
Task Assignment with Federated Preference Learning in Spatial
Crowdsourcing

Jiaxin Liu
University of Electronic Science and

Technology of China

China

jiaxinliu1999@std.uestc.edu.cn

Liwei Deng
University of Electronic Science and

Technology of China

China

deng_liwei@std.uestc.edu.cn

Hao Miao
Aalborg University

Denmark

haom@cs.aau.dk

Yan Zhao∗

Aalborg University

Denmark

yanz@cs.aau.dk

Kai Zheng
University of Electronic Science and

Technology of China

China

zhengkai@uestc.edu.cn

ABSTRACT

Spatial Crowdsourcing (SC) is ubiquitous in the online world today.

As we have transitioned from crowdsourcing applications (e.g.,

Wikipedia) to SC applications (e.g., Uber), there is a substantial

precedent that SC systems have a responsibility not only to effective

task assignment but also to privacy protection. To address these

often-conflicting responsibilities, we propose a framework, Task

Assignment with Federated Preference Learning, which performs

task assignment based on worker preferences while keeping the

data decentralized and private in each platform center (e.g., each

delivery center of an SC company). The framework includes two

phases, i.e., a federated preference learning and a task assignment

phase. Specifically, in the first phase, we design a local preference

model for each platform center based on historical data. Meanwhile,

the horizontal federated learning with a client-server structure is

introduced to collaboratively train these local preference models

under the orchestration of a central server. The task assignment

phase aims to achieve effective and efficient task assignment by

considering workers’ preferences. Extensive evaluations over real

data show the effectiveness and efficiency of the paper’s proposals.

CCS CONCEPTS

• Networks → Location based services; • Information sys-

tems→ Recommender systems; • Security and privacy;

KEYWORDS

preference; task assignment; federated learning; spatial crowdsourc-

ing

∗Corresponding author: Yan Zhao.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557465

ACM Reference Format:

Jiaxin Liu, Liwei Deng, Hao Miao, Yan Zhao, and Kai Zheng. 2022. Task

Assignment with Federated Preference Learning in Spatial Crowdsourcing.

In Proceedings of the 31st ACM International Conference on Information and

Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3511808.3557465

1 INTRODUCTION

The last decade haswitnessed substantial advances of Spatial Crowd-

sourcing (SC), which enables people tomove asmulti-modal sensors

that perform a variety of location-based tasks [9, 15, 33]. The so-

cial and ethical concerns raised by SC are increasingly attracting

attention, including issues like privacy [10, 17, 23, 24, 26, 28, 39]

and efficiency [19, 21, 36, 42, 46]. In particular, privacy is one of the

most common issues in SC. In order to achieve effective SC services,

workers or platform centers (e.g., delivery centers of an SC com-

pany) are usually required to disclose their raw information (e.g.,

workers’ locations and historical data). However, it is dangerous

that real data can be used by a malicious third party. Thus, people

will be unwilling to hand over their data to an SC platform, which

leads to low worker participation and even worker churn.

Previous studies on privacy protection in SCmainly focus on pro-

tecting the location information of workers or tasks [1, 10, 26, 39]

and secure computation of distance [17, 24, 28]. However, these

studies ignore worker preference, which is a critical aspect of an SC

platform. Assigning workers their interested tasks is a key to ensur-

ing continuous worker participation and satisfaction. On the con-

trary, when a worker is assigned an uninterested task, the worker

may complete the task with low quality or may even sabotage the

task, which impacts SC platforms negatively. Considering worker

preference is thus a major challenge in SC. Recently, a number

of studies have explored worker preference in SC [19, 21, 42, 46].

Zhao et al. [42] model different workers’ preferences on different

categories of tasks in different time slots with a three-dimensional

tensor and supplement the missing entries of tensor with the aid

of workers’ task-performing history and context matrices. The

study [21] uses the historical task-performing data to maximize the

mutual information among workers in order to learn the informa-

tive representation vectors of groups and further learn the group

1279

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Jiaxin Liu et al.

Federated Preference Learning

Platform center 1

Central server

Data
…

Data Data

Data Historical data …

Download parameters
Train locally

 Upload parameters
 Update server model

Platform center 2 Platform center n

Context encoder

In-category encoder

Collaborate module
Dynamic penalized

risk function

Global preference model

Local preference model

Task Assignment
Tasks to be

assigned
Workers to
be assigned

AWs for
each task

RTs for
each worker

Intersected
top-k KM

Spatio-temporal
constraints

Figure 1: Framework Overview

preferences. However, they do not consider the privacy when mod-

eling worker preferences. Instead, they transmit the raw data to the

SC platform directly and train the preference model in a centralized

way. In practice, data transfer migration between platform centers

is cumbersome and each platform center is unwilling to share their

data with others in order to prevent raw data leakage. In such a

case, task assignment often fails to obtain effective task assignment

solutions. To solve the above issues, we study a preference-driven

task assignment problem based on federated learning, which aims

to protect the raw data and take workers’ preferences in task as-

signment. Federated Learning (FL) is a machine learning setting

where many clients (e.g., mobile devices, organizations, or plat-

forms) collaboratively train a model under the orchestration of a

central server while keeping the training data decentralized. It em-

bodies the principles of focused collection and data minimization,

which can mitigate systemic privacy risks and costs resulting from

traditional, centralized machine learning [11].

Filling the gap between existing research focusing on privacy

issues and methods ignoring worker preferences, we propose a

two-phase SC framework, namely Task Assignment with Federated

Preference Learning (TA-FPL), which consists of a federated prefer-

ence learning and a task assignment phase, as shown in Figure 1.

In the first phase, we design a federated preference model for each

local center, and all local models are combined with a central server.

For each preference model, each platform center first downloads

parameters from the central server and utilizes its local historical

data to learn workers’ preferences for all task categories by using a

context encoder, an in-category encoder, and a collaborate module.

Then, a central server receives the updated model parameters and

aggregate them to update the global preference model. In the aggre-

gation part, we add a dynamic penalized risk function to achieve

better performance. In the task assignment phase, we first calcu-

late Available Workers (AWs) for each task and Reachable Tasks

(RTs) for each worker based on spatio-temporal constraints. Then

we propose an intersected top-k Kuhn Munkras (KM) algorithm,

which considers the top-k AWs and RTs for each task and worker

simultaneously, to achieve effective and efficient task assignment

by considering workers’ preference.

To summarize, the main contributions are four-fold.

1) We propose a privacy-protecting SC framework, called Task

Assignment with Federated Preference Learning (TA-FPL). To the

best of our knowledge, this is the first study in SC that applies

federated learning, which protects the privacy of workers’ historical

performing raw data effectively.

2) We combine the preference model with federated learning

to learn workers’ preferences, where a dynamic penalized risk

function is designed to aggregate the transmitted parameters of all

selected platform centers.

3) We propose an intersected top-k KM algorithm based on work-

ers’ preferences to achieve effective and efficient task assignment.

4) We conduct sufficient experiments on a real-world dataset,

offering evidence of the effectiveness and efficiency of the proposed

framework.

The remainder of this paper is organized as follows. Preliminary

concepts and notations are introduced in Section 2. We then present

federated preference learning and intersected Top-k KM task allo-

cation algorithm in Section 3. We report the experimental results in

Section 4. Section 5 surveys the related work and Section 6 offers

conclusions.

2 PROBLEM DEFINITION

We proceed to present necessary preliminaries and then define the

problem addressed. Table 1 lists the notations used throughout the

paper.
Table 1: Summary of Notation

Symbol Definition Symbol Definition

pc Platform center w .l Current location ofw
pc .l Location of pc w .pc Platform center ofw
pc .W A worker set of pc w .r Reachable radius ofw
s Spatial task w .speed Speed of workerw
s .l Location of s w .S A set of historical tasks ofw
s .p Publication time of s A A spatial task assignment

s .e Expiration time of s A.S Allocated task set of S
s .c Category of s A Task assignment set

w Worker

Definition 1 (Platform Center). A platform center, denoted

by pc = (l ,W), has a location pc .l and a set of workers pc .W .

Definition 2 (Spatial Task). A spatial task, denoted by s =
(l ,p, e, c), has a location s .l , a publication time s .p, an expiration time

s .e , and a category s .c .

With SC, the query of a spatial task s can be answered only if a

worker is physically located at that location s .l and be completed

only if a worker arrives at s .l before its deadline s .e . Note that with
the single task assignment mode [13], an SC server should allocate

each spatial task to only one worker at a time.

Definition 3 (Worker). Aworker, denoted byw = (l ,pc, r , speed, S),
has a locationw .l , a centerw .pc that the workerw works for, a reach-

able radius w .r , a movement speed w .speed , and a set of historical

tasksw .S .

1280

Task Assignment with Federated Preference Learning in Spatial Crowdsourcing CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

The reachable range of workerw is a circle withw .l as the center
andw .r as the radius, within whichw can accept assignments. In

our work, an worker can handle only one task at a certain time

instance and belongs to a single center, which is reasonable in

practice.

Definition 4 (Spatial Task Assignment). Given a set of work-

ersW = {w1,w2, ...,w |W | }, a set of tasks S = {s1, s2, ..., s |S | }, and
a set of platform centers PC = {pc1,pc2, ...,pc |PC | }, we define A as

the spatial task assignment which consists of a set of tuples of form

(pc,w, s), where a spatial task s is assigned to workerw who works for

pc , satisfying all the workers’ and tasks’ spatial-temporal constraints.

Based on the above definitions, a formal problem definition is as

follows.

Preference-driven Task Assignment with Privacy Protec-

tion. Given a set of centers PC with private local data (i.e., workers’

historical task records and workers’ locations), a set of online work-

ersW , and a set of tasks S at the current time instance, our problem

is to find an optimal task assignment Aopt that maximizes the total

number of assigned tasks, i.e., ∀Ai ∈ A (|Aopt .S | ≥ |Ai .S |), by con-

sidering workers’ preferences and protecting the privacy of each

platform center, where A denotes all possible assignments andAi .S
denotes the tasks of task assignment Ai .

3 ALGORITHM

In this section, we introduce the details of the proposed framework

TA-FPL, which contains a federated preference learning phase de-

scribed in Section 3.1 and a preference-driven task assignment phase

described in Section 3.2. In the federated preference learning phase,

a local preference model is proposed to model workers’ preferences

for local platform centers, which contains three modules, i.e., a

context encoder, an in-category encoder, and a collaboration mod-

ule. We combine the above-mentioned modules to predict the local

workers’ preferences. Then, we introduce a novel federated train-

ing process to update the parameters of the central server’s model

in order to get the global workers’ preferences. In the preference-

driven task assignment phase, we introduce an Intersected top-k
KM algorithm to find a suitable task assignment.

Data Source

Worker-task
sequences

Local Preference Model
Context Encoder

Recency Encoder

Top-k
Gating Network

In-category
Encoder

Collaborate Module

Neighbors Retrieval

Memory Queue
Updating

Episodic context

In-category worker preference

Neighbors’ in-category preference Worker-task
location

sequences

Historical
data in center

Worker
Preference
Prediction

Figure 2: Local Preference Model

3.1 Federated Preference Learning

In this section, we introduce the local preference model and feder-

ated model training, respectively. Noted that central server’s model

and local platform centers’ models share the same model frame-

work, as shown in Figure 2.

3.1.1 Local Platform Center Preference Modeling. In this section,

we will introduce how to use each platform center’s local data to

model workers’ preferences.

Given a set of workersW over a set of task locations L from a

set of task categories C , a task record can be denoted as a tuple

si = (li , ci), where i is the index of the task in a worker’s historical

task record sequence, li is the location of task si that the worker
interacts with, and ci is the task’s category. Different tasks may be

located in the same location. A sequence of N tasks from worker

w is denoted as Sw = {s1, s2, ..., sN }, which is ordered according

to the chronological order of tasks. Scw = {sc1 , s
c
2 , ..., s

c
T
} represents

the subsequence of Sw under category c , where T is the number

of task records in this subsequence and task records in Scw are

still in chronological order. Given Sw of workerw , the goal of our

preference model is to predict this worker’s preferences of task

location and task category in the near future.

As shown in Figure 2, the local preference model is composed of

three modules: a context encoder, an in-category encoder, and a col-

laboration module. First, to model worker preferences under a task

category, a task sequence can be divided into multiple subsequences

according to task categories, and each subsequence contains tasks

of the same category. The in-category encoder, utilizing SelfAtten-

tion [16, 35], is used to model in-category transition patterns of

task-to-task in the subsequences. Second, the context encoder con-

tains episodic context and category context. Based on the categories

of recent task records, the context encoder utilizes SelfAttention

to predict the next category, thus helping determine a worker’s

preference for the next task location. To get the episodic context,

the context encoder models the task-to-task transition patterns

among recent task records with another SelfAttention. Third, due

to the sparsity of observations in individual worker’s task records,

we retrieve workers with similar in-category preferences to the

target worker based on the context encoder’s next category predic-

tion. Finally, task location and task category prediction are made

based on the episodic context, the in-category worker preferences,

and neighboring workers’ in-category preferences. We will then

introduce the details of each component of this preference model.

Context Encoder. The context encoder is designed to obtain

both category and episodic context for the worker preference pre-

diction. To decide which in-category worker preferences should be

used, the category of the next task is predicted. By using a top-k
gating network and a recency encoder, we can obtain the category

context and the episodic context in recent task records, respectively.

For the top-k gating network, we take the categories of recent

tasks as input. Through the input category embedding layer, the

categories of the most recent M task records can be projected

into vectors Z = [ezcN−M
, ..., ezcN], and the relative positions of

recent task records [M, ..., 1] can be similarly projected into Pz =
[Pz
M
, ..., Pz1] with the position embedding layer. Then a SelfAtten-

tion network [16, 35], which is composed of nl layers of a multi-

head attention block and a Fully Connected (FC) network block,

transforms the category vectors H0 = Z + Pz into hidden repre-

sentations Hnl = [hz1 , ...,h
z
T
]. For the ith attention head, the input

latent states H j will be transformed as Eq. 1, where projection ma-

tricesW
Q
i ,W

K
i ,W

V
i are learnable parameters and LN is a layer

normalization network. We use hz = hz
T
to summarize the category

1281

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Jiaxin Liu et al.

information of recent task records.

A
j
i = Attention(H

jW
Q
i , H jW K

i , H jW V
i),

Attention(Q, K, V) = sof tmax (
Q · KT√
da/nh

),

H j+1 = LN (H j + FC j (Aj)),

(1)

Then we feed hz into the output category embedding layer and a

softmax layer. The top-k gating network generates a probability

distribution over all task categories:

p(ĉN+1 = j) ∝ exp(〈hz, ezj 〉), (2)

wherep(ĉN+1 = j) represents the probability of category j being the
category of the next task location and ezj is the category embedding

of category j. Considering the uncertainty in the prediction of

the next category, the gating network selects top-k most probable

categories according to Eq. 3:

{c j }
k
j=1 = arдtopk

j′
({p(ĉN+1 = j′)}

|C |

j′=1
), (3)

where c j ∈ C .
The recency encoder is utilized to infer the episodic context from

recent task records. Because of the continuity between tasks, the

recent records of tasks reflect the ongoing intent of the next task

location. For the recency encoder, we take themost recentM records

of task locations [lN−M , ..., lN] in the original sequence S as the

input, which is projected through the input task location embedding

layer into vectors X r = [elN−M
, ..., elN]. The relative positions of

recent task records [M, ..., 1] are projected into Pr = [Pr
M
, ..., Pr1]

through the position embedding layer similarly. Then, we use the

SelfAttention network to transform vectors X r + Pr into hidden

states, and the hidden state of the last task record is used to represent

the inferred episodic context of hr :

hr = SelfAttention(X r + P r) (4)

The recency encoder checks the recent task locations beyond

specific categories and provides a complementary view of the next

task location besides the category context.

In-category Encoder. With respect to the k predicted cate-

gories calculated in Eq. 3, we can calculate the corresponding in-

category worker preferences to predict the next task location, i.e.,

the hidden representations {hc j }kj=1 from the in-category encoder

selected. Without loss of generality, we take the encoding process

for a task subsequence of category c as an example. The correspond-

ing task location subsequence [lc1 , ..., l
c
T
] is projected through the

input task location embedding layer Ein into a set of dense vectors

X c = [ec
l1
, ..., ec

lT
]. The relative positions [T , ..., 1] of these records

to the next task location are projected through the position embed-

ding layer P into Pc = [Pc
T
, ..., Pc1]. Taking the dense vectorsX

c+Pc

as input, the SelfAttention network outputs the representations of

the worker preferences in this category hc :

hc = SelfAttention(X c + P c) (5)

CollaborationModule. By using collaborative learning among

neighboring workers with similar preferences, the sparsity issue

can be mitigated. To predict the next task location, we combine

the neighboring workers’ information based on their similarities

obtained with in-category subsequences. In collaboration module,

a memory tensor Mem is used to record workers’ in-category pref-

erences, storing the latent states of the last F workers for each

category c in chronological order.

Using the target worker’s in-category preferences hcw under

category c , the reading operation of Mem can be performed as

follows. First, we compute the similarity of the preferences under

category c between workerw and worker i as:

sim(hcw , h
c
i) ∝ exp(〈hcw , h

c
i 〉) (6)

Then we choose the top-f similar workers as the neighbors and

take a weighted sum of their representations as the neighborhood

representation for the next task location prediction:

hf =

top−f∑
i′

sim(hcw , h
c
i′
)hc
i′

(7)

For the writing operation ofMem,Mem is randomly initialized.

We then update it with the latest worker’s in-category preference

representations hc , generated from the in-category encoder. Thus

the memory tensor is a queue, which pushes the most recently

served workers’ representations of category c while dynamically

popping out the representations of workers inactive for a long time.

Preference Prediction. Based on the three modules above, we

can get the worker preference of the task location and task cat-

egory. For the preference score of task category c j , score(ĉ j) =
score(ĉN+1 = c j), we can calculate it in Eq. 2:

score(ĉ j) = exp(〈h
z, ezj 〉), (8)

wherehz represents the category information of recent task records

and ezj is the embedding of category j.

In order to predict the worker preference of task location li ,

score(l̂i) = score(l̂N+1 = li), we use the mixture of obtained rep-

resentations as the worker representation. Based on in-category

worker preferences of the predicted top-k categories hc j , neigh-

boring workers’ in-category preferences representation hfj , and
episodic context inferred from the most recent task location records

hr , we concatenate these three representations for each of k cat-

egories and project concatenated representations into the output

task location embedding space with a fully connected (FC) network

layer. Thus, the worker representation hj for category j is:

hj = FC(hr ⊕ hcj ⊕ hfj), (9)

where j = 1, 2, ...,k and ⊕ represents the concatenate operation.

Then we use inner product and softmax and get the worker prefer-

ence of task location li under the premise of category j:

scorej (l̂i) = sof tmax (〈hj , Eout 〉), (10)

where Eout represents the task locations’ embeddings. Furthermore,

when we consider all top-k categories, the worker’s preference of

task location li can be calculated according to Eq. 11:

score(l̂i) =

k∑
j=1

scorej (l̂i)score(ĉ j) (11)

3.1.2 Federated Preference Model Training. In this section, we will

introduce the global loss function and model parameters updating

in federated training way.

Loss Function. The loss function of each platform center is

composed of two parts: the loss of task location prediction and the

loss of task category prediction.

For the loss of task location prediction, we apply the negative

sampling trick, which randomly samples Ns negative task locations

according to their popularity in training datasets for each positive

1282

Task Assignment with Federated Preference Learning in Spatial Crowdsourcing CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

instances [2]. The loss of task location prediction is:

Lloc = −

Ns +1∑
l=1

δ (lN+1 = l) logp(l̂N+1 = l) (12)

p(l̂N+1 = l) = sof tmax (score(l̂N+1 = l)), (13)

where δ (·) is an indicator function, lN+1 is the ground-truth task

location, and l̂N+1 is the model’s prediction. Likewise, we compute

the loss of all task locations’ categories:

Lcate = −

C∑
j=1

δ (cN+1 = j) logp(ĉN+1 = j), (14)

where p(ĉN+1 = j) is computed by Eq. 2. We compute the joint loss

as follows:
L = λ × Lloc + (1 − λ) × Lcate , (15)

where λ is a hyper-paramter to controll the weights.

Given a central server which can transmit and receive messages

fromm sampled platform centers, platform center pck consists of

Nk training instances. The whole federated loss function l(θ) is:

l (θ) =
1

m

m∑
k=1

Lk (θ), (16)

where Lk (θ) is the empirical loss (i.e. Eq. 15) of platform center pck ,
and θ are the parameters of our preference network.

Federated Training. We employ federated training, as shown

in Algorithm 1, to transmit local model parameters of each platform

center to the central server for the purpose of privacy protection.

In communication round t ∈ [1, ...,T], a subset of platform centers

Pt ⊂ {pc1, ...,pcN } are active, where N is the number of all plat-

form centers. The central server transmits its current model θ t−1

to these platform centers (lines 2–3). Each active platform center

then optimizes a local empirical risk objective, which is the sum

of its local empirical loss and a dynamic penalized risk function

(line 5). Besides, each active platform center computes their local

gradient to satisfy local optima condition (line 6), then transmitting

the updated parameters to central server (line 7). For unselected

platform centers, they do not update their models (lines 8–10). Fi-

nally, the central server updates its state ht , which implies whether

they converge to a point that turns out to be a stationary point of

the global risk [8], and model parameters θ t (lines 11–12).

Algorithm 1: Federated Preference Model Training

Input: T , θ 0, α , θ 0
k

1 for each round t in [1, .., T] do

2 Sample platform centers Pt ;

3 Server transmits θ t−1 to each selected platform center;

4 for each platform center pck ∈ Pt do

5 θ t
k
= argmin

θ

Lk (θ) − 〈�Lk (θ t−1k
), θ 〉 + α

2 ‖θ − θ t−1 ‖
2
;

6 �Lk (θ tk) = �Lk (θ t−1k
) − α (θ t

k
− θ t−1);

7 Transmit platform center model θ t
k
to central server;

8 for each platform center pck � Pt do
9 θ t

k
= θ t−1

k
;

10 �Lk (θ tk) = �Lk (θ t−1k
);

11 ht = ht−1 − α
m (

∑
k∈Pt θ

t
k
− θ t−1);

12 θ t = (1
|Pt |

∑
k∈Pt θ

t
k
) − 1

α h
t ;

3.2 Preference-driven Task Assignment

In this section, we first obtain the available worker set for each

task and reachable task set for each worker. Then, we use spatio-

temporal and top-k constraints to build a Bipartite graph and pro-

pose an Intersected Top-k KM algorithm, which utilizes the worker

preferences for different task categories calculated by the federated

preference learning model. To protect each platform’s local data

and to get the global workers’ preferences, all workers’ preferences

are calculated in local platform center and then uploaded to the

central server where the task assignment will be executed.

3.2.1 Available Worker Set and Reachable Task Set. Before build-

ing the Bipartite graph, we should consider spatio-temporal con-

straints to filter workers and tasks. Given a set of online workers,

W = {w1,w2, ...,w |W | } and a set of tasks, S = {s1, s2, ..., s |S | }, the
available worker set for spatial task s ∈ S and the reachable task set

for workerw ∈W are denoted as AW (s) and RT (w) , respectively.

Both AW (s) (∀w ∈ AW (s), s ∈ S) and RT (w) (∀s ∈ RT (w),w ∈

W) should satisfy the following two conditions: 1) d(w .l , s .l) � w .r ,
and 2) tnow +d(w .l , s .l)/w .speed � s .e , where d(w .l , s .l) represents
the distance betweenw .l and s .l (e.g., Euclidean distance).

w1 w2 w3 w4

s1 s2 s3

Figure 3: Worker-Task Bipartite Graph

3.2.2 Intersected Top-k KM algorithm. In this part, we transform

the task assignment problem into a Bipartite Maximum Weight

Matching problem [38], which is based on a graph that is repre-

sented by G = (V ,E) with a set of vertices V and a set of edges E.
Given a set of online workers,W = {w1,w2, ...,w |W | }, and a set

of available tasks, S = {s1, s2, ..., s |S | }, the number of V and the

number of E are fixed to |W | + |S | and
∑ |W |
i=1 ni , respectively, where

ni is the number of worker wi ’s adaptive reachable assignments

that is a subset of workerwi ’s reachable assignments RT (wi).

To construct vertices, V is divided into two sets, VW and VS ,
where VW ∩ VS = ∅. Each worker wi maps to a vertex vwi , and

each spatial task sj maps to a vertexvsj . For the edges’ construction,

we add an edge from vwi mapped from vertexwi ∈W to vertex vsj
mapped from sj ∈ S if they satisfy the two following conditions:

1) spatio-temporal constraints: wi ∈ AW (sj) and sj ∈ RT (wi),

and

2) top-k constraints:wi ∈ ÃW k (sj) and sj ∈ R̃T k (wi),

where ÃW k (sj) is a sorted set that contains the top-k workers of

task sj ’s available worker set when AW (sj) is sorted in descending

order according to the preference of task sj ’s available workers.

Similarly, R̃T k (wi) is a set containing the top-k tasks of workerwi ’s

reachable task set when set RT (wi) is sorted in descending order

according to the preference of worker wi to task s , ∀s ∈ RT (wi).

For each edge (vwi ,v
s
j), its weight, denoted byweiдht(vwi ,v

s
j), can

be measured as the preference of workerwi to task sj , denoted as

1283

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Jiaxin Liu et al.

pwi (sj), which can be calculated as:

pwi (sj) = exp(〈h
z
wi

, ezc (sj)
〉), (17)

where hzwi
is the representation summarizing the category informa-

tion of workerwi ’s recent task records, and ez
c(sj)

is the category

embedding of category c(sj), which is the task sj ’s category.

Algorithm 2: Intersected Top-k KM Algorithm

Input: graph G , k , sorted available worker set ÃW

Output:match

1 Initializematch, valtask and slack ;

2 for each worker w ∈W do

3 valworker [w] ←max (weiдht (vWw , vSs));

4 for each worker w ∈W do

5 while valworker [w] > 0 do

6 Initialize vistask and visworker with False ;

7 if FindTask(w ,0) then break ;

8 else

9 d=I N F ;

10 for each task s ∈ S do

11 if ! vistask [s] then

12 d=min(d,slack [s]);

13 for each worker w ∈W do

14 Decrease valworker [w] by d if w is visited;

15 for each task s ∈ S do

16 Increase valtask [s] by d if s is visited;

17 Decrease slack [s] by d if s is not visited;

18 ReassiдnTask (match, ÃW);

19 returnmatch;

Figure 3 depicts an example of a graph for four workers wi

(i = 1, 2, 3, 4), and three tasks sj (j = 1, 2, 3). If vertexwi and vertex

sj satisfy both of the above constraints, the edge (vwi ,v
s
j) will be

drawn as a solid line (e.g., edge (vw1 ,v
s
1) when k = 2). If these

two vertexes only satisfy the spatio-temporal constraints, the edge

(vwi ,v
s
j) will be a dotted line, which will be removed from original

graph in our algorithm. For example, the edge (vw3 ,v
s
2) is drawn as

a dotted line, becausew3 is not in the top-2 of ÃW 2(s2). The higher
weiдht(vwi ,v

s
j) of the edge (vwi ,v

s
j) is, the more likely a worker

is to perform this task successfully. Therefore, the mutual top-k
will help filter the lower preference edge and keep the quality of

assignments. However, this method will remove a number of edges

and contribute to a higher loss of the number of task assignments

(e.g.,w4 and s3). Therefore, we redistribute the task sj to workerwi

ifwi ∈ ÃW (sj) andwi is not assigned to any task, where ÃW (sj) is
a sorted set which contains all available workers of task sj .

The Intersected Top-k KM Algorithm is shown in Algorithm 2.

Suppose that we have a bipartite graph G, which is composed of

two vertices sets VS and VW . First, in graph G, the expectation of

each vertex in VW is equal to the largest weight among the edges

associated with it (lines 2–3). Second, matching tasks for workerw
are recursively found through the Find Task Algorithm 3 (line 7).

Third, if w fails to match a task, to make more workers assigned,

the expectations of workers and tasks involved in the last matching

Algorithm 3: FindTask Algorithm

Input: worker w, recursion depth rdp

Output: Bool

1 visworker [w] = T rue ;

2 if rdp > λ then return False ;

3 else

4 for each task s is adjacent to w in G do

5 if vistask [s] then continue ;

6 дap ← valworker [w]+valtask [s] −weiдht (vWw , vSs);

7 if дap! = 0 then

8 slack [s] =min(slack [s], дap);

9 else if match[s]==-1 or FindTask(match[s],rdp+1) then

10 Assign value w tomatch[s] and return T rue ;

11 return False ;

are adjusted, thus changing the competitive relationship among

workers (lines 8–17). Some refinements should be made to the

original KM algorithm, which is used to find the perfect matching

of a weighted bipartite graph, to take into account cases where

perfect matches do not exist [38]. Since the original KM algorithm

may cause an endless loop in our problem, we stop matching tasks

for the worker if the expectation ofw is less than 0 (line 5).

To improve efficiency, we limit the number of edges in the graph.

Since we use the intersected Top-k method to filter edges, the num-

ber of edges associated with a worker node or a task node cannot

exceed k . Thus, the recursion depth of Algorithm 3 is set to k , which
can reduce the competition among workers (lines 2). To reduce the

number of task assignments loss, a reassignment task algorithm

is designed, which is shown in Algorithm 4. First, the assignment

result will be checked (lines 1–3) in order to keep assignments

satisfying the constraints proposed before. Then, we assign the

remaining available tasks to the worker with the highest preference

score among the corresponding available workers (lines 4–8).

Algorithm 4: Reassignment Task Algorithm

Input: KM output assignmentsmatch, ÃW

Output: modified assignmentsmatch

1 for each task s inmatch do

2 if match[s]!=-1 and match[s] not in ÃW (s) then

3 match[s]=-1;

4 for each task s inmatch do

5 if match[s] == -1 and |ÃW (s) | > 0 then

6 for each worker w in ÃW (s) do

7 if w not in match then

8 Assign value w tomatch[s] and return T rue ;

9 returnmatch;

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setup

We use a check-in dataset from Twitter, which is used widely in the

experimental evaluation of SC platforms [4, 6, 7, 21]. It provides

1284

Task Assignment with Federated Preference Learning in Spatial Crowdsourcing CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 2: Performance of Different Preference Models

Methods Recall@1 Recall@2 Recall@3

CatePEP 0.1190 0.236 0.3630
POISeqPop 0.3876 0.5210 0.6065

CTP 0.4204 0.5978 0.6994
FLP 0.4120 0.5832 0.6850

check-in data in the United States from September 2010 to January

2011 except Hawaii andAlaska, including 62462 venue locations and

61412 user locations. First, we use FourSquare’s API1 to generate the

corresponding category information of the venue. Then, for each

worker and task, we take the average value of the corresponding

check-in locations as its location information. For each check-in,

we simulate that the user is the worker, and each venue accessed

by the user is a task performed by the worker. The publication

time of the task is set to the earliest check-in time of the task in a

day. We use the category information of the venues in 18 kinds of

check-ins to simulate the category information of tasks. Moreover,

we randomly and uniformly generate 32 platform centers and use

a Voronoi diagram-based algorithm [38] to allocate all workers and

their historical data to corresponding platform centers. A check-in

record means that the worker has accepted and completed the task.

All the experiments are implemented on an Intel(R) Xeon(R) CPU

E5-2650 v4 @ 2.20GHz and NVidia TITAN Xp GPU.

4.2 Experiment Results

4.2.1 Performance of Federated Preference Learning. We first eval-

uate the performance of the federated preference learning phase.

Evaluation Methods.We study the following models.

1) CatePEP: The Category-based Personal Equal Popularity (Cate-

PEP) model, where the popularity of task category c is set to 1 if

the target worker did tasks in category c; otherwise, it is set to
0. The popularity of task category c is considered as the worker’s

preference for c .
2) POISeqPop: The POI-based Sequence Popularity (POISeqPop)

model, which ranks tasks according to their popularity in the target

worker’s sequence in a descending order. The popularity of task

category c is calculated as 1/rank(c), which is regarded as the target
worker’s preference for c .

3) CTP: The Centralized Training based Preference (CTP) model,

which trains our local preference model in a centralized way. It

means all workers belong to only one center.

4) FLP: Our Federated Learning based Preference (FLP) model.

Metrics. To evaluate the accuracy of worker preference learning,

we use Recall@K as the evaluation metric. This metric counts the

proportion of times when the categories of ground-truth tasks are

ranked among the top-K predictions. We use workers’ historical

check-in sequences stored in local platform centers for the experi-

ments, where we use the first 80% of check-in records as the training

set, the next 10% records as the validation set, and the remaining

10% as the testing set. We remove the POIs associated with fewer

than 5 records and workers with fewer than 10 or more than 300

check-in records.

Results. Table 2 shows the evaluation results, in which CTP

achieves the best followed by FLP, POISeqPop and CatePEP. The

models (i.e., CTP and FTP) based on our category-aware preference

1https://developer.foursquare.com/

model far outperform the others. That demonstrates our preference

model can provide more accurate estimations for workers’ pref-

erences. Considering that the local-device level empirical loss are

inconsistent with those of the global empirical loss, it is normal

that FLP performs worse than CTP. Moreover, with the aid of linear

and quadratic penalty terms, the Recall@K (k = 1, 2, 3) of FLP is

97.6%–98.0% of that of CTP.

4.2.2 Performance of Task Assignment. We proceed to study the

performance of task assignment. Table 3 shows our experimental

settings, where the default values of all parameters are underlined.

Table 3: Experiment Parameters

Parameter Values

Valid time of tasks (h) e − p 0.4, 0.8, 1.2, 1.6, 2.0

Reachable distance of workers (km) r 10, 15, 20, 25, 30

Number of workers |W | 2200, 2400, 2600, 2800, 3000

Number of tasks |S | 2600, 2800, 3000, 3200, 3400

Limit coefficient k 10, 20, 30, 40, 50

Evaluation Methods. We study the following task assignment

algorithms.

1) KM: The original KM algorithm that does not consider work-

ers’ preferences.

2) P+Greedy: The Greedy algorithm with workers’ Preferences

calculated by our FLP model.

3) P+KM: The original KM algorithm with workers’ Preferences

calculated by our FLP model.

4) P+KM+Top-k : The P+KM algorithm, using the worker-sided

Top-k pruning strategy to prune edges.

5) P+KM+InTop-k : The P+KM algorithm, using our intersected

Top-k pruning strategy to prune edges.

6) P+KM+InTop-k+RE: The P+KM algorithm, using our Inter-

sected Top-k pruning strategy and the Reassignment optimization

strategy.

Metrics. Three metrics are compared among the methods, in-

cluding CPU time, Assignment Success Rate (ASR), and the number

of task assignments. The CPU time is the time cost for finding the

task assignment. ASR is the ratio between the number of successful

assignments of all workers and the total number of assignments in a

time instance. In our experiments, if a worker performs (checks in)

tasks (locations) with the same category in the next two check-ins,

the assignment of this task can be considered successful.

Effect of e − p. First, we evaluate the effect of tasks’ valid time

e − p on the performance of task assignments (see Figure 4). It

can be seen from Figures 4(a) and 4(c) that the CPU time and the

number of task assignments of all algorithms shows an increasing

trend as the valid time of tasks increases. This is because as the

valid time of tasks increases, there will be more available workers

and tasks, which leads to a larger search space and higher probabil-

ity of being assigned to a task for each worker. The CPU time of

P+KM+InTop-k is less than those of P+KM+Top-k and P+KM while

keeping almost the same ASR and number of task assignments,

which shows the efficiency and effectiveness of our proposed algo-

rithms. As shown in Figure 4(b), P+KM related algorithms achieve

the highest Assignment Success Rate (ASR), which shows the impor-

tance of considering preferences. As shown in Figure 4(c), the KM

algorithm has the most task assignments, while other preference-

related algorithms achieve fewer task assignments. This is due to

the fact that the preferences of some workers among tasks vary

1285

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Jiaxin Liu et al.

0.4 0.8 1.2 1.6 2.0
0

100

200

300

400

500

Valid time of tasks (h)

P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
C

PU
tim

e
(s

)
P+KM+InTop-k

(a) CPU Time

0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

Valid time of tasks (h)

As
si

gn
m

en
ts

uc
ce

ss
ra

te P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
P+KM+InTop-k

(b) Assignment Success Rate

0.4 0.8 1.2 1.6 2.0
200

700

1200

1700

2200

Valid time of tasks (h)

Nu
m

be
ro

ft
as

k
as

si
gn

m
en

ts P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
P+KM+InTop-k

(c) Number of Task Assignments

Figure 4: Performance of Task Assignment: Effect of e − p

10 15 20 25 30
0

100

200

300

400

500

Reachable radius of worker (km)

P+Greedy
KM

C
PU

tim
e

(s
)

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
P+KM+InTop-k

(a) CPU Time

10 15 20 25 30
0.0

0.2

0.4

0.6

Reachable radius of worker (km)

As
si

gn
m

en
ts

uc
ce

ss
ra

te P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
P+KM+InTop-k

(b) Assignment Success Rate

10 15 20 25 30
200

700

1200

1700

2200

Reachable radius of worker (km)

Nu
m

be
ro

ft
as

k
as

si
gn

m
en

ts P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
P+KM+InTop-k

(c) Number of Task Assignments

Figure 5: Performance of Task Assignment: Effect of r

2200 2400 2600 2800 3000
0

100

200

300

400

500

Number of workers

P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE

C
PU

tim
e

(s
)

P+KM+InTop-k

(a) CPU Time

2200 2400 2600 2800 3000
0.0

0.2

0.4

0.6

Number of workers

As
si

gn
m

en
ts

uc
ce

ss
ra

te P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
P+KM+InTop-k

(b) Assignment Success Rate

2200 2400 2600 2800 3000
200

700

1200

1700

2200

Number of workers

Nu
m

be
ro

ft
as

k
as

si
gn

m
en

ts P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
P+KM+InTop-k

(c) Number of Task Assignments

Figure 6: Performance of Task Assignment: Effect of |W |

greatly and many workers tend to choose their interested tasks,

thus leading to a lower number of task assignments. This reflects

from the side that the preference scores we learn are accurate and

discriminative.

Effect of r . We further evaluate the effect of the reachable dis-

tance r of workers. It can be seen from Figure 5(a) that when r
increases, the CPU time of all algorithms shows a similar growth

trend. The reason behind it is that when the reachable distance of

workers increases, the number of available workers and the num-

ber of reachable tasks increase, resulting in a larger search space.

The P+Greedy algorithm still consumes least CPU time, but its per-

formance in ASR is obviously not as good as other P+KM related

algorithms (see Figure 5(b)). In addition, as shown in Figure 5(c),

with r increasing, the number of task assignments also increases

since workers are more likely to be assigned their available tasks

with greater r .
Effect of |W |. Next, we evaluate the effect of |W |. As shown in

Figure 6(a), the larger |W | is, the longer the CPU time is. This is

because more available workers need to be assigned, which leads

to more competition for limited tasks and generates more time

overhead. When it comes to ASR in Figure 6(b), all preference-

based algorithms keep high ASR values, and the number of task

assignments increases (cf. Figure 6(c)). In summary, P+KM+InTop-

k+RE performs well in terms of CPU time and ASR while offering

the acceptable number of task assignments.

Effect of |S |. We study the effect of the number |S | of tasks. In
Figure 7(a), the CPU time of P+KM related algorithms decreases be-

cause as the number of tasks increases, the occurrence probability of

tasks that workers are most interested in increases and the discrimi-

native preference scores also disperse the competition among work-

ers. Moreover, the CPU time of KM-related algorithms is higher

than that of Greedy algorithm. Because it is time-consuming for

KM-related algorithms to find a perfect matching with multiple it-

erations. The number of tasks assigned by KM is more than those of

preference-based algorithms (i.e., all algorithms except KM), which

sacrifice the number of task assignments in order to improve the

total preferences of workers. In addition, with the increase of |S |,
a worker can access more available and interested tasks with less

competition, so both the number of task assignments and the ASR

value increase. P+KM+InTop-k+RE performs better in terms of CPU

time and ASR, showing its superiority.

1286

Task Assignment with Federated Preference Learning in Spatial Crowdsourcing CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

2600 2800 3000 3200 3400
0

100

200

300

400

500

Number of tasks

P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
C

PU
tim

e
(s

)
P+KM+InTop-k

(a) CPU Time

2600 2800 3000 3200 3400
0.0

0.2

0.4

0.6

Number of tasks

As
si

gn
m

en
ts

uc
ce

ss
ra

te P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
P+KM+InTop-k

(b) Assignment Success Rate

2600 2800 3000 3200 3400
300

800

1300

1800

2300

Number of tasks

Nu
m

be
ro

ft
as

k
as

si
gn

m
en

ts P+Greedy
KM

P+KM

P+KM+Top-k

P+KM+InTop-k+RE
P+KM+InTop-k

(c) Number of Task Assignments

Figure 7: Performance of Task Assignment: Effect of |S |

10 20 30 40 50
0

100

200

300

400

500

Limit coefficient

P+KM
P+KM+Top-k

P+KM+InTop-k+RE

C
PU

tim
e

(s
)

P+KM+InTop-k

(a) CPU Time

10 20 30 40 50
0.48

0.49

0.50

0.51

0.52

0.53

Limit coefficient

P+KM
P+KM+Top-k

P+KM+InTop-k+RE

As
si

gn
m

en
ts

uc
ce

ss
ra

te P+KM+InTop-k

(b) Assignment Success Rate

10 20 30 40 50
200

700

1200

1700

2200

Limit coefficient

Nu
m

be
ro

ft
as

k
as

si
gn

m
en

ts P+KM
P+KM+Top-k P+KM+InTop-k+RE

P+KM+InTop-k

(c) Number of Task Assignments

Figure 8: Performance of Task Assignment: Effect of k

Effect of k . Finally, we study the effect of k , which limits the

number of edges associated with vertices and recursion depth in

pruning-based algorithms (i.e., P+KM+Top-k , P+KM+InTop-k and

P+KM+InTop-k+RE). We only report the results of pruning-based

algorithms, where P+KM is used as a reference. As k is a param-

eter only for the pruning-based algorithms, the results of P+KM

in Figure 8 keep the same value. In figure 8(a), InTop-k based al-

gorithms (i.e., P+KM+InTop-k and P+KM+InTop-k+RE) cost the
least cpu time because they use the intersection operation to filter

more edges with low weights. In the graphs of P+KM+Top-k and

P+KM+InTop-k , each vertex is associated with more edges, leading

to more opportunities to be assigned to available tasks as k in-

creases. However, k has little impact on the high weight edge. Thus,

the number of task assignments of these two algorithms increases

while ASR decreases as k grows. Compared with P+KM+InTop-k ,
P+KM+InTop-k+RE takes less time but is more effective to keep

the number of task assignments, which shows the necessity of the

reassignment strategy.

5 RELATEDWORK

Spatial crowdsourcing (SC) is a new framework that has emerged

recently, requiring workers with GPS devices to reach a specific

location physically under certain restrictions to perform spatial

tasks [5, 20, 30, 32, 34, 36, 38, 40–45]. Most of the existing stud-

ies focus on task assignment [3, 13, 14, 27, 29, 31, 37, 47], however,

putting their focus on effectiveness without considering the privacy

of users’ raw data and the tediousness of data migration in reality,

which leads to the risk of privacy leaks. To make the SC server

assign tasks properly, workers need to upload their highly sensi-

tive data (e.g., locations and historical task records), which disclose

their private attributes. Thus, in recent studies [25, 28], privacy-

preserving task assignment is proposed to make users (workers/task

requesters) perturb their locations with Geo-Indistinguishability [1]

and upload only the perturbed locations. However, these studies

mainly focus on the privacy of locations without considering the

preferences of workers, failing to achieve a satisfying task assign-

ment. With federated learning, multiple entities (clients) collaborate

to solve a problem, under the coordination of a central server or

service provider [11]. Each client’s raw data is stored locally and

not exchanged or transferred; instead, focused updates intended

for immediate aggregation are used to achieve the learning objec-

tive [8, 12, 18, 22]. To solve the above issues, we propose a federated

preference learning model to protect the privacy of workers’ raw

data and learn worker preferences without data migration, based

on which we assign tasks to suitable workers.

6 CONCLUSION

In this paper we propose a framework called Task Assignment with

Federated Preference Learning (TA-FPL), which aims to find the

optimal task assignment while considering workers’ preferences

and protect workers’ raw data. TA-FPL consists of a Federated

Preference Learning (FPL) phase and a Preference-driven Task As-

signment (PTA) phase. Specifically, we design the local platform

center’s preferencemodel combinedwith federated trainingmethod

in the FPL phase. In the PTA phase, we propose an Intersected Top-

k KM algorithm to achieve effective and efficient task assignment

by considering workers’ preferences obtained by the first phase. To

the best of our knowledge, this is the first study in SC that applies

federated learning and combine the preference modeling and pro-

tection of the raw data privacy. An empirical study based on a real

dataset confirms the superiority of our proposed algorithms.

ACKNOWLEDGMENTS

This work is partially supported by NSFC (No. 61972069, 61836007

and 61832017), and Shenzhen Municipal Science and Technology

R&D Funding Basic Research Program (JCYJ20210324133607021).

1287

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Jiaxin Liu et al.

REFERENCES
[1] Miguel E Andrés, Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and Catus-

cia Palamidessi. 2013. Geo-indistinguishability: Differential privacy for location-
based systems. In SIGSAC. 901–914.

[2] Renqin Cai, Jibang Wu, Aidan San, Chong Wang, and Hongning Wang. 2021.
Category-aware collaborative sequential recommendation. In SIGIR. 388–397.

[3] Peng Cheng, Xiang Lian, Lei Chen, Jinsong Han, and Jizhong Zhao. 2016. Task
assignment on multi-skill oriented spatial crowdsourcing. TKDE 28, 8 (2016),
2201–2215.

[4] Peng Cheng, Xiang Lian, Lei Chen, and Cyrus Shahabi. 2017. Prediction-based
task assignment in spatial crowdsourcing. In ICDE. 997–1008.

[5] Yue Cui, Liwei Deng, Yan Zhao, Bin Yao, Vincent W Zheng, and Kai Zheng. 2019.
Hidden poi ranking with spatial crowdsourcing. In SIGKDD. 814–824.

[6] Hung Dang, Tuan Nguyen, and Hien To. 2013. Maximum complex task assign-
ment: Towards tasks correlation in spatial crowdsourcing. In IIWAS. 77–81.

[7] Dingxiong Deng, Cyrus Shahabi, and Ugur Demiryurek. 2013. Maximizing the
number of worker’s self-selected tasks in spatial crowdsourcing. In SIGSPATIAL.
324–333.

[8] Alp Emre Durmus, Zhao Yue, Matas Ramon, Mattina Matthew, Whatmough
Paul, and Saligrama Venkatesh. 2021. Federated Learning Based on Dynamic
Regularization. In ICLR.

[9] Srinivasa Raghavendra Bhuvan Gummidi, Xike Xie, and Torben Bach Pedersen.
2019. A survey of spatial crowdsourcing. TODS 44, 2 (2019), 1–46.

[10] Weishan Huang, Xinyu Lei, and Hongyu Huang. 2021. PTA-SC: Privacy-
Preserving Task Allocation for Spatial Crowdsourcing. InWCNC. 1–7.

[11] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends in Machine Learning 14, 1–2 (2021), 1–210.

[12] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Se-
bastian U. Stich, and Ananda Theertha Suresh. 2019. SCAFFOLD: Stochastic
Controlled Averaging for On-Device Federated Learning. CoRR abs/1910.06378
(2019).

[13] Leyla Kazemi and Cyrus Shahabi. 2012. Geocrowd: enabling query answering
with spatial crowdsourcing. In SIGSPATIAL. 189–198.

[14] Leyla Kazemi, Cyrus Shahabi, and Lei Chen. 2013. Geotrucrowd: trustworthy
query answering with spatial crowdsourcing. In SIGSPATIAL. 314–323.

[15] Guoliang Li, Yudian Zheng, Ju Fan, Jiannan Wang, and Reynold Cheng. 2017.
Crowdsourced data management: Overview and challenges. In SIGMOD. 1711–
1716.

[16] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time interval aware self-
attention for sequential recommendation. InWSDM. 322–330.

[17] Maocheng Li, Jiachuan Wang, Libin Zheng, Han Wu, Peng Cheng, Lei Chen, and
Xuemin Lin. 2021. Privacy-Preserving Batch-based Task Assignment in Spatial
Crowdsourcing with Untrusted Server. In CIKM. 947–956.

[18] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. 2020. Federated optimization in heterogeneous networks. MLSys
2 (2020), 429–450.

[19] Xiang Li, Yan Zhao, Jiannan Guo, and Kai Zheng. 2020. Group task assignment
with social impact-based preference in spatial crowdsourcing. In DASFAA. 677–
693.

[20] Xiang Li, Yan Zhao, Xiaofang Zhou, and Kai Zheng. 2020. Consensus-Based
Group Task Assignment with Social Impact in Spatial Crowdsourcing. Data
Science and Engineering 5, 4 (2020), 375–390.

[21] Yunchuan Li, Yan Zhao, and Kai Zheng. 2021. Preference-aware Group Task
Assignment in Spatial Crowdsourcing: A Mutual Information-based Approach.
In ICDM. 350–359.

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In AISTATS. PMLR, 1273–1282.

[23] Chenxi Qiu, Anna Squicciarini, Zhuozhao Li, Ce Pang, and Li Yan. 2020. Time-
efficient geo-obfuscation to protect worker location privacy over road networks

in spatial Crowdsourcing. In CIKM. 1275–1284.
[24] Chenxi Qiu and Anna Cinzia Squicciarini. 2019. Location Privacy Protection

in Vehicle-Based Spatial Crowdsourcing Via Geo-Indistinguishability. In ICDCS.
1061–1071.

[25] Qian Tao, Yongxin Tong, Zimu Zhou, Yexuan Shi, Lei Chen, and Ke Xu. 2020.
Differentially private online task assignment in spatial crowdsourcing: A tree-
based approach. In ICDE. 517–528.

[26] Hien To, Gabriel Ghinita, and Cyrus Shahabi. 2014. A framework for protecting
worker location privacy in spatial crowdsourcing. PVLDB 7, 10 (2014), 919–930.

[27] Hien To, Cyrus Shahabi, and Leyla Kazemi. 2015. A server-assigned spatial
crowdsourcing framework. TSAS 1, 1 (2015), 1–28.

[28] Hien To, Cyrus Shahabi, and Li Xiong. 2018. Privacy-preserving online task
assignment in spatial crowdsourcing with untrusted server. In ICDE. 833–844.

[29] Yongxin Tong, Lei Chen, Zimu Zhou, Hosagrahar Visvesvaraya Jagadish, Lidan
Shou, and Weifeng Lv. 2018. SLADE: A smart large-scale task decomposer in
crowdsourcing. TKDE 30, 8 (2018), 1588–1601.

[30] Yongxin Tong, Jieying She, Bolin Ding, Lei Chen, Tianyu Wo, and Ke Xu. 2016.
Online minimum matching in real-time spatial data: experiments and analysis.
PVLDB 9, 12 (2016), 1053–1064.

[31] Yongxin Tong, Libin Wang, Zhou Zimu, Bolin Ding, Lei Chen, Jieping Ye, and Ke
Xu. 2017. Flexible online task assignment in real-time spatial data. PVLDB 10, 11
(2017), 1334–1345.

[32] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018.
A unified approach to route planning for shared mobility. PVLDB 11, 11 (2018),
1633.

[33] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen, and Cyrus Shahabi. 2020.
Spatial crowdsourcing: a survey. PVLDB 29, 1 (2020), 217–250.

[34] Jiayang Tu, Peng Cheng, and Lei Chen. 2019. Quality-assured synchronized task
assignment in crowdsourcing. TKDE 33, 3 (2019), 1156–1168.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NIPS 30 (2017).

[36] Ziwei Wang, Yan Zhao, Xuanhao Chen, and Kai Zheng. 2021. Task assignment
with worker churn prediction in spatial crowdsourcing. In CIKM. 2070–2079.

[37] Jinfu Xia, Yan Zhao, Guanfeng Liu, Jiajie Xu, Min Zhang, and Kai Zheng. 2019.
Profit-driven Task Assignment in Spatial Crowdsourcing.. In IJCAI. 1914–1920.

[38] Guanyu Ye, Yan Zhao, Xuanhao Chen, and Kai Zheng. 2021. Task allocation with
geographic partition in spatial crowdsourcing. In CIKM. 2404–2413.

[39] Xun Yi, Fang-Yu Rao, Gabriel Ghinita, and Elisa Bertino. 2018. Privacy-preserving
spatial crowdsourcing based on anonymous credentials. In MDM. 187–196.

[40] Yan Zhao, Xuanhao Chen, Liwei Deng, Tung Kieu, Chenjuan Guo, Bin Yang,
Kai Zheng, and Christian S. Jensen. 2022. Outlier Detection for Streaming Task
Assignment in Crowdsourcing. In WWW.

[41] Yan Zhao, Jiannan Guo, Xuanhao Chen, Jianye Hao, Xiaofang Zhou, and Kai
Zheng. 2021. Coalition-based task assignment in spatial crowdsourcing. In ICDE.
241–252.

[42] Yan Zhao, Jinfu Xia, Guanfeng Liu, Han Su, Defu Lian, Shuo Shang, and Kai
Zheng. 2019. Preference-aware task assignment in spatial crowdsourcing. In
AAAI. 2629–2636.

[43] Yan Zhao, Kai Zheng, Yue Cui, Han Su, Feida Zhu, and Xiaofang Zhou. 2020.
Predictive task assignment in spatial crowdsourcing: a data-driven approach. In
ICDE. 13–24.

[44] Yan Zhao, Kai Zheng, Jiannan Guo, Bin Yang, Torben Bach Pedersen, and Chris-
tian S Jensen. 2021. Fairness-aware task assignment in spatial crowdsourcing:
Game-theoretic approaches. In ICDE. 265–276.

[45] Yan Zhao, Kai Zheng, Yang Li, Han Su, Jiajun Liu, and Xiaofang Zhou. 2019.
Destination-aware Task Assignment in Spatial Crowdsourcing: A Worker De-
composition Approach. TKDE (2019), 2336–2350.

[46] Yan Zhao, Kai Zheng, Hongzhi Yin, Guanfeng Liu, Junhua Fang, and Xiaofang
Zhou. 2020. Preference-aware task assignment in spatial crowdsourcing: from
individuals to groups. TKDE (2020).

[47] Libin Zheng, Lei Chen, and Jieping Ye. 2018. Order dispatch in price-aware
ridesharing. PVLDB 11, 8 (2018), 853–865.

1288

