: In order to ad-
dress the above existing limitations of ML-based methods, many
researches use deep RL algorithms to deal with the velocity con-
trol problem. The key idea of these methods is to enable the free
exploration of the RL agent to form a driving pattern that targets
at optimizing certain goals (e.g. driving safety, comfortability, and
efficiency). For example, [12, 40] adopts a reinforcement model to
output the acceleration (or deceleration) that maximizes vehicle
velocity along the path, without losing its dynamic stability. [39]
uses the double deep-Q-network to control the velocity of the au-
tonomous vehicle, using the information of a lead and following
car and historical driving data as model’ input to achieve a human-
like learning effect. [43, 44] applies the deep deterministic policy
gradient (DDPG) and designs a novel reward function to model the
velocity of autonomous vehicles. It is currently the state-of-the-art
algorithm that the vehicle can drive safely, efficiently, and com-
fortably. The reward function of DDPG includes three indicators:
Time-to-Collision (TTC), Time headway (THW), and Jerk. In de-
tail, TTC is a safety indicator and represents the time that remains
until a collision between two vehicles would have occurred if the
collision course and velocity difference are maintained [2]. THW is

Table 1: Summary of Notations

Notation Definition

𝐶𝑖 A conventional vehicle𝐶𝑖

𝐴𝑖 An autonomous vehicle 𝐴𝑖

𝐼 Total number of vehicles on the road
T The time duration of interest
𝑡 A time step 𝑡 ∈ T

𝑉 𝑡
𝐴𝑖

The velocity of the vehicle 𝐴𝑖 at time 𝑡
𝐷𝑡
𝐴𝑖

The longitudinal distance of vehicle 𝐴𝑖 at time 𝑡

𝐷𝑡
𝑟 (𝐶𝑖 ,𝐶 𝑗 )

The relative distance between𝐶𝑖 and
𝐶 𝑗 at time 𝑡

𝑉 𝑡
𝑟 (𝐶𝑖 ,𝐶 𝑗 )

The relative velocity between𝐶𝑖 and
𝐶 𝑗 at time 𝑡

_ The length of historical time steps

𝑚
The number of vehicles ahead observed

by the autonomous vehicle

an important indicator that reflects the road capacity and can be
represented by the time-value derived from measures of the follow-
ing vehicle’s velocity and spacing [38]. Jerk is a physical quantity
related to acceleration, which describes how fast the acceleration of
a vehicle changes and can be obtained by calculating the derivative
of acceleration [10], can be used to measure driving comfort [14].

Unfortunately, the aforementioned RL methods have one com-
mon problem that they only consider the first car ahead at one
time step, which makes the RL agent unable to detect the abnormal
behavior of traffic ahead of time and blindly follows the previous
car. Thus, they can not solve the chain reaction caused by HDB,
which may lead to the ‘phantom’ traffic jams.
Our Solution: We propose a novel velocity control framework
to solve ‘phantom’ traffic jams. We consider an autonomous ve-
hicle controlled by our model in an interactive one-lane traffic
environment. With the development of perception technology, the
autonomous vehicle𝐴 can obtain the information(velocity and real-
time location) of multiple vehicles ahead through its sensors or IoV
(Internet of Vehicles).

We slightly modify the reward function (TTC+THW+Jerk) of
DDPG so that ourmethod can effectively alleviate the chain reaction
caused by HDB. The Jerk reward can penalize large acceleration or
deceleration (HBA) but it is suppressed by the other two rewards in
the original DDPG algorithm [3, 43, 44]. Specifically, if the vehicle
in front of the agent autonomous vehicle suddenly brakes, the
agent must brake immediately to maintain a safe distance (i.e. TTC
suppresses Jerk). If the vehicle in front suddenly accelerates, the
agent will accelerate immediately to ensure driving efficiency (i.e.
THW suppresses Jerk). In our LADDPG, we increase the relative
weight of Jerk to eliminate HBA behaviors. When considering
vehicles ahead for multiple time steps, the large Jerk reward will
enforce the agent to understand the driving patterns of vehicles
in front, predict their behaviors, and decide its own velocity with
smooth changes to avoid HBA. Specifically, if the agent observes a
sudden brake of a vehicle in the lane (e.g. two vehicles in front of
it), it should expect a sudden brake of the vehicle immediately in
front of it. In this case, the agent has to decelerate smoothly before
this vehicle hits the brake and all three reward will be high for this
behavior. After the RL agent has explored enough situations like
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Figure 2: PATROL overview

this, the reward function will guild this autonomous agent to fully
understand the traffic dynamic and thus avoid HBA and alleviates
the ‘phantom’ traffic jam.

3 METHOD
Existing works on velocity decisions only consider the action of one
vehicle ahead in one time step [39, 44], ignoring the vehicles further
ahead and their historical travel behaviors. If a vehicle in front of
the autonomous vehicle breaks or accelerates rapidly (HDB events),
these velocity decision methods will likely mimic this behavior
leading to a serious chain reaction to the vehicles behind it, namely
‘phantom’ traffic jams.

In this section, we propose an improved reinforcement learning
model LADDPG to output the optimal velocity decision of the
autonomous vehicle based on its surrounding traffic circumstance
at each time step. Our newly proposed method not only ensures
the smooth, safe and efficient driving pattern but also alleviates the
chain reaction caused by HDB events.

3.1 Framework Overview
As shown in Figure 2, our framework is composed of an offline train-
ing phase and an online inference phase. In the offline phase, we
first extract informative features (e.g. velocity and distance of the
vehicles ahead) and structure them into a spatial-temporal graph
(detailed in Section 3.2). Then, we use the LSTM-and-attention-
based actor network to learn the spatial-temporal interaction from
this graph and output the optimal velocity decision accordingly (de-
tailed in Section 3.3). At last, we use the predefined reward function
to evaluate the safety, efficiency, and stability of the outputted deci-
sion and use the feedback signals to train the model. In the online
phase, the agent will observe its surrounding traffic environment
and use the trained model to make decisions in real time.

3.2 Reinforcement Learning Agent Design
First, we introduce the state, action, state updating, and reward
function of our LADDPG model.
State: The state represents the environmental information obtained
by the agent, which in our method consists of the relative velocity
and distance of multiple vehicles ahead of it. In order to alleviate
the chain reaction of HDB events, the agent needs to consider the
information of multiple vehicles ahead at multiple historical time

steps to smoothly accelerate or decelerate so that its driving velocity
will not cause further HDB of the vehicles behind it. In order to
capture the spatial and temporal dynamic changes of the vehicles in
front of the autonomous agent, we use a spatial-temporal graph
to represent the state at each time step.

A spatial-temporal graph is composed of spatial edges along
with historical time steps. At time step 𝑡 , the state 𝑠𝑡 is a spatial-
temporal graph, containing _ historical time steps spatial features,
i.e. [𝑡, 𝑡 − 1, ...𝑡 − _ + 1]. The autonomous vehicle 𝐴 can detect𝑚
vehicles ahead, i.e. {𝐶𝑖 } where 𝑖 ∈ [1,𝑚]. Naturally, they formed
a fleet, where 𝐶0 (the agent 𝐴 itself) is the last vehicle and 𝐶𝑚 is
the first vehicle. At each historical time step 𝜏 ∈ [𝑡, 𝑡 − 1, ...𝑡 −
_ + 1], we set each vehicle 𝐶𝜏

𝑖
as the a node in the graph and

represent its feature as a concatenation of its current velocity 𝑉 𝜏
𝐶𝑖

and longitudinal distance 𝐷𝜏
𝐶 𝑗

w.r.t. the agent. Furthermore, we
create a spatial edge 𝑒𝜏

𝑖,𝑖+1 between two adjacent vehicles 𝐶𝑖 and
𝐶𝑖+1, which contains the interactive information between these
two vehicles at each historical time 𝜏 . Specifically, 𝑒𝜏

𝑖,𝑖+1 can be
represented as the relative velocity and distance between the two
adjacent vehicles:

𝑒𝜏𝑗,𝑗+1 = [𝑉
𝜏
𝑟 (𝐶 𝑗 ,𝐶 𝑗+1), 𝐷𝜏

𝑟 (𝐶 𝑗 ,𝐶 𝑗+1) ], (1)

where𝑉 𝜏
𝑟 (𝐶 𝑗 ,𝐶

𝜏
𝑗+1) = 𝑉 𝜏

𝐶 𝑗
−𝑉 𝜏

𝐶 𝑗+1
, and 𝐷𝜏

𝑟 (𝐶 𝑗 ,𝐶
𝜏
𝑗+1) = 𝐷𝜏

𝐶 𝑗
−𝐷𝜏

𝐶 𝑗+1
.

Therefore, at time step 𝑡 , the state 𝑠𝑡 is represented as:

𝑠𝑡 =


𝑒𝑡−_+10,1 𝑒𝑡−_+11,2 . . . 𝑒𝑡−_+1

𝑚−1,𝑚
.
.
.

.

.

.
. . .

.

.

.

𝑒𝑡0,1 𝑒𝑡1,2 . . . 𝑒𝑡
𝑚−1,𝑚

_×2𝑚
(2)

The spatial-temporal graph is scalable, according to the number
of vehicles ahead (𝑚) and the length of historical time steps (_).
Action: Given the state 𝑠𝑡 , the agent will decide its optimal driving
velocity decision at time step 𝑡 , denoted as action 𝑎𝑡 . Following
prior works [44], the 𝑎𝑡 represents the longitudinal acceleration of
the agent, and it is bounded between −3 to 3𝑚/𝑠2.
State Updating: Given a current state 𝑠𝑡 and a chosen action 𝑎𝑡 ,
the velocity and the longitudinal distance of the autonomous vehicle
in the next time step can be calculated as follows:

𝑉 𝑡+1
𝐶0 = 𝑉 𝑡

𝐶0 + 𝑎𝑡 ∗ Δ𝑡

𝐷𝑡+1
𝐶0 = 𝐷𝑡

𝐶0 +𝑉
𝑡
𝐶0 ∗ Δ𝑡 + 0.5 ∗ 𝑎𝑡 ∗ (Δ𝑡 )

2 (3)



where Δ𝑡 is the time interval between two consecutive time steps,
which is 0.1 second in our case. In addition to the autonomous
vehicles controlled by ourmodel, the features (velocity and distance)
of other vehicles can be obtained directly from the environment.
Thereafter, the state 𝑠𝑡+1 can be efficiently updated.
Reward: The reward value is associated with the each transition
from 𝑠𝑡 to 𝑠𝑡+1 after taking action 𝑎𝑡 to evaluate the quality of
this action. We adopt a recently proposed reward function [44] to
evaluate the agent travel safety (TTC), comfortability (Jerk) and
efficiency (THW). Since this reward function is not sensitive to
the harsh acceleration and deceleration of the agent, we define a
weighted version of this reward function by setting the weights as
tunable hyperparameters. The reward value at time step 𝑡 is defined
as follows:

𝑟𝑡 =𝑊1 ∗ 𝐹 (𝑥𝑡 ) +𝑊2 ∗𝐺 (𝑦𝑡 ) +𝑊3 ∗𝐻 (𝑧𝑡 ) (4)

where the𝑊1,𝑊2,𝑊3 are hyper-parameters, which are discussed
in the experiment. The 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 represent the value of 𝐽𝑒𝑟𝑘 , 𝑇𝑇𝐶
and 𝑇𝐻𝑊 at time step 𝑡 respectively, and the 𝐹 , 𝐺 , 𝐻 functions are
defined as follows:

𝐹 (𝑥𝑡 ) = −(
𝑥𝑡

𝐵
)2 (5)

𝐺 (𝑦𝑡 ) =

log( 𝑦𝑡4 ), 0 ≤ 𝑦𝑡 ≤ 4,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(6)

𝐻 (𝑧𝑡 ) =
1

𝑧𝑡𝜎
√
2𝜋

exp −(ln𝑧𝑡 − `)
2

2𝜎2 (7)

where 𝐵 is used to normalize the value into the range of [0, 1], and
can be computed by empirical data. According to the data, the `
and 𝜎 equals to 0.3052 and 0.2031 respectively. Specially, if there is
a collision, the episode will terminate and get a large penalty (i.e,
𝑟𝑡 = −100).

3.3 Model Details
Our neural architecture is based on a deep determined policy gra-
dient (DDPG) approach. It is comprised of two networks: the actor
network and the critic network (see Figure 3). The details are as
follows:
Actor Network: The actor networkmaps the current state 𝑠𝑡 of the
environment to the optimal action and guides the agent’s driving
velocity. The architecture of actor networks in previous works is
relatively simple because they only consider the first vehicle ahead
for one time step as their input state. However, our state inputs (i.e.
the spatial-temporal graph described in the previous section) need
more advanced techniques to process the underlying interactions
within the graph and extract meaningful information from it. To
accomplish this goal, we propose two important improvements
over the existing actor networks.

The first improvement is designed to tackle spatial features, i.e.
understanding the interactions of various vehicles ahead of the
agent, which has a different impact on the agent. As shown in the
examples of Figure 1, only when the velocity decision is made by
considering the influence of multiple vehicles in front of the au-
tonomous vehicle𝐴 simultaneously, can the chain-reaction be effec-
tively alleviated. Therefore, we use global attention mechanism
to process the spatial-temporal graph, which allocates different
weights to the edges to capture the influence of different vehicles
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Figure 3: LADDPG overview

ahead on the agent and learn their interactions adaptively. The
structure of the attention mechanism is shown in Figure 3. Since
the relative velocity and relative distance are the two independent
features, we design two attention blocks, namely relative veloc-
ity attention (VR-Att) and relative distance attention (DR-Att), to
handle them separately. The two blocks have the same network
structure, so we will only elaborate VR-Att in detail. Specifically,
for each historical time step 𝜏 , we first feed the relative velocities of
all vehicles ahead into the two fully connected layers to calculate
the weight of relative velocity on each edge of the spatial-temporal
graph, and then we multiply the weight with the relative veloc-
ity value to get the weighted feature. The calculation process is
formulated as follows:

ℎ𝜏𝑣 = tanh (𝑊1 · [𝑉 𝜏
𝑟 (𝐴,𝐶1), . . . ,𝑉 𝜏

𝑟 (𝐶𝑚−1,𝐶𝑚) ]) (8)

𝑤𝑒𝑖𝑔ℎ𝑡𝜏𝑣 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊2 · ℎ𝜏𝑣 ) (9)

𝑉𝑟
𝜏 (𝐴,𝐶1), . . . ,𝑉𝑟

𝜏 (𝐶𝑚−1,𝐶𝑚) =
𝑤𝑒𝑖𝑔ℎ𝑡𝜏𝑣 · [𝑉 𝜏

𝑟 (𝐴,𝐶1), . . . ,𝑉 𝜏
𝑟 (𝐶𝑚−1,𝐶𝑚) ]

(10)

where𝑊𝑖 denotes parameters of the network, and the tanh and
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 are the activation function of the network layer. We can
calculate the weight of relative distance 𝑤𝑒𝑖𝑔ℎ𝑡𝜏

𝑑
using the same

procedure. Thereafter, we multiply the original relative velocity and
distance features with the corresponding weights. At last, we feed
all weighted edges for each historical time step 𝜏 ∈ [𝑡, 𝑡−1, ...𝑡−_+1]
as the weighted state to the next layer.

The second improvement is to deal with temporal features, i.e.
capturing the historical driving patterns of these vehicles ahead of
the agent. The dynamic change of traffic conditions ahead over time
is very important for the agent to discover the abnormal behaviors
(e.g. HDB) beforehand and make a reasonable velocity decision.
Therefore, we leverage the Long short-term memory (LSTM) model
to extract the temporal dynamics from weighted state for 𝜏 ∈ [𝑡, 𝑡 −
1, ...𝑡 − _ + 1]. The output of the LSTM will be fed into a fully
connected layer with tanh activation function as the optimal action
𝑎𝑡 of the agent.
Critic Network: The critic network computes the value of an ac-
tion at a state. It receives the current state 𝑠𝑡 of the environment
and the action 𝑎𝑡 generated by the actor and outputs the Q-value
associated with them. Following the design of the critic network
in previous studies [21], the critic network contains three layers:
an input layer, a hidden layer, and an output layer. The calculation
can be expressed as the following equation 11.

𝑄 = tanh(𝑊0, 𝑟𝑒𝑙𝑢 (𝑊1, 𝑠𝑡 , 𝑎𝑡 )) (11)



Where the𝑊 represents the different parameters. tanh and relu are
the activate function.

3.4 Offline Training
The core problem of a RL task is to find an optimal policy for the
agent, which corresponds to a function 𝜋 that specifies the action
that the agent should choose when at a specific state so as to maxi-
mize the accumulative rewards. In this paper, we adopt DDPG as
the function approximators to solve the problem. The actor func-
tion ` (𝑠 |\` ) which specifies the current policy by deterministically
mapping states to a specific action. The critic function𝑄 (𝑠, 𝑎 |\𝑄 ) is
learned using the Bellman equation as in Q-learning [23]. In addi-
tion, two target networks ` ′(𝑠 |\`′) and 𝑄 ′(𝑠, 𝑎 |\𝑄′) are created for
the main actor and critic networks respectively, to avoid divergence
of the algorithm. In the process of training, we store the agent’s
experiences 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in a replay buffer 𝐷𝑡 = {𝑒1, . . . , 𝑒𝑡 }.
At each time step, we randomly sample a minibatch of 𝑁 transitions
{(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1)}𝑁𝑖=1. The 𝑄 (𝑠, 𝑎 |\

𝑄 ) update at iteration 𝑖 uses the
following loss function 𝐿(\𝑄 ):

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′ (𝑠𝑖+1, `′ (𝑠𝑖+1 |\`′ ) |\𝑄′ ) (12)

𝐿 (\𝑄 ) = 1
𝑁

∑
𝑖

(𝑦𝑖 −𝑄 (𝑠𝑖 , 𝑎𝑖 |\𝑄 ))2 (13)

In which the 𝑦𝑖 of equation 12 is the the Bellman equation, the 𝛾
is the discount factor determining the agent’s horizon [20]. Then,
the parameters \` of actor network are modified in a direction
that is more likely to get a large Q-value. For the target networks.
The weights of them are updated by having them slowly track the
learned networks: \𝑄′ ← 𝜏\𝑄 + (1− 𝜏)\𝑄′ , \`′ ← 𝜏\` + (1− 𝜏)\`′

with 𝜏 = 0.001. This means that the target values are constrained
to change slowly, significantly improve the stability of learning.

4 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate our
framework on simulated and real data, comparing against the per-
formance of different methods frommultiple metrics. we first design
a simulator to study the ability of the controlled vehicle to deal
with the chain reaction caused by harsh driving behaviors, which
is the root cause of ‘phantom’ traffic jam in a one-lane road. Then,
we study the safety, efficiency, and comfortability of the LADDPG
model on the real-world data, demonstrating the effectiveness of
the components in the LADDPG.

4.1 Experimental Settings
Simulator Setting: Cellular automata is widely used in traffic flow
simulation [5, 24–26]. However, the traditional cellular automata
construct a discrete space, leading to a large error in the speed con-
trol task. In this study, we define a continuous version of the cellular
automata to simulate the traffic flow in a single lane. In the simula-
tor, the time interval between two consecutive time steps is 0.1s. At
each time step 𝑡 , the status of the i−𝑡ℎ vehicle contains the follow-
ing information: (current vehicle ID, velocity, longitudinal distance,
ID of the vehicle in front of the current vehicle). In addition, the
simulator uses periodic boundary, i.e., the number of vehicles is
fixed and no vehicles will drive into or drive off the road. We set the
traffic restrictions as𝑉𝑚𝑎𝑥 = 80𝑘𝑚/ℎ,𝑉𝑚𝑖𝑛 = 0𝑘𝑚/ℎ, and the other

Table 2: The hyper-parameters setting

Parameter Value

Learning rate for actor networks 0.001
Learning rate for critic networks 0.001

Reward discount factor 𝛾 0.9
Batch size 1024

The size of replay buffer 20000
The coefficients of reward function

𝑊1,𝑊2,𝑊3
1.2, 0.9, 9.4

The length of historical time interval _ 3
The number of Vehicles ahead the

agent observes𝑚 3

restrictions will be set in the simulation experiment part, such as
the length of the road (km), traffic density (vehicles/km) and the
density of the harsh driving behaviors (HDBs/km). In particular,
autonomous vehicles are controlled by the velocity control mod-
els, non-autonomous vehicles are controlled by the HDM (Human
Driver Model), which mimics the human-driver characteristics [34].
Real-World Dataset: We train and test our model on the next
generation simulation (NGSIM) trajectory data [16], which is widely
used in the study of traffic flow theory [31]. The NGSIM dataset
provides longitudinal positional and velocity information for all
vehicles in certain regions and contains variously complex traffic
scenes, such as uncongested and congested traffic environments.
To facilitate the training process, we preprocess the dataset into
events, which can be formed as follows: 1) In an event, there are
𝑚 + 1 vehicles drive in the same lane, and there is no lane change
behavior. 2) The duration of each event must be more than 15
seconds. Finally, we totally extracted 1200 valid events and divided
them into the training set (840 events) and the test set (180 events)
, and the validation set (180 events).
Implementation Details: Our proposed model LADDPG has two
networks. One is the actor network, which is composed of attention
mechanism, LSTM, and fully connected layer, and the number of
neurons in the hidden layer is set as 32, 64, and 1 respectively. An-
other is the critical network, which consists of two fully connected
layers, and the number of neurons in the hidden layer is set as 64
and 1 respectively.

We set the hyper-parameters of the model in table 2. The first
five parameters are selected by the grid search method, and we
set the best one as the default values. The hyper-parameters of
the spatial-temporal graph (i.e., _ and𝑚) are studied in Section 4.3.
Further, LADDPG is trained on real-world train data set, tested on
the simulator and the real-world test data set, the hyper-parameters
of the model are adjusted on real-world validation data set. Finally,
Our network is implemented in Python and runs on an Intel (R)
CPU i7-4770@3.4GHz and 32G RAM.
Compared Methods:We compare our method with the following
methods:
• MPC-ACC [29]. Adaptive cruise control (ACC) is an advanced
driver-assistance system for road vehicles that can automatically
control the velocity to maintain a safe distance from the vehicles
ahead. In addition, the Model Predictive Control (MPC) technique
is equiped for improving the controlling performance.
• DDPG [44]. The authors proposed a reinforcement-learning-
based velocity control model (DDPG) and designed an effective



reward function, which can ensure the agent drive safely, com-
fortably, and efficiently.
• DNN [36]. The authors proposed a deep neural network-based
(DNN) velocity control model to control the velocity of the vehicle
in a human way.
• Human. Human driving data in real-world traffic scenes.
In addition to the baseline methods, we also consider several varia-
tions of our model.
• L-DDPG. Our proposed model without all the attention mecha-
nisms.
• LV-DDPG. Our proposedmodel with the attentionmechanism of
relative velocity, but without the attention mechanism of relative
distance.
• LD-DDPG. Our proposed model with the attention mechanism
of relative distance, but without the attention mechanism of
relative velocity.
• A-DDPG. The LADDPG model without LSTM.
We use the open-source code to reproduce the MPC-ACC and the
DDPG model. We try our best to reproduce the DNN model based
on the paper.
Evaluation Metrics: We design two series of metrics from two
aspects: evaluating the ability for alleviating the chain reaction
and evaluating the performance of the controlled vehicle. Two
series of metrics are used in simulation experiments and real-world
experiments respectively.

In the simulation experiments, in order to evaluate whether
the model can alleviate the chain reaction caused by harsh driving
behavior and improve the traffic capacity, we mainly designed three
metrics: Affected Length (AL), Recovery Time (RT), Average Delay
Index (ADI) [1] and Average Jerk (AJerk), as follows:
• AL refers to the number of rear vehicles affected by the HDB
event. In the rear fleet of the HDB event, we record the velocity
change rate of the vehicles . When the average velocity change
rate is greater than 20% in continuous time steps, we believe that
the vehicle has been affected, and the number of affected vehicles
is the affected length. The velocity change rate is computed as
|𝑉 𝑡+1
𝐴𝑖
−𝑉 𝑡

𝐴𝑖
|/𝑉 𝑡

𝐴𝑖
.

• RT refers to the time required for the affected vehicles to return
to the normal driving state (i.e., the state before HDB occurring)
after HDB occurring.
• DI refers to the delays in actual travel time compared to optimal
travel time, and can be computed as 𝐷𝐼𝐴𝑖

= T𝐴𝑖
/T𝑜𝑝𝑡

𝐴𝑖
, where

T𝐴𝑖
is the duration of the vehicle 𝐴𝑖 in a episode, and T𝑜𝑝𝑡

𝐴𝑖
is

the optimal transport travel time of 𝐴𝑖 [19]. The average delay
index (ADI) overall vehicles on the road can be computed as
𝐴𝐷𝐼 = 1

𝐼

∑
𝑖∈𝐼

𝐷𝐼𝐴𝑖
.

Note that, for the above metrics, the smaller the value is, the
better the model can alleviate the chain reaction.

In the real-world data set experiments, we mainly consider three
metrics to evaluate the safety, efficiency, and comfortability of
the controlled vehicle, which are TTC, Mean THW (MTHW), and
Average Jerk (AJerk).
• TTC is defined in Section 2. When the TTC is greater than a
fixed value [35], the vehicle is driven safely.

Table 3: Evaluation of one autonomous vehicle

MethodsHDB
Events Metrics

DDPG DNN MPC-ACC LADDPG

Hard
braking

AL 15 16 14 10
RT 8.81 10.21 9.12 8.12
ADI 2.10 2.41 1.85 1.68
AJerk 0.88 2.23 0.84 0.72

Hard
acceleration

AL 13 15 13 8
RT 15.8 18.01 15.39 9.52
ADI 2.01 2.31 1.83 1.66
AJerk 0.85 2.10 0.81 0.69

• MTHW is the mean THW of all the vehicles on the road. The
smaller the MTHW is, the faster the vehicle drives. The MTHW
is computed as:

𝑀𝑇𝐻𝑊 =
1∑

𝑖∈𝐼
𝑖 ∗ T𝐴𝑖

∑
𝑖∈𝐼

∑
𝑡∈T𝐴𝑖

𝑇𝐻𝑊 𝑡
𝐴𝑖

(14)

• AJerk is the average Jerk of all vehicles on the road. The smaller
the AJerk is, the smoother the vehicle drives. The AJerk is calcu-
lated as:

𝐴𝐽 𝑒𝑟𝑘 =

√√ 1∑
𝑖∈𝐼

𝑖 ∗ T𝐴𝑖

∑
𝑖∈𝐼

∑
𝑡∈T𝐴𝑖

( 𝐽 𝑒𝑟𝑘𝑡
𝐴𝑖
)2 (15)

4.2 Performance on the Simulator
In this section, we prove the ability of the LADDPG for alleviating
the chain reaction caused by harsh driving behaviors and improving
the traffic capacity.
Environments Settings: We simulate two traffic environments
based on the simulator. 1) the first environment simulates a fixed
one-lane road. The length of the road is 3𝑘𝑚, and the density of
the vehicle is set as 100/𝑘𝑚, only one vehicle is controlled by using
different methods (i.e. one autonomous vehicle). To better demon-
strate the ability of our model to mitigate the chain reaction caused
by HDBs, we add a hard braking event (decelerating continuously
for 3 seconds at −4𝑚/𝑠2 acceleration) and a hard acceleration event
(accelerating continuously for 2 seconds at an acceleration of 4
𝑚/𝑠2 without collision) as the HDBs to the vehicle in front of the
autonomous vehicle, and we fixed the time of occurrence of the
two events.
2) the second environment simulate a alterable one-lane road. We
consider the different densities of the traffic (vehicles/km) and harsh-
driving behaviors (HDBs/km) in the different lengths of roads. In
addition, all the vehicles on the road are controlled by different
models (i.e. all the vehicles are autonomous vehicles). We fixed the
time of occurrence of the HDBs, and randomly assign an event,
such as hard braking or acceleration, in each location of the HDB
occurs.
Evaluation of One Autonomous Vehicle: In this environment,
we divide the HDB events into hard braking and hard acceleration
and separately study the 𝐴𝐿, 𝑅𝑇 , 𝐷𝐼 , and 𝐴𝐽𝑒𝑟𝑘 of the different
baselines.

As shown in Table 3, we can see that all of the metrics of the
LADDPG are smaller than the compared models. For the hard brak-
ing events, our model reduces the affected length by 28.6% to 37.5%
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Figure 4: Evaluation of multiple autonomous vehicles

and saves 7.8% − 20.5% recovery time. The average delay index and
the average jerk of all vehicles are reduced by 9.2% − 30.1% and
14.2%− 67.7% respectively, which can prove the traffic capacity and
the comfortability of the vehicles have been greatly improved by
our LADDPG model. For the hard acceleration events, our model
reduces 38.5% − 46.7% affected length and saves the recovery time
by 38.1% to 47.1%. The average delay index of all vehicles is reduced
by 9.3% to 28.1%, while the average jerk of all vehicles is the smallest
of all compared methods.

We analyzed the reasons for the above results, when the vehicle
occurs hard braking event, the traffic condition in front of it is
relatively good. However, the compared methods can only observe
the state of the first vehicle ahead. The autonomous vehicle con-
trolled by baselines will brake as fast as the vehicle in front, and
pass the brake-chain-reaction to the rear fleet, which increases the
possibility of the ‘phantom’ traffic jam. The vehicle controlled by
our LADDPG can observe the state of multiple vehicles ahead in
historical time steps, which helps the vehicle to detect the harsh be-
haviors in the distance while judging the traffic condition is good or
not. Therefore, our LADDPG acts decelerate in an adaptive way, re-
ducing the pause time of the controlled vehicle, which can alleviate
the chain reaction for the rear fleet.
Evaluation of Multiple Autonomous Vehicles: In this environ-
ment, we study the traffic capacity (average delay index of all vehi-
cles) of different methods in variable traffic settings: traffic density,
HDB density, and length of the road, as shown in Figure 4.

Firstly, we study different traffic densities (20, 40, 60, 80, 100,
120)𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠/𝑘𝑚 (see Figure 4a). Meanwhile, we fixed
the length of the road and the number of HDB as 3𝑘𝑚 and 3 respec-
tively. We can see that our model maintains the lowest delays in all
settings, reducing 3.4% − 18.8% delay indexes. Secondly, we study
the different densities of HDBs (1, 3, 5, 7)/𝑘𝑚 (see Figure 4b). We
fixed the length of the road and the traffic density as 3𝑘𝑚 and 80
respectively. Naturally, the more HDB events happen on the road,
the lower the traffic capacity is. As the HDB density increases, the
delay index of our model rises the slowest and is 4.8%−21.2% lower
than other methods. Thirdly, we study the different lengths of roads
(1 km, 3km, 5km, and 10km), and fixed the traffic density and the
HDB density as 80 and 3 respectively. As shown in Figure 4c, our
method maintains the lowest delay indexes in all lengths of the
road.

Therefore, the three results above prove that our LADDPG can
effectively improve the traffic capacity in a one-lane road. The first
reason is that LADDPG can observe the dynamic changes of the
vehicles ahead, and make moderate decisions, reducing the impact
on the rear vehicles. In addition, the vehicles controlled by our
model can well cope with harsh driving behaviors such as hard
braking and acceleration, to alleviate the chain reaction and avoid
the ‘phantom’ traffic jam.

4.3 Performance on Real-World Data
In this section, we first compare our method with the state-of-the-
art methods on the real-world dataset. Then we evaluate the effect
of the components of attention and LSTM used in our model. Finally,
we analyze the hyper-parameters setting of our spatial-temporal
graph and reward function.
Our Model VS Baselines:We compare our velocity control model
LADDPG against baselines by analyzing their efficiency, comforta-
bility, and safety. Table 4 shows the MTHW (efficiency) and AJerk
(comfortability) of the compared models, while Figure 5 shows their
cumulative distribution functions of the TTC (safety).

In terms of efficiency, we can see that our model has the low-
est mean value of THW, indicating that the autonomous vehicle
controlled by our model can travel fast. For the comfortability of
the autonomous vehicle, our model has the lowest average jerk,
proving that the controlled vehicle can drive smoothly. In terms of
safety, following the previous study [35], if the TTC of the current
vehicle is greater than the predefined threshold (i.e. 1.5), the status
of the vehicle is safe. Figure 5 shows the cumulative distributions
of TTC for different methods on the real-world dataset. We can see
that the probability that TTC is less than the threshold is almost
0%, that is, all the models can ensure the safety of the controlled
vehicles and efficiently avoid collisions.

In short, the above results prove that our vehicles can drive as
smoothly and fast as possible while ensuring safety.
Effect of Attention Mechanism: The attentionmechanisms play
a vital role in capturing the different importance of the vehicles
ahead. To study the effectiveness of the attention, we conduct the
ablation study by comparing the efficiency and comfortability of
L-DDPG, LS-DDPG, and LD-DDPG with our complete model LAD-
DPG. As shown in Table 4, the three models perform worse than the
LADDPG model in terms of MTHW and AJerk. Specifically, after



Table 4: The performance of baselines and ours (LADDPG & variants) on real-world dataset

Baselines Ours
Metrics

DDPG DNN MPC-ACC HUMAN LADDPG L-DDPG LV-DDPG LD-DDPG A-DDPG

MTHW 1.63 1.65 1.79 1.58 1.29 1.32 1.34 1.31 1.31
AJerk 1.34 3.31 1.02 3.02 0.81 0.92 0.88 0.91 1.07
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Figure 6: The heatmap of attention weights

deleting both VR-Att and DR-Att (i.e. L-DDPG) in the LADDPG,
the MTHW increased by 2.2%, while the AJerk increased by 11.9%.
After deleting the VR-Att (LD-DDPG), the MTHW and AJerk are
increased by 1.6% and 12.3% respectively. After deleting the DR-Att
(LV-DDPG), the MTHW and AJerk are increased by 3.9% and 8.6%
respectively. Therefore, we prove that multi-global attention can
efficiently learn the features of relative distance and velocity in the
spatial-temporal graph.

To analyze the interpretability of the attention components, we
visualize the importance scores outputted by VR-Att and DR-Att
with respect to the spatial-temporal graph in Figure 6. In Figure 6,
the 𝑥 axes denote the relative velocity and distance between the
adjacent vehicles, and the 𝑦 axes denote the historical time steps.
According to the heat map, the model learns to focus on a nearest ve-
hicle (𝐶1) ahead of the autonomous vehicle(𝐶0), because the nearest
vehicle will directly affect the autonomous vehicle, which deserves
the higher weight. In contrast, the model assign the smaller weights
for the vehicles further ahead, which is similar to human driving
habits. The heat map proves that our VR-Att and DR-Att can adap-
tively focus on the important vehicles in front of the autonomous
vehicle.
Effect of LSTM: The LSTM component is used to propagate the dy-
namic changes of We conduct the ablation study by comparing the
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efficiency and comfortability of A-DDPG with our complete LAD-
DPG (see Table 4). Without the LSTM, we can see that the MTHW
increases 1.5% while Ajerk increase 32.1%, which can demonstrate
the effectiveness of the LSTM.
Effect of _ Time Steps and𝑚 Vehicles Ahead: In our study, the
spatial-temporal graph is scalable, according to the number of vehi-
cles ahead (𝑚) and the length of historical time steps (_). Following
the previous work [15, 28], we consider three vehicles ahead of the
autonomous vehicle (i.e.𝑚 is set to 3). For the historical time steps,
we study the effectiveness of the model with different _. As shown
in Figure 7, when _ equals to 3, both the MTHW and AJerk are
lowest. Thus, _ = 3 is taken as the default.

5 CONCLUSION
This work takes the first step to solve the notorious ‘phantom’ traf-
fic jam problem through velocity control. Promising experimental
results on real-world dataset have demonstrated the effectiveness
of our method and its usefulness in real-world applications. We
believe this work will draw more attention from the autonomous
driving community to design more sophisticated methods and real-
world applications specifically targeting this problem. As a future
work, we will improve the practicality of this work by extending
our method to support multi-lane situations. Specifically, multi-lane
‘phantom’ traffic jams, caused by other HDB like sudden change of
lane, are more common than one-lane cases. Our method (spatial-
temporal graph + attention + LSTM) naturally has power the pro-
cess and predict the behavior of vehicles in multi-lane traffics.
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