
Task Publication Time Recommendation in Spatial
Crowdsourcing

Xuanlei Chen
University of Electronic Science and

Technology of China

China

202122080924@std.uestc.edu.cn

Yan Zhao∗

Aalborg University

Denmark

yanz@cs.aau.dk

Kai Zheng
University of Electronic Science and

Technology of China

China

zhengkai@uestc.edu.cn

ABSTRACT

The increasing proliferation of networked and geo-positioned mo-

bile devices brings about increased opportunities for Spatial Crowd-

sourcing (SC), which aims to enable effective location-based task

assignment. We propose and study a novel SC framework, namely

Task Assignment with Task Publication Time Recommendation.

The framework consists of two phases, task publication time recom-

mendation and task assignment. More specifically, the task publica-

tion time recommendation phase hybrids different learning models

to recommend the suitable publication time for each task to en-

sure the timely task assignment and completion while reducing

the waiting time of the task requester at the SC platform. We use

a cross-graph neural network to learn the representations of task

requesters by integrating the obtained representations from two

semantic spaces and utilize the self-attention mechanism to learn

the representations of task-publishing sequences from multiple per-

spectives. Then a fully connected layer is used to predict suitable

task publication time based on the obtained representations. In

the task assignment phase, we propose a greedy and a minimum

cost maximum flow algorithm to achieve the efficient and the op-

timal task assignment, respectively. An extensive empirical study

demonstrates the effectiveness and efficiency of our framework.

CCS CONCEPTS

• Networks → Location based services; • Information systems

→ Recommender systems.

KEYWORDS

task publication time recommendation, task assignment, spatial

crowdsourcing

ACM Reference Format:

Xuanlei Chen, Yan Zhao, and Kai Zheng. 2022. Task Publication Time Rec-

ommendation in Spatial Crowdsourcing. In Proceedings of the 31st ACM

International Conference on Information and Knowledge Management (CIKM

’22), October 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3511808.3557466

∗Corresponding author: Yan Zhao.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557466

1 INTRODUCTION

With the development and widespread use of GPS-equipped smart

devices and wireless mobile network (e.g., 5G network) in recent

years, people can move as sensors and participate some location-

based tasks such as monitoring traffic condition and reporting local

hot spots. Spatial Crowdsourcing (SC) is a recently proposed con-

cept and framework that has been widely used in many applications.

In SC, the platforms collect spatial tasks and require workers to

move to specific locations physically to complete the assigned tasks.

Extensive studies on SC [8, 20, 30, 36, 38, 41–43] have contributed

many techniques for task assignment in different application sce-

narios, which are based generally on the assumption that the task

publication time is specified by a task requester. However, in prac-

tice, unsuitable task publication time leads to a long waiting time

for task requesters at an SC platform or failure of task assign-

ment/completion. For example, if a task requester publishes a task

at a location where workers are insufficient at the current time or in

the near future, the task requester has to wait a long time at the SC

platform. In such a case, if the SC platform recommends a suitable

publication time for the task, the task requester does not need to

focus on the implementation of the task until the recommended

task publication time, which will facilitate the task requester. Addi-

tionally, when a task requester publishes a task in such a situation

where all workers are unavailable at the current time or in the

next few timeslots, it is likely to cause the failure of the timely task

assignment and completion.

Recent studies have explored recommendation problems in SC,

such as task recommendation [12, 14, 22, 23, 35]. Traditional task

recommendation methods capture worker preference using static

features, such as the inferred worker rates on tasks, worker skills

and task categories [2, 11]. For example, Ambati et al. [2] build

a worker preference model based on interests and skills, which

are learned from implicit or explicit feedback provided by workers

to recommend tasks. Yuen et al. [35] use the Probabilistic Matrix

Factorization (PMF) to learn worker preference based on worker

rates on tasks inferred from their interacting behaviours and task

categories. However, these methods ignore sequential patterns of

worker mobility traces. In addition, workers’ task execution time is

significant while modelling workers, which is largely overlooked by

existing methods. Also, most of the previous studies mainly focus

on the recommendation for workers, ignoring the importance of

task publication time recommendation for task requesters in SC.

To tackle these issues, we develop a data-driven SC framework,

called Task Assignment with Task Publication Time Recommenda-

tion (TAPR), that aims to enable effective task assignment with task

232

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xuanlei Chen, Yan Zhao, and Kai Zheng

publication time prediction. Specifically, the TAPR framework con-

sists of a task publication time recommendation and a task assign-

ment phase. In the first phase, given the historical task-publishing

sequence data, we firstly learn the representations of task requesters

in two semantic relations (i.e., requester-task and requester-timeslot

interactions) with a graph neural network, respectively. We design

a gate mechansim to integrate the two representations, which can

control the proportion of information in the two semantic spaces

in the final representations. Then we use the self-attention mecha-

nism to learn the multi-perspective relations of the task-publishing

sequences. Finally, we can predict the suitable publication time via

a fully connected layer. In the task assignment phase, we propose

a greedy algorithm that gives efficient task assignment based on

the recommended task publication time. For achieving the optimal

task assignment that maximizes the task completion rate while

minimizing the average waiting time of task requesters, we fur-

ther propose a Minimum Cost Maximum Flow (MCMF) algorithm

based on the publication time recommendation, where the task

assignment problem is transformed into a MCMF problem in a

network-flow graph.

In summary, our work has four primary contributions.

1) To the best of our knowledge, this is the first work in SC that

recommends task publication time for task requesters for ensuring

the timely task assignment and completion while reducing the

waiting time of task requesters at the SC platform.

2) We consider the multiple factors which may influcence the

task requester’s preference for task publication timeslot and use

the self-attention mechanism of Transform to capture the multi-

perspective relations of task-publishing sequences.

3) We propose a greedy and an optimal algorithm for achieving

efficient and effective task assignment.

4) We report on experiments using real data, offering evidence

of the effectiveness and efficiency of the proposed framework.

The remainder of this paper is organized as follows. In Section 2,

the proposed problem is given. Thenwe present the task publication

time recommendation model and the task assignment algorithms

in Section 3, followed by the experimental results in Section 4.

Section 5 introduces the related work. Finally, we conclude the

paper in Section 6.

2 PROBLEM DEFINITION

We proceed to present necessary preliminaries and then define the

problem addressed. Table 1 lists the notation used throughout the

paper.

Definition 1 (Spatial Task). A spatial task, denoted by 𝑠 =
(𝑞, 𝑙, 𝑟𝑡, 𝑝, 𝑒, 𝑟), has a task requester 𝑞, a location 𝑠 .𝑙 , a registration

time 𝑠 .𝑟𝑡 which must be earlier than or equal to the publication time,

a publication time 𝑠 .𝑝 , an expiration time 𝑠 .𝑒 , and a reward 𝑠 .𝑟 .

Definition 2 (Task-publishingHistory). Given a task requester

𝑠 .𝑞 who has published 𝑛 tasks in a time period, we define the task-

publishing history as a time-ordered task sequence, 𝑆
𝑠.𝑞
𝑝 = (𝑠1, 𝑠2, ..., 𝑠𝑛),

where 𝑠𝑖 .𝑝 ≤ 𝑠𝑖+1 .𝑝 (1 ≤ 𝑖 < 𝑛).

With spatial crowdsourcing, the query of a spatial task 𝑠 can be

answered only if a worker is physically located at that location 𝑠 .𝑙 .

Table 1: Summary of Notation

Symbol Definition

𝑠 Spatial task

𝑠.𝑞 Task requester of task 𝑠
𝑠.𝑙 Location of spatial task 𝑠
𝑠.𝑟𝑡 Registration time of spatial task 𝑠
𝑠.𝑝 Publication time of spatial task 𝑠
𝑠.𝑒 Expiration time of spatial task 𝑠
𝑠.𝑟 Reward of spatial task 𝑠
𝑆
𝑠.𝑞
𝑝 A historical task-publishing sequence of 𝑠.𝑞
𝑤 Worker

𝑤.𝑙 Current location of worker 𝑤
𝑤.𝑑 Reachable distance of worker 𝑤
𝑤.𝑜𝑛 Online time of worker 𝑤
𝑤.off Offline time of worker 𝑤
𝐴𝑊𝑆 (𝑠) Available worker set of task 𝑠
𝐴 A spatial task assignment

𝐴.𝐶 Task completion rate in task assignment𝐴
𝐴.𝑇 Total waiting time in task assignment𝐴

Note that with the single task assignment mode [16], an SC server

should assign each spatial task to only one worker.

Definition 3 (Worker). A worker, denoted by𝑤 = (𝑙, 𝑑, 𝑜𝑛, off),
has a location𝑤.𝑙 , a reachable radius 𝑤.𝑑 , an online time 𝑤.𝑜𝑛, and
an offline time𝑤.off . The reachable range of worker𝑤 is a circle with

𝑤.𝑙 as the center and 𝑤.𝑑 as the radius, within which 𝑤 can accept

assignments.

A worker is online when being ready to accept tasks. After the

offline time, the worker cannot accept tasks. In our work, a worker

can accept and handle only one task at a time, which is reasonable

in practice.

Definition 4 (Available Worker Set). The available worker

set for a task s, denoted as AWS(s), is a set of workers that satisfy the
following conditions: ∀𝑤 ∈ 𝐴𝑊𝑆 (𝑠):

1) worker𝑤 is in an online mode, i.e.,𝑤.𝑜𝑛 ≤ 𝑡𝑛𝑜𝑤 ≤ w.off , and

2) task 𝑠 is located in the reachable range of worker𝑤 , i.e.,𝑑 (𝑤.𝑙, 𝑠 .𝑙)
≤ 𝑤.𝑑 , and

3) worker 𝑤 can arrive at the location of task 𝑠 before it expires,
i.e., 𝑡𝑛𝑜𝑤 + 𝑡 (𝑤.𝑙, 𝑠 .𝑙) ≤ 𝑠 .𝑒 ,

where 𝑡𝑛𝑜𝑤 is the current time, 𝑑 (𝑤.𝑙, 𝑠 .𝑙) is the travel distance
(Euclidean distance) between location 𝑤.𝑙 and location 𝑠 .𝑙 , and
𝑡 (𝑤.𝑙, 𝑠 .𝑙) is the travel time between𝑤.𝑙 and 𝑠 .𝑙 .

Definition 5 (Spatial Task Assignment). Given a set of work-

ers 𝑊 = {𝑤1,𝑤2, ...,𝑤 |𝑊 | } and a set of tasks 𝑆 = {𝑠1, 𝑠2, ..., 𝑠 |𝑆 | },
we define 𝐴 as a spatial task assignment, which consists of a set of

tuples of form (𝑤, 𝑠), where a spatial task 𝑠 is assigned to worker𝑤 ,

satisfying all the workers’ and tasks’ spatio-temporal constraints.

We use𝐴.𝐶 to denote the task completion rate in task assignment

𝐴, which is the ratio between the number of tasks completed before

expiration time and the total number of tasks. Besides, we use

𝐴.𝑇 =
∑
𝑠∈𝐴.𝑆 T (𝑠 .𝑞) to denote the total waiting time of all task

requesters in task assignment 𝐴, where 𝐴.𝑆 denotes the task set

of 𝐴, and T (𝑠 .𝑞) is the waiting time of task requester 𝑠 .𝑞 at the

SC platform that is the task duration of 𝑠 (i.e., elapsed time from

publication to completion of 𝑠). The problem investigated can be

stated as follows.

Publication Recommendation based Task Assignment (PR-

TA). Given a set of online workers 𝑊 and a set of tasks 𝑆 to be

233

Task Publication Time Recommendation in Spatial Crowdsourcing CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Requester-task
interaction
data

Requester-
timeslot
interaction data

Task Assignment

Requester-task
graph neural
network

Requester-
timeslot graph
neural network

Task publication
timeslot
embeddings

Task
embeddings

Task requester
embeddings

Transformer

Positional
Encoding

Task-publishing
sequence embeddings

Task-related Representation Learning

cross

Publication
timeslot

Multi-perspective Relation Learning

Fused
embeddingsconcat

fully
connected
layer

Workers

Tasks

Spatio-temporal constraints

AWS for
each task

MCMF

GR

Task Publication Time Predication

Task Publication Time RecommendationData Source

Figure 1: Framework Overview

published by task requesters at the current time instance on an

SC platform, our problem is to recommend a suitable publication

time for these tasks and find an optimal task assignment 𝐴𝑜𝑝𝑡 that

achieves the following goals:

1) primary optimization goal: maximize the task completion

rate., i.e., ∀𝐴𝑖 ∈ 𝐴 (𝐴𝑜𝑝𝑡 .𝐶 ≥ 𝐴𝑖 .𝐶), where 𝐴 denotes all possible

assignments.

2) secondary optimization goal: minimize the average waiting

time of task requesters without compromising the primary opti-

mization goal.

3 ALGORITHM

The main novelty of the Task Assignment with Task Publication

time Recommendation (TAPR) framework is that the SC server

learns the suitable task publication time for each task requester,

based onwhich the task assignment is performed. In this section, we

first give an overview of the framework, and then provide specifics

on each component in the framework.

3.1 Framework Overview

The TAPR framework is comprised of two components: task publi-

cation time recommendation and task assignment, as illustrated in

Figure 1.

The publication time recommendation component includes three

main parts: Task-related Representation Learning,Multi-perspective

Relation Learning, and Task Publication Time Prediction. Taking

the requester-task interaction data and requester-timeslot interac-

tion data which are obtained through the historical task-publishing

sequential data as input, we first construct two graph neural net-

works, i.e., requester-task and requester-timeslot graph neural net-

works. Then we use a cross-graph neural network to learn the

task-related representations (including task embeddings, task publi-

cation timeslot embeddings, and task requester embeddings). Next,

we adopt the self-attention mechanism of Transformer to find the

multi-perspective relations of the task-publishing sequences with

positional encoding and get their embeddings. After that, we con-

struct a fully connected layer to predict the task publication time

by taking the concatenation of the representations of the task-

publishing sequences and the corresponding task requesters as

fused embeddings.

The second component needs to assign tasks to suitable workers.

We first calculate the Available Worker Set (AWS) for each task,

from which we can select the most suitable worker for the task

during the subsequent task assignment. We propose a greedy task

assignment (GR) algorithm that tries to assign the nearest worker

to each task from the unassigned workers, until all the workers are

exhausted or all the tasks are assigned. To achieve the optimal task

assignment, we further design a Minimum Cost Maximum Flow

(MCMF) algorithm that balances the distance between workers and

tasks and the number of completed tasks.

3.2 Task Publication Time Recommendation

In this section, we introduce our proposed method for task publica-

tion time recommendation in detail. We predict the publication time

of tasks for the task requesters via a fully connected layer based

on the fused feature vectors of the task requesters obtained by the

cross-graph neural network and the vectors of the task-publishing

sequences encoded by the Transformer.

3.2.1 Task-related Representation Learning. Graph convolution

neural network (GCN) can deal with the data of graph structure

well and extract the features of data for model training. Based on

GCN, we add a cross component to transfer graph information from

different semantic spaces. By using the cross-graph neural network

to aggregate the graph information from requester-task interaction

graph and requester-timeslot interaction graph, we can obtain the

task-related representation containing richer semantic information,

which is beneficial for the recommendation.

Given the task-publishing sequences, we assume that there are

𝐾 task requesters𝑄 , 𝐿 tasks 𝑆 , and 𝑀 publication timeslots𝑇 . Then
a requester-task interaction matrix and a requester-timeslot inter-

action matrix can be defined as 𝑋𝐾×𝐿 = {𝑥𝑞𝑠 |𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆} and
𝑌𝐾×𝑀 = {𝑦𝑞𝑡 |𝑞 ∈ 𝑄, 𝑡 ∈ 𝑇 }, respectively. Next, we set 𝑥𝑞𝑠 = 1 and

𝑦𝑞𝑡 = 1 when observing that a task requester 𝑞 publishes a task

𝑠 in timeslot 𝑡 in the task-publishing sequence. Otherwise, we set

𝑥𝑞𝑠 = 0 and 𝑦𝑞𝑡 = 0.

We can get two interaction graphs according to the interaction

matrix obtained from the historical task-publishing sequence data,

i.e., requester-task interaction graph 𝐺𝑞𝑠 (𝑉𝑞𝑠 , 𝐸𝑞𝑠) and requester-

timeslot interaction graph 𝐺𝑞𝑡 (𝑉𝑞𝑡 , 𝐸𝑞𝑡). Each node of 𝐺𝑞𝑠 repre-

sents a task requester or a task, and each edge of 𝐺𝑞𝑠 shows that

234

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xuanlei Chen, Yan Zhao, and Kai Zheng

there is an interaction between a task requester node and a task

node. Similar to 𝐺𝑞𝑠 , each node of 𝐺𝑞𝑡 represents a task requester

or a publication timeslot, and each edge of 𝐺𝑞𝑡 shows that there is

an interaction between a task requester node and a timeslot node.

The initial embeddings of a task requester, a task, and a task

publication timeslot are represented as 𝑸, 𝑺, 𝑻 , respectively, the
embedding sizes of which keep the same.

We adopt Light Graph Convolutional Neural (GCN) network [15]

rather than GCN to obtain task-related representation. Compared to

general GCN, Light GCN can extract the complicated topology from

requester-task and requester-timeslot interaction graphs by only

using the neighborhood aggregation. Layer combination is used

to replace the self-connections of nodes to achieve the same effect.

Except for that, Light GCN also cancels the nonlinear activation

function and the feature transformation matrix when performing

layer propagation, since both of the operations are not effective

and efficient enough for the training process of the model on rec-

ommendation [17, 29].

Firstly, we get the adjacency matrix of the requester-task graph

based on the requester-task interaction matrix 𝑋 , which is shown

in Equation 1.

𝐴𝑞𝑠 =

[
0 𝑋
𝑋𝑇 0

]
(1)

After getting the adjacency matrix, Light GCN can update the

node embeddings of each layer according to the aggregations of

their neighbors. During the updating process, we can extract fea-

tures of the requester-task interactions graph. The propagation

process of each layer is shown as follows:

[
𝑸 (𝑙1)
𝑺 (𝑙1)

]
= 𝐴̂𝑞𝑠

[
𝑸 (𝑙1−1)
𝑺 (𝑙1−1)

]
, (2)

𝑸𝑞𝑠 =
𝑙1∑
𝑖=0

𝛼
𝑞𝑠
𝑖 𝑸 (𝑖) , 𝑺𝑞𝑠 =

𝑙1∑
𝑖=0

𝛼
𝑞𝑠
𝑖 𝑺 (𝑖) , (3)

where 𝐴𝑞𝑠 is a laplacian matrix, 𝐴𝑞𝑠 = 𝐷
− 1

2
𝑞𝑠 𝐴𝑞𝑠𝐷

− 1
2

𝑞𝑠 , 𝐷𝑞𝑠 is the

degree matrix of 𝐴𝑞𝑠 , and 𝑙1 denotes the number of layers in the

network. 𝑸 (𝑖) and 𝑺 (𝑖) represent the 𝑖-th layer feature of the task

requester and the corresponding task, respectively. As shown in

Equation 3, combined with features of each layer, we can get the

final task requester feature matrix 𝑸𝑞𝑠 and the task feature matrix

𝑺𝑞𝑠 in the requester-task interaction graph. 𝛼
𝑞𝑠
𝑖 is a learnable pa-

rameter used to denote the weight of the feature matrix of the 𝑖-th
layer when generating the final embeddings. Finding that learning

the weight parameter 𝛼𝑖 cannot promote the performance while

making the model more complicated, we give each layer the same

weight when calculating the final embeddings and the weight pa-

rameter 𝛼𝑖 = 1
𝑙1 + 1 .

As for the requester-timeslot graph, its adjacency matrix is simi-

lar to that of the requester-task graph and can be defined as follows.

𝐴𝑞𝑡 =

[
0 𝑌
𝑌𝑇 0

]
(4)

The propagation process of each layer in the requester-timeslot

graph is also similar to that of the requester-task graph. The equa-

tions are shown as follows:

[
𝑸 (𝑙1)
𝑻(𝑙1)

]
= 𝐴̂𝑞𝑡

[
𝑸 (𝑙1−1)
𝑻(𝑙1−1)

]
, (5)

𝑸𝑞𝑡 =
𝑙1∑
𝑖=0

𝛼
𝑞𝑡
𝑖 𝑸 (𝑖) , 𝑻𝑞𝑡 =

𝑙1∑
𝑖=0

𝛼
𝑞𝑡
𝑖 𝑻(𝑖) , (6)

where 𝐴𝑞𝑡 is similar to 𝐴𝑞𝑠 , 𝐴𝑞𝑡 = 𝐷
− 1

2
𝑞𝑡 𝐴𝑞𝑡𝐷

− 1
2

𝑞𝑡 , 𝑸𝑞𝑡 denotes the
final feature vector of task requester, and 𝑻𝑞𝑡 denotes the final

feature vector of task publication timeslot in the requester-timeslot

graph.
After the above operations, we can obtain the embeddings of the

tasks, publication timeslots and task requesters in two semantic
spaces. Considering that embeddings with more semantic informa-
tion can be useful to achieve more personalized recommendation,
we design a gate mechanism to integrate the information in the
two semantic spaces and update the task requester embeddings by
Equation 7.

𝑸∗ = 𝑓 ∗𝑸𝑞𝑡 + (1 − 𝑓) ∗𝑸𝑞𝑠 , (7)

where 𝑸𝑞𝑠 and 𝑸𝑞𝑡 denote the feature vectors of the task requester

at the 𝑙1-th layer in𝐺𝑞𝑠 and 𝐺𝑞𝑡 , respectively. Next, 𝑓 denotes the

gate mechanism and its formula is as follows:

𝑓 = 𝜙 (𝑊 (𝑸𝑞𝑠 +©𝑸𝑞𝑡 + 𝑏), (8)

where 𝜙 represents the sigmoid function mapping the input values

to the range [0, 1], +© represents matrix concatenation,𝑊 and 𝑏
are learnable matrices.

Finally, we can obtain the final embeddings of task requester set

𝑸∗, task set 𝑺 , and publication timeslot set 𝑻 , which can be used in

the next component.

3.2.2 Multi-perspective Relation Learning. There are multiple fac-

tors which may influcence the task requester’s preference for task

publication timeslot. Therefore, in this part, we exploit the self-

attentionmechanism of Transformer [28] to learn themulti-perspect-

ive relations in the task-publishing sequences.

By summing the embeddings of the corresponding task, publica-

tion timeslot, and task position in the task-publishing sequence, we

can get a new entity embedding in the task-publishing sequence,

which can be calculated as follows:

𝒆𝑖 = 𝒔𝑖 + 𝑡𝑖 + 𝒑𝒐𝒔𝑖 , (9)

where 𝒔𝑖 denotes the embedding of task 𝑠𝑖 , 𝒕𝑖 ∈ denotes the em-

bedding of timeslot 𝑡𝑖 , and 𝒑𝒐𝒔𝑖 is the position embedding of the

task 𝑖 in the task-publishing sequence. After the multi-perspective

fusion, the previous embedding of task 𝑠𝑖 can be denoted by the

entity embedding 𝒆𝑖 .
After that, we can get the task-publishing sequence embedding

based on the embeddings of tasks in the sequence. Then we utilize

the self-attention mechanism of Transformer encoder to extract

the contextual information in the task-publishing sequence. The

basic propagation between layers can be defined as follows:

𝐻𝑙 = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝐻𝑙−1), (10)

where 𝑙 ∈ [1, 𝑙2], 𝑙2 denotes the number of layers in Transformer

encoder, and 𝐻𝑙 denotes the output matrix containing contextual

information of the 𝑖-th layer. Each encoder layer of Transformer

consists of two sub-layers, which are multi-headed self-attention

mechanism and fully connected feed-forward network. The residual

235

Task Publication Time Recommendation in Spatial Crowdsourcing CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

connection and normalisation are added to each sub-layer. The

propagation detail of each layer can be shown as follows:

𝑍𝑙 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑀𝐻𝐴(𝐻𝑙−1) + 𝐻𝑙−1), (11)

𝐻𝑙 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝐹𝐹𝑁 (𝑍𝑙) + 𝑍𝑙), (12)

where 𝑀𝐻𝐴 is a multi-headed self-attention mechanism, and 𝐹𝐹𝑁
is a two-layer fully connected feed-forward network. In particular,

for the multi-headed self-attention mechanism of the Transformer,

the propagation process in the 𝑖-th layer can be shown in Equa-

tions 13-15:

Q𝑖 = 𝐻𝑙−1WQ
𝑖 , K𝑖 = 𝐻𝑙−1WK

𝑖 , V𝑖 = 𝐻𝑙−1WV
𝑖 , (13)

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜𝑓 𝑡𝑚𝑎𝑥 (
Q𝑖K𝑇

𝑖√
𝑑𝑘

)V𝑖 , (14)

𝑍𝑙 = (ℎ𝑒𝑎𝑑1 +©ℎ𝑒𝑎𝑑2, ..., +©ℎ𝑒𝑎𝑑𝑛)W𝑂
𝑙 , (15)

where Q, K , and V denote the query, key, and value matrices,

which can be obtained by multiplying 𝐻𝑙−1 ∈ R𝒃 ×𝑑ℎ by weight

matrices WQ
𝑖 , WK

𝑖 , and WV
𝑖 ∈ R𝑑ℎ ×𝑑𝑘 , respectively. Next, 𝑑ℎ

denotes the hidden size, and 𝑑𝑘 denotes the dimension of a head. 𝑍𝑙
denotes the output matrix of a multi-headed self-attention in the 𝑙-
th layer, which can be obtained by concatenating the output matrix

of all heads. 𝑛 is the number of heads. We use W𝑂
𝑙

∈ R𝑑 ×𝑑ℎ to

denote the weight matrix when performing concatenation, where

𝑑 is the result of multiplying 𝑑𝑘 and 𝑛.

Finally, we can get the representation𝑍 of the entire task-publish-

ing sequence by averaging the representations of all tasks in the

sequence.

3.2.3 Task Publication Time Prediction. The goal of this part is

to predict the probability distribution of publication timeslots of

tasks that will be published by requesters. We split the day into 96

timeslots and choose to predict the publication timeslot of tasks

because of the sparsity of task-publishing sequences.

We construct a fully connected layer to predict task publication

time. The input of the layer can be obtained by concatenating the

vector of the task-publishing sequence with the vector of the task

requester, as shown in Equation 16.

𝑌𝑡 = 𝜌 (𝐹 (𝑸∗ +©𝑍)), (16)

where 𝑸∗ is the feature vector of the task requester integrating

the information from two different semantic spaces, 𝑍 denotes the

vector of the task-publishing sequence, +© denotes concatenation,

and 𝐹 denotes a fully connected layer, the unit of which is 96 since

a day is divided into 96 timeslots. Next, 𝜌 is a softmax function, and

𝑌𝑡 is the prediction for the task publication timeslot.

We use the cross-entropy loss function as the loss function of the

task publication timeslot prediction, which is defined in Equation 17.

L𝑡 = −
𝐶𝑚,𝑡∑

𝑛

𝐷∑
𝑙

𝑌𝑡,𝑛𝑙 ln𝑌𝑡,𝑛𝑙 , (17)

where 𝐶𝑚, 𝑡 is the set of task-publishing sequence indices with

labelled publication timeslots, and𝐷 equals 96 (a day can be divided

into 96 timeslots) , which denotes the output dimension of 𝐹𝐶 . Next,
𝑌𝑡 denotes publication timeslots label indicator matrix.

The overall loss function of the prediction component can be

defined as follows:

L𝑙𝑜𝑠𝑠 = L𝑡 + 𝜆 ‖Θ‖2 , (18)

where 𝜆 denotes the 𝐿2 regularization coefficient. And all trainable

parameters of the model are included in Θ. After the training, the
publication timeslot of task 𝑠 can be calculated by max (𝑌𝑡,𝑛) under
the limitation of the task registration time and expiration time,

where 𝑛 denotes the index of the task-publishing sequence to which

task s belongs, and max (·) denotes the maximum function.

3.3 Task Assignment

In this section, we will present the task assignment algorithms,

which are based on the recommended publication timeslots of tasks.

Specifically, when a task requester requests to publish a task, we

give a recommended publication timeslot to the requester, based on

which we assign a suitable task to the requester. In the sequel, we

first detail how to generate available worker sets for tasks, which

will be used throughout the task assignment process, and then

propose two algorithms to assign tasks, including a Greedy (GR)

and a Minimum Cost Maximum Flow (MCMF) algorithm.

3.3.1 Available Worker Set (AWS) Generation. Given time instance

set, T = {𝑡, ..., 𝑡 + 𝑛}, a worker can only complete a small subset of

tasks because of the constraints of workers’ reachable distance and

valid time as well as tasks’ expiration time. As a result, given a set

of online workers and published tasks at time instance 𝑡 , we should
find the available worker set (𝐴𝑊𝑆 (𝑠)) for each task 𝑠 based on the

spatio-temporal constraints. Worker 𝑤 in 𝐴𝑊𝑆 (𝑠) should satisfy

the following conditions: ∀𝑤 ∈ 𝐴𝑊𝑆 (𝑠)
1) worker𝑤 is in an online mode, i.e.,𝑤.𝑜𝑛 ≤ 𝑡𝑛𝑜𝑤 ≤ w.off , and

2) task 𝑠 is located in the reachable range of worker 𝑤 , i.e.,

𝑑 (𝑤.𝑙, 𝑠 .𝑙) ≤ 𝑤.𝑑 , and
3) worker 𝑤 can arrive at the location of task 𝑠 before it expires,

i.e., 𝑡𝑛𝑜𝑤 + 𝑡 (𝑤.𝑙, 𝑠 .𝑙) ≤ 𝑠 .𝑒 ,
where 𝑡𝑛𝑜𝑤 is the current time, 𝑑 (𝑤.𝑙, 𝑠 .𝑙) is the travel distance

between location 𝑤.𝑙 and location 𝑠 .𝑙 , and 𝑡 (𝑤.𝑙, 𝑠 .𝑙) is the travel
time between location𝑤.𝑙 and location 𝑠 .𝑙 .

3.3.2 Greedy Task Assignment. After getting the 𝐴𝑊𝑆 (𝑠) of each
task 𝑠 , a simple strategy is to assign the nearest worker who is not

assigned yet to the task, until all the tasks are assigned or all the

workers are exhausted, which is called Greedy Task Assignment

(marked as GR) algorithm.

The execution process of GR is shown in Algorithm 1. The input

of Algorithm 1 is a worker set𝑊 , a task set 𝑆 and an empty task

assignment 𝐴 (line 2). During each iteration, the algorithm begins

to randomly select a task 𝑠 ∈ 𝑆 from the remaining ones and as-

signs the nearest worker who is not assigned yet in 𝐴𝑊𝑆 (𝑠) to the

selected task. And then the algorithm adds task 𝑠 to the task assign-

ment 𝐴 (lines 2–6). Finally, we can obtain the task assignment, 𝐴
(line 7).

3.3.3 MCMF-based Task Assignment. Taking the distance between

workers and tasks as the priority, we transform the task assignment

problem into a Minimum Cost Maximum Flow (MCMF) problem

based on the obtained available worker sets.

236

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xuanlei Chen, Yan Zhao, and Kai Zheng

Algorithm 1: Greedy Task Assignment

Input:𝑊, 𝑆
Output: A feasible assignment result 𝐴 and the

corresponding number of assigned tasks |𝐴|
1 𝐴 ← ∅ ;

2 for each task 𝑠 ∈ 𝑆 do

3 𝑂𝑝𝑡𝑤 ← find the nearest worker in 𝐴𝑊𝑆 (𝑠) ;
4 𝐴 = 𝐴 ∪ 𝑠 ;

5 𝑊 =𝑊 −𝑂𝑝𝑡𝑤 ;

6 𝑆 = 𝑆 − 𝑠 ;

7 return 𝐴 and |𝐴|

MCMF is based on a flow network-based graph in time instance

𝑡𝑖 and the graph can be denoted by 𝐺𝑖 = (𝑉 , 𝐸), in which 𝑉 and 𝐸
refers to the set of vertices and edges, respectively. Suppose that we

have a online worker set,𝑊𝑖 = {𝑤1, ...,𝑤𝑛} and an available task

set, 𝑆𝑖 = {𝑠1, ..., 𝑠𝑛} at time instance 𝑡𝑖 . Then we can conclude that

|𝑉 | and |𝐸 | is equal to |𝑊𝑖 | + |𝑆𝑖 | + 2 and |𝑊𝑖 | + |𝑆𝑖 | +𝑚, respectively,

where𝑚 denotes the number of available assignments satisfying

the spatial and temporal constraints for all the workers. Next, we

use |A𝑤𝑖 | to denote the number of available assignments for worker

𝑤 . Then𝑚 can be obtained by summing the number of available

assignments for all the workers, i.e.,𝑚 =
∑
𝑤∈𝑊𝑖

|A𝑤𝑖 |.
For the construction of vertices, we firstly create a source ver-

tice 𝑠𝑟𝑐 (denoted by 𝑣0) and a destination vertice 𝑑𝑠𝑡 (denoted by

𝑣 |𝑊𝑖 | + |𝑆𝑖 | + 1). And then we map each worker𝑤 𝑗 to a vertex 𝑣 𝑗 , and
each task 𝑠𝑘 to a vertex 𝑣 |𝑊𝑖 | +𝑘 , respectively.

c=1, w=0

c=1, w=0.6

c=1, w=0c=1, w=0.21

c=1, w=0.16
S3

S2

S1

W2

W2

W1

src dst

Figure 2: Flow Network-based Graph

There is an example of such a network flow graph with three

workers and three tasks at one time instance in Figure 2. The steps

of edge construction can be shown as follows:

1)We construct |𝑊𝑖 | edges to connect 𝑠𝑟𝑐 and the verticesmapped

from𝑊𝑖 . The capacity of each edge is set 1, since each worker can

only accept at most one task before one is completed at a time

instance. And the cost of these edges is set to 0.

2) We create |𝑆𝑖 | edges to connect the vertices mapped from 𝑆𝑖
and 𝑑𝑠𝑡 . Similar to the edge connecting 𝑠𝑟𝑐 and the vertices mapped

from𝑊𝑖 , the capacity of each edge is set to 1, because each task

can not be assigned to two or more workers at a time instance. The

cost of these edges is also set to 0.

3) We create an edge to connect the vertex 𝑣 𝑗 (mapped from

worker 𝑤 𝑗) to the vertex 𝑣 |𝑊𝑖 | +𝑘 (mapped from 𝑠𝑘) if 𝑠𝑘 can be

assigned to𝑤 𝑗 (i.e.,
〈
𝑤 𝑗 , 𝑠𝑘

〉
∈ A𝑤𝑗

𝑖) according to the constraints of

space and time. For the edge connecting the vertex 𝑣 𝑗 and 𝑣 |𝑊𝑖 |+𝑘 ,

its capacity is set to 1 and its cost is equal to the travel distance

from worker𝑤 𝑗 to task 𝑠𝑘 .
After the construction of vertices and edges, we can convert the

task assignment problem into a MCMF problem in the direct flow

graph 𝐺𝑖 from 𝑠𝑟𝑐 to 𝑑𝑠𝑡 , aiming to maximize flow of the graph

while minimizing the distance cost. Specifically, we maximize the

flow of the graph by using the Ford-Fulkerson [10] algorithm and

then minimize the distance cost with linear programming [16].

4 EXPERIMENTAL EVALUATION

Table 2: Statistics of Dataset

Dataset Gowalla

Number of users 52979

Number of Pois 121851

Number of check-ins 3300986

Density 0.0511%

Average time between 51.28 hours

Collection period 2009/02-2010/10

4.1 Experimental Setup

Data Preparation. The experiments are carried out on a real

dataset, Gowalla, which is an open source check-in dataset col-

lected from location-based social networks. Some basic statistics

of the dataset are demonstrated in Table 2. In Gowalla, the geo-

tagged check-ins are used to simulate our problem. Each user is

regarded as a task requester, each POI is regarded as a published

task, and its check-in time is regarded as the task publication time.

As Gowalla does not contain task registration time and task execu-

tion time, we randomly generate task registration time from range

[30𝑚𝑖𝑛, 75𝑚𝑖𝑛] based on the last check-in time of each check-in se-

quence and generate the task execution time from range [0, 75𝑚𝑖𝑛]
based on task publication time. For each task requester, we ran-

domly select a location of published tasks from his historical task-

publishing sequence as the location of the task requested to be

published. For each worker, we generate the locations of workers

following a uniform distribution within a 2D space (with latitude

from -80◦ to 80◦ and longitude from -150◦ to 150◦) and also uni-

formly generate the arrival times of workers according to the dis-

tribution of task registration time. Moreover, we set the granularity

of a time instance as 15 minutes (i.e., 10:00 am-10:15 am), during

which the task requests and available workers will be packed and

input to our framework. We run the algorithms from 12:00 am of

the day and try to assign tasks to the suitable workers in different

time instances (from the next time instance of the current time

instance to the previous time instance of the task deadline) in the

experiments.

Model Parameters. As for the model, Adam optimizer is used

to speed up the training process. After analyzing, we determine

the settings of the parameters. The learning rate is set to 0.001, the

batch size is set to 200, the 𝜆 is set to 1e-7, the embedding size is

set to 80, the dropout rate is set to 0.2, the number of layers of

the cross-graph neural network (𝑙1) is set to 3 and the number of

layers of Transformer encoder (𝑙2) is set to 3, and the number of self-

attention heads (𝑛) is set to 4. All the experiments are implemented

on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz, and NVidia

GeForce RTX 1080Ti GPU.

237

Task Publication Time Recommendation in Spatial Crowdsourcing CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

4.2 Experimental Results

4.2.1 Performance of Task Publication Time Recommendation. We

first evaluate the performance of Task Publication Time Recom-

mendation (TPTR) phase. We split all the task-publishing sequences

into 80% for training and 20% for testing chronologically. For each

sample, we truncate the task-publishing sequences of the same

length (20 by default) [32].

Evaluation Methods.We perform an ablation analysis on our

Task Publication time Recommendation (TPR) model and take them

as baseline algorithms.

1) QS+QT: We adopt the light GCN to learn the embeddings of

task requesters, tasks, and timeslots through Requester-Task graph

(QS) and Requester-Timeslot graph (QT), and use the sum of the

two obtained task requesters embeddings as the final task requester

embeddings.

2) QS+QT+C: Based on QS+QT, we design a Cross graph (C) neu-

ral network to jointly learn the representations of task requesters

in different semantic spaces and control how much information

flows across two graphs.

3) QS+QT+MP: Based onQS+QT, we use Transformer to learn the

Multi-Perspective (MP) relations of the task-publishing sequence.

4) QS+QT+C+MP (TPR): We use both the Cross graph neural

network (C) and the Multi-Perspective (MP) components to predict

task publication timeslots for task requesters.

Metrics. To evaluate the accuracy of the above models, we adopt

the widely-used measure, 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 (𝑁 ∈ 1, 2, 3). For each task re-

quester, 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 indicates how well the top-𝑁 recommended

timeslots match the labeled publication timeslot and its four adja-

cent timeslots before and after.

Table 3: 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 of Different Methods for TPTR

Methods Recall@1 Recall@2 Recall@3

QS+QT 0.0996 0.1820 0.2567

QS+QT+C 0.1015 0.1836 0.2578

QS+QT+MP 0.1374 0.2227 0.2825

TPR 0.1425 0.2322 0.3037

Results. Table 3 shows the evaluation results. QS+QT only

combines the interactions of requester-task graph and requester-

timslot graph and performs worst. After adding the cross graph

neural work component or the multi-perspective component to the

initial model, the performance of the model is further improved,

i.e., QS+QT+C outperforms QS+QT by 0.41%–1.92% in terms of

𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 (𝑁 = 1, 2, 3), and QS+QT+MP outperforms QS+QT by an

astounding margin (up to 37.91%). It shows the multi-perspective

component is more effective than the cross graph neural network

component. By adopting both of the two components above, the

TPR model gets the best performance, which demonstrates its su-

periority in task publication time recommendation.

4.2.2 Performance of Task Assignment. Next we evaluate the per-

formance of task assignment.

Evaluation Methods. We study the following methods.

1) DE+GR: The greedy task assignment method, where the task

registration time is directly regarded as the task publication time.

2) FQ+GR: The greedy task assignment method based on the

task publication time recommended by a frequency-based method

(FQ). FQ compares the difference between task publication time

and task execution time in historical data and selects the one with

the highest occurrence frequency, based on which FQ calculates

the recommended task publication time.

3) TPR+GR: The greedy task assignment method based on the

task publication time recommended by our model, TPR.

4) DE+MCMF: The MCMF task assignment method, where the

task registration time is directly regarded as the task publication

time.

5) FQ+MCMF: The MCMF task assignment method based on the

task publication time recommended by FQ.

6) TPR+MCMF: The MCMF task assignment method based on

the task publication time recommended by TPR.

Metrics. Three main metrics are compared among the above

algorithms, i.e., CPU time, completion rate of tasks, and average

waiting time of task requesters, for finding the final task assignment.

Table 4 shows our experimental settings, where the default values

of all parameters are underlined.

Table 4: Experiment Parameters

Parameter Value

The ratio between the number
of workers and that of tasks, |𝑊 |/ |𝑆 | 1, 1.5, 2, 2.5, 3

Valid time of tasks (h), e − p 0.5, 0.75, 1, 1.25, 1.5

Valid time of workers (h), off − on 0.25, 0.5, 0.75, 1, 1.25

Reachable distance of workers (km), 𝑟 2, 2.5, 3, 3.5, 4

Effect of |𝑊 |/|𝑆 |. We study the effect of |𝑊 |/|𝑆 |, the ratio be-

tween the number of workers and that of tasks, where the number of

workers is fixed to 3000. Intuitively, a high |𝑊 |/|𝑆 | value represents
a worker-dense area. In Figure 3(a), the CPU time of all the methods

decreases with the increase of |𝑊 |/|𝑆 |. Moreover, the CPU time

of the MCMF-related methods (i.e., DE+MCMF, FQ+MCMF, and

TPR+MCMF) declines faster than GR-related methods (i.e., DE+GR,

FQ+GR, and TPR+GR), since the time complexity of MCMFmethods

is higher and more affected by the total number of tasks and work-

ers than Greedy methods. As can be seen in Figure 3(b), as |𝑊 |/|𝑆 |
grows, the task completion rate decreases first (when |𝑊 |/|𝑆 | < 1.5)
and then increases (when |𝑊 |/|𝑆 | ≥ 1.5). All methods perform best

when |𝑊 |/|𝑆 | = 3, since each task has more candidate available

workers and more tasks can be completed in such a case. Also,

TPR-related methods (i.e., TPR+GR and TPR+MCMF) achieve the

highest task completion rate, followed by FQ-related methods (i.e.,

FQ+GR and FQ+MCMF) and DE-related methods (i.e., DE+GR and

DE+MCMF), which demonstrates the advantage of our TPR model

for task publication time recommendation. As is shown in Fig-

ure 3(c), the average waiting time of all methods except DE+GR

almost keeps stable with the increasing |𝑊 |/|𝑆 |, showing their good
scalability that can adapt to various |𝑊 |/|𝑆 |. The MCMF method

performs worse than the Greedymethod when combining with TPR

while it performs better than the Greedy method when combining

DE or FQ in terms of the average waiting time. This is because

MCMF must make a tradeoff between maximizing the number of

completed tasks and minimizing the distance from workers to tasks,

which leads to that MCMF cannot always reduce the average wait-

ing time compared to the Greedy method. Apparently, the average

waiting time of TPR-related methods is still less than others, which

demonstrates the superiority of TPR.

Effect of e − p. Next, we study the effect of e − p, the valid time

of tasks. As illustrated in Figure 4(a), we can see that the CPU time of

238

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xuanlei Chen, Yan Zhao, and Kai Zheng

 0

 50

 100

 150

 1 1.5 2 2.5 3

C
PU

 T
im

e
(s

)

The ratio between the number of workers and that of tasks

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(a) CPU Time

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3

Ta
sk

 C
om

pl
et

io
n

Ra
te

The ratio between the number of workers and that of tasks

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(b) Task Completion Rate

 1.1

 1.2

 1.3

 1.4

 1 1.5 2 2.5 3

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(h

)

The ratio between the number of workers and that of tasks

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(c) Average Waiting Time

Figure 3: Performance of Task assignment: Effect of |𝑊 |/|𝑆 |

 0

 50

 100

 0.5 0.75 1 1.25 1.5

C
PU

 T
im

e
(s

)

Valid time of tasks (h)

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(a) CPU Time

 0.2

 0.4

 0.6

 0.8

 0.5 0.75 1 1.25 1.5

Ta
sk

 C
om

pl
et

io
n

Ra
te

Valid time of tasks (h)

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(b) Task Completion Rate

 0.4

 0.8

 1.2

 0.5 0.75 1 1.25 1.5

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(h

)

Valid time of tasks (h)

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(c) Average Waiting Time

Figure 4: Performance of Task assignment: Effect of e − p

all methods shows an upward trend, since longer valid time of tasks

means more tasks can be completed. AlthoughMCMF-related meth-

ods are more time-consuming than GR-related methods, the com-

puting efficiency of MCMF-related methods is acceptable. There is

no doubt that the task completion rate increases with the extension

of the task valid time. As can be seen in Figure 4(b), TPR-related

methods perform the best followed by FQ-related methods and

DE-related methods. Moreover, all MCMF-related methods except

DE+MCMF can always achieve a higher task completion rate than

GR-related methods, which shows the effectiveness of MCMF. As

for DE-related methods, they publish tasks directly without con-

sidering the ratio of tasks and workers at each time, which leads

to longer waiting time for task requesters. So the MCMF method

may sacrifice some task completion rate to achieve less waiting

time during task assignment. In Figure 4(c), the average waiting

time is on the rise when e − p increases, and TPR+GR achieves less

average waiting time compared to other methods.

Effect of off − on. Next, we study the effect of off − on, which

represents the valid time of workers. In Figure 5(a), with the in-

crease of off − on, the CPU time grows slowly for most methods.

Among all the methods, TPR-GR has the least CPU time. As shown

in Figure 5(b), the task completion rate of all the methods also in-

creases smoothly since more tasks can be completed when the valid

time of workers gradually extends. Moreover, MCMF-related meth-

ods still have the best performance compared to their counterparts.

Besides, TPR-related methods achieve a higher task completion

rate followed by FQ-related methods and DE-related methods. An-

other observation is that the average waiting time of all the methods

keeps stable when off − on increases, as depicted in Figure 5(c). And

not surprisingly, TPR-related methods achieve the least average

waiting time during task assignment.

Effect of 𝑟 . Finally, we study the effect of 𝑟 . In Figure 6(a), the

CPU time of MCMF-related methods shows an ascending trend

while that of GR-related methods shows a completely opposite

trend when 𝑟 grows. This is because the greater reachable distance

of workers accelerates the process of finding available workers for

GR-related methods while increasing the number of edges in the

network flow graph for MCMF-related methods, which leads to

more iterations. With the increasing reachable distance of workers,

the number of candidate available workers for tasks is enlarged,

which promotes the task completion rate of all the methods in

Figure 6(b). In addition, TPR+MCMF still achieves the highest task

completion rate among all the methods and TPR-related methods

are more outstanding than their counterparts. When 𝑟 = 2, all the

methods cannot assign tasks well but TPR-related methods still

perform the best. As illustrated in Figure 6(c), the average waiting

time of MCMF-related methods grows faster than that of GR-related

methods. This is because MCMF aims to achieve a higher task

completion rate globally and may not always choose the nearest

workers of tasks at each time when the number of available workers

of tasks grows.

5 RELATEDWORK

5.1 Task Assignment in Spatial Crowdsourcing

Spatial Crowdsourcing (SC) is an increasing popular category of

crowdsourcing in the era of mobile Internet and sharing economy,

where spatio-temporal tasks must be completed at a specific loca-

tion on time [27]. SC has attracted extensive attention from both

the academia and the industry [13, 18, 19, 31, 37–39], and there have

been many successful SC platforms such as GrubHub1 and Uber2.

1https://get.grubhub.com/
2https://www.uber.com/

239

Task Publication Time Recommendation in Spatial Crowdsourcing CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

 0

 50

 100

 150

 0.25 0.5 0.75 1 1.25

C
PU

 T
im

e
(s

)

Valid time of workers (h)

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(a) CPU Time

 0.4

 0.5

 0.6

 0.7

 0.25 0.5 0.75 1 1.25

Ta
sk

 C
om

pl
et

io
n

Ra
te

Valid time of workers (h)

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(b) Task Completion Rate

 1.1

 1.2

 1.3

 1.4

 0.25 0.5 0.75 1 1.25

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(h

)

Valid time of workers (h)

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(c) Average Waiting Time

Figure 5: Performance of Task assignment: Effect of off − on

 0

 50

 100

 2 2.5 3 3.5 4

C
PU

 T
im

e
(s

)

Reachable distance of workers (km)

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(a) CPU Time

 0.4

 0.5

 0.6

 0.7

 2 2.5 3 3.5 4

Ta
sk

 C
om

pl
et

io
n

Ra
te

Worker Reachable Radius (km)

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(b) Task Completion Rate

 1.1

 1.2

 1.3

 1.4

 2 2.5 3 3.5 4

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(h

)

Worker Reachable Radius (km)

DE+GR
FQ+GR
TPR+GR

DE+MCMF
FQ+MCMF
TPR+MCMF

(c) Average Waiting Time

Figure 6: Performance of Task assignment: Effect of 𝑟

Task assignment is considered as one of the most fundamental

challenges in SC [6].

An SC platform can assign tasks to suitable workers according

to different optimization objectives during task assignment such as

maximizing the total number of assigned tasks [26, 33], maximizing

the total payoff of workers [4, 9, 25], and minimizing the total travel

cost of the assigned workers [3, 7]. For example, Zhao et al. [40]

propose a preference-aware spatial task assignment system and

use a tensor-decomposition algorithm to learn worker preference,

based onwhich they assign tasks with theMinimumCostMaximum

Flow (MCMF) method, aiming to maximize the total number of task

assignments. Dickerson et al. [9] design an adaptive algorithm

based on an offline-guide-online technique with the purpose of

maximizing the total payoff of workers. It firstly solves a linear

program benchmark and then uses the offline solution to simulate

the online matching procedure.

5.2 Recommendation in Spatial Crowdsourcing

In SC systems, task recommendation can help workers to find their

appropriate tasks and task requesters to receive high-quality task

results [1, 5, 11, 21, 24, 34] recently. For task recommendation, Chen

et al. [5] study the offline scenario where all tasks are known in

advance, which is not practical in real-world applications. As an

improvement of the study [5], Yuan et al. [35] consider dynamic

scenarios of new workers and new tasks in an SC system and pro-

pose a Task Recommendation (called TaskRec) framework based on

a unified probabilistic matrix factorization to recommend suitable

tasks for workers. However, the above studies mainly offer task

or route recommendation for workers, which fall short in terms

of considering recommendation for task requesters. In this paper,

we focus on the task publication time recommendation from the

perspective of task requesters rather than that of workers.

6 CONCLUSION

Due to the rapid development of mobile technologies and dramatic

proliferation of advanced mobile devices equipped with sensors,

recent years witness the prosperity of the Spatial Crowdsourcing

(SC) market, which consists of location-specific tasks and requires

workers to physically be at specific locations to complete them. In

this paper, we offer solutions to a problem called Publication Recom-

mendation based Task Assignment in SC, aiming to enable effective

task assignment with the task publication time recommendation.

Specifically, we achieve task publication time recommendation by

jointly learning the representations of task requesters in different

semantic spaces with the cross-graph neural network and learning

the multi-perspective relations of the task-publishing sequences

with the self-attention. Based on that, we perform effective task

assignment in SC. To the best of our knowledge, this is the first

work in SC that recommends the publication time for a task re-

quester when a request is proposed and performs task assignment

based on the recommendation. Extensive experiments on real data

demonstrate the effectiveness of our proposed solutions.

7 ACKNOWLEDGMENTS

This work is partially supported by NSFC (No. 61972069, 61836007

and 61832017), and Shenzhen Municipal Science and Technology

RD Funding Basic Research Program (JCYJ20210324133607021).

REFERENCES
[1] Abdulrahman Alamer, Jianbing Ni, Xiaodong Lin, and Xuemin Shen. 2017. Loca-

tion privacy-aware task recommendation for spatial crowdsourcing. In WCSP.

240

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xuanlei Chen, Yan Zhao, and Kai Zheng

1–6.
[2] Vamsi Ambati, Stephan Vogel, and Jaime Carbonell. 2011. Towards task recom-

mendation in micro-task markets. In AAAI.
[3] Nikhil Bansal, Niv Buchbinder, Anupam Gupta, and Joseph Seffi Naor. 2014.

A randomized O (log2 k)-competitive algorithm for metric bipartite matching.
Algorithmica 68, 2 (2014), 390–403.

[4] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu.
2016. New algorithms, better bounds, and a novel model for online stochastic
matching. ESA 57, 24 (2016), 1–16.

[5] Cen Chen, Shih-Fen Cheng, Hoong Chuin Lau, and Archan Misra. 2015. To-
wards city-scale mobile crowdsourcing: Task recommendations under trajectory
uncertainties. In IJCAI. 1113–1119.

[6] Lei Chen and Cyrus Shahabi. 2016. Spatial crowdsourcing: Challenges and
opportunities. Bulletin of the Technical Committee on Data Engineering 39, 4
(2016), 14.

[7] Zhao Chen, Peng Cheng, Yuxiang Zeng, and Lei Chen. 2019. Minimizing maxi-
mum delay of task assignment in spatial crowdsourcing. In ICDE. 1454–1465.

[8] Yue Cui, Liwei Deng, Yan Zhao, Bin Yao, Vincent W Zheng, and Kai Zheng. [n.d.].
Hidden poi ranking with spatial crowdsourcing. In KDD.

[9] John P Dickerson, Karthik A Sankararaman, Aravind Srinivasan, and Pan Xu.
2018. Assigning tasks to workers based on historical data: Online task assignment
with two-sided arrivals. In AAMAS. 318–326.

[10] Lester Randolph Ford and Delbert R Fulkerson. 1956. Maximal flow through a
network. Canadian journal of Mathematics 8 (1956), 399–404.

[11] Dawei Gao, Yongxin Tong, Jieying She, Tianshu Song, Lei Chen, and Ke Xu. 2017.
Top-k team recommendation and its variants in spatial crowdsourcing. DSE 2, 2
(2017), 136–150.

[12] David Geiger and Martin Schader. 2014. Personalized task recommendation in
crowdsourcing information systems—Current state of the art. Decision Support
Systems 65 (2014), 3–16.

[13] Srinivasa Raghavendra Bhuvan Gummidi, Xike Xie, and Torben Bach Pedersen.
2019. A survey of spatial crowdsourcing. TODS 44, 2 (2019), 1–46.

[14] Danhuai Guo, Yingqiu Zhu, Wei Xu, Shuo Shang, and Zhiming Ding. 2016. How
to find appropriate automobile exhibition halls: Towards a personalized recom-
mendation service for auto show. Neurocomputing 213 (2016), 95–101.

[15] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR. 639–648.

[16] Leyla Kazemi and Cyrus Shahabi. 2012. Geocrowd: enabling query answering
with spatial crowdsourcing. In SIGSPATIAL. 189–198.

[17] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[18] Xiang Li, Yan Zhao, Jiannan Guo, and Kai Zheng. 2020. Group task assignment
with social impact-based preference in spatial crowdsourcing. In DASFAA. 677–
693.

[19] Xiang Li, Yan Zhao, Xiaofang Zhou, and Kai Zheng. 2020. Consensus-Based
Group Task Assignment with Social Impact in Spatial Crowdsourcing. Data
Science and Engineering 5, 4 (2020), 375–390.

[20] Yunchuan Li, Yan Zhao, and Kai Zheng. 2021. Preference-aware Group Task
Assignment in Spatial Crowdsourcing: A Mutual Information-based Approach.
In ICDM. 350–359.

[21] Dan Lu, Qilong Han, Hongbin Zhao, and Kejia Zhang. 2017. Optimal Task
Recommendation for Spatial Crowdsourcing with Privacy Control. In ICPCSEE.
412–424.

[22] Jiangang Shu and Xiaohua Jia. 2016. Secure task recommendation in crowdsourc-
ing. In GLOBECOM. 1–6.

[23] Jiangang Shu, Xiaohua Jia, Kan Yang, and Hua Wang. 2018. Privacy-preserving
task recommendation services for crowdsourcing. TCC 14, 1 (2018), 235–247.

[24] Dezhi Sun, Ke Xu, Hao Cheng, Yuanyuan Zhang, Tianshu Song, Rui Liu, and
Yi Xu. 2019. Online delivery route recommendation in spatial crowdsourcing.
WWWJ 22, 5 (2019), 2083–2104.

[25] Hing-Fung Ting and Xiangzhong Xiang. 2015. Near optimal algorithms for online
maximum edge-weighted b-matching and two-sided vertex-weighted b-matching.
Theoretical Computer Science 607 (2015), 247–256.

[26] Yongxin Tong, Libin Wang, Zhou Zimu, Bolin Ding, Lei Chen, Jieping Ye, and Ke
Xu. 2017. Flexible online task assignment in real-time spatial data. PVLDB 10, 11
(2017), 1334–1345.

[27] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen, and Cyrus Shahabi. 2020.
Spatial crowdsourcing: a survey. PVLDB 29, 1 (2020), 217–250.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NIPS 30 (2017), 5998–6008.

[29] Xin Wang, Jin Liu, Xiao Liu, Xiaohui Cui, and Hao Wu. 2020. A novel dual-graph
convolutional network based web service classification framework. In ICWS.
IEEE, 281–288.

[30] Ziwei Wang, Yan Zhao, Xuanhao Chen, and Kai Zheng. 2021. Task Assignment
with Worker Churn Prediction in Spatial Crowdsourcing. In CIKM. 2070–2079.

[31] Jinfu Xia, Yan Zhao, Guanfeng Liu, Jiajie Xu, Min Zhang, and Kai Zheng. 2019.
Profit-driven Task Assignment in Spatial Crowdsourcing.. In IJCAI. 1914–1920.

[32] Dingqi Yang, Benjamin Fankhauser, Paolo Rosso, and Philippe Cudre-Mauroux.
2020. Location prediction over sparse user mobility traces using RNNs: Flashback
in hidden states!. In IJCAI. 2184–2190.

[33] Guanyu Ye, Yan Zhao, Xuanhao Chen, and Kai Zheng. 2021. Task Allocation
with Geographic Partition in Spatial Crowdsourcing. In CIKM. 2404–2413.

[34] Xicheng Yin, Hongwei Wang, Wei Wang, and Kevin Zhu. 2020. Task recommen-
dation in crowdsourcing systems: A bibliometric analysis. Technology in Society
63 (2020), 101337.

[35] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. 2015. Taskrec: A task
recommendation framework in crowdsourcing systems. Neural Processing Letters
41, 2 (2015), 223–238.

[36] Junwei Zhang, Fan Yang, Zhuo Ma, Zhuzhu Wang, Ximeng Liu, and Jianfeng
Ma. 2020. A decentralized location privacy-preserving spatial crowdsourcing for
internet of vehicles. TITS 22, 4 (2020), 2299–2313.

[37] Yan Zhao, Xuanhao Chen, Liwei Deng, Tung Kieu, Chenjuan Guo, Bin Yang,
Kai Zheng, and Christian S. Jensen. 2022. Outlier Detection for Streaming Task
Assignment in Crowdsourcing. In WWW.

[38] Yan Zhao, Jiannan Guo, Xuanhao Chen, Jianye Hao, Xiaofang Zhou, and Kai
Zheng. 2021. Coalition-based task assignment in spatial crowdsourcing. In ICDE.
241–252.

[39] Yan Zhao, Yang Li, Yu Wang, Han Su, and Kai Zheng. 2017. Destination-aware
Task Assignment in Spatial Crowdsourcing. In CIKM. 297–306.

[40] Yan Zhao, Jinfu Xia, Guanfeng Liu, Han Su, Defu Lian, Shuo Shang, and Kai
Zheng. 2019. Preference-aware task assignment in spatial crowdsourcing. In
AAAI. 2629–2636.

[41] Yan Zhao, Kai Zheng, Yue Cui, Han Su, Feida Zhu, and Xiaofang Zhou. 2020.
Predictive task assignment in spatial crowdsourcing: a data-driven approach. In
ICDE. 13–24.

[42] Yan Zhao, Kai Zheng, Jiannan Guo, Bin Yang, Torben Bach Pedersen, and Chris-
tian S Jensen. 2021. Fairness-aware task assignment in spatial crowdsourcing:
Game-theoretic approaches. In ICDE. 265–276.

[43] Yan Zhao, Kai Zheng, Yang Li, Han Su, Jiajun Liu, and Xiaofang Zhou. 2019.
Destination-aware Task Assignment in Spatial Crowdsourcing: A Worker De-
composition Approach. TKDE 32, 12 (2019), 2336–2350.

241

