
Efficient Learning with Pseudo Labels forQuery Cost Estimation
Shuncheng Liu

University of Electronic Science and
Technology of China
Chengdu, China

liushuncheng@std.uestc.edu.cn

Xu Chen
University of Electronic Science and

Technology of China
Chengdu, China

xuchen@std.uestc.edu.cn

Yan Zhao
Aalborg University
Aalborg, Denmark
yanz@cs.aau.dk

Jin Chen
University of Electronic Science and

Technology of China
Chengdu, China

chenjin@std.uestc.edu.cn

Rui Zhou
Huawei Technologies Co., Ltd.

Chengdu, China
zhourui24@huawei.com

Kai Zheng∗
University of Electronic Science and

Technology of China
Chengdu, China

zhengkai@uestc.edu.cn

ABSTRACT
Query cost estimation, which is to estimate the query plan cost and
query execution cost, is of utmost importance to query optimizers.
Query plan cost estimation heavily relies on accurate cardinality
estimation, and query execution cost estimation gives good hints on
query latency, both of which are challenging in database manage-
ment systems. Despite decades of research, existing studies either
over-simplify the models only using histograms and polynomial
calculation that leads to inaccurate estimates, or over-complicate
them by using cumbersome neural networks with the requirements
for large amounts of training data hence poor computational effi-
ciency. Besides, most of the studies ignore the diversity of query
plan structures. In this work, we propose a plan-based query cost es-
timation framework, called Saturn, which can eStimate cardinality
and latency accurately and efficiently, for any query plan struc-
tures. Saturn first encodes each query plan tree into a compressed
vector by using a traversal-based query plan autoencoder to cope
with diverse plan structures. The compressed vectors can be lever-
aged to distinguish different query types, which is highly useful
for downstream tasks. Then a pseudo label generator is designed
to acquire all cardinality and latency labels with the execution
part of the query plans in the training workload, which can sig-
nificantly reduce the overhead of collecting the real cardinality
and latency labels. Finally, a chain-wise transfer learning module
is proposed to estimate the cardinality and latency of the query
plan in a pipeline paradigm, which further enhances the efficiency.
An extensive empirical study on benchmark data offers evidence
that Saturn outperforms the state-of-the-art proposals in terms of
accuracy, efficiency, and generalizability for query cost estimation.

∗Corresponding author: Kai Zheng.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557305

CCS CONCEPTS
• Information systems → Data management systems; Query
optimization.

KEYWORDS
Query Plans; Cardinality Estimation; Latency Estimation

ACM Reference Format:
Shuncheng Liu, Xu Chen, Yan Zhao, Jin Chen, Rui Zhou, and Kai Zheng.
2022. Efficient Learning with Pseudo Labels for Query Cost Estimation. In
Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3511808.3557305

1 INTRODUCTION
Query optimizer is a vital component of modern Database Manage-
ment Systems (DBMS), which aims to select an optimal query plan for
a given SQL query. However, the recent studies [11, 12, 17, 33, 40]
show that traditional query optimizers often select sub-optimal
plans from the candidate query plans due to inaccurate cost estima-
tion. Traditional cost models manually derive useful combinations
of factors (e.g., cardinality, page fetch, and CPU) and polynomially
calculate the expected costs [43] that may be proportional to the
execution latency [36]. But the traditional histogram-based cardi-
nality estimator simply builds a histogram on each attribute and
assumes that all attributes are mutually independent [30]. Moreover,
the cost model needs to be carefully tuned by Database Adminis-
trators (DBAs), leading to poor generalizability with the increasing
complexity of the DBMS.

In this work, we divide the query cost estimation into the query
plan cost estimation and the query execution cost estimation. Consid-
ering that the query plan cost heavily relies on accurate cardinality
estimation [43], and the query execution cost is the execution la-
tency of a query plan [19], we focus on the cardinality and latency
estimation in this work.

Recently, the database community attempts to utilize learning-
based models to estimate the cardinality and latency. For example,
MSCN [10] adopts a CNN model to estimate the cardinality. Ortiz
et al. [24] evaluate the effect of different deep learning architec-
tures (e.g., Multi-layer Perceptron and RNN) on cardinality estima-
tion. For the latency estimation, TPool [33] uses a tree-structured
model to simultaneously estimate the cardinality and latency, and

1309

https://doi.org/10.1145/3511808.3557305
https://doi.org/10.1145/3511808.3557305

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

QPPNet [19] introduces a plan-structured deep neural network to
estimate the latency. However, they share some common limita-
tions. Firstly, they can only estimate either cardinality or latency,
or simply modify the output layer to estimate both cardinality and
latency. The correlations between these two tasks are not well con-
sidered, which can affect the estimation accuracy especially when
the training data is insufficient. Secondly, the training process of
the aforementioned methods is usually time-consuming due to the
large number of parameters and hyper-parameters to be tuned.
Furthermore, they need to be fed with a huge amount of training
data with the real cardinality or latency labels, which is quite ex-
pensive in terms of both time and economics as it requires the DBMS
to actually execute each SQL query or query plan. Thirdly, it is
hard to generalize those models to diverse query plan structures
or scenarios. For example, TPool and QPPNet can only deal with
binary-plan trees, andMSCN can only encode the SQL query, which
is unavailable for query plans from the DBMS query optimizers.

To overcome these limitations, we face three main challenges:
(1) variety of the query plan structures; (2) lack of methods that can
significantly reduce the overhead for acquiring the real cardinality
and latency labels; (3) lack of methods that can estimate both cardi-
nality and latency accurately and efficiently. We aim to address the
above challenges and propose a framework that fulfills accuracy,
efficiency and generalizability for query cost estimation.

In this work, we propose a novel plan-based query cost estima-
tion framework, called Saturn, which can estimate the cardinality
and latency accurately and efficiently, while easily adapted to any
query plan structures. In particular, Saturn firstly encodes each
query plan tree into a compressed vector by using a traversal-
based query plan autoencoder that can deal with diverse query
plan structures. The traversal methods (e.g., pre-order, level-order,
and post-order traversal methods) convert each query plan tree
into a sequence, and then a self-supervised autoencoder uses the
sequence to generate a compressed vector. Using the compressed
vector, the framework can not only obtain the latent features of
a query plan, but also benefit a variety of downstream tasks (e.g.,
label generation and estimation). Secondly, a novel pseudo label
generator is proposed to get all cardinality and latency labels with
the execution part of the query plans in the training workload. Fi-
nally, we develop a chain-wise transfer learning module to estimate
the cardinality and latency of query plans. The estimation chains,
performed by transfer learning, can capture the latent correlations
between cardinality and latency estimations, thus making estimates
more accurate. Moreover, a lightweight network structure improves
the training efficiency considerably.

To the best of our knowledge, this is first study to estimate
both cardinality and latency by considering the latent correlations
between tasks. In summary, we make the following contributions:
• We propose a traversal-based query plan autoencoder that can
encode diverse query plans into fixed-size compressed vectors.
•We propose a pseudo label generator that can obtain all cardinality
and latency labels in the training workload with minimal overhead.
• We develop a chain-wise transfer learning module to capture the
latent correlations between cardinality and latency estimations.
•We conduct extensive experiments on two real datasets, i.e., TPC-
H and IMDB, to demonstrate the superiority of our framework in
terms of accuracy, efficiency, and generalizability.

2 PROBLEM DEFINITION
For a given SQL query 𝑞, the DBMS aims to find the optimal query
plan with the lowest cost, from a group of candidate query plans
by using its cost-based query optimizer. Specifically, the query opti-
mizer first estimates the cardinality for each candidate query plan,
and then calculates the cost value of the query plan by considering
multiple factors, such as the cost of page fetch, CPU, tuple process-
ing, and performing physical operations [36]. Finally, the query
optimizer chooses the lowest-cost query plan as the execution query
plan, which is expected to have a low execution latency.

Our purpose is to estimate the cardinality and latency of a query
plan before its actual execution, which is crucial for generating
high-quality query plans. Next, we formally define our estimation
tasks, and analyze their potential characteristics in traditional query
optimizers, based on which we summarize the key findings that
inspire our work.
Query Plan. Given a SQL query 𝑞, the query optimizer can gen-
erate a query plan 𝑝 . The query plan is naturally in a tree-based
structure, and the number of child nodes is not fixed. Many DBMS
expose this information through APIs, such as EXPLAIN [36], and
thus we can get the query plan 𝑝 conveniently. In the rest of the
paper we use plan, query plan, and query plan tree interchangeably
when no ambiguity is caused.
Query Cost Estimation. Given a query plan 𝑝 , our problem is to
achieve the following goals: (1) Cardinality estimation goal: esti-
mate the number of tuples, card (p), produced by the query plan 𝑝 .
(2) Latency estimation goal: estimate 𝑝’s latency, late(p), prior to
execution.

In the following, we give two characteristics of the query cost
estimation in traditional DBMS query optimizers.
(1) Sequentiality. Generally, the estimation pipeline of a DBMS query
optimizer is: card (p) → cost (p), where cost (p) denotes the query
plan’s cost estimates that is proportional to the execution latency
in theory. Thereafter, the DBMS query optimizer can accordingly
choose the best plan to execute.
(2) High efficiency. Given a query plan, the histogram-based cardi-
nality estimator and the polynomial cost calculator can infer the
cardinality and cost in time (generally less than 1𝑚𝑠).
Inspirations. Although the cardinality and cost estimates of the
DBMS query optimizer are biased, the sequentiality of the estimates
reflects the latent correlations between cardinality and latency esti-
mations, and the estimates can be quickly fed back to the DBMS. This
leads to our key hypothesis: if we could, in a sequential manner,
apply both cardinality and cost estimates of the DBMS query opti-
mizer, would it be possible to estimate the cardinality and latency
more accurately and efficiently? We answer this question affirma-
tively with a novel framework, called Saturn, which can perform
cardinality and latency estimations by the following estimation
chains:

cardD (𝑝) → card (p)
cardD (𝑝) → costD (𝑝) → late (p) (1)

where cardD (𝑝) denotes the estimated cardinality of the DBMS query
optimizer, card (𝑝) denotes the real cardinality, costD (𝑝) denotes
the estimated cost of the DBMS query optimizer, and late(𝑝) denotes
the real latency. The cardinality and cost estimates generated by the
DBMS query optimizer will guide our query cost estimation tasks.

1310

Efficient Learning with Pseudo Labels for Query Cost Estimation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Traversal-based query plan autoencoder

Compressor Decompressor

LSTM

Self
attention

LSTM

Encoding
sequence

Encoding
sequence

Compressor

Feature
extraction

Traversal

Pseudo label generator

12 3

Feature
extraction

Traversal

Clustering

Compressed
vector

Encoding
sequence

N
earest n

eig
h
b
o
r search

LabelsCompressed
vector

Chain-wise transfer learning module

Initial
cardinality
estimator

L
aten

cy
C

ard
in

ality

Compressed
vector

Execute the
selected plans

DBMSDataset

Training
workload

Testing
workload

Query plans

Query plans

Trained

Trained

Real

labels

Pseudo
labels

A
u
to

en
co

d
er

Initial
latency

estimator

Cardinality
estimator

Latency
estimator

Transfer learning-based estimator

Cardinality
estimator Latency

estimator

Figure 1: Saturn Framework Overview

3 FRAMEWORK OVERVIEW
Figure 1 shows the architecture of our framework Saturn, which
consists of three components as follows:
Traversal-based Query Plan Autoencoder. The traversal-based
query plan autoencoder is designed to encodes each query plan
tree into a compressed vector, which can deal with diverse plan
structures. Given a query plan tree, we first encode each node via
feature extraction, and traverse the encoded query plan tree to form
an encoding sequence. Secondly, we use an autoencoder equipped
with a compressor and a decompressor to learn the latent features
of each encoding sequence. After training the autoencoder, the
compressor can be directly used to generate the compressed vectors
of query plans for the downstream tasks (detailed in Section 4).
Pseudo Label Generator. The pseudo label generator is proposed
to obtain all cardinality and latency labels by execution of a small
number of query plans in the training workload, which can reduce
the overhead of collecting the real cardinality and latency labels.
We first uses DBSCAN to cluster the compressed vectors of query
plans in the training workload, while deleting outliers automatically
(marked by gray dots in Figure 1). Then we sample the query plans
from each cluster to execute and obtain the real labels (marked in
green). Afterwards we search for the most similar executed plans
and applies their labels as the pseudo labels of the remaining query
plans (which are not actually executed). Finally, all query plans in
the training workload are labeled with both cardinality and latency,
which can be used to train an estimator (detailed in Section 5).
Chain-wise Transfer Learning Module. The chain-wise trans-
fer learningmodule is used to estimate the cardinality and latency of
query plans, which can capture the latent correlations between car-
dinality and latency estimations. We use a transfer learning-based
estimator to perform the estimation chains and make estimates. For
cardinality estimation, an initial estimator first learns to estimate
cardD (𝑝), and then learns to estimate card (𝑝) using fine-tuning
strategies. For latency estimation, an initial estimator first learns to
estimate cardD (𝑝), and then learns to estimate costD (𝑝), and finally
learns to estimate late(𝑝) using fine-tuning strategies. After train-
ing the transfer learning-based estimator, the trained cardinality
estimator estimates the cardinality and the trained latency estimator
estimates the latency of query plans (detailed in Section 6).

4 QUERY PLAN AUTOENCODER
As an upstream component of Saturn, the traversal-based query
plan autoencoder is used to encode each query plan tree into a

Node type Filter

00000100 00100000

01000000 00000001
01000000 10000100

10000000 00000010

Hash Join&a.3

Index Scan&b.4
Index Scan&a.1,b.2

Sequential Scan&b.3

Query plan

Figure 2: Example of Plan-based Feature Extraction

fixed-size compressed vector. We first perform feature extraction
on the query plan tree, then we traverse the tree to form an encod-
ing sequence and input it to an autoencoder. The autoencoder will
reduce the dimensionality of the encoding sequence and then try
to restore it, thus forming an end-to-end training process. Among
them, the traversal methods combined with LSTMs make the au-
toencoder general, the query plans with any structures and sizes
can be compressed without changing the network. Furthermore, the
autoencoder can automatically learn to retain important features
while eliminating redundant features, and thus it can better extract
the latent features of the query plan tree.

4.1 Plan-based Feature Extraction
Given a query plan tree 𝑝 , we encode each node to a vector. Ex-
isting methods, for instance, use bottom-up encoding to encode
the plan [18] or use selectivity to encode each predicate in the
nodes [33]. However, they introduce some uncertainties in the en-
coding results: the features of the root node may not be the bit-wise
sum of its child nodes’ features, and the selectivities given by the
query optimizers are inaccurate, especially in join operations. These
uncertainties will spread throughout the entire encoding and af-
fect the network performance. Our purpose is to encode the query
plan tree without any uncertainty, helping the autoencoder obtain
effective features. There are two main factors that can identify a
node, including the node type and the filter. Next we discuss how
to extract these features and encode them into vectors.
Node Type Encoding. For each node in a query plan, the query
optimizer will specify its node type, and we use one-hot encoding
to represent the node type. We mainly consider 8 node types, which
can be divided into scan types and join types. The scan types include
‘Sequential Scan’, ‘Index Scan’, ‘Bitmap Index Scan’, ‘Bitmap Heap
Scan’ and ‘Index Only Scan’, and the join types include ‘Hash Join’,
‘Merge Join’ and ‘Nested Loop Join’ [36].
Filter Encoding. In addition to the node types, the query optimizer
will specify the filtered attributes in each node. We use one-hot
encoding to represent these filtered attributes in each node.

Figure 2 shows an example of encoding node types and filters of
a given plan. In this simple but effective way, a node in the query

1311

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

plan tree is transformed into a vector of size, denoted as 𝑣 , which
is the sum of the number of node types and the number (𝐴) of all
the attributes in the dataset, i.e., 8 + 𝐴. Our feature extraction is
unbiased, where ‘1’(s) in the vector represents the existence of a
certain node type or filtered attribute in the plan node, while ‘0’(s)
represents the absence of them. This unbiased feature extraction
allows the autoencoder to get ‘pure’ inputs which means that the
inputs only consist of 1 and 0.

4.2 Plan Traversal Methods
A query plan tree generated by query optimizers, is an 𝑚-ary
tree [38]. It is a rooted tree in which each node has no more than
𝑚 children. Previous studies over-simplified the tree structure as a
binary tree [19, 33] or a left-deep tree [18], so that they can use the
structural neural network for representation learning. However,
they cannot handle the𝑚-ary query plan tree, leading to limited
generalizability. In order to deal with the𝑚-ary plan tree, we use
the traversal method to serialize the node vectors that is convenient
for training with LSTMs. For the𝑚-ary tree, there are three tradi-
tional traversal methods, i.e., pre-order, level-order and post-order
traversal [41].

Specifically, give a query plan tree 𝑝 where each node is encoded
into a vector 𝑣 . Using a traversal method, we can convert these
vectors into an encoding sequence 𝑝 = {𝑣1, 𝑣2, · · · , 𝑣𝑛}, where 𝑛
denotes the number of nodes in the plan. Next we discuss three
traversal methods, and analyze their availability.
(1) Pre-order Traversal. The root node is visited first, then we recur-
sively traverse its leftmost subtree to the rightmost subtree.
(2) Level-order Traversal.We visit every node on a level (from the
leftmost node to the rightmost node) before going to a lower level.
(3) Post-order Traversal.We recursively traverse the leftmost subtree
to the rightmost subtree and finally visit the root node.
Analysis.We need to choose a traversal method that best matches
the order of the query plan’s execution. We find that the order
in which the DBMS executes a query plan is most similar to the
order generated by the post-order traversal. Therefore, we use the
post-order traversal to traverse the query plan tree.

4.3 Autoencoder Architecture and Workflow
After traversing the query plan tree, we get a sequence of vectors
(namely encoding sequence). Intuitively, the simplest approach is
to use a recurrent neural network to learn latent features of the
encoding sequence and then make estimates. However, different
tasks need to train different deep learning models, leading to poor
efficiency. Moreover, the sparse inputs will affect the convergence
performance of the models, and even reduce the accuracy of the
estimation. In summary, a representation model that can compress
the encoding sequence into a dense vector, and be suitable for
different tasks, is desired.

We propose an autoencoder equipped with a compressor and a
decompressor, to learn the latent features of the query plan more
wisely. The compressor is designed to reduce the dimensionality
of the encoding sequence. Conversely, the decompressor needs
to restore the compressed vector to the encoding sequence. The
autoencoder can learn to retain typical features while eliminat-
ing redundant features in the encoding sequence. Furthermore, to
recover different encoding sequences, the model should learn to

Compressor Decompressor

LSTM

Self
attention

Encoding
sequence

Encoding
sequence

Compressed
vector

A
u
to

en
co

d
er

ReLU

LSTM

ReLU

Figure 3: Autoencoder Architecture

distinguish different query types to avoid confusion. Therefore,
using the compressed vectors, we can distinguish different types of
queries, which can improve the performance of downstream tasks.
Next, we will introduce the compressor and decompressor of the
autoencoder, and then present the workflow.
Compressor. As shown on the left side in Figure 3, our compres-
sor is composed of an LSTM and a self-attention mechanism. The
LSTM learns the latent features of the encoding sequence and then
uses the self-attention mechanism to enhance the memory abil-
ity of historical information while aggregating the features into a
compressed vector.

To be specific, the encoding sequence 𝑝 = {𝑣1, 𝑣2, · · · , 𝑣𝑛} is
firstly fed into the LSTM that outputs the hidden state vector of
each step as follows:

ℎ𝑡 = 𝐿𝑆𝑇𝑀 (𝑣𝑡 , ℎ𝑡−1;𝑊𝑙) (2)

where 𝑡 ∈ {1, 2, · · · , 𝑛}, ℎ𝑡−1 is the hidden state vector of step 𝑡 − 1,
and𝑊𝑙 denotes the parameters of LSTM.

Then the self-attention mechanism is designed for aggregating
the hidden states along the sequential steps while different steps
have different importance scores. Unlike the simple usage of LSTM’s
hidden state vectors, we introduce the self-attentionmechanism [16,
39] to enhance the memory ability of the compressor, which can
deal with the complicated query plans. The last hidden state vector
ℎ𝑛 output by the LSTM, containing the information of all historical
steps, will be used to calculate the importance of each step. For
example, to get the importance score of a step in the encoding
sequence, we calculate how much ℎ𝑛 pays attention to it. This
attention represents the weight assigned to this step during the
aggregation process. Following the standard procedure [31, 39], we
can obtain a query vector 𝑞 of the last hidden state vector, and a
key matrix 𝐾 of all hidden state vectors, as follows:

𝑞 = ℎ𝑛 ×𝑊𝑞 + 𝑏𝑞 , 𝐾 = 𝐻 ×𝑊𝐾 + 𝑏𝐾 (3)

where𝑊𝑞 and𝑊𝐾 are the weights of two fully connected neural
networks for ℎ𝑛 and 𝐻 , respectively, 𝑏𝑞 and 𝑏𝐾 denote biases of
𝑊𝑞 and𝑊𝐾 , respectively, and 𝐻 refers to all hidden state vectors,
i.e., 𝐻 = [ℎ1, ℎ2, ..., ℎ𝑛]. Using 𝑞 and 𝐾 , we can calculate the impor-
tance scores 𝒔 of all steps using Softmax (q × K). Thereafter, we can
aggregate all hidden state vectors of the LSTM into a vector ℎ as
follows:

ℎ =
∑︁

𝑡∈{1,2,··· ,𝑛}
𝑠𝑡 · ℎ𝑡 (4)

where 𝑠𝑡 (𝑠𝑡 ∈ 𝒔) represents the importance score of step 𝑡 .
Finally, the output of the compressor, i.e., compressed vector 𝑣𝑐 ,

can be formulated as follows:
𝑣𝑐 = 𝑅𝑒𝐿𝑈 ((ℎ ×𝑊𝑐1 + 𝑏𝑐1) ×𝑊𝑐2 + 𝑏𝑐2) (5)

1312

Efficient Learning with Pseudo Labels for Query Cost Estimation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

where𝑊𝑐1 and𝑊𝑐2 are the weights of two fully connected neural
networks, and 𝑏𝑐1 and 𝑏𝑐2 are biases of𝑊𝑐1 and𝑊𝑐2, respectively.
Decompressor. After using the compressor to get the compressed
vector 𝑣𝑐 , we utilize a decompressor to restore it to the encoding
sequence 𝑝 . As shown on the right side of Figure 3, we use an LSTM
to recover the encoding sequence. Unlike the compressor, the input
of each step of decompressor’s LSTM is the compressed vector, thus
the neural network can decode the compressed vector on demand.

To be specific, the input compressed vector 𝑣𝑐 is firstly fed into
the LSTM that outputs the hidden state vector of each step as
follows:

ℎ𝑑𝑒𝑡 = 𝐿𝑆𝑇𝑀 (𝑣𝑐 , ℎ𝑑𝑒𝑡−1;𝑊 𝑑𝑒
𝑙

) (6)

where 𝑡 ∈ {1, 2, · · · , 𝑛}, ℎ𝑑𝑒
𝑡−1 is the hidden state vector of step 𝑡 − 1,

and𝑊 𝑑𝑒
𝑙

denotes the parameters of LSTM. This calculation will be
executed 𝑛 times to get the matrix 𝐻𝑑𝑒 = [ℎ𝑑𝑒1 , ℎ

𝑑𝑒
2 , · · · , ℎ

𝑑𝑒
𝑛].

Finally, the output of the decompressor is obtained by using
non-linear activation as follows:

𝑝𝑑𝑒 = 𝑅𝑒𝐿𝑈 ((𝐻𝑑𝑒 ×𝑊𝑑1 + 𝑏𝑑1) ×𝑊𝑑2 + 𝑏𝑑2) (7)

where 𝑝𝑑𝑒 denotes the decompressed encoding sequence with
length 𝑛, 𝑊𝑑1 and 𝑊𝑑2 are the weights of two fully connected
neural networks, and 𝑏𝑑1 and 𝑏𝑑2 denote biases of𝑊𝑑1 and𝑊𝑑2,
respectively.
Workflow. In the offline training phase, the autoencoder is trained
in an end-to-end manner. Benefiting from the well-designed net-
work, different length of encoding sequences can be compressed
and decompressed effectively. Our autoencoder needs to minimize
the loss function as follows:

Loss =
1
𝑛

𝑛∑︁
𝑖=1

(𝑝𝑖 − 𝑝𝑑𝑒𝑖)2 (8)

where 𝑝𝑖 denotes 𝑖-th vector in the encoding sequence 𝑝 , and 𝑝𝑑𝑒
𝑖

denotes 𝑖-th vector in the decompressed encoding sequence 𝑝𝑑𝑒 .
Thereafter, in the online phase, the decompressor is put aside,

and we use the trained compressor in the autoencoder to compress
the encoding sequence (obtained by using the feature extractor and
the traversal method in turn) into a compressed vector. We note that
the online phase of the autoencoder can be used in both training
workload and testing workload. For the training workload, the
compressed vectors of the training plans are the inputs of the pseudo
label generator and the chain-wise transfer learning module in the
offline training phase. For the testing workload, the compressed
vectors of the testing plans are the inputs of the chain-wise transfer
learning module in the online inference phase.

5 PSEUDO LABEL GENERATOR
In order to estimate cardinality and latency, we need to get the
ground truths of all query plans in the training workload, in the
context of supervised learning. Intuitively, after using the autoen-
coder to get compressed vectors, we can learn the mapping rela-
tionship between the latent features and real labels. Existing stud-
ies [10, 19, 24, 33] use exposed APIs, e.g., EXPLAIN ANALYZE [36]
and pg_hint_plan [5], to get the real cardinality and latency labels
of SQL queries or query plans, so as to train their deep learning
models. However, it is time-consuming for DBMS to execute a large
number of SQL queries or query plans. In many production deploy-
ments, the large time cost makes the model unable to be updated

in time, affecting the performance of the system. To reduce the
overhead of getting cardinality and latency labels, we propose a
pseudo label generator, which can obtain all labels of the training
plans with minimal overhead.

In general, we use 𝑘% (<1) of query plans with real labels to label
the other plans, and the DBMS only needs to execute the 𝑘% of query
plans in the training workload. There are two goals during the
generation process. The first one is to generate labels as accurate
as possible. The second one is to ensure the diversity of the pseudo
labels and real labels, that is, in different types of query plans, the
proportions of real labels and pseudo labels are consistent. The first
goal is to make the deep learning model learn accurate knowledge,
while the second goal is to make the model find different knowledge
and learn to distinguish them. For example, if the query plans with
2 Joins have the real labels in the training workload, the model can
only learn this limited knowledge, leading to severe underfitting.
What we expect is that different types of query plans have the same
proportions of real labels and pseudo labels, so as to improve the
generalizability of the model.

To achieve the goals, our generator first groups the query plans
based on a clustering method. Then we randomly sample 𝑘% of
the plans from each cluster, and they will be executed to obtain
real labels. In each cluster, the remaining 1 − 𝑘% of plans use a
nearest neighbor algorithm to search for their nearest executed
plans (i.e., the most similar plan with real label) and use the real
labels as the pseudo labels. To this end, all of the plans in the training
workload are labeled with both cardinality and latency. Next, we
will introduce the process of clustering and nearest neighbor search
of our pseudo label generator.
Clustering. In order to automatically distinguish different types
of query plans, we use DBSCAN [29] to cluster the query plans.
However, simply clustering the one-hot encoding of the plan will
fail, because the input vectors are sparse and the high-dimensional
vectors will suffer from the curse of dimensionality. Benefiting
from the autoencoder, the compressed vectors are able to effectively
represent the query plans in a low-dimensional space. Moreover, the
compressed vectors are distinguishable due to the restorability of
the autoencoder. Thus, we use the compressed vectors as the input
of DBSCAN, to adaptively group the query plans while finding
some outliers.

To be specific, for all query plans in the training workload, we
first use the trained compressor to obtain the compressed vectors.
Then we perform DBSCAN clustering for the compressed vectors.
Finally, we can obtain some clusters and outliers, and the outliers
will be treated as the noises. We delete the outliers and use the valid
clusters to perform the search process.
Nearest Neighbor Search. After clustering all query plans, in
each cluster, we randomly select 𝑘% of the plans to execute, so
as to obtain real cardinality and latency. Thereafter, for each unla-
beled query plan, we should search for its nearest-labeled neighbor
that has the minimum distance (e.g., euclidean distance) with the
unlabeled query plan, and use the real label as the pseudo label.
Intuitively, we can search for the nearest neighbor from all labeled
query plans by performing the 1-Nearest Neighbour (1-NN) algo-
rithm. However, when the search space is large, the 1-NN algorithm
will be time-consuming. To reduce the search space, we can only

1313

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

search for the nearest neighbor from each cluster. Each cluster rep-
resents a type of query plan, so the nearest neighbor of a plan must
exist in its corresponding cluster.

Specifically, for an unlabeled query plan, we first perform 1-NN
to search for its nearest-labeled neighbor in the cluster. Then we
use the real label of the neighbor to be the pseudo label of the
unlabeled query plan. Through this process, the remaining 1 − 𝑘%
of unlabeled plans in each cluster will be labeled without executing.

6 CHAIN-WISE TRANSFER LEARNING
After obtaining the trained autoencoder and the (real and pseudo)
labels of query plans in the training workload, we can build the
neural network to learn the mapping between the compressed vec-
tor of the plan and its labels (i.e., cardinality and latency labels).
Existing studies use multi-layer perceptron (MLP) to learn the map-
ping. For example, TPool [33] uses a 4-layer fully connected neural
network to simultaneously estimate the latency and cardinality.
MSCN [10] uses a 4-layer perceptron to estimate the cardinality,
and QPPNet [19] uses a 6-layer fully-connected neural network to
estimate the latency. However, they have some common flaws as fol-
lows. Firstly, the training process of the aforementioned networks
is usually time-consuming due to a large number of parameters and
hyperparameters. Their networks are composed of representation
layers and estimation layers, which are trained together. Further-
more, they ignore the correlations between cardinality and latency
estimations. TPool [33] uses a 2-unit output layer to perform the
multi-task learning, and MSCN [10] and QPPNet [19] can only esti-
mate cardinality or latency. As we analyze in Section 2, there exists
some latent correlations between cardinality and latency estima-
tions. It is difficult for the deep learning model to directly learn to
estimate the cardinality or latency. Also, the aforementioned net-
works may suffer from low convergence efficiency or sub-optimal
solution. In summary, an estimation module that is accurate and
efficient is desired.

We propose a chain-wise transfer learning module to estimate
cardinality and latency more accurately and efficiently. We use
the cardinality and cost estimates of the DBMS query optimizer to
guide our estimation, and borrow the idea from inductive transfer
learning [25, 49] to perform the estimation chains in Equation (1).
Next, we will introduce the estimation chains, the transfer learning-
based estimator, and the workflow of the module.
Estimation Chains. We propose the estimation chains that have
two main ideas. First, we utilize the cardinality and the cost val-
ues estimated by DBMS query optimizer as the prior knowledge.
Although these estimates deviate from the real cardinality and la-
tency, they give good hints on our goals and can be easily obtained.
Secondly, we design two estimation chains, which first imitate DBMS
query optimizer and then surpass it. The prior knowledge can guide
our estimator to imitate DBMS query optimizer, then the real car-
dinality and latency enable our estimator to surpass DBMS query
optimizer. As shown on the left side in Figure 4, to estimate the
cardinality of the query plan, we first learn to estimate the car-
dinality obtained by DBMS query optimizer, and then we learn to
estimate the real cardinality. Similarly, to estimate the latency, we
first estimate the cardinality generated by DBMS query optimizer,
and then we estimate the cost obtained by DBMS. Finally, we learn

Estimation chains Transfer learning-based estimator

DBMS cost
estimation

Cardinality
estimation

Latency
estimation

Initial
estimator

Latency
estimator

Estimator

DBMS cost
estimator

Cardinality
estimator

F
C

F
C

F
C

F
C

S
ig

m
o
id

DBMS
cardinality
estimation

DBMS
cardinality
estimation

DBMS
cardinality
estimator

Figure 4: Estimation Chains and Transfer Learning-based Estimator

to estimate the real latency. Since the first step of the two chains
are to estimate cardD (𝑝), we can merge them into one step.

For the inputs of all steps on the chains, we find that all the esti-
mates are strongly related to the query plan. Therefore, we unify
the inputs of all steps using the compressed vectors generated by
the trained autoencoder, which are low dimensional and informa-
tive. Specifically, given a query plan 𝑝 , we use the autoencoder to
obtain its compressed vector 𝑣𝑐 and input 𝑣𝑐 to all the steps on
the estimation chains. For the estimation labels of all steps on the
chains, cardD (𝑝) and costD (𝑝) can be quickly obtained by using
APIs (e.g., EXPLAIN [36]), while card (p) and late(p) can be obtained
via the pseudo label generator. Therefore, we can effectively obtain
the training labels of all steps on the chains.
Transfer Learning-based Estimator. To perform the estimation
chains, we utilize inductive transfer learning [25], which can im-
prove the learning of the target task using the learned knowledge
from the source task. As shown on the right side in Figure 4, the
red solid arrows point from the source task estimator to the target
task estimators, and the dashed red arrow represents the training
process of the initial network, which follows the traditional super-
vised learning. To be specific, we use a 4-layer Fully Connected (FC)
neural network with a Sigmoid activator as an estimator (i.e., using
three fully connected layers and one fully connected layer with the
Sigmoid activation to estimate the normalized results). The initial
estimator will be trained to be the DBMS cardinality estimator to esti-
mate cardD (𝑝), then the DBMS cardinality estimator will be copied to
accomplish two estimation tasks including cardinality and latency
estimation. For cardinality estimation, our proposed cardinality
estimator aims to estimate card (p) combining the DBMS cardinality
estimator and fine-tuning strategies. For latency estimation, the
DBMS cardinality estimator is first fine-tuned to estimate costD (𝑝),
being DBMS cost estimator, and then we fine tune the DBMS cost
estimator to generate a latency estimator for estimating late(p).

We mainly consider two fine-tuning strategies [15, 49]. The first
one is a semi-fixed strategy, which fixes the first two layers of
the estimator, and only updates the parameters of the last two
layers. The second one is an unfixed strategy, which updates all the
parameters of the estimator. The latter performs better because the
network can get closer to the global optimal solution.
Workflow. For offline training, the input vectors are generated
by the trained autoencoder which can encode training plans into
compressed vectors. Then the compressed vectors are fed into
the estimator and perform the estimation chains. In each estima-
tion step on the chains, the estimator needs to minimize the loss
functions as follows: LOSS𝑎 = 1

𝑁

∑
𝑝∈P𝑇 𝑄 (cardD (𝑝), �carda (p)), LOSS𝑏 =

1
𝑁

∑
𝑝∈P𝑇 𝑄 (card (p), �cardb (p)), LOSS𝑐 = 1

𝑁

∑
𝑝∈P𝑇 𝑄 (costD (𝑝),�cost (p)), and

LOSS𝑑 = 1
𝑁

∑
𝑝∈P𝑇 𝑄 (late (p), �late (p))1, where LOSS𝑎 , LOSS𝑏 , LOSS𝑐 , and

1𝑄 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒2) = 𝑚𝑎𝑥 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1,𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒2)
𝑚𝑖𝑛 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1,𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒2)

1314

Efficient Learning with Pseudo Labels for Query Cost Estimation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

LOSS𝑑 denote different losses of DBMS cardinality estimator, cardi-
nality estimator, DBMS cost estimator, and latency estimator, respec-
tively, P𝑇 denotes a set of query plans in the training workload,
and 𝑁 = |P𝑇 |. The labels of cardD (𝑝) and costD (𝑝) can be obtained
by DBMS query optimizers, while the labels of card (p) and late(p)
can be obtained by our pseudo label generator. Next, �carda (p),�cardb (p), �cost (p) and �late(p) are the estimated cardinality by the
DBMS cardinality estimator, the estimated cardinality by the cardi-
nality estimator, the estimated cost and the estimated latency of
the query plan 𝑝 , respectively. Further, 𝑄 represents the q-error
function [21], which is a relative factor between an estimate and
the ground truth.

For online estimation, when the query optimizer requires car-
dinality or latency of a query plan, the trained autoencoder will
encode the query plan to a compressed vector. We input the com-
pressed vector into the trained cardinality estimator to estimate
cardinality or into the trained latency estimator to estimate latency.

7 EXPERIMENT
7.1 Experimental Settings
Datasets and Workloads. We conduct experiments using two
datasets: (1) TPC-H, a decision support benchmark with 8 rela-
tions [27], where the scale factor is set to 10 (i.e., the size of TPC-H
is 10GB). (2) IMDB, a real-world dataset that contains a wide variety
of information about actors, movies, etc. IMDB has 21 relations,
based on the 3.6GB snapshot [12].

For query workloads, we simulate the scenario with insufficient
training queries, which is similar to the real-world engineering. In
many production deployments, preparing the query in advance is
time-consuming. In general, it is not possible to prepare enough
queries (more than 10K), so it is necessary to simulate the environ-
ment in which the training workload is insufficient.

For TPC-H, we use the standard query generator [26] to generate
2200 queries with 1–8 joins from 22 TPC-H query templates. We
randomly take 1800 queries as the training workload, 200 queries
as the validation workload, and 200 queries as the testing workload.

For IMDB, we use the provided query generator [33] to generate
2000 queries with 4–12 joins, and we randomly select 1800 queries
as the training workload and 200 queries as the validation workload.
We use two widely-used workloads for testing: the first one is the
JOB-light [10] workload with 70 queries (1–4 joins), and the second
one is the JOB [11] workload with 113 queries (3–16 joins). The
70 JOB-light queries and 113 JOB queries are taken as the testing
workloads for the IMDB dataset.
Implementation Details. For the traversal-based query plan au-
toencoder, we traverse the query plan tree using the post-order
traversal, which outperforms other traversal methods in terms of
the end-to-end estimation accuracy. The LSTMs in the compressor
and decompressor have 128 units. The two fully connected layers
for calculating the 𝑞 vector and the 𝐾 matrix are comprised of 64
units. The two fully connected layers for obtaining the compressed
vector are comprised of 64 units (for𝑊𝑐1) and 32 units (for𝑊𝑐2),
respectively. Thus, the compressed vector has a fixed dimension
of 32. The two fully connected layers for restoring the encoding
sequence are comprised of 100 units for𝑊𝑑1 and 71 (or 116) units
for𝑊𝑑2, respectively.𝑊𝑑2 of 71 units is used for TPC-H and𝑊𝑑2

of 116 units is used for IMDB since the dimensionalities of node
vectors in TPC-H and IMDB are 71 and 116, respectively.

For the pseudo label generator, we try several clustering methods
to cluster the compressed vectors, including k-means++ [1], Mean
shift[4], and DBSCAN [29]).We use DBSCAN for clustering because
its effect is stable in this work. The DBSCAN clustering has two
key hyperparameters, i.e., 𝜖 (set to 0.5 and 2 in TPC-H and IMDB,
respectively), and Min samples (set to 6 in both datasets). These
two hyperparameters are selected via grid search. The proportion
parameter 𝑘 is set to 50 (i.e., we only execute 50% of query plans
in the training workload to get the real labels) [32], which can
sufficiently evaluate the pseudo label generator.

For the chain-wise transfer learning module, all the estimators
share the same structure, i.e., a 4-layer fully connected neural net-
work with Sigmoid activator. Specifically, the number of neurons
from the first layer to the fourth layer is set to 128, 64, 32, and 1,
respectively, and the Sigmoid activator is set in the fourth layer
to output the normalized estimation. In addition, we use the un-
fixed strategy (i.e., updating all the parameters of the estimator) as
the default fine-tuning strategy, which outperforms the semi-fixed
strategy in terms of the end-to-end estimation accuracy.

Finally, for the offline training phase of the autoencoder and the
transfer learning-based estimator, we use the Adam optimizer [8]
for updating the parameters with a scheduled learning rate of 0.0001.
The bath size of training the autoencoder is set to 1, because the
length of the input encoding sequence is not fixed [16]. Although
the batch size of the autoencoder is small, the training process is ef-
ficient because the model is lightweight and the size of the training
workload is small. While the bath size of the transfer learning-based
estimator is set to 32, due to the fixed-size inputs (i.e., compressed
vectors). The above hyperparameters (except the batch size of au-
toencoder) are tuned on the validation workloads by using the grid
search. In addition, we use Early Stopping [2] to avoid the overfit-
ting of the neural networks. Our experimental results are reported
based on the above parameter settings, unless expressly specified.
Competitors and Variants.We compare Saturn with the follow-
ing baselines:
(1) PostgreSQL 12.11 [36]: an open source DBMS which uses a
histogram-based cardinality estimator and a manual cost calcu-
lator to estimate the cardinality and cost values, respectively, for
a given plan. We can obtain the estimates of cardinality and cost
value of a plan through the EXPLAIN command.
(2) MSCN: a query-driven cardinality estimation algorithm [10]. To
extend MSCN to estimate the latency, we use the same network
structure to train an additional latency estimator, based on the open
source implementation [9].
(3) QPPNet: a plan-based latency estimation algorithm [19]. To
extend QPPNet to estimate the cardinality, we use the same network
structure to train an additional cardinality estimator, based on the
open source implementation [20]. Since the network can only adapt
to binary-plan trees, we filter out the input plans that are not binary.
(4) TPool: a state-of-the-art plan-based estimator which can esti-
mate cardinality and latency simultaneously [33]. We reference the
open source implementation [34] to reproduce the estimator. Since
the network can only adapt to binary-plan trees, we filter out the
input plans that are not binary.

1315

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

Table 1: q-error Distribution of Baselines and Ours (Saturn)
Tasks Cardinality estimation Latency estimation

Datasets Workloads Methods Median 90th 95th 99th Max Mean Median 90th 95th 99th Max Mean

TPC-H TPC-H
(Test)

PostgreSQL 2.35 42.2 257 478 1542 96.4 - - - - - -
MSCN 2.52 14.4 26.1 57.2 102 18.7 6.38 25.7 54.3 97.3 164 7.20
QPPNet 2.13 7.46 18.5 30.4 87.3 8.46 1.18 1.34 1.66 2.05 8.89 1.47
TPool 2.25 33.2 42.6 84.9 108 13.5 1.73 8.56 23.3 36.5 87.9 4.63
Saturn 1.26 3.17 15.4 22.5 26.7 1.80 1.21 1.33 1.64 1.97 7.63 1.52

IMDB

JOB-light

PostgreSQL 5.79 60.4 857 2536 3380 163 - - - - - -
MSCN 3.37 67.4 345 884 963 54.8 16.4 68.9 115 139 314 27.2
QPPNet 4.65 34.2 97.8 184 358 26.7 2.80 13.5 79.8 146 385 7.48
TPool 3.17 39.7 129 216 263 20.4 1.74 9.7 20.2 93.5 124 10.6
Saturn 1.48 2.33 4.75 8.32 14.6 1.73 1.29 2.73 5.64 9.95 22.4 1.65

JOB

PostgreSQL 182 6529 24381 85649 423854 8957 - - - - - -
MSCN 13.8 76.8 645 1254 1736 86.0 39.0 136 228 295 554 36.4
QPPNet 8.55 96.0 242 336 564 42.7 5.4 35.7 62.5 143 179 18.7
TPool 9.40 70.8 183 626 748 46.8 4.95 32.7 56.2 138 166 18.3
Saturn 3.68 45.2 69.3 184 274 33.1 3.06 18.5 26.0 38.6 69.4 13.5

We also compare Saturn with the following Saturn-Variants:
(1) Saturn-NoSA: our proposed frameworkwithout the self-attention
mechanism in the autoencoder. We directly use the last hidden state
vector ℎ𝑛 of LSTM in the compressor as the compressed vector.
(2) Saturn-NoDe: our proposed framework without the decom-
pressor in the autoencoder. After deleting the decompressor, the
autoencoder cannot be trained, so the pseudo label generator is
unavailable. We simply combine the compressor and the estimator
to train the framework in an end-to-end manner.
(3) Saturn-NoPLG: our proposed framework without the pseudo
label generator. We randomly select 50% of query plans in the
training workload to get the real labels and use them to train our
estimator in the chain-wise transfer learning module.
(4) Saturn-NoChain: our proposed framework without the estima-
tion chains performed by transfer learning. We directly train two
initial estimators to estimate cardinality and latency, respectively.
Environment. We implement all algorithms in Python, and run
the experiments on an Ubuntu Server with an Intel(R) Xeon(R)
Silver 4214 CPU @ 2.20GHz, and NVIDIA GeForce RTX 3080 GPU.
We use the PostgreSQL 12.11 [36] as the default DBMS, to obtain
query plans, real labels of cardinality and latency [5], and estimates
of cardinality and cost value, using its exposed APIs.

7.2 End-to-End Evaluation of Saturn
Estimation Accuracy. We adopt the widely-used q-error met-
ric [10, 21, 33] and its optimal value is 1. We report the q-error
distribution on the testing workloads in Table 1. The accuracy of
different estimation algorithms can be ranked as: Saturn >TPool ≈
QPPNet >MSCN »PostgreSQL. The details are as follows:
(1) Cardinality Estimation. For all the testing workloads, Saturn
achieves the highest accuracy for the cardinality estimation. On
the TPC-H testing workload, Saturn outperforms TPool by 7×,
QPPNet by 4×, MSCN by 10× and PostgreSQL by 53× on mean
q-error. While our Saturn outperforms TPool by 4×, QPPNet by 3×,
MSCN by 3×, and PostgreSQL by 57× on max q-error. On the JOB-
light workload, Saturn outperforms TPool by 11×, QPPNet by 15×,
MSCN by 31×, and PostgreSQL by 94× in terms of mean q-error.
On the JOB workload, which is harder due to more joins, Saturn
outperforms TPool by 29%, QPPNet by 22%, MSCN by 2×, and
PostgreSQL by 270× on mean q-error. These results demonstrate
that Saturn can estimate the cardinality accurately.

Table 2: Average Training and Inference Time of Baselines and Ours
Average training time (min)

Workloads PostgreSQL MSCN QPPNet TPool Saturn
TPC-H 1.21 10.6 20.4 23.5 4.74
IMDB 0.88 18.9 25.2 27.2 5.68

Average inference time (ms)
Workloads PostgreSQL MSCN QPPNet TPool Saturn
TPC-H (Test) 0.13 12.8 44.5 43.7 3.17
JOB-light 0.14 12.4 45.7 45.3 3.26

JOB 0.16 13.6 58.4 46.1 3.52

(2) Latency Estimation. For all the testing workloads, the latency
estimation accuracy of Saturn is very high. On the TPC-H testing
workload, Saturn outperforms TPool by 3× and MSCN by 4× on
mean q-error. Besides, Saturn outperforms TPool by 11×, QPPNet
by 14%, and MSCN by 21× on max q-error. The accuracy of QPPNet
is comparable to Saturn, which is marginally better than Saturn on
the TPC-H dataset. On the JOB-light workload, Saturn outperforms
TPool by 6×, QPPNet by 4×, and MSCN by 16× on mean q-error. On
the JOB workload, Saturn outperforms TPool by 26%, QPPNet by
27%, and MSCN by 2× on mean q-error. These results demonstrate
the effectiveness of Saturn when estimating the latency.

It should be noted that Saturn only uses 50% of training plans
with real labels, and 50% of training plans with the generated pseudo
labels. Even under such a harsh setting, our model can achieve
higher accuracy than other methods.
Training Efficiency. We record the average training time of all
methods. For PostgreSQL, we record the latency of executing the
ANALYZE [36] command on the TPC-H and IMDB datasets. For other
methods, we record the average training time taken by both cardi-
nality and latency estimation models to converge on the training
workloads on TPC-H and IMDB. As shown in Table 2, the training
time of PostgreSQL is the lowest since the histogram-based esti-
mator does not require iterative gradient updates. Saturn is more
efficient than other deep learning models in the training phase.
Inference Time. We also record the average inference time of all
methods. As shown in Table 2, PostgreSQL runs the fastest, which
requires around 0.1ms for each query plan. Saturn requires around
3.1 ∼ 3.5ms for each query plan, which is much faster than other
deep learning models. This is due to the fact that the number of
training parameters of Saturn is smaller than others, resulting in
high inference efficiency.
Generalizability Analysis.We count the types of plan structures
that each method can handle. The more plan structures that can

1316

Efficient Learning with Pseudo Labels for Query Cost Estimation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 3: Generalizability Analysis of Baselines and Ours
Methods Binary tree Ternary tree Quad tree

PostgreSQL ! ! !
MSCN - - -
QPPNet ! - -
TPool ! - -
Saturn ! ! !

Table 4: Mean q-error of Saturn and Saturn-Variants
Mean q-error of cardinality estimation

Workloads Saturn
-NoSA

Saturn
-NoDe

Saturn
-NoPLG

Saturn
-NoChain Saturn

TPC-H (Test) 2.32 3.46 3.74 2.87 1.80
JOB-light 2.54 3.51 4.92 3.49 1.73

JOB 38.6 42.6 55.3 41.8 33.1
Mean q-error of latency estimation

Workloads Saturn
-NoSA

Saturn
-NoDe

Saturn
-NoPLG

Saturn
-NoChain Saturn

TPC-H (Test) 1.96 2.34 2.86 2.03 1.52
JOB-light 2.04 2.69 3.48 2.58 1.65

JOB 17.2 18.3 22.9 17.7 13.5

be processed by a method means that the generalizability of the
method is higher. Table 3 reports their generalizability for query
plans in the testing workloads. We can see that PostgreSQL and
Saturn can deal with all structures of query plans, while TPool
and QPPNet can only process binary trees. Since MSCN is a query-
driven method, its generalizability is the poorest.

7.3 Ablation Study of Saturn
Effectiveness of Autoencoder.We compare Saturn against two
variants, including Saturn-NoSA and Saturn-NoDe, and we report
their mean q-error of cardinality and latency estimation in Ta-
ble 4. We can see that Saturn-NoSA has decent estimation accuracy
on TPC-H testing and JOB-light workloads. However, it performs
poorly on JOB workload which contains complicated query plans
with more joins. This clearly shows that the self-attention mecha-
nism is helpful for long-range features memorization. In addition,
Saturn-NoDe performs even worse than Saturn-NoSA on all testing
workloads, since its autoencoder cannot be trained in advance.
Effectiveness of Pseudo Label Generator. We compare Saturn
against Saturn-NoPLG, and report their mean q-error of cardinality
and latency estimation in Table 4. We can see that Saturn-NoChain
performs noticeably worse than Saturn since it is trained with fewer
query plans and labels.
Effectiveness of Chain-wise Transfer Learning Module.
We compare Saturn against Saturn-NoChain and report their mean
q-error of cardinality and latency estimation in Table 4. We can
see that Saturn-NoChain performs worse than Saturn. The main
reason is that the estimation chains with the prior knowledge of
DBMS query optimizer can guide the initial estimator to learn to
estimate the cardinality or latency step by step, instead of trying to
estimate the cardinality or latency directly.

8 RELATEDWORK
Cardinality Estimation Methods.Traditional cardinality estima-
tionmethods can be divided into two categories [47], histogram [28]
and sampling [22]. However, histogram-based methods can only
handle the data distribution of each attribute, and sampling-based
methods cannot work well for complicated SQL queries due to the

0-tuple problem [47]. Recently, the database community attempts
to utilize deep learning models to estimate the cardinality. Existing
deep learning models for cardinality estimation can be broadly clas-
sified into three categories, i.e., query-based, plan-based and data-
based methods. The query-based approaches [10, 24] learn func-
tions mapping a SQL query to its number of tuples. The state-of-the-
art method [10] trains a Multi-Set Convolutional Network (MSCN)
on queries, but this method is not suitable for query optimization,
because that the query-based encoding is too tricky when optimiz-
ing on a tree structure. The plan-based approaches [3, 14, 18, 23, 33]
learn functions mapping a query plan to its cardinality. A state-
of-the-art method [33] builds an end-to-end estimator (i.e., TPool)
based on a tree-structured model, which can estimate both cardinal-
ity and latency simultaneously. However, the plan-based represen-
tation layer can only deal with binary-plan trees, lacking scalability
for other query plan structures (e.g., nested-query plans). The data-
based approaches [44, 45, 48] learn unsupervised models of the
joint probability density function of attributes in the datasets. The
state-of-the-art method [48] proposes an unsupervised graphical
model to learn the joint PDF of attributes in one table or multi
tables, so as to obtain the selectivity of a given predicate. However,
the data-based approaches can only estimate the cardinality, while
the query-based and plan-based methods can be easily extended to
deal with the latency estimation.
Latency Estimation Methods. Latency estimation is important
for a wide variety of data management tasks, e.g., admission con-
trol [37] and resource management [35]. A number of studies lever-
aging statistical analysis to address the problem of latency estima-
tion [6, 7, 13, 42, 43, 46]. However, they require human experts to
analyze the properties of an operator or query plan and determine
how they should be transformed into factors. Recently, the database
community attempts to utilize deep learning models to estimate
the latency. Existing deep learning models for latency estimation
are mainly based on query plans. Sun et al. [33] propose a tree-
structured model to learn the mapping between the query plan
and execution latency. The state-of-the-art study [19] proposes a
plan-structured neural network (QPPNet) that can estimate the
latency from the bottom up. However, the existing networks can
only estimate either of cardinality and latency, or simply modify
the output layer to estimate both cardinality and latency.

9 CONCLUSION
We propose a plan-based query cost estimation framework, called
Saturn, to estimate cardinality and latency accurately and efficiently,
for any query plan structures. Overall, this study pioneers to esti-
mate cardinality and latency by considering the latent correlations
between estimation tasks, encode the query plan by using the au-
toencoder, and reduce the overhead of acquiring the training labels
via the pseudo label generator. Extensive experiments offer insight
into the effectiveness and efficiency of the proposed solutions.

ACKNOWLEDGMENTS
This work is partially supported by NSFC (No. 61972069, 61836007
and 61832017), and Shenzhen Municipal Science and Technology
R&D Funding Basic Research Program (JCYJ20210324133607021).

1317

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

REFERENCES
[1] David Arthur and Sergei Vassilvitskii. 2006. k-means++: The advantages of careful

seeding. Technical Report. Stanford.
[2] Rich Caruana, Steve Lawrence, and Lee Giles. 2000. Overfitting in Neural Nets:

Backpropagation, Conjugate Gradient, and Early Stopping. In NIPS. 381–387.
[3] Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou,

and Kai Zheng. 2022. Efficient Join Order Selection Learning with Graph-Based
Representation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 97–107.

[4] Dorin Comaniciu and Peter Meer. 2002. Mean shift: A robust approach toward fea-
ture space analysis. IEEE Transactions on pattern analysis and machine intelligence
24, 5 (2002), 603–619.

[5] NTTOSS Center DBMSDevelopment and Support Team. 2022. Github repository:
pg_hint_plan. https://github.com/ossc-db/pg_hint_plan

[6] Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal. 2011.
Performance prediction for concurrent database workloads. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of data. 337–348.

[7] Jennie Duggan, Olga Papaemmanouil, Ugur Cetintemel, and Eli Upfal. 2014.
Contender: A resource modeling approach for concurrent query performance
prediction.. In EDBT. 109–120.

[8] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. arXiv e-prints (2014).

[9] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Github repository: Learned Cardinalities in PyTorch. https:
//github.com/andreaskipf/learnedcardinalities

[10] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR.

[11] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (2015), 204–215.

[12] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sampling.
In CIDR.

[13] Jiexing Li, Arnd Christian König, Vivek Narasayya, and Surajit Chaudhuri. 2012.
Robust Estimation of Resource Consumption for SQL Queries Using Statistical
Techniques. Proc. VLDB Endow. 5, 11 (2012), 1555–1566.

[14] Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li. 2021. Fauce: Fast and
Accurate Deep Ensembles with Uncertainty for Cardinality Estimation. Proc.
VLDB Endow. (2021).

[15] Shuncheng Liu, Han Su, Yan Zhao, Kai Zeng, and Kai Zheng. 2021. Lane Change
Scheduling for Autonomous Vehicle: A Prediction-and-Search Framework. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 3343–3353.

[16] Shuncheng Liu, Zhi Xu, Huimin Ren, Tianfu He, Boyang Han, Jie Bao, Kai Zheng,
and Yu Zheng. 2022. Detecting Loaded Trajectories for Hazardous Chemicals
Transportation. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 3294–3306.

[17] Guy Lohman. 2014. Is query optimization a “solved” problem. In Proc. Workshop
on Database Query Optimization, Vol. 13. 10.

[18] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[19] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(2019), 1733–1746.

[20] Ryan Marcus and Olga Papaemmanouil. 2020. Github repository: QPPNet in
PyTorch. https://github.com/rabbit721/QPPNet

[21] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (2009), 982–993.

[22] Magnus Müller, Guido Moerkotte, and Oliver Kolb. 2018. Improved Selectivity
Estimation by Combining Knowledge from Sampling and Synopses. Proc. VLDB
Endow. 11, 9 (2018), 1016–1028.

[23] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim
Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality Esti-
mates That Matter. Proc. VLDB Endow. (2021).

[24] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2019. An Empirical Analysis of Deep Learning for Cardinality Estimation. arXiv
e-prints (2019).

[25] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. TKDE
22, 10 (2010), 1345–1359.

[26] David Phillips. 2011. Github repository: TPC-H dbgen. https://github.com/
electrum/tpch-dbgen

[27] Meikel Poess and Chris Floyd. 2000. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Rec. 29, 4 (2000), 64–71.

[28] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita. 1996.
Improved Histograms for Selectivity Estimation of Range Predicates. SIGMOD
Rec. 25, 2 (June 1996), 294–305.

[29] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei
Xu. 2017. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN. ACM Trans. Database Syst. 42, 3 (2017).

[30] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In SIGMOD. 23–34.

[31] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-Attention with
Relative Position Representations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers). 464–468.

[32] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. 2020. A
survey of trajectory distance measures and performance evaluation. The VLDB
Journal 29, 1 (2020), 3–32.

[33] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-Based Cost Estimator.
Proc. VLDB Endow. 13, 3 (2019), 307–319.

[34] Ji Sun and Guoliang Li. 2021. Github repository: Learning-based-cost-estimator.
https://github.com/greatji/Learning-based-cost-estimator

[35] Rebecca Taft, Willis Lang, Jennie Duggan, Aaron J. Elmore, Michael Stonebraker,
and David DeWitt. 2016. STeP: Scalable Tenant Placement forManaging Database-
as-a-Service Deployments. In SoCC. 388–400.

[36] The PostgreSQL Global Development Group. 2022. PostgreSQL 12.11 Documen-
tation. https://www.postgresql.org/docs/12/index.html.

[37] Sean Tozer, Tim Brecht, and Ashraf Aboulnaga. 2010. Q-Cop: Avoiding bad query
mixes to minimize client timeouts under heavy loads. In ICDE. 397–408.

[38] Dominique Roelants van Baronaigien. 2000. A Loopless Gray-Code Algorithm
for Listing k-ary Trees. Journal of Algorithms 35, 1 (2000), 100–107.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, undefinedukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All You Need. In NIPS. 6000–6010.

[40] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation?. In Proc. VLDB Endow.

[41] Wikipedia contributors. 2021. Tree traversal —Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Tree_traversal&oldid=1031403202.

[42] Wentao Wu, Yun Chi, Hakan Hacígümüş, and Jeffrey F Naughton. 2013. Towards
predicting query execution time for concurrent and dynamic database workloads.
Proc. VLDB Endow. 6, 10 (2013), 925–936.

[43] Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigümüs, and
Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer cost
models really unusable?. In ICDE. 1081–1092.

[44] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73.

[45] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
unsupervised cardinality estimation. Proceedings of the VLDB Endowment (2019),
279–292.

[46] Ning Zhang, Peter J Haas, Vanja Josifovski, Guy M Lohman, and Chun Zhang.
2005. Statistical learning techniques for costing XML queries. In Proc. VLDB
Endow. 289–300.

[47] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and JI SUN. 2020. Database Meets
Artificial Intelligence: A Survey. TKDE (2020).

[48] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502.

[49] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2021. A Comprehensive Survey on Transfer
Learning. Proc. IEEE 109, 1 (2021), 43–76.

1318

https://github.com/ossc-db/pg_hint_plan
https://github.com/andreaskipf/learnedcardinalities
https://github.com/andreaskipf/learnedcardinalities
https://github.com/rabbit721/QPPNet
https://github.com/electrum/tpch-dbgen
https://github.com/electrum/tpch-dbgen
https://github.com/greatji/Learning-based-cost-estimator
https://www.postgresql.org/docs/12/index.html
https://en.wikipedia.org/w/index.php?title=Tree_traversal&oldid=1031403202

	Abstract
	1 Introduction
	2 Problem Definition
	3 Framework Overview
	4 Query Plan Autoencoder
	4.1 Plan-based Feature Extraction
	4.2 Plan Traversal Methods
	4.3 Autoencoder Architecture and Workflow

	5 Pseudo Label Generator
	6 Chain-wise Transfer Learning
	7 Experiment
	7.1 Experimental Settings
	7.2 End-to-End Evaluation of Saturn
	7.3 Ablation Study of Saturn

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

