
Efficient Trajectory Similarity Computation with Contrastive
Learning

Liwei Deng

University of Electronic Science and

Technology of China

deng_liwei@std.uestc.edu.cn

Yan Zhao

Aalborg University

yanz@cs.aau.dk

Zidan Fu

University of Electronic Science and

Technology of China

fuzidan@std.uestc.edu.cn

Hao Sun

Peking University

sunhao@stu.pku.edu.cn

Shuncheng Liu

University of Electronic Science and

Technology of China

liushuncheng@std.uestc.edu.cn

Kai Zheng
∗

University of Electronic Science and

Technology of China

zhengkai@uestc.edu.cn

ABSTRACT
The ubiquity of mobile devices and the accompanying deployment

of sensing technologies have resulted in a massive amount of trajec-

tory data. One important fundamental task is trajectory similarity

computation, which is to determine how similar two trajectories are.

To enable effective and efficient trajectory similarity computation,

we propose a novel robust model, namely Contrastive Learning

based Trajectory Similarity Computation (CL-TSim). Specifically,

we employ a contrastive learning mechanism to learn the latent

representations of trajectories and then calculate the dissimilarity

between trajectories based on these representations. Compared

with sequential auto-encoders that are the mainstream deep learn-

ing architectures for trajectory similarity computation, CL-TSim

does not require a decoder and step-by-step reconstruction, thus

improving the training efficiency significantly. Moreover, consider-

ing the non-uniform sampling rate and noisy points in trajectories,

we adopt two type of augmentations, i.e., point dowm-sampling

and point distorting, to enhance the robustness of the proposed

model. Extensive experiments are conducted on two widely-used

real-world datasets, i.e., Porto and ChengDu, which demonstrate

the superior effectiveness and efficiency of the proposed model.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.

KEYWORDS
Trajectory Similarity Computation; Contrastive Learning; Efficiency

ACM Reference Format:
Liwei Deng, Yan Zhao, Zidan Fu, Hao Sun, Shuncheng Liu, and Kai Zheng.

2022. Efficient Trajectory Similarity Computationwith Contrastive Learning.

∗
Corresponding author: Kai Zheng.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/3511808.3557308

In Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3511808.3557308

1 INTRODUCTION
The prevalence of GPS-enabled devices and wireless communica-

tion technologies have generated massive trajectory data, which is

denoted as a sequence of discrete locations describing the underly-

ing route of a moving object over time [19]. Over the last decades,

a rich variety of trajectory analytic tasks have been proposed, such

as similar subtrajectory search [28], trajectory prediction [20] and

trajectory clustering [1], among which trajectory similarity compu-

tation is one of the most fundamental component [11, 24, 37–40, 42].

Existing studies on trajectory similarity computation can be mainly

divided into two groups, i.e., traditional methods and learning-based

methods. The former methods, such as DTW [33], EDR [3], EDwP

[23], etc, are mainly based on matching-and-measurement para-

digm, i.e., finding the best alignment using dynamic programming

and counting the distance between two aligned points, which cause

that most of them have quadratic computational complexity 𝑂 (𝑛2)
[19], where 𝑛 is the number of samples in trajectories. Besides,

these methods are often criticized for their lack of robustness, e.g.,

they suffer from the poor trajectory quality caused by non-uniform

sampling rate [41] or noisy points [15].

The existing learning-based methods aim to reduce the compu-

tational complexity and/or improve the robustness. We divide them

into two directions based on their purposes. The first direction,

called neural approximation method, leverages powerful neural

networks to approximate any existing trajectory measurement in

hidden space [29, 31, 35]. Specifically, they train a neural network

𝑔 to encode trajectories into hidden space while minimize the dif-

ference between the estimated similarity and the ground-truth, i.e.,

|𝐷ℎ (𝑔(𝑇𝑖), 𝑔(𝑇𝑗)) − 𝐷 (𝑇𝑖 ,𝑇𝑗) |, where 𝑇𝑖 and 𝑇𝑗 are two trajectories,

𝐷ℎ is the dissimilarity (similarity) measurement (e.g., Euclidean dis-

tance) in hidden space, 𝐷 is the trajectory dissimilarity (similarity)

measurement (e.g., DTW) to be approximated. These methods does

not require point alignment between two trajectories and thus are

linear in the length of trajectories [31]. Although these methods

accelerate the process of trajectory similarity computation, they

may also suffer from robustness problems as the measurements to

be approximated.

365

https://doi.org/10.1145/3511808.3557308
https://doi.org/10.1145/3511808.3557308

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Liwei Deng et al.

To solve the robustness problems, the methods in the second

direction propose some brand new measurements through neural

networks, which are robust for processing low-quality trajectory

data while reduce the computational complexity [19, 30, 32]. The

idea of these methods to reduce the computational complexity is

similar to that of the approximation methods, i.e., they learn a

neural network to convert trajectories into latent representations

and then define similarity in the latent space. Unlike neural ap-

proximating methods, these methods mainly adopt a sequential

auto-encoder architecture to unsupervisedly learn the mapping

function due to lack of the guidance from an existing measurement.

Moreover, to improve the robustness of the latent representation

w.r.t poor quality, these methods adopt different strategies. For ex-

ample, t2vec [19] leverages denoising sequential autoencoder and

Trembr [30] incorporates information of road network and designs

multiple tasks.

In this work, we will go further in the second direction and de-

sign a new measurement. Although previous methods can compute

trajectory similarity efficiently, they suffer from low efficiency in

training the encoding model. This is due to the inherent limita-

tions of sequential auto-encoder architecture, where the decoding

procedure and the step-by-step reconstruction are extremely time-

consuming. For example, t2vec takes about 14 hours to train an

epoch on 20 million trajectories with an average of 60 samples

using Tesla K40 GPU [19]. Obviously, the training efficiency of

t2vec is hardly acceptable in practice. Moreover, these methods

try to learn the consistent representations for the trajectories from

the same underlying route to solve the quality problem. In other

words, for the trajectories even with different sampling rates and

noisy points from the same underlying route, the representations

should be the same. However, we argue that this goal cannot be

achieved by sequential auto-encoders because their objective is to

reconstruct the trajectories instead of the underlying route. Taking

t2vec as an example, suppose there are two different trajectories,

i.e.,𝑇𝑖 and𝑇𝑗 , sampled from the same underlying route, in which 𝒕𝑖
and 𝒕 𝑗 are the corresponding output representations of the encoder

by inputting the destructive trajectories 𝑇
′
𝑖
and 𝑇

′
𝑗
. To reconstruct

trajectories 𝑇𝑖 and 𝑇𝑗 , 𝒕𝑖 and 𝒕 𝑗 should be different even 𝑇𝑖 and

𝑇𝑗 are derived from the same underlying route. Therefore, obtain-

ing the consistent representations is very difficult (if possible) for

sequential auto-encoder.

To solve the problems above, we propose a novel robust model

based on Contrastive Learning for Trajectory Similarity computa-

tion (CL-TSim). We follow the common paradigm that firstly learns

the representations of trajectories and then uses Euclidean distance

to calculate the similarity between trajectories in the encoding

space. To learn the consistent representations of trajectories, an

intuitive thought is directly minimizing the distance between 𝒕𝑖
and 𝒕 𝑗 . However, this operation cannot be implemented due to the

agnostic of which trajectories are from the same underlying route.

To circumvent this problem, we observe that two trajectories 𝑇𝑖
and 𝑇𝑗 should be two views of the same underlying route, where

𝑇𝑗 is sampled from 𝑇𝑖 . Based on this observation, we first prepro-

cess the trajectory 𝑇𝑖 to get the augmented trajectory 𝑇𝑗 , in which

down-sampling and distorting augmentations are used to fit the

trajectory characteristics including the non-uniform sampling rate

and noisy points. Then we simultaneously encode them into hidden

space andmaximize agreement between them. To avoiding constant

solution, i.e., all the representations are the same, the pair-based

negative sampling strategy [5] is adopted. Moreover, following the

contrastive learning architecture, CL-TSim only contains an en-

coder and a projector, where the encoder is to encode the original

trajectories to learn their representations, and the projector is to

map the representations into a metric space where the loss function

works. Compared to sequential auto-encoders, it does not require a

decoder and step-by-step reconstruction, which can significantly

reduce the training time.

The major contributions of this paper are as follows:

• We propose a robust and efficient model, CL-TSim, based on

contrastive learning for trajectory similarity computation. To the

best of our knowledge, it is the first study to apply contrastive

learning framework to the task of trajectory similarity computa-

tion.

• We learn the consistent representations of trajectories by apply-

ing trajectory data augmentations, i.e., point down-sampling and

point distorting, under the framework of contrastive learning, in

which point down-sampling and distorting are designed to model

the non-uniform sampling rate and noisy points of trajectories.

• We conduct extensive experiments on two widely-used real-

world trajectory datasets. The results demonstrate the superi-

ority of the proposed model in terms of effectiveness and effi-

ciency. Specifically, compared to the method, i.e., t2vec, CL-TSim

is around 20x faster in training time (on one epoch) and performs

better in accuracy, i.e., lower mean rank and higher precision.

• We conduct extensive ablation study to investigate the impact

of each component of the proposed model. We also release the

codes in Github
1
for the purpose of reproducibility.

2 RELATEDWORKS
2.1 Trajectory Similarity Computation
Trajectory similarity computation, the key component for many

applications, has been studied in decades. Before the prevalence of

deep learning, all methods fall into the matching-and-measurement

paradigm, such as DTW [33], LCSS [26], etc, in which point match-

ing between two trajectories is first adopted while a distance func-

tion is leveraged to measure the dissimilarity between points. In

thesemethods, the distance between two trajectories is accumulated

from distance between points. Due to the process of point matching,

thesemethods result in𝑂 (𝑛2) computational complexity, which can-

not be endured in practice. For example in our experiments, given

1K query trajectories, vanilla DTW [33] costs around 10 hours to

find the most similar trajectory from 100K trajectories
2
. Different

from the previous methods, t2vec [19] is a deep-learning-based

technique discarding the matching-and-measurement paradigm,

which largely reduces the inference time of trajectory similarity

computation while performs better on self-similarity and cross-

similarity tasks. However, it takes a significant amount of time

in training and is not robust enough because of the limitation of

the sequential auto-encoder architecture. To solve these problems,

1
https://github.com/LIWEIDENG0830/CL-TSim

2
Due to the limitation of space, we refer the readers to the survey [24] for comprehen-

sive study of trajectory similarity computation.

366

Efficient Trajectory Similarity Computation with Contrastive Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

we adopt the contrastive learning architecture with two types of

trajectory data augmentations in this work.

2.2 Contrastive Learning
Contrastive learning is a prevalent unsupervised learning archi-

tecture in computer vision. The main idea of this architecture is

maximizing the similarity between two augmentations of one image

while keeping dissimilarity between different images. Therefore,

the main components in contrastive learning are data augmenta-

tions and dissimilar operations. In terms of images augmentations,

amounts of intuitive augmentations, such as cropping and resiz-

ing [5], color distortion [17], rotation [13], cutout [12], etc, can be

employed to improve the accuracy of image classification. For the

dissimilar operations, we should note that this operation is impor-

tant because only maximizing agreement between representations

of two augmentations will cause a constant solution (also called

collapsing solution), i.e., all the representations of images are same,

which will make the model useless for downstream applications. To

avoid collapsing solution, many models such as SimCLR [5], Moco

[7], and Simsiam [8] have been proposed, in which SimCLR adopts

negative sample pairs, Moco levarages momentum encoder, and

Simsiam adopts an advanced stop-grad operator. Inspired by the

success of contrastive learning in image similarity calculation, we

apply it in trajectory similarity computation in this work. Specifi-

cally, two trajectory augmentations are considered to deal with the

poor quality problems of trajectories. The negative sample pairs [5]

are adopted for preventing the collapsing solution due to its sim-

plicity and effectiveness.

3 PRELIMINARIES
We proceed to present necessary preliminaries and then define the

problem to be addressed.

Definition 1 (Underlying Route). Underlying route is a con-
tinuous spatial curve (in the longitude and latitude domain) generated
by a moving object.

Definition 2 (Trajectory). A trajectory of a moving object, de-
noted as T, is a finite sequence of points sampled from the underlining
route with the form of 𝑇 = ((𝑥1, 𝑦1, 𝑡1), (𝑥2, 𝑦2, 𝑡2), ..., (𝑥𝑛, 𝑦𝑛, 𝑡𝑛)),
where (𝑥𝑖 , 𝑦𝑖) stands for the longitude and latitude information of a
sampled location at time stamp 𝑡𝑖3.

It is worthy noting that the underlying route only exists in theory

because GPS-enabled devices cannot record the spatio-temporal

positions continuously [19]. The actual data one can acquire and

analyze are trajectories. Affected by sampling methods and devices,

trajectories are often generated based on different sampling rates

and contain noisy points.

Problem Definition. Given a set of trajectories, our problem is

to design an efficient and robust model to compute the similarity

between trajectories with the following goals:

1) Efficient representation learning: learn a representation 𝒕 for
each trajectory 𝑇 efficiently, where 𝒕 can reflect the underlying

route of trajectory 𝑇 for computing trajectory similarity; and

2) Model robustness: the trajectory similarity computation is

robust to the data quality variance in trajectories. In other words,

3
In this paper, we only consider the spatial information.

Point down-sampling Point distorting

 Trajectory augmentations

Encoder

Projector

Augmented trajectories

Trajectory representations

 CL-TSim model training Trajectory similarity
computation

Trajectories to be compared

Encoder

Trajectory
representations

Euclidean
Distance

Trajectory
similarity

Skip-gram
model with

negative
sampling

Grids pretraining

Grid
representations

Historical trajectories Historical trajectories

Figure 1: Framework Overview

the similarity between two arbitrary trajectories, 𝑇𝑖 and 𝑇𝑗 , is con-

sistent regardless of non-uniform sampling rates and noisy points,

i.e., 𝑑 (𝑇𝑖 ,𝑇𝑗) ≈ 𝑑 (𝑇 ′
𝑖
,𝑇

′
𝑗
), where 𝑑 (𝑇𝑖 ,𝑇𝑗) is a trajectory similarity

(distance) measurement between 𝑇𝑖 and 𝑇𝑗 determining how sim-

ilar (dissimilar) two trajectories are, and 𝑇
′
𝑖
(𝑇

′
𝑗
) is the trajectory

sampled from the same underlying route with 𝑇𝑖 (𝑇𝑗).

4 FRAMEWORK AND METHODOLOGY
Bearing the above design goals, we propose a contrastive learning

based model, namely CL-TSim, for trajectory similarity computa-

tion. We first give an overview of the framework and then provide

specifics on each component in the framework.

4.1 Framework Overview
The framework consists of three components, i.e., pretraining, CL-

TSim model training, and trajectory similarity computation, as

shown in Figure 1.

The grids pretraining component uses the Skip-gram model [21,

22] with negative sampling to pretrain the representations of grids,

which are leveraged by the encoder component to convert a trajec-

tory into a sequence of vectors.

The CL-TSimmodel training component takes historical trajecto-

ries as input, which includes trajectory augmentations, an encoder,

and a projector. More specifically, in trajectory augmentations,

two trajectory sampling methods (i.e., point down-sampling and

point distorting) are adopted to generate augmented trajectories,

which aim to model non-uniform sampling rates and noisy points

in trajectories. The encoder is used to learn the representations of

trajectories by taking sequential information into consideration. Fi-

nally, in the projector, the representations are mapped into a metric

space where a loss function works that is to maximize the simi-

larity between two views of one underlying route while keeping

dissimilarity between different underlying routes to train the model

parameters.

After the model training, the trained encoder is transferred to

the trajectory similarity encoder in the trajectory similarity com-

putation component. When two new trajectories to be compared

arrives, they are first encoded to a representation by the encoder,

and then their distance is computed by Euclidean distance. The

smaller the distance is, the more likely that the two trajectories are

similar.

367

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Liwei Deng et al.

4.2 Grids Pretraining
Similar to the prior learning-based methods for trajectory similarity

computation [14, 19, 30, 34, 36], we partition the whole space into

non-overlapping and adjacent grids with equal size and treat each

grid as a token. All the latitude-longitude points in the same gridwill

be mapped to the same token. Li et. al [19] empirically demonstrate

the usefulness of this operation to overcome the problems of non-

uniform and low sampling rates. After that, each trajectory in the

training set is converted into a sequence of grids.

For better capturing the relationship among grids, we adopt

the Skip-gram model [21, 22] with negative sampling, which has

been proven to be an effective and efficient methods in many liter-

atures [4], to pretrain the representations of grids, i.e., 𝑬 ∈ R𝑁×𝑑
,

where 𝑁 is the number of grids. Specifically, given a sequence of

grids, e.g., (𝑔0, 𝑔1, 𝑔2, · · · , 𝑔𝑛), the objective of the Skip-gram with

negative sampling is to maximize the average log probability as

follows.

1

𝑁1

𝑁1∑
𝑖=1

∑
−𝑤≤ 𝑗≤𝑤,𝑗≠0

𝑙𝑜𝑔 (𝒈𝑇𝑗 𝒈𝑐) +
𝐾∑
𝑘=1

𝐸𝑔𝑘∼𝑃𝑛𝑒𝑔 (𝑔) [𝑙𝑜𝑔 𝜎 (−𝒈
′
𝑔𝑘

𝑇
𝒈𝑐)]

(1)

where 𝒈𝒋 (i.e., 𝑬 [𝑗, :]) is the representation of 𝑔 𝑗 ,𝑤 is the window

size defining the positive pairs, and 𝑔𝑘 is the negative sample of 𝑔𝑐
from distribution 𝑃𝑛𝑒𝑔 (𝑔). After pretraining, we freeze the repre-
sentations of grids, which means that these representations are not

updated when other parameters are trained. This is mainly because

that the proposed loss function (cf. Equation 6) cannot explicitly

reflect the spatial information. As the training goes on, the spa-

tial information may be discarded to some extent. We empirically

demonstrate this statement in the experimental part (cf. Sections

5.6 and 5.9).

4.3 CL-TSim Model Training
Trajectory augmentations. Although there are many intuitive

augmentations in images, such as cropping and resizing [5], color

distortion [17], rotation [13], cutout [12], etc., it is non-trivial to

define the augmentations for trajectory data (that is totally different

from images), which can reflect the characteristics of trajectories

to some extent. Following prior work [19], we adopt two type

of trajectory augmentations, i.e., point down-sampling and point

distorting, in which point down-sampling is to model the non-

uniform sampling rate of trajectories and point distorting is to fit

the characteristic of noisy points in trajectories.

Before formally introducing the point down-sampling augmen-

tation, we firstly analyze the non-uniform sampling rate problem.

This problem typically exists in two situations. The first situation is

that two moving objects are equipped with GPS devices that have

different sampling rates. The second one is that trajectories are gen-

erated by a moving object with different sampling rates, which may

be caused by missing samples or equipment errors. Considering

these two situations, we design two point down-sampling augmen-

tations. Specifically, suppose 𝑇 = ((𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛)) is
an existing trajectory in a dataset. The first point down-sampling

augmentation, called uniformly down-sampling augmentation, can
be described as follows.

𝑇𝑢1 = ((𝑥1, 𝑦1), (𝑥𝑘+1, 𝑦𝑘+1), (𝑥2𝑘+1, 𝑦2𝑘+1) · · ·) (2)

where 𝑇𝑢1 is the augmented trajectory from 𝑇 , and 𝑘 is a hyper-

parameter that define the re-sampling interval. In this augmenta-

tion, we aim to simulate the trajectories that have different sam-

pling rates as described in the first situation. For the second point

down-sampling augmentation, called randomly down-sampling aug-
mentation, we obtain the augmented trajectory 𝑇𝑢2 by randomly

dropping a portion of points in 𝑇 , where the dropping rate is de-

noted as 𝑟𝑑 that is the ratio between the number of dropped points

and that of all the points in𝑇 . This augmentation is used to simulate

the second situation.

Moreover, noisy points commonly exist in all trajectories due to

the impact of sampling devices. We hypothesize that these noises

are random and subject to normal distribution. Tomake latent repre-

sentations be robust to these noisy points, an augmentation named

point distorting augmentation is adopted [19]. Suppose (𝑥𝑖 , 𝑦𝑖) is
the point to be distorted. We first convert this point into Mercator

coordinate, e.g., (𝑥𝑖 , 𝑦𝑖), in which the distance between points is

measured in meters, so that we can easily set a satisfying pertur-

bation on the points. Then this augmentation can be described as

follows.

𝑥𝑖 = 𝑥𝑖 + 𝑟𝑠 · 𝑑𝑥𝑖 , 𝑑𝑥𝑖 ∼ 𝑁 (0, 1)
𝑦𝑖 = 𝑦𝑖 + 𝑟𝑠 · 𝑑𝑦𝑖 , 𝑑𝑦𝑖 ∼ 𝑁 (0, 1) (3)

where 𝑟𝑠 ·𝑑𝑥𝑖 (𝑟𝑠 ·𝑑𝑦𝑖) denotes the random distorting for 𝑥𝑖 (𝑦𝑖), and

𝑑𝑥𝑖 (𝑑𝑦𝑖) is a random number generated from the standard normal

distribution 𝑁 (0, 1). Next, 𝑟𝑠 is a small radius that can be set by

observations from a real application or specified by users, which is

empirically set to 50 (meters) in our experiments.

For different types of sampling methods such as uniform down-

sampling augmentation and point distorting augmentation, we

combine them on a trajectory to get the augmentation. For the

same type of sampling methods such as uniform and randomly

down-sampling augmentation, we do not simultaneously adopt

them. Then the augmented trajectory and the original trajectory

can be treated as two views for the underlying route described by

the original trajectory.

Encoder. After obtaining the two trajectories from the same un-

derlying route, we firstly map the points in trajectories into grids.

Therefore, each trajectory after augmentations is converted into a

sequence of grids. Then we encode the them into Euclidean space

by an encoder 𝑓 . Considering the training efficiency, we choose

Long Short-Term Memory (LSTM) [16] instead of complex neural

networks as the basic network structure for the encoder. Suppose

there are two trajectories, e.g., the original trajectory 𝑇 and its

corresponding augmented trajectory 𝑇𝑎 . The encoding procedure

in a python style can be presented as follows.

𝒕𝑒 = 𝐸𝑚𝑏 (𝑇, 𝑬)
𝒕𝑓 = 𝐿𝑆𝑇𝑀 (𝒕𝑒)

(4)

where 𝑬 is the pretrained grid representations, 𝐸𝑚𝑏 is an operation

that converts the grids into vectors, and 𝒕𝑓 is the latent representa-

tion of trajectory 𝑇 . Similarly, we can obtain the representation 𝒕𝑎
𝑓

for trajectory 𝑇𝑎 .

Projector. Previous studies [5, 7] show that directly maximizing

agreement between representations of two views obtained by the

encoder may degrade the performance. Following these studies, we

add a projector after encoder, as shown in Figure 1. In practice, two

368

Efficient Trajectory Similarity Computation with Contrastive Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

linear layers with ReLU are adopted. Supposing that 𝒕𝑓 is the input,
the projection can be expressed as follows.

𝒕𝑚 = 𝑅𝑒𝐿𝑈 (𝑾𝑚 𝒕𝑓 + 𝒃𝑚)
𝒕𝑝 =𝑾𝑝 𝒕𝑚 + 𝒃𝑝

(5)

where 𝑾𝑚 ∈ R𝑑×𝑑 , 𝒃𝑚 ∈ R𝑑 , 𝑾𝑝 ∈ R𝑑×𝑑 , and 𝒃𝑝 ∈ R𝑑 are

parameters to be trained.

Training.Onlymaximizing agreement of the representations of tra-

jectory augmentations will cause collapsing solution, which means

that all the representations of trajectories are the same due to lack-

ing dissimilarity computation among different underlying routes.

To solve this problem, we adopt a simple but effective method,

namely pair-based negative sampling [5], for preventing constant

solution. Specifically, we denote the representations of a minibatch

of trajectories and their augmented trajectories as 𝑺 and 𝑺𝑎 , respec-
tively. Based on that, the loss function with pair-based negative

sampling for a positive pair (𝒕𝑖 , 𝒕𝑎𝑖) can be expressed as follows.

𝑙𝑖 = − log

exp(𝑠𝑖𝑚(𝒕𝑖 , 𝒕𝑎𝑖)/𝜏)∑
𝒕𝑘 ∈𝑺∪𝑺𝑎 exp(I[𝑘≠𝑖]𝑠𝑖𝑚(𝒕𝑖 , 𝒕𝑘)/𝜏)

(6)

where 𝒕𝑘 is the representation of other trajectories in the same

batch, Sim is the normalizing Euclidean distance, i.e., sim(𝒖, 𝒗) =
𝒖𝑇 𝒗/∥𝒖∥ ∥𝒗∥, I[𝑘≠𝑖] is an indicator function that equals to 1 iff𝑘 ≠ 𝑖 ,

and 𝜏 denotes a temperature parameter. The pair-based negative

sampling is an implicit method, which means that we do not need to

explicitly sample negative trajectory pairs from a training dataset.

Taking a positive pair (𝒕𝑖 , 𝒕𝑎𝑖) as an example, 𝒕𝑘 ∈ 𝑺∪𝑺𝑎 are treated as
negative samples for 𝒕𝑖 and 𝒕𝑎𝑖 , where 𝑘 ≠ 𝑖 . With the decrease of the

loss, the distance between negative pairs and the similarity between

positive pairs increases, which can make trajectory representations

distinguishable to prevent collapsing solution.

Moreover, as shown in the loss function, our model does not

implicitly implement the dissimilarity among trajectories from the

same underlying route, i.e., the representations of two different

trajectories 𝑇𝑖 and 𝑇𝑗 sampled from the same route could be the

same. However, the sequential auto-encoder implicitly maintains

the dissimilarity between 𝑇𝑖 and 𝑇𝑗 for better reconstruction even

they are from the same underlying route. This demonstrates that

our model has the ability to learn more consistent representations

than the sequential auto-encoder.

4.4 Trajectory Similarity Computation
After training, we discard the projector part and adopt the encoder

to convert trajectories to be compared into latent representations

for trajectory similarity computation. Specifically, suppose𝑇𝑖 and𝑇𝑗
are two trajectories whose dissimilarity is to be determined. Their

dissimilarity can be computed as follows.

𝒕𝑓𝑖 = 𝐿𝑆𝑇𝑀 (𝐸𝑚𝑏 (𝑇𝑖 , 𝑬))
𝒕𝑓𝑗 = 𝐿𝑆𝑇𝑀 (𝐸𝑚𝑏 (𝑇𝑗 , 𝑬))
𝐷ℎ (𝑇𝑖 ,𝑇𝑗) = | |𝒕𝑓𝑖 − 𝒕𝑓𝑗 | |2

(7)

where 𝒕𝑓𝑖 ∈ R𝑑 and 𝒕𝑓𝑗 ∈ R𝑑 are latent representations of trajectory

𝑇𝑖 and trajectory 𝑇𝑗 , respectively. Next, | | · | |2 presents 2-norm of

vectors, and 𝐷ℎ (𝑇𝑖 ,𝑇𝑗) is the dissimilarity value between 𝑇𝑖 and 𝑇𝑗 .

Table 1: Statistics of Datasets.

Dataset #Points #Trips Mean Length

Porto 74,269,739 1,233,766 60

ChengDu 60,048,544 1,164,451 51

5 EXPERIMENTS
5.1 Datasets and Baselines
We evaluate the performance of CL-TSim on two widely-used

datasets, i.e., Porto
4
and ChengDu

5
, compared with six representa-

tives, i.e., DTW [33], EDR [3], LCSS [26], OWD [9], Frechet [2], and

t2vec
6
[19]. We set the same sampling rate, i.e., 15 seconds, for two

datasets. We partition each dataset into a training set and a testing

set based on the starting timestamp of trajectories, where the first

1 million trajectories are used for training, and the remaining ones

are used for testing. Statistics of the datasets are shown in Table 1.

5.2 Hyper-parameter Settings
Following previous work [19], we set the size of grid to 100 me-

ters. To pretrain grid representations, we adopt a python library,

called Gensim
7
, to implement the Skip-gram model, in which the

number of negative samples, learning rate, and epochs are set to

20, 0.025, and 5, respectively. For CL-TSim, we set the hidden size

and the number of layers of LSTM to 128 and 1, respectively. The

temperature 𝜏 , the batch size, initial learning rate, weight decays,

and maximum epochs for training are set to 0.07, 128, 1e-4, 1e-4,

and 40, respectively. We choose Adam as our optimizer and co-

sine annealing learning rate scheduler to dynamically adjust the

learning rate. In the training stage, for each sample, we randomly

choose k, down-sampling rate, and distorting rate from {2, 3, 4, 5},

{0, 0.2, 0.4, 0.6, 0.8}, and {0, 0.2, 0.4, 0.6, 0.8}, respectively, to generate

the augmented trajectory, in which 𝑟𝑑 and 𝑟𝑡 are not set to 0 at

the same time. For t2vec, we follow the original paper [19] to set

the hyper-parameters and train the model. Specifically, we set the

embedding dimension of grids, the hidden size of LSTM, and the

number of layers of LSTM to 256, 128, and 3, respectively. More-

over, we also adopt the Skip-gram to pretrain the representations

of t2vec. For EDR and LCSS, we set the threshold to 100 meters. For

other baselines, there are no requirements for settings of hyper-

parameters. In the following experiments, our results are reported

based on these parameters, unless explicitly specified otherwise.

5.3 Evaluation Platform
Our method is implemented in Python and Pytorch, and trained

using a GeForce GTX 1080 Ti GPU. The baseline methods are also

written in Python. The platform runs the Ubuntu 16.04 operating

system with 48-cores Intel(R) CPU E5-2650 v4 @ 2.20GHz 256GB

RAM.

5.4 Metrics
We evaluate the above methods in terms of two aspects, i.e., self-

similarity and cross-similarity [19].

4
http://www.geolink.pt/ecmlpkdd2015-challenge

5
https://gaia.didichuxing.com

6
https://github.com/boathit/t2vec

7
https://radimrehurek.com/gensim/

369

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Liwei Deng et al.

Table 2: Mean Rank and Precision w.r.t. |Q2 ∪ D1 |.

MR Precision

DB size 20K 40K 60K 80K 100K 20K 40K 60K 80K 100K

Porto

DTW 23.757 47.192 69.068 93.995 118.033 0.271 0.203 0.170 0.144 0.124

EDR 13.619 26.164 39.281 56.278 71.031 0.654 0.609 0.574 0.545 0.548

LCSS 48.88 95.527 140.332 196.526 243.01 0.487 0.428 0.416 0.394 0.388

OWD 5.470 10.006 14.473 20.676 25.855 0.782 0.727 0.700 0.675 0.659

Frechet 3.669 6.646 9.714 14.143 18.010 0.802 0.753 0.720 0.693 0.677

t2vec 1.292 2.408 3.611 5.103 6.351 0.858 0.806 0.780 0.751 0.738

CL-TSim 0.124 0.263 0.380 0.541 0.668 0.952 0.931 0.913 0.904 0.899

ChengDu

DTW 10.632 21.140 31.784 42.958 54.052 0.271 0.190 0.143 0.121 0.106

EDR 2.956 5.417 7.445 10.562 12.782 0.737 0.684 0.663 0.630 0.608

LCSS 20.994 41.120 58.525 81.226 102.147 0.497 0.447 0.420 0.376 0.356

OWD 1.483 2.903 4.274 5.767 7.339 0.767 0.714 0.674 0.648 0.627

Frechet 1.806 3.561 5.244 7.092 8.992 0.623 0.525 0.493 0.444 0.411

t2vec 1.333 2.611 3.711 5.017 6.445 0.756 0.695 0.667 0.639 0.615

CL-TSim 0.207 0.388 0.536 0.732 0.925 0.913 0.865 0.846 0.829 0.818

Self-similarity. Given a set of trajectories, we randomly choose

𝑚 trajectories and 𝑛 trajectories, denoted as Q and D, respectively.

Then we define two empty set, denoted as Q1 and Q2. For each

trajectory in Q, we create two sub-trajectories (called twins tra-

jectories) by alternately taking points from it, and add the first

sub-trajectory into Q1 while the other is added into Q2. Then for

each trajectory in Q1, called a query trajectory, we retrieve the most

similar trajectory in Q2∪D, called a database trajectory. Obviously,

the trajectories in Q2 should be ranked before D, since they are

generated from the same trajectories with Q1. Supposing that𝑇𝑖 is a

query trajectory in Q1, and𝑇𝑗 is the corresponding twins trajectory

in Q2, we calculate the similarity between𝑇𝑖 and Q2 ∪D1, sort the

trajectories based on the similarity, and denote the rank of𝑇𝑗 as 𝑟𝑖
8
.

Based on that, two widely-used metrics [10], i.e., precision 𝑃 and

mean rankMR, are adopted for evaluation, which can be calculated

as follows.

𝑃 =

∑
𝑇𝑖 ∈Q1

𝑝𝑖

|Q1 |
(8)

MR =

∑
𝑇𝑖 ∈Q1

𝑟𝑖

|Q1 |
(9)

where 𝑝𝑖 equals to 1 iff 𝑟𝑖 equals to 0, otherwise 𝑝𝑖 equals to 0. A

larger 𝑃 or smaller MR value means a better self-similarity perfor-

mance.

Cross-similarity. A good similarity measure should be able to

preserve the similarity between two different trajectories, regardless

of the data sampling strategies [18, 19]. An evaluation criterion from

prior studies [19, 25, 27], namely Cross Distance Deviation (CDD),
is also adopted to evaluate the performance. The calculation of CDD
can be expressed as follows.

CDD =
|𝑑 (𝑇 ′

𝑎 (𝑟𝑑),𝑇 ′
𝑏
(𝑟𝑑)) − 𝑑 (𝑇𝑎,𝑇𝑏) |

𝑑 (𝑇𝑎,𝑇𝑏)
(10)

where 𝑇𝑎 and 𝑇𝑏 are two distinct trajectories with the original rate,

𝑇 ′
𝑎 (𝑟𝑑) is𝑇𝑎 ’s variant obtained by randomly dropping (or distorting)

sample points with dropping (or distorting) rate 𝑟𝑑 , and 𝑇
′
𝑏
(𝑟𝑑) is

𝑇𝑏 ’s variant obtained in the same way with 𝑇 ′
𝑎 (𝑟𝑑). To evaluate

CDD, we randomly select a set of trajectories, denoted as D ′
, from

8
The rank 𝑟𝑖 equals to 0, when𝑇𝑗 ranks the first.

the testing set, and adopt the dropping (or distorting) strategy with

different ratios. A smaller CDD value indicates that the evaluated

similarity (i.e., distance) is much closer to the ground truth.

5.5 Overall Comparison
Effect of Database Sizes. Firstly, we study the effect of the data-

base sizes, i.e., |Q2 ∪ D|, as shown in Table 2, where |Q1 | is fixed
at 1K. As the database size grows, the performances of all methods

deteriorate. Among all the traditional trajectory measurements,

Frechet performs the best. The learning-based methods, i.e., t2vec

and CL-TSim, perform better than others, which demonstrates the

effectiveness of deep-learning techniques. Moreover, CL-TSim al-

ways outperforms the other competitors significantly regardless of

database size, even when |Q2 ∪ D| equals to 100K. CL-TSim gives

a low mean rank and high precision for the queries.

Robustness. To demonstrate the robustness of methods with non-

uniform sampling rates and noises, we vary the down-sampling

rate 𝑟𝑑 and distorting rate 𝑟𝑡 from 0.2 to 0.6 to down-sample and

distort each trajectory in Q1, Q2∪D, andD ′
, where |Q1 |, |Q2∪D|,

and |D ′ | are fixed at 1K, 20K, and 1K, respectively. We first conduct

self-similarity experiments on Porto as shown in Tables 3 and 4.

We observe that CL-TSim and t2vec outperforms all the traditional

methods, and CL-TSim consistently performs the best among all the

methods regardless of 𝑟𝑑 and 𝑟𝑡 . We also conduct cross-similarity

experiments on Porto in Tables 5 and 6. When we vary the down-

sampling rates, t2vec and CL-TSim consistently achieve the best

compared with others. However, when varying the distorting rate,

the performance of traditional methods (except for OWD) is better

than those of t2vec and CL-TSim, and CL-TSim outperforms t2vec.

Through the whole robustness experiments, we observe that the

two learning-based methods, i.e., CL-TSim and t2vec, are more

robust in self-similarity than in cross-similarity compared with

other competitors. Moreover, comparing the two learning-based

methods, we notice that CL-TSim is more robust than t2vec in most

cases, which demonstrates that CL-TSim can learn more consistent

representations of trajectories.

370

Efficient Trajectory Similarity Computation with Contrastive Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 3: Mean Rank and Precision w.r.t. Down-sampling Rate on Porto.

MR Precision

𝑟𝑑 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6

DTW 27.386 38.482 58.356 98.378 170.379 0.282 0.266 0.228 0.196 0.136

EDR 118.18 248.633 471.154 784.239 1078.699 0.566 0.536 0.461 0.403 0.345

LCSS 48.406 63.742 56.979 63.494 83.233 0.445 0.446 0.434 0.396 0.387

OWD 5.610 6.716 9.931 16.354 24.684 0.740 0.698 0.649 0.581 0.482

Frechet 7.443 11.220 15.472 22.51 28.95 0.783 0.663 0.578 0.516 0.447

t2vec 1.406 1.610 1.768 3.029 3.907 0.839 0.831 0.827 0.788 0.755

CL-TSim 0.252 0.319 1.497 1.795 3.366 0.943 0.917 0.893 0.881 0.817

Table 4: Mean Rank and Precision w.r.t. Distorting Rate on Porto.

MR Precision

𝑟𝑡 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6

DTW 23.82 23.895 23.964 24.095 23.975 0.268 0.271 0.267 0.262 0.265

EDR 13.028 12.349 12.795 12.045 10.582 0.673 0.669 0.671 0.680 0.671

LCSS 48.470 50.905 50.972 46.857 44.856 0.488 0.486 0.492 0.494 0.504

OWD 5.129 5.556 5.589 5.571 5.492 0.772 0.751 0.747 0.713 0.715

Frechet 3.604 3.635 3.617 3.696 3.622 0.803 0.803 0.801 0.798 0.799

t2vec 1.161 1.179 1.385 1.277 1.328 0.850 0.828 0.850 0.841 0.840

CL-TSim 0.119 0.114 0.160 0.169 0.174 0.950 0.948 0.937 0.944 0.947

Table 5: CDD w.r.t. the Down-sampling Rate on Porto.

Rate 0.2 0.3 0.4 0.5 0.6

DTW 0.1828 0.2743 0.3670 0.4638 0.5564

EDR 0.1457 0.2319 0.3256 0.4297 0.5315

LCSS 0.1369 0.1152 0.1867 0.2362 0.2341

OWD 0.3051 0.4616 0.6784 0.9821 1.4008

Frechet 0.0329 0.0417 0.0498 0.0544 0.0560

t2vec 0.0163 0.0232 0.0282 0.0341 0.0404
CL-TSim 0.0110 0.0196 0.0341 0.0579 0.0945

Table 6: CDD w.r.t. the Distorting Rate on Porto.

Rate 0.2 0.3 0.4 0.5 0.6

DTW 0.0014 0.0018 0.0023 0.0026 0.0029

EDR 0.0005 0.0007 0.0009 0.0010 0.0011
LCSS 0.0011 0.0015 0.0018 0.0021 0.0023

OWD 0.2071 0.2453 0.2680 0.2898 0.2998

Frechet 0.0010 0.0013 0.0017 0.0019 0.0021

t2vec 0.0151 0.0193 0.0221 0.0248 0.0265

CL-TSim 0.0050 0.0077 0.0084 0.0094 0.0107

Table 7: Effect of Grid Representations.

Metrics P&F R&NF R&F

MR 0.668 2.315 325.42

Precision 0.899 0.794 0.494

5.6 Effect of Main Components
In this subsection, we conduct self-similarity experiments on Porto

to test the effect of each main component, in which |Q1 | and |Q2 ∪
D| are fixed at 1K and 100K, respectively. When we evaluate the

impact of a component, the other components or hyper-parameters

are set by default.

Effect of Grid Representations. The input type of CL-TSim is dif-

ferent from previous contrastive learning methods, such as SimCLR

[5], in which images with real value containing much informa-

tion are inputs. Our inputs are discrete tokens, which need to be

converted to representations by looking up an embedding table.

Different initialization of grid representations usually lead to dif-

ferent performances. We denote three variants, i.e., P&F, P&NF,

and R&F, to test the effect, in which P&F, P&NF and R&F repre-

sent pretrain-and-freeze, pretrain-and-freeze-free and random-and-

freeze, respectively. The results are shown in Table 7. Compared

with R&F, P&F performs better with a large margin since random

initialization and freeze break the relationship among grids. Com-

pared with P&NF, P&F performs better, which demonstrates that

the loss function (cf. Equation 6) for training model cannot maintain

spatial information well. As the training goes on, the pretrained

grid representations will be modified and the spatial information

will be dropped to some extent.

Effect of Representation Types. As shown in prior studies [5, 6],

treating outputs of different layers as the latent representations, i.e.,

outputs of encoder 𝒕𝑓 , outputs of projector 𝒕𝑝 , outputs of middle of

projector 𝒕𝑚 , usually have different performance. We use the same

trained model but get the latent representations of trajectories by

different parts of the model. Figure 2 shows the effect of epochs on

MR and precision. From these results, we can see that 𝒕𝑓 outputted

by the encoder can get the best performance, and 𝒕𝑝 is slightly better
than 𝒕𝑚 , which demonstrates that 𝒕𝑓 is more representative and

should be used as representation of trajectories. We also observe

that CL-TSim converges after around 40 epochs. This explains why

we set the max epoch at 40 in other experiments.

Effect of Batch Sizes. Due to the pair-based negative sampling

used in the loss function, the batch size will affect the number

of negative samples [5–8]. We vary the batch size in the training

phase from 8 to 1024. The results is shown in Figure 3. We can see

371

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Liwei Deng et al.

0 20 40 60 80 100
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
R

Encoder
Middle
Predictor

(a) MR

0 20 40 60 80 100
Epochs

0.82

0.84

0.86

0.88

0.90

P

Encoder
Middle
Predictor

(b) Precision

Figure 2: Effect of Representation Types

8 16 32 64 128 256 512 1024
batch size

0

1

2

3

4

5

M
R

(a) MR

8 16 32 64 128 256 512 1024
batch size

0.7

0.8

0.9

P

(b) Precision

Figure 3: Effect of Batch Sizes

that when the batch size is small, e.g., 8, the performance is the

worst because there are few samples to help the model to generate

distinguishable representations of trajectories, and it is easy for the

model to collapse. As the batch size increases, the results of mean
rank and precision will be better. When the batch size equals to

256, the results reach the best. After that, due to the increase of the

probability that sampling trajectories from the same underlying

route in a batch are wrongly treated as negative samples, the results

will slightly degrade with the increase of the batch size.

5.7 Efficiency
As efficiency is important for real-world applications, we study the

training time and testing time on Porto. The experimental settings

are the same with that of the Effect of Main Components.
TrainingTime.To fairly compare the training efficiency, we present

the average training time of one epoch under different training sizes

(i.e., 1M, 2M, and 3M). The results are shown in Figure 4. We can

see that CL-TSim is around 20x faster than t2vec for training one

epoch. Next, t2vec will cost around 9 hours while CL-TSim only

cost around 1 hours to achieve convergency, which demonstrates

the efficiency of the proposed model.

Testing Time. We also present the testing time of each method

in Figure 4, in which the time of t2vec and CL-TSim contain two

parts, i.e., encoding 101K trajectories into representations using

GeForce GTP 1080 Ti and evaluating the similarity among trajec-

tories. Due to the low efficiency of baselines, we run them with

20 multi-processors implemented on Multiprocessing library of

python while evaluate t2vec and CL-TSim on one core of CPU. We

can see that CL-TSim is much faster than others with a large margin.

Specifically, compared with t2vec, CL-TSim costs less testing time

because t2vec has to use more complex neural networks (i.e., three

Bi-LSTM layers with hidden size of 128) to maintain its effective-

ness (i.e., smaller or larger hidden size used in t2vec will decrease

1M 2M 3M
Training Size

102

103

104

Ti
m

e(
s)

2218.75

4421.88
6664.06

107.90

218.31
326.71

t2vec
CL-TSim

(a) Training time

DT
W ED

R
LC
SS

OW
D

Fre
che

t
t2v
ec

CL
-TS
im

102

103

104

105

Ti
m
e(
s)

(b) Testing time

Figure 4: Model Efficiency

20 30 40 50 60 70 80 90 100
DB size

0.75

0.80

0.85

0.90

0.95

P 0.05
0.07
0.1
0.3
0.5
0.7
0.9

(a) MR

20 30 40 50 60 70 80 90 100
DB size

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
R

0.05
0.07
0.1
0.3
0.5
0.7
0.9

(b) Precision

Figure 5: Effect of the temperature 𝜏 with respect to the DB
size, i.e., |Q2 ∪ D1 |.

the performance reported in [19]) while we just adopt one LSTM

layer with hidden size of 128 in CL-TSim.

5.8 Hyper-Parameters Sensitivity
Effect of temperature 𝜏 . We first study the effect of temperature

𝜏 in Equation 6, which is important in the contrastive learning

paradigm. Totally, we conduct experiment in terms of self-similarity

to show the effect of 𝜏 . Firstly, we vary 𝜏 from 0.05 to 0.9 and the

DB size from 20K to 100K at the same time. Then we report the MR

and Precision. The results are shown in Figure 5. We can see that

with the increase of the DB size, the performance decrease, i.e., MR

increases and Precision decreases. Besides, we can observe that the

performances are competitive when 𝜏 is set to 0.05 or 0.07, which

are obviously better than the other settings, e.g., 𝜏=0.1. Moreover,

settting 𝜏 to 0.07 can achieve the best in most cases.

Effect of hidden size 𝑑 . Then, we vary the hidden size from 16 to

256 and the DB size from 20K to 100K and report the performance

in terms of self-similarity as shown in Figure 7, in which each

line presents each value of DB size. For example, the red dotted

line presents the performance when the hidden size varies from

16 to 256 and the DB size equals to 20K. Thus, we can see that

the performance become better with the increase of the hidden

size. This observation is obvious especially when the hidden size

increases from 16 to 64. After that with the further increase of

the hidden size, the decrease of MR metric is very slight and the

increase of precision metric is limited. However, the training time of

the proposed model largely increase, e.g., training one epoch on 1M

trajectories costs around 150s when the hidden size equals to 256

while only costs around 107s when the hidden size equals to 128.

Therefore, we set the hidden size to 128 in the other experiments

by simultaneously considering the balance between effectiveness

and efficiency.

372

Efficient Trajectory Similarity Computation with Contrastive Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

(a) CL-TSim (b) t2vec (c) R&NF (d) OWD

Figure 6: Visualization on Porto. The red trajectory is the query trajectory. These blue lines are 100 trajectories which are the
most similar to the query trajectory returned by different models.

Table 8: Performance Comparison for Different Methods on DTW, EDR, OWD, Frechet distances.

DTW EDR OWD Frechet

Methods Overlap@20 Overlap@50 Overlap@20 Overlap@50 Overlap@20 Overlap@50 Overlap@20 Overlap@50

t2vec 1.899 4.991 2.351 5.138 2.608 5.400 3.442 7.526

CL-Tsim 2.855 8.683 3.667 8.960 4.571 11.343 6.480 15.743

50 100 150 200 250
hidden size

0

1

2

3

4

5

6

7

M
R

20K
40K
60K
80K
100K

(a) MR

50 100 150 200 250
hidden size

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

P

20K
40K
60K
80K
100K

(b) Precision

Figure 7: Effect of the hidden size 𝑑 with respect to the DB
size, i.e., |Q2 ∪ D1 |.

5.9 Visualization
Previous tasks, i.e., self-similarity and cross-similarity, mainly show

the robustness of a measurement to non-uniform sampling rate and

noisy points. Considering an extreme situation that one neural net-

work can map trajectories from the same underlying route into the

same representations while the distance between different underly-

ing routes is randomly assigned. In this situation, the performance

of the neural network on self-similarity and cross-similarity tasks

will be perfect. However, it may violate the common sense (spatial

proximity), i.e., trajectories located in the adjacent streets should

be intuitively more similar than trajectories that are far apart from

each other.

To demonstrate that CL-TSim obeys this common sense, we

randomly sample a trajectory from the Porto testing set and treat

it as a query trajectory. Then we compute similarity between the

query and the remaining trajectories in the testing set and return

100 trajectories that are the most similar to the query trajectory.

The results are visualized in Figure 6. From this figure, we can see

that CL-TSim can preserve spatial information since the top-100

similar trajectories obtained by it are around in the query trajectory.

Moreover, we observe that if 𝑬 is not initialized by pretrained

representations, the results will be more diverse, which shows the

importance of pretraining operation. Moreover, we observe that

OWD tends to return the trajectories that are parallel to the query

trajectory since it measures the distance between trajectories as the

average minimal distance from all sample points of query trajectory

to the line-approximated trajectory [24].

Besides, we can see that the obtained trajectories of CL-TSim

are more compact than those of t2vec. To demonstrate this ob-

servation in a quantitive way, we follow the evaluation of neural

approximation methods [31] to calculate the overlaps of the most

similar 𝑘 trajectories between neural network-based method and

traditional method. Specifically, we randomly choose 1K trajecto-

ries as query and 100K trajectories as data from the Porto testing

set. Then we calculate the mean of the number of overlaps among

the most similar 𝑘 trajectories between neural network-based mea-

surement and traditional measurement. The spatial proximity is

naturally guaranteed by traditional methods. If the first neural

network-based measurement has larger number of overlaps (i.e., a

higher mean value) with all the traditional methods than the second

neural network-based measurement does, we can claim that the

first measurement performs better than the second measurement

in preserving spatial proximity. The results are shown in Table 8.

Through this table, we observe that CL-TSim has a higher mean

value, which further demonstrate the superiority of CL-TSim to

preserve spatial proximity compared with t2vec.

6 CONCLUSION
In this paper we propose a novel trajectory similarity computation

model based on contrastive learning, called CL-TSim. In order to

achieve high effectiveness and efficiency, we address a few chal-

lenges by employing a contrastive learning mechanism to learn the

latent representations of trajectories and calculate the similarity

between trajectories, where two augmentation strategies including

point down-sampling and point distorting are developed that target

robust trajectory similarity computation. Extensive experiments

based on real trajectories datasets confirm the superiority of our

proposed model over the state-of-the-art approaches in terms of

precision, mean rank, and training efficiency.

7 ACKNOWLEDGEMENT
This work is partially supported by NSFC (No. 61972069, 61836007

and 61832017), and Shenzhen Municipal Science and Technology

R&D Funding Basic Research Program (JCYJ20210324133607021).

373

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Liwei Deng et al.

REFERENCES
[1] Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei

Pan, and Erin Taylor. 2018. Subtrajectory Clustering: Models and Algorithms. In

SIGMOD. 75–87.
[2] Helmut Alt and Michael Godau. 1995. Computing the Fréchet distance between

two polygonal curves. Int. J. Comput. Geom. Appl. 5 (1995), 75–91.
[3] Lei Chen, M. Tamer Özsu, and Vincent Oria. 2005. Robust and Fast Similarity

Search for Moving Object Trajectories. In SIGMOD. 491–502.
[4] Meng Chen, Yan Zhao, Yang Liu, Xiaohui Yu, and Kai Zheng. 2022. Modeling

spatial trajectories with attribute representation learning. TKDE 34, 4 (2022),

1902–1914.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.

A Simple Framework for Contrastive Learning of Visual Representations. ArXiv
abs/2002.05709 (2020).

[6] Ting Chen, Simon Kornblith, Kevin Swersky, MohammadNorouzi, and Geoffrey E.

Hinton. 2020. Big Self-Supervised Models are Strong Semi-Supervised Learners.

ArXiv abs/2006.10029 (2020).

[7] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. 2020. Improved

Baselines with Momentum Contrastive Learning. ArXiv abs/2003.04297 (2020).

[8] Xinlei Chen and Kaiming He. 2020. Exploring Simple Siamese Representation

Learning. ArXiv abs/2011.10566 (2020).

[9] Chi-Yin Chow, Mohamed F. Mokbel, and Walid G. Aref. 2009. Casper*: Query

processing for location services without compromising privacy. ACM Trans.
Database Syst. 34, 4 (2009), 24:1–24:48. https://doi.org/10.1145/1620585.1620591

[10] Yue Cui, Hao Sun, Yan Zhao, Hongzhi Yin, and Kai Zheng. 2021. Sequential-

knowledge-aware Next POI Recommendation: A Meta-learning Approach. TOIS
(2021).

[11] Liwei Deng, Hao Sun, Rui Sun, Yan Zhao, and Han Su. 2022. Efficient and Effective

Similar Subtrajectory Search: A Spatial-aware Comprehension Approach. TIST
13, 3 (2022), 35:1–35:22.

[12] Terrance Devries and Graham W. Taylor. 2017. Improved Regularization of

Convolutional Neural Networks with Cutout. ArXiv abs/1708.04552 (2017).

[13] Spyros Gidaris, Praveer Singh, and N. Komodakis. 2018. Unsupervised Represen-

tation Learning by Predicting Image Rotations. ArXiv abs/1803.07728 (2018).

[14] R. H. Güting and M. Schneider. 2005. Realm-based spatial data types: The ROSE

algebra. VLDBJ 4 (2005), 243–286.
[15] Suining He and S. Chan. 2016. Tilejunction: Mitigating Signal Noise for

Fingerprint-Based Indoor Localization. TMC 15 (2016), 1554–1568.

[16] S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural
Computation 9 (1997), 1735–1780.

[17] Andrew G. Howard. 2014. Some Improvements on Deep Convolutional Neural

Network Based Image Classification. CoRR abs/1312.5402 (2014).

[18] Guanyao Li, Chih-Chieh Hung, Mengyun Liu, Linfei Pan, W. Peng, and S. Chan.

2021. Spatial-Temporal Similarity for Trajectories with Location Noise and

Sporadic Sampling. In ICDE. 1224–1235.
[19] Xiucheng Li, Kaiqi Zhao, G. Cong, Christian S. Jensen, and Wei Wei. 2018. Deep

Representation Learning for Trajectory Similarity Computation. In ICDE. 617–
628.

[20] Shuncheng Liu, Han Su, Yan Zhao, Kai Zeng, and Kai Zheng. 2021. Lane Change

Scheduling for Autonomous Vehicle: A Prediction-and-Search Framework. In

KDD. 3343–3353.
[21] Tomas Mikolov, Kai Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of

Word Representations in Vector Space. In ICLR.

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, G. Corrado, and J. Dean. 2013. Dis-

tributed Representations of Words and Phrases and their Compositionality. In

NIPS. 3111–3119.
[23] Sayan Ranu, P Deepak, A. Telang, Prasad Deshpande, and S. Raghavan. 2015.

Indexing and matching trajectories under inconsistent sampling rates. In ICDE.
999–1010.

[24] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. 2019. A

survey of trajectory distance measures and performance evaluation. VLDBJ 29
(2019), 3–32.

[25] Han Su, Kai Zheng, Haozhou Wang, Jiamin Huang, and Xiaofang Zhou. 2013.

Calibrating trajectory data for similarity-based analysis. In SIGMOD. 833–844.
[26] M. Vlachos, D. Gunopulos, and G. Kollios. 2002. Discovering similar multidimen-

sional trajectories. In ICDE. 673–684.
[27] Haozhou Wang, Han Su, Kai Zheng, S. Sadiq, and Xiaofang Zhou. 2013. An

Effectiveness Study on Trajectory Similarity Measures. In ADC. 13–22.
[28] Zheng Wang, Cheng Long, G. Cong, and Yiding Liu. 2020. Efficient and effective

similar subtrajectory search with deep reinforcement learning. In VLDB, Vol. 13.
2312 – 2325.

[29] Peilun Yang, Hanchen Wang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin

Lin. 2021. T3S: Effective Representation Learning for Trajectory Similarity

Computation. ICDE, 2183–2188.
[30] Tao yang Fu and Wang-Chien Lee. 2020. Trembr: Exploring Road Networks for

Trajectory Representation Learning. TIST 11 (2020), 10:1–10:25.

[31] Di Yao, G. Cong, Chao Zhang, and Jingping Bi. 2019. Computing Trajectory Sim-

ilarity in Linear Time: A Generic Seed-Guided Neural Metric Learning Approach.

In ICDE. 1358–1369.
[32] Di Yao, Chao Zhang, Zhihua Zhu, Jianhui Huang, and Jingping Bi. 2017. Trajectory

clustering via deep representation learning. IJCNN (2017), 3880–3887.

[33] Byoung-Kee Yi, H. Jagadish, and C. Faloutsos. 1998. Efficient retrieval of similar

time sequences under time warping. In ICDE. 201–208.
[34] Daqing Zhang, N. Li, Z. Zhou, C. Chen, Lin Sun, and Shijian Li. 2011. iBAT:

detecting anomalous taxi trajectories from GPS traces. In UbiComp. 99–108.
[35] Hanyuan Zhang, Xinyu Zhang, Qize Jiang, Baihua Zheng, Zhenbang Sun, Weiwei

Sun, and Changhu Wang. 2020. Trajectory Similarity Learning with Auxiliary

Supervision and Optimal Matching. In IJCAI. 3209–3215.
[36] Yifan Zhang, An Liu, Guanfeng Liu, Zhixu Li, and Qing Li. 2019. Deep Rep-

resentation Learning of Activity Trajectory Similarity Computation. In ICWS.
312–319.

[37] Yan Zhao, Shuo Shang, Yu Wang, Bolong Zheng, Quoc Viet Hung Nguyen, and

Kai Zheng. 2018. REST: A Reference-based Framework for Spatio-temporal

Trajectory Compression. In KDD. 2797–2806.
[38] Yan Zhao, Shuo Shang, YuWang, Bolong Zheng, Quoc Viet Hung Nguyen, and Kai

Zheng. 2018. Rest: A reference-based framework for spatio-temporal trajectory

compression. In SIGKDD. 2797–2806.
[39] Kai Zheng, Yan Zhao, Defu Lian, Bolong Zheng, Guanfeng Liu, and Xiaofang Zhou.

2019. Reference-based framework for spatio-temporal trajectory compression

and query processing. TKDE 32, 11 (2019), 2227–2240.

[40] Kai Zheng, Yan Zhao, Defu Lian, Bolong Zheng, Guanfeng Liu, and Xiaofang Zhou.

2019. Reference-based framework for spatio-temporal trajectory compression

and query processing. TKDE 32, 11 (2019), 2227–2240.

[41] Kai Zheng, Yu Zheng, Xing Xie, and Xiaofang Zhou. 2012. Reducing Uncertainty

of Low-Sampling-Rate Trajectories. In ICDE. 1144–1155.
[42] Hao Zhou, Yan Zhao, Junhua Fang, Xuanhao Chen, and Kai Zeng. 2019. Hybrid

route recommendation with taxi and shared bicycles. Distributed and Parallel
Databases (2019), 1–21.

374

https://doi.org/10.1145/1620585.1620591

	Abstract
	1 Introduction
	2 Related Works
	2.1 Trajectory Similarity Computation
	2.2 Contrastive Learning

	3 Preliminaries
	4 Framework and Methodology
	4.1 Framework Overview
	4.2 Grids Pretraining
	4.3 CL-TSim Model Training
	4.4 Trajectory Similarity Computation

	5 Experiments
	5.1 Datasets and Baselines
	5.2 Hyper-parameter Settings
	5.3 Evaluation Platform
	5.4 Metrics
	5.5 Overall Comparison
	5.6 Effect of Main Components
	5.7 Efficiency
	5.8 Hyper-Parameters Sensitivity
	5.9 Visualization

	6 Conclusion
	7 Acknowledgement
	References

