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ABSTRACT
Recent years have witnessed a revolution in Spatial Crowdsourc-

ing (SC), in which people with mobile connectivity can perform

spatio-temporal tasks that involve travel to specified locations. In

this paper, we identify and study in depth a new multi-center-based

task allocation problem in the context of SC, where multiple al-

location centers exist. In particular, we aim to maximize the total

number of the allocated tasks while minimizing the average allo-

cated task number difference. To solve the problem, we propose

a two-phase framework, called Task Allocation with Geographic

Partition, consisting of a geographic partition phase and a task allo-

cation phase. The first phase is to divide the whole study area based

on the allocation centers by using both a basic Voronoi diagram-

based algorithm and an adaptive weighted Voronoi diagram-based

algorithm. In the allocation phase, we utilize a Reinforcement Learn-

ing method to achieve the task allocation, where a graph neural

network with the attention mechanism is used to learn the embed-

dings of allocation centers, delivery points, and workers. Extensive

experiments give insight into the effectiveness and efficiency of the

proposed solutions.

CCS CONCEPTS
• Networks→ Location based services; • Human-centered com-
puting→ Empirical studies in collaborative and social com-
puting.
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geographic partition, task allocation, spatial crowdsourcing, rein-
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1 INTRODUCTION
The development of GPS-enabled smart devices and communication

technologies flourishes themarket of Spatial Crowdsourcing (SC) [4,

5, 8–10, 12, 22, 27, 32, 33, 40–42], where task requesters can issue

spatial tasks to an SC server, and the server employs smart device

carriers as workers to physically travel to the specified locations

and accomplish these spatial tasks.

Most of the existing studies focus on task allocation based on

the whole study area [1, 11, 21, 23, 24, 30, 31, 35–37, 39, 44–47].

For example, Abdullah et al. [1] propose an efficient framework to

select optimal workers for each task with various specification by

using a Bayesian Network in a spatial region. Wang et al. [35] study

a worker incentive model combined with both a genetic algorithm

and an ant colony optimization algorithm to maximize the task

completion quality while minimizing the incentive budget in the

whole area. An implicit assumption shared by this work is that a

worker can physically move to any place to perform tasks as long as

the reachable constraint is not violated.While this is indeed realistic

for many applications, we also observe some other scenarios where

many allocation centers (aiming to allocate the tasks to their work-

ers in their responsible areas) exist, and each worker has to work

for a particular spatial region. For example, some chain supermar-

kets and fresh food markets (e.g., Carrefour and Hema Xiansheng)

provide delivery services in a city, where each worker works for

a particular allocation center (e.g., a particular supermarket or a

particular fresh food market) and its corresponding responsible

area. Under normal circumstances, there are many chain stores in

a city, and each store only distributes deliveries within a certain

geographic area.

In this paper, we investigate the task allocation of spatial crowd-

sourcing under such a problem setting, namely Multi-Center-based

Task Allocation (MCTA). Specifically, given a set of allocation cen-

ters, a set of workers, a set of delivery points each with several

tasks, it aims at finding an optimal allocation of tasks to workers to

maximize the total number of allocated tasks while minimizing the

allocated task number difference among workers, where the whole

area is divided based on the distributions of allocation centers and

delivery points. Few studies explore task allocation with multiple al-

location centers. Recently, Zhao et al. [43] propose a fairness-aware

task allocation framework, which also studies a multi-center-based

https://doi.org/10.1145/3459637.3482300
https://doi.org/10.1145/3459637.3482300
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Figure 1: Running example

task allocation problem. However, it differs from our work in terms

of problem setting and objectives. First, it assumes that each alloca-

tion center has fixed delivery points, while in our work, the delivery

points are adaptively associated with allocated centers based on

the dynamic tasks. Second, the goal of the study [43] is to minimize

the payoff difference among workers while maximizing the average

worker payoff, whereas our primary goal is to maximize the total

number of allocated tasks, and the secondary goal is to minimize

the average allocated task number difference.

We show the MCTA problem through a motivation example in

Figure 1, that shows two allocation centers (e.g., 𝑐1 and 𝑐2, located

at (3, 3) and (7, 7), respectively), three workers (e.g., {𝑤1,𝑤2,𝑤3}),
and four delivery points (e.g., {𝑝1, 𝑝2, 𝑝3, 𝑝4}). Each delivery point

𝑝 is associated with a set of tasks 𝑝.𝑆 (the deliveries sent to the

location of 𝑝), e.g., 𝑝3 has two tasks. For simplicity, we just use the

index to denote tasks, e.g., 𝑆 = {1, 2, ..., 6}. Further, tasks expire
after a certain time, and the earliest expiration time 𝑒 among the

tasks in a delivery point is recorded (e.g., the earliest expiration

time of 𝑝3 .𝑆 is 7). The MCTA problem is to allocate tasks to workers

so as to maximize the total number of allocated tasks while mini-

mizing the average allocated task number difference. For simplicity,

we assume that each worker has the same speed (1). Next, each

worker has to move to the allocation center to receive a task (e.g.,

a package to be delivered) and must then travel to an allocated

delivery point to complete the task (perform the delivery). When

adopting a basic Voronoi Diagram-based Algorithm (VDA), we can

obtain a geographic partition, {(𝑐1, {𝑝1}), (𝑐2, {𝑝2, 𝑝3, 𝑝4})}, based
on which we can get a task allocation {(𝑤2, {𝑝1}), (𝑤3, {𝑝2, 𝑝3})}
by applying our method (see Section 4.2), where the total number

of allocated tasks is 4 and the average allocated task number differ-

ence is 2. However, this algorithm leaves tasks in delivery point 𝑝4
unallocated.

To solve the MCTA problem, we propose a novel spatial crowd-

sourcing framework, namely Task Allocation with Geographic Par-

tition (TAGP) which consists of a geographic partition phase and a

task allocation phase. The first phase aims to partition the whole

study area based on the allocation centers. More specifically, a

Voronoi Diagram (VD) technique [18] is used to divide the delivery

points based on the spatial distance between the delivery points

and the allocation centers. We further design an Adaptive Weighted

Voronoi Diagram-based Algorithm (AWVDA) to divide the delivery

points adaptively by considering both the spatial distance and the

dynamics of tasks. In the allocation part, we utilize a Reinforce-

ment Learning (RL) method to achieve the task allocation, where

a graph neural network with the attention mechanism is used to

learn the graph embedding [34]. We utilize a samples batch approxi-

mation strategy to speed up the convergence, and integrate the total

number of allocated tasks and the average allocated task number dif-

ference into the reward to achieve the learning process. In Figure 1,

we can get the geographic partition, {(𝑐1, {𝑝1, 𝑝4}), (𝑐2, {𝑝2, 𝑝3})},
by applying the proposed AWVDA, and achieve a task allocation,

{(𝑤1, {𝑝1}), (𝑤2, {𝑝4}), (𝑤3, {𝑝2, 𝑝3})} with the total number of 6

and a comparable average difference of 1.33.

The contributions of this paper can be summarized as follows:

1) We formulate a novel task allocation problem in SC, namely

Multi-Center-based Task Allocation (MCTA), which aims to max-

imize the total number of allocated tasks while minimizing the

average allocated task number difference among workers.

2) A basic Voronoi Diagram-based Algorithm (VDA) and an

Adaptive Weighted Voronoi Diagram-based Algorithm (AWVDA)

are developed to efficiently and effectively divide the whole area

based on allocation centers.

3) We allocate tasks by a Reinforcement Learning (RL) method

for each divided area, where the graph neural network and attention

mechanism techniques are used.

4) Extensive experiments are conducted with real and synthetic

data, where the empirical results confirm that our solutions are

effective and efficient in allocating spatial tasks.

The remainder of this paper is organized as follows. Section 2

introduces the related work and Section 3 provides notations and

the proposed problem. In Section 4, we design different strategies

for geographic partition, and propose a RL-based task allocation

algorithm, followed by the experimental results in Section 5. Finally,

we conclude the paper in Section 6.

2 RELATEDWORK
Research on Spatial Crowdsourcing (SC) has gained substantial

attention in recent years; consequently, many task allocation tech-

niques have been proposed for different application scenarios. A

Multi-Objective task allocation method has also been considered

in [2, 25]. For instance, Zhang et al. [2]main researchmulti-objective

optimization in SC, using the Multi-Objective particle swarm opti-

mization algorithm and the sorting strategy algorithm to find the

optimal solution based on the conflict of goals.

Geo-information is extremely important in the field of SC and is

a necessary condition for workers to allocate tasks in the spatial

dimension. As the task allocation problem is NP-hard in its general

form [7, 14], it is easier to obtain an accurate solution by dividing a

complex spatial problem into multiple subproblems based on geo-

graphical information. However, most of these studies ignored the

temporal information of workers and tasks, and thus do not apply

readily to an SC application. Niu et al. [28] propose a pricing model

based on the distance information and the number of workers, but

the expiration time of tasks is not considered. Recently, Rohith et

al. [15] applied Reinforcement Learning method to achieve task

allocation. It differs from our work in terms of the task definition,

the problem settings, and the objectives. First, they define the pri-

ority of tasks, so workers prefer to complete high-priority tasks
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and regardless of the cost. In contrast, we set the same priority for

each task, which provides a more balance task allocation model.

Second, while Rohith et al. [15] partition graph into grids and set

8 directions for each worker to sure her path. We utilize a graph

neural network to learn the graph embedding, and use the attention

mechanism to calculate the worker’s importance to each delivery

point. Third, Rohith et al. [15] aims to achieve the minimum average

travel distance by completing all tasks, while we aim to maximize

the completed task number and minimize the completed task differ-

ence among workers to achieve fairer and more task allocation. In

particular, we design an adaptive geographic partition algorithm to

find an optimal allocation method that can also bring a satisfying

average task number for each worker.

3 PROBLEM DEFINITION
We proceed to present necessary preliminaries and then give the

problem statement. Table 1 lists the major notations used through-

out the paper.

Table 1: Summary of Notations
Notation Definition

𝑐 Allocation center

𝑐.𝑙 Location of allocation center 𝑐

𝑐.𝑃 The set of delivery points of allocation center 𝑐

𝑐.𝑆 The set of tasks of allocation center 𝑐

𝑐.𝑊 The set of workers of allocation center 𝑐

𝐶 Allocation center set

𝑝 Delivery point

𝑝.𝑙 Location of delivery point 𝑝

𝑝.𝑆 The set of tasks of delivery point 𝑝

𝑃 Delivery point set

𝑠 Spatial task

𝑠.𝑝 The delivery point of spatial task 𝑠

𝑠.𝑒 Expiration time of spatial task 𝑠

𝑆 Spatial task set

𝑤 Worker

𝑤.𝑙 Current location of worker 𝑤

𝑤.𝑐 Center of worker 𝑤

𝑊 Worker set

𝑃𝑤 A delivery point set of 𝑤

𝑅 A delivery point sequence

𝑡 (𝑙) The arrival time of particular location 𝑙

𝑡now The current time

tc (𝑎,𝑏) Travel time from 𝑎 to 𝑏

VPS (𝑤) A valid delivery point set for 𝑤

𝐴 A spatial task allocation

𝐴.𝑆 Allocated task set of workers

|𝐴.𝑆 | Total number of allocated tasks

|𝐴.𝑆dif | Average allocated task number difference

A A spatial task allocation set

Definition 1 (Allocation Center). An allocation center, de-
noted by 𝑐 = (𝑙, 𝑃, 𝑆,𝑊 ), has a location 𝑐.𝑙 , a set of delivery points
𝑐.𝑃 , a set of tasks 𝑐.𝑆 to be allocated, and a set of workers 𝑐.𝑊 .

Definition 2 (Delivery Point). A delivery point, denoted by
𝑝 = (𝑙, 𝑆), contains a location 𝑝.𝑙 , and a set of tasks 𝑝.𝑆 that are
deliveries from an allocation center 𝑐 (that 𝑝 belongs to) to delivery
point 𝑝 . It means that 𝑐.𝑆 = ∪𝑝∈𝑐.𝑃𝑝.𝑆 .

Definition 3 (Spatial Task). A spatial task, denoted by 𝑠 =

(𝑝, 𝑒), consists of a delivery point 𝑠 .𝑝 (at which task 𝑠 is to be delivered),
and a task expiration time 𝑠 .𝑒 .

With spatial crowdsourcing, a spatial task 𝑠 can be finished only

if the worker is physically located at its location (i.e., the location

of its delivery point 𝑠 .𝑝). Moreover, a task 𝑠 can be completed only

if the worker arrives at 𝑠 .𝑝 before its expiration time 𝑠 .𝑒 . Note that

with the single-task allocation mode [19], the server should allocate

each spatial task to a worker at a time. For simplicity and without

loss of generality, we assume that the processing time of each task

is zero, which means that a worker will go to the location of the

next task upon finishing the current task.

Definition 4 (Worker). A worker, denoted as𝑤 = (𝑙, 𝑐), is able
to perform spatial tasks. A worker can be in either online or offline
mode. A worker is online when the worker is ready to accept tasks
and offline when unavailable to perform tasks. An online worker𝑤 is
associated with a current location𝑤.𝑙 , and an allocation center𝑤.𝑐
the worker is going to work for.

We assume that a worker can only work for a single allocation

center, which is reasonable in practice. In this work, we assume

that all the tasks are micro tasks (e.g., deliveries) and have the same

reward. The server will consider all the available tasks and workers

at a particular time instance, and it returns a sequence of delivery

points (each with a set of spatial tasks) for each worker to visit

in order to complete the spatial tasks while the spatio-temporal

constraints are not violated. Once a delivery point sequence is allo-

cated to a worker, the worker will go to the allocation center to take

the deliveries (i.e., spatial tasks) and then go to the corresponding

delivery points. The worker is offline until the allocated tasks are

completed.

Figure 1 depicts two allocation centers that three workers work

for, and four delivery points, each of which has several associated

tasks. For example, workers 𝑤1 and 𝑤2 work for 𝑐1, and delivery

point 𝑝3 has two tasks, i.e., 𝑠3 and 𝑠4.

Definition 5 (Delivery Point Seqence). Given an online
worker𝑤 and a set of allocated delivery points 𝑃𝑤 , a delivery point
sequence on 𝑃𝑤 , denoted by 𝑅(𝑃𝑤), represents the order in which𝑤
visits the delivery points in 𝑃𝑤 . The arrival time of𝑤 at delivery point
𝑝𝑖 ∈ 𝑃𝑤 (the time of completing tasks related to 𝑝𝑖 ) can be computed
as follows:

𝑡w,R (𝑝𝑖 .𝑙) =
{
𝑡now + 𝑡𝑐 (𝑤.𝑙, 𝑐.𝑙) + 𝑡𝑐 (𝑐.𝑙, 𝑝𝑖 .𝑙) if 𝑖 = 1

𝑡w,R (𝑝𝑖−1 .𝑙) + tc (𝑝𝑖−1 .𝑙, 𝑝𝑖 .𝑙) if 𝑖 > 1
(1)

where 𝑡now is the current time, 𝑡𝑐 (𝑎, 𝑏) is the travel time from
location 𝑎 to location 𝑏. When the context of𝑤 and 𝑅 is clear, we use
𝑡 (𝑝𝑖 .𝑙) to denote 𝑡𝑤,𝑅 (𝑝𝑖 .𝑙).

In Figure 1, worker 𝑤3 can follow a delivery point sequence

(𝑝3, 𝑝2) and finish 3 tasks, since the times when𝑤3 arrives at these

tasks are less than their expiration times.

For the sake of simplicity, we assume all workers share the same

velocity, so the travel time between two locations can be estimated

with their spatial distance. However, our proposed algorithms are

not dependent on this assumption and can handle the case where

the workers are moving at different speeds.

Definition 6 (Valid Delivery Point Set). A delivery point set
𝑃𝑤 is called a valid delivery point set (VPS) for a worker𝑤 , denoted
as VPS(w), if a delivery point sequence 𝑅(𝑃𝑤) exists, such that all
the tasks located in 𝑝 ∈ 𝑃𝑤 can be completed before their expiration
times, i.e., ∀𝑠 ∈ 𝑝.𝑆,∀𝑝 ∈ 𝑃𝑤 (𝑡 (𝑝.𝑙) ≤ 𝑠 .𝑒).
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It is worth noting that more than one delivery point sequences

may exist for a given VPS. Among these, we consider only the one

with the minimal travel time for each VPS. In Figure 1, {𝑝2, 𝑝3} is
a VPS for worker 𝑤3, and (𝑝2, 𝑝3) and (𝑝3, 𝑝2) are delivery point

sequences. However, we only consider (𝑝3, 𝑝2) since it has the

lowest travel time.

Definition 7 (Spatial Task Allocation). Given a set of alloca-
tion centers, a set of workers, and a set of delivery points, each with a
set of tasks, a spatial task allocation, denoted by 𝐴, consists of a set of
(worker,VPS) pairs in the form of (𝑤1,VPS(𝑤1)), (𝑤2,VPS(𝑤2)),...,
(𝑤 |𝑊 |,VPS(𝑤 |𝑊 |)), where VPS(𝑤𝑖 ) ∩ VPS(𝑤 𝑗 ) = ∅, 1 ≤ 𝑖 ≠ 𝑗 ≤
|𝑊 |, and𝑊 denotes the worker set.

Let 𝐴.𝑆 denote the set of tasks that are allocated to workers,

|𝐴.𝑆 | denote the total number of allocated tasks, and |𝐴.𝑆dif | denote
the average allocated task number difference between all workers,

which reflects the allocation unfairness among workers to some

extent and is calculated in Equation 2:

|𝐴.𝑆dif | =
∑

𝑤𝑖 ∈𝑊,𝑤𝑗 ∈𝑊,𝑤𝑖≠𝑤𝑗
| |VPS (𝑤𝑖 ) | − |VPS (𝑤𝑗 ) | |

|𝑊 | ( |𝑊 | − 1) (2)

The problem investigated in our paper can be formally stated as

follows.

Problem Statement. Given a set of allocation centers, a set of

delivery points, a set of workers, and a set of tasks at the current

time instance on an SC platform, our problem aims to find a task

allocation 𝐴opt that achieves the following goals:

1) primary optimization goal: maximize the total number of

allocated tasks, i.e., ∀ 𝐴𝑖 ∈ A ( |𝐴opt .𝑆 | ≥ |𝐴𝑖 .𝑆 |), where A denotes

all possible allocations; and

2) secondary optimization goal: minimize the average allocated

task number difference, i.e., ∀𝐴𝑖 ∈ A ( |𝐴opt .𝑆dif | ≤ |𝐴𝑖 .𝑆dif |).
Our problem is NP-hard, which can be proved by reducing from

the 0-1 knapsack problem in the similar way with [43].

4 ALGORITHM
In this paper, we propose a novel spatial crowdsourcing frame-

work comprising of two components: geographic partition and task

allocation.

The first component aims to divide the whole area into |𝐶 | re-
gions based on the allocation centers, where |𝐶 | denotes the number

of allocation centers. More specifically, we utilize a basic Voronoi

Diagram-based Algorithm (VDA) to realize the partition of the

delivery set according to the spatial distances between delivery

points and allocation centers. Further, considering the dynamic

tasks, we devise an Adaptive Weighted Voronoi Diagram-based

Algorithm (AWVDA) that not only takes the distances between

delivery points and allocation centers into account, but also utilizes

the current number of tasks and workers to divide the delivery

points adaptively.

The second component needs to allocate the tasks to the suitable

workers by scheduling a task sequence for each worker in each

allocation center to achieve the maximal task allocation while mini-

mizing the average allocated task reward difference. We first utilize

the compositional message-passing neural network (CMPNN) and

the attention mechanism to obtain embeddings of allocation cen-

ters, delivery points and workers, and then use a Reinforcement

Learning (RL) method to achieve task allocation by maximizing the

expected reward of the allocation.

4.1 Geographic Partition
In this section, wemainly present two algorithms to achieve the geo-

graphic partition, i.e., Voronoi Diagram-based Algorithm (VDA) and

Adaptive Weighted Voronoi Diagram-based Algorithm (AWVDA).

4.1.1 Voronoi Diagram-based Algorithm (VDA). Voronoi diagram
(VD), also known as Thiessen polygon or Dirichlet diagram, is com-

posed of a set of polygons, where each polygon has a generator, and

the boundary of two adjacent generators is their vertical bisector.

VD has the following characteristics:

1) there is only one generator in each polygon;

2) for each point in a polygon, the distance between it and its

corresponding generator is shorter than the distances between it

and other generators;

3) for each point on a polygon’s boundary, the distances between

it and the generators sharing the boundary are the same.

In VDA, we regard the allocation centers as the generators and

use spatial distance as the basis for achieving geographic partition,

i.e., dividing the delivery points based on the spatial distances

between them and the allocation centers. We elaborate the details

of the VDA procedure in Algorithm 1. It takes an allocation center

set 𝐶 , and a delivery point set 𝑃 as input, and outputs the delivery

point sets for all the allocation centers (i.e.,𝐶.𝑃 ). For each allocation

center 𝑐𝑖 ∈ 𝐶 , we select the delivery points belonging to it by

comparing the spatial distances between the delivery points and

the allocation centers (lines 2-7). To be specific, a delivery point

𝑝 is added into the delivery point set of the current allocation

center 𝑐𝑖 when the distance between 𝑝 and 𝑐𝑖 is not larger than the

distances between 𝑝 and other allocation centers, i.e., ∀𝑐 𝑗 ∈ 𝐶−{𝑐𝑖 }
(𝑑 (𝑝, 𝑐𝑖 ) ≤ 𝑑 (𝑝, 𝑐 𝑗 )) (lines 6-7). After adding into the delivery point
set of 𝑐𝑖 , the delivery point 𝑝 is removed from 𝑃 (line 8), which

guarantees that the delivery points located in the boundary of

the VD can only be allocated once. Then 𝐶.𝑃 and 𝐶 are updated

accordingly (lines 9-10). Finally, we find the delivery point set for

each allocation center (line 11). According to the characteristics of

VD, we can guarantee that each polygon (i.e., region) has only one

allocation center, and each delivery point is located in a polygon.

Taking Figure 1 as an example, VDA can obtain a geographic par-

tition, {(𝑐1, {𝑝1}), (𝑐2, {𝑝2, 𝑝3, 𝑝4})}, based on which we can get a

task allocation {(𝑤2, {𝑝1}), (𝑤3, {𝑝2, 𝑝3})} by applying our method

(see Section 4.2).

4.1.2 AdaptiveWeighted Voronoi Diagram-based Algorithm (AWVDA).
Although VDA is effective in the process of geographic partition,

it does not take the dynamics of tasks and workers into account,

which may result in a worker-task imbalance, e.g., a large number

of tasks are allocated to a small number of workers in a Voronoi

polygon.

To solve this issue, we propose an Adaptive Weighted Voronoi

Diagram-based Algorithm (AWVDA), where we utilize the adaptive

distance (that considers the numbers of the current workers and

tasks) instead of the spatial distance. For an allocation center 𝑐𝑖 ,

the adaptive distance between it and a delivery point 𝑝 can be
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Algorithm 1: VDA
Input:𝐶, 𝑃
Output:𝐶.𝑃

1 𝐶.𝑃 ← ∅;
2 for each allocation center 𝑐𝑖 ∈ 𝐶 do
3 𝑐𝑖 .𝑃 ← ∅;
4 for each delivery point 𝑝 ∈ 𝑃 do
5 for each 𝑐 𝑗 ∈ 𝐶 − {𝑐𝑖 } do
6 if 𝑑 (𝑝, 𝑐𝑖 ) ≤ 𝑑 (𝑝, 𝑐 𝑗 ) then
7 𝑐𝑖 .𝑃 ← 𝑐𝑖 .𝑃 ∪ 𝑝 ;
8 𝑃 ← 𝑃 − 𝑝 ;

9 𝐶.𝑃 ← 𝐶.𝑃 ∪ 𝑐𝑖 .𝑃 ;
10 𝐶 ← 𝐶 − 𝑐𝑖 ;

11 return𝐶.𝑃 ;

calculated in Equation 3.

ad (𝑝, 𝑐𝑖 ) = aw𝑖 · 𝑑 (𝑝, 𝑐𝑖 ) (3)

aw𝑖 =
|𝑐𝑖 .𝑆 |
|𝑐𝑖 .𝑊 | + 1

(4)

where ad (𝑝, 𝑐𝑖 ) denotes the adaptive distance between 𝑝 and 𝑐𝑖 ,

aw𝑖 denotes an adaptive weight for 𝑐𝑖 that can be computed in

Equation 4, and 𝑑 (𝑝, 𝑐𝑖 ) is the spatial distance between 𝑝 and 𝑐𝑖 .

Next, |𝑐𝑖 .𝑆 | is the number of tasks associated with 𝑐𝑖 , and |𝑐𝑖 .𝑊 | is
the number of workers associated with 𝑐𝑖 . Similar with VDA, in

AWVDA, each delivery point in 𝑐𝑖 .𝑃 has a shorter adaptive distance

from 𝑐𝑖 than from other allocation centers, i.e., 𝑐𝑖 .𝑃 = {𝑝 |ad (𝑝, 𝑐𝑖 ) ≤
ad (𝑝, 𝑐 𝑗 ), 𝑐 𝑗 ∈ 𝐶− {𝑐𝑖 }}.

Algorithm 2 illustrates the process of AWVDA. Given a set of

allocation centers 𝐶 , a set of delivery points 𝑃 , a set of workers𝑊 ,

and a set of tasks 𝑆 , AWVDA divides all the delivery points into |𝐶 |
subsets based on the allocation centers with a similar process of

Algorithm 1. The main difference between the two algorithms is

that Algorithm 2 sets an iteration ℎ to adjust the partition contin-

uously (line 2) and computes the adaptive distance that considers

the numbers of the current workers and tasks (line 8), and adding

the delivery point 𝑝 into the delivery point set of 𝑐𝑖 based on the

adaptive distance (line 10).

Applying AWVDA in the running example in Figure 1, we can

get a geographic partition, i.e., {(𝑐1, {𝑝1, 𝑝4}), (𝑐2, {𝑝2, 𝑝3})}. Ap-
plying our task allocation method in Section 4.2, a task allocation

{(𝑤1, {𝑝1}), (𝑤2, {𝑝4}), (𝑤3, {𝑝2, 𝑝3})} with the total number of al-

located tasks of 6 is obtained.

4.2 Task Allocation
After getting the geographic partition, we decompose the Multi-

Center-based Task Allocation (MCTA) problem into |𝐶 | single
center-based sub-problems, where |𝐶 | denotes the number of allo-

cation centers. Each sub-problem can be transformed into a special

multiple traveling salesman problem, where each salesman needs

to arrive at cities before their expiration times. Then we give a

Reinforcement Learning (RL) method by learning the embeddings

of allocation centers, delivery points, and workers to solve each

sub-problem to achieve a satisfying task allocation.

4.2.1 Allocation Center and Delivery Point Embeddings. According
to the geographic partition, we can divide the whole area into |𝐶 |
parts each with an allocation center 𝑐 . Each part can be regarded

as a graph 𝑔𝑐 = (𝑉𝑐 , 𝐸𝑐 ), where 𝑉𝑐 is a vertex set containing an

Algorithm 2: AWVDA

Input:𝐶, 𝑃,𝑊 , 𝑆

Output:𝐶.𝑃
1 𝐶.𝑃 ← ∅;
2 ℎ ← 1;

3 repeat
4 for each allocation center 𝑐𝑖 ∈ 𝐶 do
5 𝑐𝑖 .𝑃 ← ∅;
6 for each delivery point 𝑝 ∈ 𝑃 do
7 for each 𝑐 𝑗 ∈ 𝐶 − {𝑐𝑖 } do
8 Compute 𝑎𝑑 (𝑝, 𝑐𝑖 ) and 𝑎𝑑 (𝑝, 𝑐 𝑗 ) based on

Equation 3;

9 if 𝑎𝑑 (𝑝, 𝑐𝑖 ) ≤ 𝑎𝑑 (𝑝, 𝑐 𝑗 ) then
10 𝑐𝑖 .𝑃 ← 𝑐𝑖 .𝑃 ∪ 𝑝 ;
11 𝑃 ← 𝑃 − 𝑝 ;

12 𝐶.𝑃 ← 𝐶.𝑃 ∪ 𝑐𝑖 .𝑃 ;
13 𝐶 ← 𝐶 − 𝑐𝑖 ;

14 ℎ = ℎ + 1
15 until 𝑐.𝑃ℎ = 𝑐.𝑃ℎ−1;

16 return 𝑐.𝑃 ;

allocation center 𝑐 and its delivery points 𝑐.𝑃 , i.e.,𝑉𝑐 = {𝑐, 𝑐 .𝑃}, and
𝐸𝑐 is a set of edges connecting any two vertices in 𝑉𝑐 . Besides, we

define 𝑐 as the first vertex in 𝑉𝑐 .

Inspired by the success of the Compositional Message-passing

Neural Network (CMPNN) [38] (a modified version of the Message

Passing Neural Network (MPNN) [16]) for computing the feature

embedding for each vertex efficiently, we employ CMPNN to learn

the vertex embeddings (i.e., the allocation center and delivery point

embeddings) of the graph. CMPNN enables the connected neighbor-

ing vertices to have more similar embeddings by message passing,

which is the same as their spatial representation.

Specifically, in 𝑔𝑐 , each vertex 𝑣𝑖 in 𝑉𝑐 has a two-dimensional

coordinate as its input feature vector, denoted by 𝑓 0
𝑖
. Therefore, the

input feature dimension is set to 2, i.e., 𝑑𝑖𝑛 = 2. We set 𝑚 types

for each edge, the edge edij of vertices 𝑣𝑖 and 𝑣 𝑗 is associated with

a one-hot feature vector, and the edge feature dimension 𝑑ed is

set to𝑚. In order to pass message, CMPNN aggregates neighbor

information of each vertex. In the following, we define the neighbor

set for a vertex.

Definition 8 (Neighbor Set). Given an undirected graph 𝐺 =

(𝑉 , 𝐸) composed of a vertex set𝑉 and an edge set 𝐸. For each vertex 𝑣𝑖
in 𝑉 , we set the 𝑧 closest neighbor vertices as its neighbor set 𝑁𝑒 (𝑣𝑖 ),
satisfying the following properties:

1) |Ne(𝑣𝑖 ) | = 𝑧, and
2) ∀𝑣 𝑗 ∈ Ne(𝑣𝑖 ), 𝑣𝑝 ∈ 𝑉 − Ne(𝑣𝑖 ) (𝑑 (𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝑑 (𝑣𝑖 , 𝑣𝑝 )).

Like Convolutional Neural Network (CNN), CMPNN also designs

a shift invariant global kernel k ∈ R𝑑ed×𝑑in×𝑑out , where 𝑑out is the
output feature dimension. Based on the graph structure information

and the neighbor set Ne(𝑣𝑖 ), the 𝑣𝑖 ’s new feature in the 𝑛 + 1th
iteration (𝑛 is a positive integer) 𝑓 𝑛+1

𝑖
, can be formulated as:

𝑓 𝑛+1𝑖 = Agg
𝑣𝑗 ∈Ne (𝑣𝑖 )

edijk𝑓 𝑛𝑗 (5)
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where Agg is an aggregation operator. However, due to the com-

plexity of the graph, it is difficult to clarify the types of the edges.

As a result, CMPNN uses a neural network ℎed to predict them.

To pass message more effectively, CMPNN utilizes two different

global invariant kernels, i.e., kori and knei , to retain self-information

and aggregate neighbors’ information, respectively. The improved

CMPNN is expressed as follows:

𝑓 𝑛+1𝑖 = Agg
𝑣𝑗 ∈Ne (𝑣𝑖 )

ℎed (edij ) [kori 𝑓 𝑛𝑖 + knei 𝑓 𝑛𝑗 − knei 𝑓 𝑛𝑖 ] (6)

After 𝑁 iterations, each vertex embedding containing informa-

tion from its 𝑁 -hop neighborhoods, i.e., 𝑓 𝑁
𝑖
∈ R𝑑𝑓 , is obtained,

where 𝑑𝑓 is the dimension of vertex embedding. In the experiment

part, we set 𝑁 to 2. For simplicity, we use 𝑓𝑖 to denote 𝑓 𝑁
𝑖

.

4.2.2 Worker Embeddings. To obtain each worker embedding, we

consider the graph contextual embedding and leverage an atten-

tion mechanism [29] to get attention coefficients, which reflect the

importance of delivery point embeddings in constructing worker

embeddings.

The embeddings of allocation centers and delivery points in the

previous step have encoded the structure information of the graph.

For graph 𝑔𝑐 , its embedding 𝑓𝑔𝑐 is computed by the max pooling

from its vertex embeddings. It can be formally defined as 𝑓𝑔𝑐 =

max{𝑓1, 𝑓2, ..., 𝑓 |𝑉𝑐 |}, where 𝑓𝑔𝑐 ∈ R
𝑑𝑓

. In our problem, each worker

𝑤 must reach the allocation center 𝑤.𝑐 (that the worker works

for) first to get (delivery) tasks, and then go to the corresponding

delivery points to complete tasks. So it is of vital importance for

workers to know the information of their allocation centers. Since

we set the allocation center as the first vertex in 𝑔𝑐 , the graph

contextual embedding 𝑓𝑐𝑔𝑐 ∈ R
2𝑑𝑓

(2𝑑𝑓 is the dimension of the

feature) is expressed as follows:

𝑓𝑐𝑔𝑐 = [𝑓𝑔𝑐 ; 𝑓1 ] (7)

where [; ] is a concatenation operation. Next, we utilize the notion

of attention mechanism, which can compute the importance of

the delivery point embeddings to the workers. We set query 𝑄𝑤
and key-value pair {𝐾w,vi ,𝑉w,vi } for each worker 𝑤 and delivery

point 𝑣𝑖 . The𝑄𝑤 is computed from the graph contextual embedding

𝑓𝑐𝑔𝑐 and {𝐾w,vi ,𝑉w,vi } comes from 𝑣𝑖 ’s embedding 𝑓𝑖 . The specific

calculation method is as follows:

𝑄𝑤 = 𝜃𝑤 𝑓𝑐𝑔𝑐

𝐾w,vi = 𝜃𝑘𝑒𝑦 𝑓𝑖 𝑣𝑖 ∈ 𝑉𝑐 − 𝑐
𝑉w,vi = 𝜃𝑣𝑎𝑙𝑢𝑒 𝑓𝑖 𝑣𝑖 ∈ 𝑉𝑐 − 𝑐

(8)

where 𝜃𝑤 ∈ R𝑑key×2𝑑𝑓 , 𝜃key ∈ R𝑑key×𝑑𝑓 , and 𝜃value ∈ R𝑑value×𝑑𝑓 are

embedding matrices, and 𝑑key and 𝑑value are the dimensions of key

and value, respectively. For different workers, they own the same

calculation process but different parameters. According to the query

and key, we calculate the attention score A(𝑤, 𝑣𝑖 ) between𝑤 and

𝑣𝑖 :

A(𝑤, 𝑣𝑖 ) =
𝑄𝑇

𝑤𝐾w,vi√
𝑑key

(9)

where 𝑄𝑇𝑤 denotes 𝑄𝑤 for transpose operation. We use a softmax

function to normalize A(𝑤, 𝑣𝑖 ), and obtain the attention weight

W(𝑤, 𝑣𝑖 ) between𝑤 and 𝑣𝑖 :

W(𝑤, 𝑣𝑖 ) =
𝑒A(𝑤,𝑣𝑖 )∑
𝑣𝑗
𝑒
A(𝑤,𝑣𝑗 )

𝑣𝑗 ∈ 𝑉𝑐 − 𝑐 (10)

Finally, according to the attention weights and values, we construct

the worker embedding 𝑓𝑤 in the following:

𝑓𝑤 =
∑
𝑣𝑖

W(𝑤, 𝑣𝑖 )𝑉w,vi 𝑣𝑖 ∈ 𝑉𝑐 − 𝑐 (11)

4.2.3 Reinforcement Learning-based Task Allocation. After getting
the embeddings of allocation centers, delivery points, and work-

ers, we use a policy-based Reinforcement Learning (RL) method

to achieve the task allocation. First, we utilize the attention mech-

anism to calculate the importance of workers to delivery points.

Specifically, for worker𝑤 and delivery point 𝑣𝑖 :

𝑄′𝑤 = 𝜃 ′𝑤 𝑓𝑤 ,

𝐾 ′w,vi = 𝜃
′
key 𝑓𝑖 𝑣𝑖 ∈ 𝑉𝑐 − 𝑐

A′ (w, vi) =
𝑄′𝑇𝑤 𝐾

′
w,vi√

𝑑′key

𝑣𝑖 ∈ 𝑉𝑐 − 𝑐
(12)

where 𝑄 ′𝑤 is new query, 𝐾 ′w,vi is new key, A ′(w, vi) is new atten-

tion score, 𝜃 ′𝑤 ∈ R
𝑑′key×𝑑value

and 𝜃 ′key ∈ R
𝑑′key×𝑑𝑓

are embedding

matrices to project the embeddings back to 𝑑 ′key dimensions, and

𝑑 ′key is the dimension of the new key. For each delivery point 𝑣𝑖 ,

the probability that worker 𝑤 visits 𝑣𝑖 is decided by 𝑤 ’s impor-

tance to 𝑣𝑖 . Therefore, we utilize a softmax function to calculate the

probability value Pw,vi in the following:

Pw,vi =
𝑒A
′(𝑤,𝑣𝑖 )∑

𝑤 𝑒
A′(𝑤,𝑣𝑖 )

𝑤 ∈ 𝑐.𝑊 (13)

In the learning phase, we randomly allocate delivery points

to workers. ORTools solver
1
is an optimization tool developed

by Google. It is used to find the best solution to a problem from

many possible solutions by utilizing meta-heuristics [3]. For each

worker𝑤 in 𝑔𝑐 , we use ORTools to optimize𝑤 ’s point-performing

path and get the (𝑤,VPS(𝑤)) pair. The allocation distribution of

𝑤 is the product of the probability values that 𝑤 visits delivery

points in VPS(𝑤). Therefore, for this overall task allocation 𝐴𝑐 , the

distribution of 𝐴𝑐 can be represented as follows:

𝜋𝜃 (𝐴𝑐 |𝑔𝑐 ) = Π
𝑤
Π
𝑣𝑖

Pw,vi 𝑤 ∈ 𝑐.𝑊 𝑣𝑖 ∈ VPS (𝑤) (14)

In the traditional MTSP problem, it always considers the aver-

age travel distance of the workers [26]. However, in our MCTA

problem, we need to consider the primary optimization goal and

the secondary optimization goal, i.e., the total number of allocated

tasks and the average allocated task number difference. In order

to achieve these goals, we calculate the reward of 𝐴𝑐 , Re(𝐴𝑐 ), in
Equation 15.

Re (𝐴𝑐 ) =
|𝐴𝑐 .𝑆 |

𝐴𝑐 .dis · |𝐴𝑐 .𝑆dif |
(15)

where |𝐴𝑐 .𝑆 | is the total number of allocated tasks associated with

𝑔𝑐 , Ac .dis is the average travel distance associated with 𝑔𝑐 , and

|𝐴𝑐 .𝑆dif | is the average allocated task number difference associated

with 𝑔𝑐 .

To optimize the task allocation, we need to maximize the ex-

pected reward L𝑅𝑐 (𝜃 ):
𝜃 ∗ = argmax L𝑅𝑐 (𝜃 )

L𝑅𝑐 (𝜃 ) = E(𝑔𝑐 )∼𝐷
∑
𝐴𝑐

𝜋𝜃 (𝐴𝑐 |𝑔𝑐 )Re (𝐴𝑐 ) (16)

1
https://developers.google.com/optimization/
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where 𝐷 is the training set. To speed up the convergence, we utilize

a samples batch approximation [17], i.e., we randomly generate

SA task allocations in 𝑔𝑐 . To further decrease the variance while

training, we utilize an advantage function. Specifically, for each

allocation 𝐴sa
𝑐 , its new reward can be represented as follows:

Re′ (𝐴sa
𝑐 ) ≈ Re (𝐴sa

𝑐 ) −
1

SA

SA∑
𝑖=1

Re (𝐴𝑖
𝑐 ) (17)

Finally, we get the new expected reward and optimization func-

tion:

L𝑅𝑐 (𝜃 ) ≈ E(𝑔𝑐 )∼𝐷
SA∑
sa=1

𝜋𝜃 (𝐴sa
𝑐 |𝑔𝑐 )Re′ (𝐴sa

𝑐 ) (18)

▽𝜃 LRc (𝜃 ) ≈ E(𝑔𝑐 )∼𝐷
SA∑
sa=1

(
∑
𝑤

∑
𝑣𝑖

▽𝜃 log Pw,vi )Re
′ (𝐴sa

𝑐 ) 𝑤 ∈ 𝑐.𝑊 𝑣𝑖 ∈ VPS (𝑤)

(19)

where ▽𝜃LRc (𝜃 ) is the partial derivative of the expected reward

on 𝜃 .

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
The experiments are carried out on both real and synthetic datasets,

including a gMission dataset (marked as GM) and a synthetic dataset

(marked as SYN). gMission is an open source SC dataset [6], in

which each task is regarded as a delivery point that has a location,

and each worker is also associated with a location. As gMission

is not associated with allocation centers, we randomly generate

|𝐶 | allocation centers, where |𝐶 | = 5, 10, 15, 20, 25 with a default

value of 5. Each worker is allocated to the closet allocation center

and works for it. For each delivery point, we uniformly generate 𝑛𝑠

tasks, where 𝑛𝑠 is an integer and 𝑛𝑠 ∈ [0, 2 |𝑆 ||𝑊 | ] (to guarantee that
the task number of each delivery point is non-negative). For the

synthetic dataset, we generate the locations of allocation centers,

workers and delivery points following a uniform distribution within

a 2D space [0, 1000]2 based on observations from real datasets (e.g.,

gMission). Other settings are set in the same way with the GM

dataset.

We introduce a Genetic Algorithm (GA) [13] and a Simulated An-

nealing (SA) [20] as baselines to allocate tasks on the divided areas

generated by the Voronoi Diagram-based Algorithm (VDA) or the

Adaptive Weighted Voronoi Diagram-based Algorithm (AWVDA).

GA is a computational model to search for the optimal solution

by simulating the natural evolution process, and SA is a random

optimization algorithm based on the annealing process of solids.

Specifically, we compare the performance of the following algo-

rithms:

1) VDA+GA: VDA is used to achieve the geographic partition,

and GA is used to allocate tasks.

2) VDA+SA: VDA is used to achieve the geographic partition,

and SA is used to allocate tasks.

3) VDA+RL: VDA is used to achieve the geographic partition, and

our Reinforcement Learning (RL) model is used to allocate tasks.

4) AWVDA+GA: AWVDA is used to achieve the geographic

partition, and GA is used to allocate tasks.

5) AWVDA+SA: AWVDA is used to achieve the geographic par-

tition, and SA is used to allocate tasks.

6) AWVDA+RL: AWVDA is used to achieve the geographic par-

tition, and our RL model is used to allocate tasks.

Three main metrics are compared among the above algorithms,

i.e., CPU time, total number of allocated tasks, and average allocated

task number difference (cf. Equation 2), for finding the final task

allocation. Table 2 shows our experimental settings, where the

default values of all parameters are underlined. All the experiments

are implemented on an Intel(R) Xeon(R) CPU E5-2680 v4@ 2.40GHz,

and NVidia GeForce RTX 2080Ti GPU.

Table 2: Experiment Parameters
Parameter Value

Number of delivery points (GM), |𝑃 | 100, 200, 300, 400, 500

Number of delivery points (SYN), |𝑃 | 1K, 2K, 3K, 4K, 5K

Number of workers (GM), |𝑊 | 100, 200, 300, 400, 500

Number of workers (SYN), |𝑊 | 1K, 2K, 3K, 4K, 5K

Number of allocation centers (GM), |𝐶 | 5, 10, 15, 20, 25

Number of allocation centers (SYN), |𝐶 | 50, 100, 150, 200, 250

Number of tasks (GM), |𝑆 | 200, 400, 600, 800, 1000

Number of tasks (SYN), |𝑆 | 2K, 4K, 6K, 8K, 10K

Expiration time of tasks (GM, SYN), 𝑒 0.5h, 1h, 1.5h, 2h, 2.5h

5.2 Experimental Results
Effect of |𝑃 |. To study the scalability of all the methods, we gener-

ate 5 datasets containing 100 to 500 (1000 to 5000) delivery points

by random selection from the GM (SYN). In Figures 2(a) and 3(a),

the CPU time of all methods is on the rise as |𝑃 | increases. More-

over, independently of |𝑃 |, VDA-related methods (i.e., VDA+GA,

VDA+SA, and VDA+RL) always run slower than their counterparts

(i.e., AWVDA-relatedmethods includingAWVDA+GA,AWVDA+SA,

and AWVDA+RL), while they also allocate fewer tasks and have im-

balanced allocations of tasks when compared to their counterparts.

As shown in Figure 2(b) and 3(b), the total number of allocated tasks

of all the methods exhibits a decreasing trend when |𝑃 | grows. All
our proposed methods have similar performance when the number

of delivery points is low, which means that there are not many

benefits gained from the optimizations. However, the benefits of

AWVDA become more obvious when |𝑃 | ≥ 300 (3000). Apparently,
AWVDA+RL achieves the highest total number of allocated tasks

in both GM and SYN. Even when |𝑃 | = 5000 in SYN, AWVDA+RL

can still complete up to 99.9% of all tasks. Another observation is

that, AWVDA-related methods are consistently higher than VDA-

related methods in terms of the total number of allocated tasks,

which demonstrates the superiority of the adaptive weight strategy.

In Figures 2(c) and 3(c), with more delivery points, each delivery

point is more likely to have a more similar number of tasks, and

the result is that workers are allocated a more balanced number of

tasks. RL method can allocate tasks more reasonably by considering

the importance of workers to delivery points, so with more deliv-

ery points, RL-related methods (i.e., VDA+RL and AWVDA+RL)

show the fastest decrease on the average allocated task number

difference and achieve the lowest ones, followed by GA-related

methods (i.e., VDA+GA and AWVDA+GA) and SA-related methods

(i.e., VDA+SA and AWVDA+SA) in both the GM and SYN. When

|𝑃 | ≥ 200(2000), the average allocated task number differences

obtained by the RL-related methods are less than 2.

Effect of |𝑊 |. Next, we study the effect of |𝑊 |, the number

of workers to be allocated. As illustrated in Figures 4(a) and 5(a),

with the varying |𝑊 |, we can see that the CPU time shows an
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Figure 2: Performance of Task Allocation: Effect of |𝑃 | on GM
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Figure 3: Performance of Task Allocation: Effect of |𝑃 | on SYN
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 10

 20

 30

 40

 1000  2000  3000  4000  5000

C
P

U
 T

im
e 

(s
)

Number of Workers

VDA+GA
VDA+SA
VDA+RL

AWVDA+GA
AWVDA+SA
AWVDA+RL

(a) CPU Time

 3000

 4000

 5000

 6000

 7000

1000 2000 3000 4000 5000T
ot

al
 N

um
be

r 
of

 A
llo

ca
te

d 
T

as
ks

Number of Workers

VDA+GA
VDA+SA
VDA+RL

AWVDA+GA
AWVDA+SA
AWVDA+RL

(b) Total Number of Allocated Tasks

 0

 2

 4

 6

 1000  2000  3000  4000  5000

A
ve

ra
ge

 A
llo

ca
te

d 
T

as
k 

N
um

be
r 

D
iff

er
en

ce

Number of Workers

VDA+GA
VDA+SA
VDA+RL

AWVDA+GA
AWVDA+SA
AWVDA+RL

(c) Average Allocated Task Number Difference

Figure 5: Performance of Task Allocation: Effect of |𝑊 | on SYN

upward trend, since more workers means more allocations. Al-

though AWVDA-related methods are more time-consuming than

VDA-related methods, the computing efficiency of AWVDA-related

methods is acceptable. As shown in Figures 4(b) and 5(b), RL-related

methods generate the highest number of completed tasks followed

by GA-related methods and SA-related methods. More specifically,

in SYN, when |𝑊 | = 1000, the RL-related methods allocate almost

all tasks. They even allocate 20% more tasks than the GA-related

methods. In Figures 4(c) and 5(c), with the increase of |𝑊 |, the
average allocated task number differences of all methods gradu-

ally decrease. RL-related methods have the smallest ones in two

datasets, which proves the effectiveness of our RL-based task alloca-

tion algorithm. In addition, AWVDA has a certain role in reducing

the average allocated task number difference and our AWVDA+RL

method obviously has the best performance. This again confirms

the effectiveness of our methods. To save space, in the following

experiments, we will not report the results of the gMission dataset,

which show similarity to those of the synthetic dataset.

Effect of |𝐶 |.We next study the effect of |𝐶 |. In Figure 6(a), with

the number of allocation centers |𝐶 | increasing, the CPU time grad-

ually rises for all methods. When |𝐶 | ≥ 100, the RL-related methods

have the lowest CPU time. As illustrated in Figure 6(b), we can see

that the AWVDA-related methods allocate more tasks than their

counterparts. RL-related methods perform the best, followed by

the GA-related methods and the SA-related methods. In Figure 6(c),

there is no doubt that AWVDA+RL has the best performance and

strongest stability. Another observation is that, the gap between

AWVDA-related methods and their counterparts is increasing with

more allocation centers, since AWVDA is easier to partition tasks

with more reasonable number for each allocation center.

Effect of |𝑆 |. Figure 7 shows the effect of the number of tasks

|𝑆 |. With the increase of |𝑆 |, the CPU time of all the methods grows
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Figure 8: Performance of Task Allocation: Effect of 𝑒 on SYN

slowly in Figure 7(a), since the numbers of workers and delivery

points have not changed. There is no doubt that the number of tasks

of all methods is increasing in Figure 7(b). The AWVDA-related

methods allocate more tasks with the different number of tasks. In

Figure 7(c), with the increase of |𝑆 |, each delivery point is allocated

more tasks. As a result, the difference in the number of tasks of

the delivery points becomes larger, so the average allocated task

number differences of all methods show a clear upward trend. The

gap between the RL-related methods and others is increasing. This

shows that for a more imbalanced distribution of tasks, our task

allocation algorithm has a better performance.

Effect of 𝑒. In the final set of experiments, we study the effect of 𝑒 .

Not surprisingly, as can be seen in Figure 8(a), the tendency of all the

methods are ascending at first and stable afterwards. This is because

initially, with larger 𝑒 , each worker tends to have more reachable

tasks and allocating these tasks needs more CPU time. Then, as

the expiration time of tasks continue to be extended, the number

of reachable tasks for each worker will keep stable due to other

spatio-temporal constraints such that the CPU time of finding the

task allocation maintains stability. In Figure 8(b), AWVDA+RL still

generates the maximal number of allocated tasks, and the AWVDA-

related methods outperform the VDA-related methods. When 𝑒 =

0.5h, all the methods cannot allocate tasks well, but the AWVDA-

related methods still perform better than their counterparts. In

such circumstances, the benefits of AWVDA become more obvious.

In Figure 8(c), the RL-related methods achieve the lowest average

difference, followed by the GA-related and SA-related methods.

6 CONCLUSION AND FUTUREWORK
The development of the 5G communication technology and the

sharp reduction of hardware cost offer a capable foundation for

the deployment of Spatial Crowdsourcing (SC), which consists of

location-specific tasks and requires workers to physically be at

specific locations to complete them. In this paper, we propose and

offer solutions to a problem termed Multi-Center-based Task Allo-

cation (MCTA), which aims to maximize the allocated task number

and achieve the allocation fairness among workers. To settle the

intractable complexity of this problem, we propose a Task Alloca-

tion with Geographic Partition (TAGP) framework. More specifi-

cally, we first utilize a Voronoi diagram mechanism (including a

basic Voronoi diagram-based algorithm and an adaptive weighted

Voronoi diagram-based algorithm) to decompose a complex multi-

center graph (i.e., the whole study are) into multiple smaller single-

center-based graphs. Then we adopt a Reinforcement Learning

method to allocate tasks by transforming the task allocation prob-

lem into a multiple traveling salesman problem. To the best of our

knowledge, this is the first study in SC that allocates tasks based

on adaptive geographic partition. An empirical study with real

and synthetic data offers evidence that our proposed solutions can

improve the effectiveness and efficiency of task allocation.
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