Batch-Mix Negative Sampling for Learning
Recommendation Retrievers

Yongfu Fan Jin Chen Yongquan Jiang
University of Electronic Science and University of Electronic Science and Southwest Jiaotong University
Technology of China Technology of China yqjiang@swijtu.edu.cn
van.lqz72@gmail.com chenjin@std.uestc.edu.cn
Defu Lian Fangda Guo Kai Zheng*
University of Science and Technology Institute of Computing Technology, =~ University of Electronic Science and
of China Chinese Academy of Sciences Technology of China
liandefu@ustc.edu.cn guofangda@ict.ac.cn zhengkai@uestc.edu.cn

ABSTRACT

Recommendation retrievers commonly retrieve user potentially
preferred items from numerous items, where the query and item
representation are learned according to the dual encoders with the
log-softmax loss. Under real scenarios, the number of items becomes
considerably large, making it exceedingly difficult to calculate the
partition function with the whole item corpus. Negative sampling,
which samples a subset from the item corpus, is widely used to
accelerate the model training. Among different samplers, the in-
batch sampling is commonly adopted for online recommendation
retrievers, which regards the other items within the mini-batch
as the negative samples for the given query, owing to its time
and memory efficiency. However, the sample selection bias occurs
due to the skewed feedback, harming the retrieval quality. In this
paper, we propose a negative sampling approach named Batch-Mix
Negative Sampling (BMNS), which adopts batch mixing operation
to generate additional negatives for model training. Concretely,
BMNS first generates new negative items with the sampled mix
coefficient from the Beta distribution, after which a tailored correct
strategy guided by frequency is designed to match the sampled
softmax loss. In this way, the effort of re-encoding items out of
the mini-batch is reduced while also improving the representation
space of the negative set. The empirical experiments on four real-
world datasets demonstrate BMNS is superior to the competitive
negative inbatch sampling method.

CCS CONCEPTS

« Information systems — Recommender systems.

“Corresponding author.

Kai Zheng is with Yangtze Delta Region Institute (Quzhou), School of Computer Science
and Engineering, and Shenzhen Institute for Advanced Study, University of Electronic
Science and Technology of China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10...$15.00
https://doi.org/10.1145/3583780.3614789

KEYWORDS

Information Retrieval; Recommender Systems; Negative Sampling

ACM Reference Format:

Yongfu Fan, Jin Chen, Yongquan Jiang, Defu Lian, Fangda Guo, and Kai
Zheng. 2023. Batch-Mix Negative Sampling for Learning Recommenda-
tion Retrievers. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management (CIKM °23), October 21-25,
2023, Birmingham, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3583780.3614789

1 INTRODUCTION

With the rapid development of the Internet, the problem of informa-
tion overload has become increasingly severe. The recommender
system, which typically infers users’ preferences based on their his-
torical behavior, has become one of the crucial solutions to alleviate
the problem of information overload. As a key stage of large-scale
recommenders [8, 9, 11], the recommender retrievers attempt to
mine highly relevant items from the whole corpus. Recently, the
popular retriever framework often trains dual-encoders (also called
two-towers) [9, 26, 27], with each encoder dedicated to learning the
representation of users and items, respectively. During the training,
for each given user-item pair, the loss function, i.e., log-softmax [9],
encourages the model to assign a higher score to the positive sam-
ples against other items. However, in large-systems, the scale of the
items often reaches millions or even more, resulting in unbearable
computational expenses for the partition function calculation.
Negative sampling [7, 18, 25-27] is an extensively used and effec-
tive technique for reducing the computational load during model
training. It involves sampling a subset of samples from the entire
corpus to approximate the gradient over all items. Considering the
real scenarios with a huge number of items and deep networks,
sampling from the entire corpus requires additional memory foot-
print to encode the unseen items out of the mini-batch through the
large-scale network, which may not meet the latency and memory
requirements. The in-batch sampling [26, 27], which directly consid-
ers other samples within the mini-batch as negatives, has becomes
popular and has been successfully deployed in many recommender
systems owing to its memory-efficient computation.
Unfortunately, the items in the mini-batches are more frequently
exposed and follow the long-tail distribution, which leads to in-
batch sampling excessively punishing the popular items and result-
ing in poor gradient approximating, usually referred to the sample

https://orcid.org/0009-0007-6555-8207
https://orcid.org/0000-0001-6440-2242
https://orcid.org/0000-0003-1651-595X
https://orcid.org/0000-0002-3507-9607
https://orcid.org/0000-0003-2401-6499
https://orcid.org/0000-0002-0217-3998
https://doi.org/10.1145/3583780.3614789
https://doi.org/10.1145/3583780.3614789

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Iz = {iy, i3, |z}

!
|
inner-product
X

Up = {uy, uz,, g}

l
encoders M
J

[| [
embeddings

Yongfu Fan et al.

Corrected Norm

[

wy wi oot wy

wi wi oo wy

wk wk o wfy
w ~ Beta(a, a)
T

score matrix weight matrix

Figure 1: The illustration of Batch-Mix Negative Sampling

selection bias. Several works [26, 27] correct the sampling bias with
the exposure frequency, which is actually consistent with the sam-
pled softmax [2] with the popularity-based sampling distribution.
To further alleviate the long-tail effect, MNS [26] mixes up the in-
batch items with the additionally uniformly sampled items to enrich
the representation space. XIR [7] caches the informative items in
preceding iterations as the augmented negatives for current train-
ing. However, despite the better performance of MNS and XIR, they
both require re-encoding of sampled items, which becomes incredi-
bly inefficient with numerous features and large-scale encoders. On
the one hand, loading items with their rich features among disks,
CPU memory and GPU memory takes much time, which usually
occupies the majority of running time. On the other hand, extensive
computations for encoding additionally sampled items out of the
mini-batch incurs unneglected computational expense.

To expand the negative set of in-batch sampling without in-
troducing additional data loading and re-encoding by training
two-tower models, we propose the Batch-Mix Negative Sampling,
shortly as BMNS, which generates the new negative samples ac-
cording to the mini-batch items. Inspired by Mixup [30], which
augments the new data points by linearly mixing up two data
points according to the Beta distribution, we generate the virtual
negatives in a better representation space, thereby improving the
performance and generalization of the model. Different from Mixup,
which only exploits two data points to generate a new point, we
mix up virtual negative items with multiple items within the mini-
batch. Concretely, the weights according to the Beta distribution
are assigned to each item, which are later normalized through the
softmax function over items for each user query. The normalized
weights are then utilized to mix up the virtual negatives, without
the need of sampling additional items from the whole corpus. More-
over, in order to be consistent with the native sampled softmax
loss with in-batch sampling, the frequency probabilities are fit into
the loss function, where we conduct a theoretical analysis on the
gradient. In this way, BMNS achieves the goal of alleviating the
selection bias of in-batch sampling without additionally sampling
items out of the mini-batch, which is both time and cost efficient.

In this paper, our contributions can be summarized as follows:

e We propose a new negative sampling method, BMNS, which can
generate virtual negatives using in-batch negatives for a better
representation space, without additionally sampling items out of
the mini-batch.

e We integrate the popularity into the mixing coefficient for adapt-
ing to the sampled softmax loss, with the aim of reducing the
sample selection bias, after which a loss function containing in-
batch samples and generated samples is utilized for optimization.

e We evaluate the proposed approach on four real-world datasets.
The results indicate that our method can significantly improve
recommendation performance compared to the baseline while
keeping high efficiency.

2 RELATED WORK
2.1 Negative Sampling in Recsys

Negative sampling technique is widely used to accelerate the train-
ing process for implicit feedback in recommender systems, espe-
cially under the pair-wise loss functions, e.g., BPR loss [20], Margin-
based loss [13] and Sampled Softmax loss [5]. According to the
types of sampling distributions, the samplers can be divided into
two groups: the static samplers and the adaptive samplers. The
static samplers usually select items according to the static distribu-
tions, e.g., the uniform distribution [20] and the popularity-based
distribution [19]. Despite of their simplicity and efficiency, they are
prone to overfitting to easy samples in the later training process [17].
The adaptive samplers, whose sampling distribution changes along
with the model updates, select those items with higher similarity
scores as negatives [10, 32] and thus achieve faster convergence
and better performance. With further research, the community has
reached the agreement that the softmax distribution is the optimal
sampling distribution [22]. Existing efforts [5, 17, 22] have been
devoted to alleviating the bias of the sampling from the softmax
distribution with keeping low cost.

However, these approaches sample items from the entire item
corpus. Considering the scenarios of online recommender retriev-
ers, the user-item pairs with their numerous features are grouped
into mini-batches inputted into the models. Thus encoding the

Batch-Mix Negative Sampling for Learning Recommendation Retrievers

items outside of the mini-batch requires additional calculations,
which may exceed the storage and latency limitations with limited
hardware resources. In-batch sampling, which treats other items
within the batch as negative samples, has become a general strat-
egy for online recommender retrievers. To better approximate the
softmax distribution with limited in-batch items, correct-sfx [27]
corrects the sampling bias based on the streaming popularity esti-
mation. MNS [26] further increases the sampler number by mixing
the globally uniformly sampled items. XIR [7] caches the historical
informative items for faster converge.

2.2 MixUp Strategy

Mixup [30] is a powerful data augmentation method for contrastive
learning and has gained widespread adoption in various fields. The
vanilla Mixup [30] focuses the vicinal risk minimization [3] and
performs linear interpolation on two raw data points based on the
Beta distribution to generate the new data point. Subsequently, sev-
eral approaches work for data samples, such as images [16, 21, 29]
and sentences [12, 31], are proposed to generate the augmented
samples. Cutmix [29] proposes to combine Cutout and Mixup, mix-
ing image information by exchanging some continuous regions
in two images. SeqMix [31] introduces Mixup into NLP tasks by
mixing sentence pairs based on score functions. The other type of
Mixup strategy performs the mixup operation on hidden spaces,
such as Manifold Mixup [24], being popular owing to the better
representation learning. Furthermore, BatchMix [28] interpolates
hidden states of the entire mini-batch to improve training. In rec-
ommender systems, Mixup technique is introduced in MixGCF [14]
for graph-based learning through positive mixing and hop mixing
to generate hard negatives for each layer. MixKG [4] also adopts the
mixup for sampling harder negatives in knowledge graph tasks.

3 METHODOLOGY

This section first introduces the preliminaries of the problem, and
then describes the two important components of BMNS, i.e., the
mixup based negative sampling strategy and the tailored popularity
guided corrected strategy, along with the modified loss function
adapted for this method, where we conduct the gradient analysis.
We also analyze the time complexity and space complexity of the
proposed method. Figure 1 illustrates the workflow of BMNS.

3.1 Preliminaries

Given a query, the task of retriever models is retrieving the most
relevant items over numerous item corpus. In a retriever system
comprising M queries and N items, the sets of queries and items
are represented by {q; € R0 }f\il and {z; € R¥ }z{il’ respectively.
Here gq; and z; are both vector of continuous or categorical fea-
tures, which can be mapped into dense embedding space with two
trainable embedding functions ¢ : R — R, ¢y : RU — RD,
Under the two-tower architecture, the similarity of specific query
u and item i can be calculated by the inner-product score function:
s(u,i) = <¢Q(qu; 0), ¢1(zi; 9)>, where 6 denotes the model parame-
ters. The retrieval task is usually treated as a classification problem
by optimizing the log-softmax loss function. Specifically, given a
user query u, the likelihood of the user preferences with respect to

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

the item i is represented as:

exps(u,i
Plilu) = — P30
Yjerexps(u,j)

where I denotes the item set. The objective is to maximize the
likelihood of each user-item pair (u, i) in the train data D. There-
fore, by the maximum likelihood estimation, the retrieval model is
trained with log-softmax loss:

1
L(D,G)):—@ Z log P(i|u)
(w,i)eD

:_ﬁ 3

(w,i)eD

o P (s)
ez exp (s(u,)

where | - | denotes the element number of the set. In the large-
scale reommender, the computation of partition function, i.e., the
denominator of the softmax function, will become significantly
complicated as the enlarging of |7|. A popular strategy to alleviate
this problem is in-batch sampling, i.e., treating other items within
the batch as negatives. Compared with other global sampling meth-
ods, i.e., static sampling over the entire corpus, in-batch sampling
is free from encoding out-batch items. Moreover, the sophisticated
features and neural networks leveraged in online systems usually
lead to significant time consumption for re-encoding items. There-
fore, in-batch sampling obtains more extensive application in real
recommendation scenarios.

However, due to the long-tail effect, popular items are more likely
to appear within a batch. Therefore, the sampling distribution of in-
batch sampling is biased from the softmax distribution since popular
items are frequently selected as negatives. According to the sampled
softmax [1, 2], the correction term log Q reduces sampling bias by
lowering the penalty for popular items. Thus, the loss function with
respect to the mini-batch B is following as:

exp (s€(u, 1))

1
L(8,0) =—-— 1 - 1
0= 15 2, T oo ewy

where Ig denotes the item set of mini-batch 8. The corrected logit
s¢(u, i) is defined as:

fi
kel i

where f; denotes the occurrence numbers of item j in the training
data. Here we do not consider the streaming data and the popularity
is the accurate estimation of all training data.

s€(u. j) = s(u, j) = log pop(j), pop(j) = @)

3.2 Batch-Mix Negative Sampling

In-batch negative sampling directly samples negatives from the
current batch and achieves better training efficiency. Increasing the
batch size can provide more diverse negatives during the model
training. However, the batch size is limited due to the constraint of
computing resources, which engenders the bottleneck of in-batch
sampling strategy. Although a series of methods [7, 26] based on
in-batch sampling improve the sampling distribution by incorporat-
ing additional negative samples from the entire corpus or caching
historical informative items, these methods inevitably introduce
considerable computational overhead for re-encoding items. Due

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

to the complex features and deep neural networks, this expense is
especially remarkable in large-scale recommendation systems.

Thus, we are motivated to design new sampling strategy to ex-
pand the sampling set without introducing additional re-encoding
computation. Inspired by Mixup [30], which interpolates two sam-
ples as the new sample to augment the model training, we recognize
that generating virtual negative samples may be a more efficient and
effective way to sample negatives. Given two samples (x;, y;) and
(xj,y;) drawn from training data, the standard Mixup synthesizes
the new sample as follows:

=2+ (1= Dxj, 5 = Ay; + (1 - Dy;

where x and y denote input data and label, respectively. A is the mix-
ing coefficient sampled from Beta(a,). The subsequent works [24,
28] further interpolate the representations in the hidden space in-
stead of the original input data point for better representation space.
This is different from that of negative sampling, where the items to
be sampled are universally treated as negatives and thus the label
mixup is not required. Based on this fact, we develop a negative
sampling strategy which only depends on negative mixup.

Our method involves two important stages: sampling and mixing.
In the first stage, for each mini-batch 8B, we treat in-batch items
as part of training negatives and encode them into embeddings.
Meanwhile, we also sample mixing coefficient from the Beta dis-
tribution for each item. Then, in the mixing stage, BMNS employs
hidden space interpolation to generate new negatives. Specifically,
the embedding of new virtual negative k is generated as follows:

(k) (k) P (WJ(‘k))
=D, Wi diz0), Wi = o0
jelg 2ley €Xp (Wl)

(k)

where w ;s the unnormalized mixing coefficient sampled from
Beta(a,). k € {1,2, ..., K} denotes the k-th sampling to generate
the total K virtual negatives. Ideally, each pair of (query, item) would
be assigned with a mixing coefficient to generate a new negative for
each query, which takes O(|B| x |B]) complexity and finally takes
O(K x |B| x |8B|) time complexity. However, considering the huge
computational cost of sampling and mixing, we reuse the mixing
coefficient for each item, thus only requiring to sample K - | 8| times
from Beta(a, @) for the generation of K batch-shared negatives.

Futhermore, due to the large batch size applied in retriever model
training, linear interpolation based on latent representation space
incurs O(|B|xdp) time complexity for synthesizing a new negative.
Especially when the embedding dimension is larger, the computa-
tional overhead of performing inner-product on numerous items
will become more unacceptable. Fortunately, note that the mixup,
i.e,, Eq (3), is a linear operation, the score of generated negative k
can be rewritten as:

S (k) =< 60 (qui0), Y Wi pi(z30) >
jels

= Z \?v;.k) < $o(qu; 0), ¢1(2;;0) >)

jelg

= Z wj(.k)s(u,j)

Jjels

Yongfu Fan et al.

Naturally, by directly mixing the scores of negative samples, we
eliminate the need for repetitive calculation of inner-product, thereby
reducing the computational complexity of the mixing step from

O(|8] x dp) to O(|B]).

3.3 Corrected Strategy for Sampled Softmax

Similar to the corrected logit in sampled softmax with in-batch sam-
pling, we design the corrected strategy for the generated negatives
according to BMNS, with the aim of alleviating the selection bias
of in-batch sampling. Specifically, we correct the mixing coefficient
based on the popularity of the corresponding item as follows:

exp (wi ~ log pop()))

(k)

wlk) =
2le 1z €XP (Wl

)
- logpop(l))

where wj(.k) denotes the mixing coefficient sampled according to
the Beta distribution and pop(-) denotes the popularity of the item
over the training data.

After negative sampling, we use both in-batch negatives and
generated negatives for model training. To endow the adjustable
capableness for loss function, we calculate the loss separately for
two pieces of data and integrate them through a hyperparameter:

exp (s(u, i))
2 jery exp (s(u, j))

Lowns(8,0)=—y). log

(u,i)eB
e Y gt @
(wi)eB 2jeKs XP (s™ (u, j))

where s€(u, i) = s(u, i) — log pop(i) denotes the corrected logit and
s™X (y, j) denotes the similarity score of the generated negative j.
K g denotes the set of generated negatives. The hyperparameter y €
[0, 1] controls the proportion of the loss function that corresponds
to in-batch negatives and generated negatives. Note that when y=1,
the loss function degenerates to in-batch sampled softmax loss, i.e.,
Eq (1). In other words, the BMNS strategy can be interpreted as the
generalization of in-batch sampling. The algorithm 1 describes the
pseudocode of Batch-Mix Negative Sampling.

Compared to the vanilla in-batch sampling, BMNS generates
more negatives according to the in-batch items, without introducing
additional items outside of the mini-batch. We further analyze the
gradient with respect to the Lppns to investigate the influence
of the generated negative samples. To simplify the analysis, we
consider the loss with respect to each user-item pair (u, i) within
the mini-batch:

L(u,i) = —=s(u,i) +ylog Z exp (s€(u, j))

jels

+(1-y)log Y exp (8" (w.)

Jj€Ks

@)

The gradient of Equation (7) w.r.t the parameters 6 follows as:
VoL(ui) ==Vos (wi)+y D P(jlu)Vos(u)
jelg

F(1=y) D) Pk Y i Vgs(u,)

keKg jelg

Batch-Mix Negative Sampling for Learning Recommendation Retrievers

Algorithm 1: Batch-Mix Negative Sampling

Input: Train data set D = {(u, i)}, Sampling distribution
Beta(a, r), Generated negative sample size K,
Hyperparameter y, The number of epochs T

Output: Model parameters 6

1 Calculate the item popularity P = {pop(i) | i € I} based
on the training data D;

2 fort=1,2,...,T do

3 for mini-batch B € D do

4 Upg ={u| (ui) e BL,Ig={i| (ui) € B};
5 Encode queries into embeddings Eyy; based on ¢g;
6 Encode items into embeddings Er, based on ¢r;
7 Calculate the score matrix S = Ey, E};;
8 Sample mixing weight W € RKXI8| from Beta(«, a);
9 fork=1,2,...,Kdo
(k) exp (wi(k)—logpop(i)))
10 w; = = —, Vi€ Ig;
Sjerg exp (w)" ~log pop (/)
1 end
12 Calculate the mix score matrix S™* =§-WT;
13 Update 6 based on the loss function Eq (6);
14 end
15 end

2ierg exps(wl) and P* (klu) = Yiexg exp s (wl)

Taking expectation of the gradient, then we have:

E[VoL(ui)] ==Vos (wi)+ > (yP(jlu)+(1-y)oj) Vos(u j)
jels

where P(jlu) =

1/pop(j)

ierg 1/pop(l)”
included the details of the derivation in the appendix. Compared
with the original in-batch sampling with sampled softmax, BMNS
actually introduces an additional gradient term, where items with
lower popularity tend to have higher weights. Assuming the gra-
dient of logits Vgs(u, j) meet with |Vgs(u, j)| < C, where C is a
positive constant. Then the absolute bias between the expected loss
gradient of the BMNS and that of in-batch sampling satisfies:

0 = |E [VgLpmns (4, 1)] = E [Vo Linbatch (4,)]]

where 0 = For the sake of conciseness, we have

D (1=p) (=P (jlw) +0;) Vgs(u,))

jelg

(1-1) D |-P (il +0oj]-C

jels

IN

where the upper bound of bias § is determined by the hyper-
parameter y and the deviation between the sampled softmax distri-
bution and the inverse-popularity-based distribution. We suggest
using appropriate y to control the level of bias §, since BMNS will
be significantly biased from the softmax distribution when y — 0.
Finally, we highlight the two advantages of BMNS: 1) BMNS gen-
erates additional virtual negatives without introducing additional
encoding computational costs. 2) BMNS enforces the model training

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Table 1: Details of Datasets

Dataset User Item Interaction Sparsity
Gowalla 29,858 40,988 1,027,464 99.9160%
Tmall 125,553 58,058 2,064,290 99.9717%
Yelp 77,277 45,638 2,105,480 99.9403%
Amazon 130,380 128,939 2,415,650 99.9856%

by mixing the gradient of negative to achieve better representation
learning.

3.4 Complexity Analysis

Time complexity. As mentioned above, BMNS trains the model
using both in-batch negative samples and generated negative sam-
ples. Therefore, compared to in-batch sampling, BMNS needs to
pay an additional sampling and mixing burden. Sampling from
Beta distribution and weight normalization have a complexity of
O (T; X K X |B| + K x |B]) (Line 8-11 in Alg 1), where T; denotes
the time for sample an coefficient from Beta distribution. Consider-
ing the expectation of Beta(a,) is equivalent to U(0, 1), we choose
a simpler uniform distribution as the surrogate for Beta distribu-
tion. In the worst-case scenario, the time complexity of calculating
score matrix (Line 12 in Alg 1) is O (K X |B| x |B]). However, with
the help of excellent algorithm and GPU parallel computing, we
only need to pay computational cost far less than this upper bound.
The complexity of inner-product takes O (|8| X |8]| X dp), which
is acceptable. Moreover, in the computing of training loss, BMNS
consists two parts, leading to O (|8| X K + | 8| x |B[)) complexity.

Space complexity. Regardless of the space occupation caused
by dataset loading and model parameters, the main memory cost
in BMNS is the storage of mixing coefficient. Therefore, the space
complexity is O (K X |8B]), which is proportional to the number of
samples drawn from the uniform distribution.

4 EXPERIMENT RESULTS
4.1 Experiment Settings

4.1.1 Dataset Setting. In this paper, we conduct experiments on
four public datasets: Gowalla, Tmall, Yelp and Amazon. Gowalla lis
a check-in dataset that collects users’ check-in location information.
Tmall ? records users’ behavior (e.g., click and purchase) on the
Tmall platform and used in IJCAI16 contest [23]. Yelp 3 contains
reviews from users on yelp’s website. In this paper, we directly use
the preprocessed dataset in [6]. Amazon # includes user rating data
for Amazon books. Fowllowing previous setting in [6], we consider
items rated above 4 in the explict dataset as positive samples.

To alleviate data sparsity, we adopt 5-core strategy to filter
dataset, i.e., retain users and items with at least 5 interactions. The
statistic details of these datasets are summaried in Tabel 1. We use a
hold-out strategy to partition the dataset, where for each user, 80%
of items are used for training and the rest are used for testing. The
hyperparameters of all methods are tuned through cross-validation.

!Gowalla: http://snap.stanford.edu/data/loc- gowalla.html
2Tmall: https:/tianchi.aliyun.com/dataset/53

3Yelp: https://www.yelp.com/dataset

4 Amazon: http://jmcauley.ucsd.edu/data/amazon

http://snap.stanford.edu/data/loc-gowalla.html
https://tianchi.aliyun.com/dataset/53
https://www.yelp.com/dataset
http://jmcauley.ucsd.edu/data/amazon

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Yongfu Fan et al.

Table 2: Overall Performance Comparison, § = le-4

Gowalla Tmall
NDCG@10 NDCG@50 Recall@50 | NDCG@10 NDCG@50 Recall@50
SSL 0.1440+5.05 0.2942+7.05 0.2653+4.85 | 0.0495+2.55 0.1052+1.95 0.1081+2.35
SSL-Pop 0.1597+9.45 0.3027+8.35 0.2640+7.15 | 0.0643+3.95 0.1405+5.85 0.1481+5.4 §
correct-sfx | 0.1560+7.05 0.3100+9.65 0.2767+8.75 | 0.0512+1.1§ 0.1073+1.85 0.1101+2.28
MNS 0.1602+9.55 0.3038+10.45 0.2651+8.65 | 0.0655+3.95 0.1421£4.95 0.1500+4.58
BMNS | 0.1720£7.45 0.3392+9.95 0.3022+10.85 | 0.0717+4.65 0.1512+4.65 0.1580+4.55
Improvement | 7.37% 9.42% 9.22% | 9.47% 6.40% 5.33%
Yelp Amazon
NDCG@10 NDCG@50 Recall@50 | NDCG@10 NDCG@50 Recall@50
SSL 0.0672+2.85 0.1627+2.25 0.1559+3.45 | 0.0815+2.05 0.1592+2.35 0.1767£3.08
SSL-Pop 0.0662+1.95 0.1680+6.05 0.1614+7.15 | 0.0941+3.85 0.1828+3.95 0.1997+4.65
correct-sfx | 0.0673+4.15 0.1623+5.65 0.1548+6.65 | 0.0863+3.95 0.1673+3.55 0.1853+4.48
MNS 0.0661+3.85 0.1669+4.65 0.1603+4.35 | 0.0957+3.05 0.1845+2.95 0.2014+3.78
BMNS | 0.0779+2.65 0.1927+7.65 0.1853+8.25 | 0.0970+3.25 0.1888+2.95 0.2052+4.25
Improvement | 15.75% 14.70% 1481% | 136% 2.33% 1.89%

4.1.2 Evaluation Metrics . We choose Normalized Discounted Cu-
mulative Gain (NDCG) [15] and Recall to evaluate the performance
of recommenders. The NDCG metric introduces the positional in-
formation of the top-N list and further normalizes each user. The
Recall metric is the proportion of top-N items found in the test data.
In our experiments, the cutoff number N is chosen from {10, 50}.

4.1.3 Implementation Settings. We use the two-tower model as
the basic recommender for retrieval task and all methods are im-
plemented by PyTorch 1.13.0 on a Linux operating system. For
clearer comparison, we only use ID feature as model input and
the dimension of the embedding layer is fixed by 32. Our exper-
iments use Adam as the parameter optimizer, with a batch size
of 2048 for each dataset, where the number of training epochs is
fixed as 100. The learning rate and I;-regularization are searched in
{le—2,5¢—3,1e—3} and {le — 4, 1e — 5, 1e — 6}, respectively. In our
proposed method, the generated negative number K is consistent
with the batch size by default and the weight of loss function y is
tuned in range [0, 1] with a 0.1 step size.

4.1.4 Baselines.

e SSL is the vanilla sampling method for sampled softmax loss
which directly samples in-batch items without bias correction.
SSL-Pop considers the proposal sampling distribution as the pop-
ularity of items across the entire corpus, which can effectively
mitigate the significant sampling bias, as shown in Eq (1).
correct-sfx [27] improves correction term using streaming fre-
quency estimation algorithm. It estimates the frequency probabil-
ity by calculating the average interval between two consecutive
hits of the item with hash techniques.

MNS [26] adopts a mixture distribution based on the popularity
and the uniform distribution in a certain proportion. The addi-
tional uniform negatives sampled from the entire corpus alleviate
the problem of selection bias. Following the setting of BMNS, the
number of uniform negatives is set as same as the batch size.

4.2 Performance Comparison

We run 5 times experiments with different random seeds (i.e., seed =
10, 20, . . ., 50) for each method and report the average performance
and standard deviation. The results are summarized in Table 2. The
best method is bold and the second-best method is underlined. We
have the following observations: SSL, which does not incorporate
with the item frequency, shows less favorable results over three
datasets. Among Gowalla, Tmall and Amazon, SSL performs the
worst, where in-batch sampling incurs sample selection bias but no
corrected bias is provided. This indicates the necessity of correcting
the sample selection caused by the in-batch sampling.

Both MNS and BMNS achieve better performance on relatively
large datasets, i.e., Tmall and Amazon. This finding suggests that
introducing additional negatives outside the batch contribute to
reduce selection bias, and capturing global information in the ex-
panded sample space is beneficial to model training, which has a
less biased approximation for the partition function.

The proposed method BMNS consistently outperforms all base-
lines. Specifically, BMNS achieves relative 7.37%, 9.47%, 15.75%,
1.36% improvements of NDCG@10 compared to the strongest base-
line for each dataset. With regard to Recall@50 metric, the relative
improvements are 9.22%, 5.33%, 14.81%, 1.89%. The results fully
demonstrate the significant improvement brought by the BMNS.

4.3 Varying the loss coefficient y

The hyperparameter y controls the proportion of in-batch loss
and batch-mix loss. To investigate the impact of loss coefficient
on model performance, we conduct experiments under various
settings. We traverse the loss coefficient y from 0 to 1 with a step
size of 0.1. The results on different datasets are presented in Figure
2, and we observe the following phenomena: 1) On all datasets, the
peak point corresponding to the ideal y value is determined by the
dataset distribution. As y increases, the performance curve shows
an upward trend, followed by a downward trend. 2) The model will

Batch-Mix Negative Sampling for Learning Recommendation Retrievers

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

0.08
. . 0.10 —]
0.175 0.07 e !
e 0.07
0.150
006 e 0.08
A — 0.06 / T —,
0.125 ~— / ——
/ ——— 0.05 /‘/ 1 0.06
0.100 | / 0.05 f/
/ 0.041 J/ / 0.04
I 4 /
0075 / 0.04 /
NDCG@10 0031/ NDCG@10 003/ NDCG@10 002 NDCG@10
0050/ RECALL@!0 | RECALL@10 y RECALL@10 RECALL@10
0.02 0.024-
0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 08 1.0 0.0 0.2 0.5 0.8 1.0
Y Y Y Y
(a) Gowalla (b) Tmall (c) Yelp (d) Amazon
Figure 2: The effect of y
0.175 0.0730 0.078
0.170 0.09875
0.076
0.165 0.0725 0.09850
0.160 00720 » 0.074 0.09825
0.155 NDEG@10 ; 0.072 NDCG@10 0.09800 NDCG@10
RECALL@10 RECALL@10 RECALL@10
0.150 00715 0070 0.09775 -
0.145 0.09750
0140 00710 NDCG@10 0.068 0.09725
RECALL@10
0.135 0.066 0.09700
64 256 1024 4096 64 256 1024 4096 64 256 1024 4096 64 256 1024 4096
K K K
(a) Gowalla (b) Tmall (c) Yelp (d) Amazon

Figure 3: The effect of generated negative number

experience a sharp degradation as y asymptotically approaches 0,
which is radically different from the pattern as y approaches 1.

For the first phenomenon, we attribute the reason to the adapt-
ability of BMNS to different dataset distributions. An appropriate
choice of y can provide beneficial information for model training
and make the training process more robust. However, using only
generated negative samples would lead to a distorted sampling
distribution, resulting in the second phenomenon. The reason may
lie in that the huge gradient bias from the softmax loss.

4.4 Varying the number of generated samples

In the aforementioned experiments, we assume that the number
of generated negative samples K is the same as the batch size
|B|. Usually, the batch size is large during model training, e.g.,
2048. As a result, significant time costs are incurred for generating
new negatives. In this section, we will release this restriction and
generate different number of batch-mix negatives to study the
impact of K on the recommendation performance. In specific, we
select K within a wide range {64, 128, 256,512, 1024, 2048, 4096} to
conduct comparison experiments.

From Figure 3, we can see the number of generated negative
number K slightly affects the performance of the retriever, espe-
cially on the Gowalla and Yelp datasets. On Tmall and Amazon
datasets, increasing the number of negative samples may not neces-
sarily lead to better performance. Taking into account the trade-off
between performance and efficiency, we believe that generating
128 negative samples is a relatively better choice.

4.5 Effect of Batch Size

We conduct further investigation into the influence of batch size
on BMNS. In this section, the number of generated negatives K is
consistent with the batch size. As shown in Figure 4, we compare the

NDCG@10 improvement of BMNS with SSL-Pop on four datasets.
An important observation is that as the batch size increases, the
relative improvement on Yelp and Amazon datasets also increases,
whereas the conclusion is oppositive on Gowalla and Tmall datasets.
Therefore, the batch size of 2048 is more advantageous and yields
relatively balanced improvement in the previous experiments.

—o— Gowalla Tmall —— Yelp —4— Amazon

17.5 //—t\/‘
I 150
g 125
£
2 100
g 1o
E 75
4
£ 50
o
25
0.0
512 1024 2048 4096 8192
Batch Size

Figure 4: Batch Size vs. Relative Improvement

4.6 Running Time Experiments

To demonstrate the efficiency of the proposed method, we conduct
running time experiments to compare the convergence efficiency
of different sampling method on four datasets . As for BMNS, the
number of generated negatives K affects its running speed. There-
fore, we use multiple configurations, e.g., K = 128 and K = | 8|, to
plot their performance curves respectively. We also choose SSL-Pop,
correct-sfx and MNS as baselines for comparison. In the experi-
ments, we run each sampling method for 50 epochs and evaluate
the performance every two epochs. We repeat each experiment 5

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

0.18 0.08
0.16 007
0.14
Son = 0.06
golo SSL-Pop g 005 SSL-Pop
a . a A
£ 0.08 correct-sfi Z 004 correct-sf
0.06 — MNS : — MNS
~ Batch Mixup-2048 0.03 — Batch Mixup-2048
0.04 ~ Batch Mixup-128 = Batch Mixup-128
0.02 0.02
0 10 20 30 40 50 60 70 80 0 25 50 75 100 125 150 175

Time(seconds) Time(seconds)

(b) Tmall

(a) Gowalla

I ©0.06 SSL-Pop
o] SSL-Pop o
a [=} —— correct-sfx
Z 004 — correctesx £ 005 e
— MNs 0.04 .
0.03 Batch Mixup-2048 Batch Mixup-2048
—— Batch Mixup-12§8 0.03 —— Batch Mixup-128
0.02 0.02
25 50 75 100 125 150 175 0 50 100 150 200
Time(seconds) Time(seconds)
(c) Yelp (d) Amazon

Figure 5: Running time vs. Performance convergence

times and report the average results in the Figure 5. The results
demonstrate the advantages of BMNS from two aspects: 1) High
training efficiency. BMNS achieves better recommendation perfor-
mance within the same training time, which reflects the excellent
training efficiency of BMNS. 2) Better performance. When all the
algorithms reach convergence, BMNS leads to a clear margin of
performance improvement compared to other baselines.

In Section 3.4, we discuss the time complexity of BMNS. The
additional computational cost incurred by the sampling and mixing
stage mainly stems from the mixing coefficient sampling and the
generation of virtual negative samples. During the training stage,
we also need to spend extra time on the loss computing of gen-
erated negatives. Note that the complexity of these operations is
closely related to the size of K. In other words, if we decrease the
value of K, i.e., the number of generated negatives, the additional
running time required for BMNS will also decrease. As depicted
in Figure 5, convergence time would notably reduce when gen-
erating only 128 negative samples. Moreover, since the number
of generated negatives has little impact on model performance,
it still works well compared with the default setting. Generally
speaking, BMNS improves the recommendation performance of the
two-tower model without consuming a lot of training time, thus
possessing the potential for application in practical scenarios.

Table 3: The impact of correction

dataset Gowalla Tmall
metric N@10 N@50 R@50 |[N@10 N@50 R@50
uniform 0.1722 0.3391 0.3021|0.0712 0.1505 0.1573

uniform+correct | 0.1720 0.3392 0.3022|0.0717 0.1512 0.1580

dataset Yelp Amazon

metric N@10 N@50 R@50 |[N@10 N@50 R@50

uniform 0.0778 0.1926 0.1852|0.0970 0.1887 0.2051
uniform+correct | 0.0779 0.1927 0.1853|0.0970 0.1888 0.2052

Yongfu Fan et al.

0.076

W Batch Mixing
W Positive Mixing

0.074

0.072
o

20070

2

£ 0.068
0.066
0.064
0.062

1024 2048 4096 1024 2048 4096 8192
Batch Size Batch Size

(a) Gowalla (b) Tmall

512 1024 2048 4096 8192 512 1024 2048 4096 8192
Batch Size Batch Size

(c) Yelp (d) Amazon

Figure 6: Performance comparison of mixing methods over
different batch size on four datasets

4.7 Effect of Corrected Strategy

During the sampling stage, we sample mixing coefficient from
uniform distribution and adopt log Q correction to enable unpopular
items are assigned higher mixing weights. In order to investigate
the role of the correction term, we conduct experiments on four
datasets to compare the effect of correction term. As shown in Table
3, in the vast majority of cases, correcting the mixing coefficient
can bring a certain performance improvement, which is relatively
evident on the Tmall dataset.

4.8 Comparison of different mix method

BMNS utilize all the in-batch negatives to generate the new negative.
A trivial solution is the positive mixing proposed in MixGCF [14],
which improves the quality of negatives by injecting the infor-
mation of positive samples into negatives. In particular, for given
interacted item i and in-batch item j, the score of new negative k
is calculated by:

s (4 k) = a®s(u,i) + (1 - a®)s(u, j) (8)

where a®) € U(0,1). The training pair (u, i) denotes a positive
sample while (u, j) represents a negative sample. For a fair compar-
ison, all the mixing strategies is based on the same loss function,
i.e., Eq (6). We report the performance of mixing methods under
different batch size. The results are shown in Figure 6 and we have
the following observations:

On all datasets, BMNS outperforms positive mixing. Especially
on the Gowalla and Tmall datasets, batch mixing results in an
obvious margin compared with positive mixing. This observation
demonstrates the contribution of BMNS. The scale of batch size
has an important effect on performance. Generally, batch mixing
achieves a more significant improvement on larger batch size.

MixGCF is optimized under the BPR loss function, which re-
quires fewer negative samples, e.g., near 5 samples would perform
good performance. The sampled softmax usually requires much
more negative samples, and pos-mixing strategy would get poor

Batch-Mix Negative Sampling for Learning Recommendation Retrievers

performance with over-emphasized positive samples. Besides, the
MF encoder may not be suitable for the MixGCF proposed for GNN.

5 CONCLUSION

In this paper, we propose a Batch-Mix Negative Sampling (BMNS)
strategy for two-tower model training via mixing in-batch negatives.
Our method extracts additional virtual negatives from the repre-
sentation space of in-batch negatives to supplement the deficiency
of in-batch negative sampling. Furthermore, we develop a mixture
loss function to facilitate the coordinated training of in-batch nega-
tives and virtual negatives. The introduction of additional negatives
leads the model to benefit from different information and obtain
more robust training. The empirical experiments on four real-world
datasets fully demonstrate the effectiveness and efficiency of BMNS.

ACKNOWLEDGMENTS

This work is partially supported by NSFC (No. 61972069, 61836007,
61832017, 62272086), Shenzhen Municipal Science and Technology
R&D Funding Basic Research Program (JCYJ20210324133607021),
Municipal Government of Quzhou under Grant No. 2022D037, and
Key Laboratory of Data Intelligence and Cognitive Computing,
Longhua District, Shenzhen.

A GRADIENT ANALYSIS

Given the fixed mini-batch B and the user-item pair (u,i), the
expectation of the loss gradient Vy.£(u, i) can be written as:

E[VoL(w)] == Vos® (wi)+y), P(jlu)Vos" (uj)
Jjelg

F(A=pE| Y Pkl Y @ Vos(u,)

keKg jelg
(©)

Here, we observe that Vs¢ = Vs. The last term can be expanded as:

Bl Pkl Y @) Ves(u)

_kE’I{B jelg
exp s™X (u, k) (k .
=E P mix (g1] Z wj(.)Vgs(u,])
_kE'I(ﬂ 2167(3 eXpS (u’) jEIB
~ (k
exp (Lme 1 Wi s(m)) e
=E Z w; Vos(u, j)

(1
keXy 2Ky €XP (Zne]g; Wi s(u, n)) jelg

For those generated negative [, i.e., | € Kg and [# k, we obtain
the following expectations:

(I
Eregcp ik Z Wwas(u,n)

nEIB

exp (wh! ~ log pop(n)

=Eje Kg,12k Z s(u,n)

nels Xime Iy €XP (Wfff) - logPOP(m))

_ 1/pop(n)
nelg ZmEZgg 1/P0P(m)

s(u,n) =o

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Thus, we have the following term:

El Y Prklu) Y \X/J(.k)Vgs(u,j)

_kE(](g jelg

[. (k . (k

. WJ(-)exp (Zmefg w,(n)s(u, m))

Vos(u, j)

~ (k
T KER exp (Sme 1 W s(m) + (1Kg| = 1) expo
Similarly, we get the following expectation:

~ (k ~ (k
w](.)exp (Zmdﬂ w,(n)s(u, m))

Eke?(g D)
exp (Zmerg Wir's(usm)) + (1Kl = 1) expo

exp (W}k)) /pop(j) 1

:Eke'KB (IKgl-1) expo

(

(k) ’
% exp (w,"") [pop(l) 1+
lelg (1) eXP(Zmejg Wrrlf)s(u,m))

exp (W}k)) /pop(j) 1

=Erexg (Kgl-1) expo

ZleIB exp (Wl(k))/Pop(l) 1+ ([(3)

o ZmGIB s(u,m) exp (Wm)/pop(m))

Lnerg exp (wr(.k))/pozr(n)

“Erexc exp (1/2)/pop(j) 1
_ €Kqg —
7 |Brerm R (AR pop W)y e e
me Z; i
T Thezy = (172 /pop(n))
“Erex 1pop(j) 1
TR | e, 1/pop(l) [Kgl-1) expo
i U S ez, ST [pop(m)
P\ T ez, UPoP
1/pop(j) 1 1/pop(j)

“Tierg UpopM) 1y Tl K Siery 1/pop(D

Thus, the expectation of the last term in Eq (9) can be simplified as:

E[Y Pklw) Y \X)J(.k)Vgs(u,j)

keKg jelg
1/pop(J) . .
=E %V@S(U,]) = Z 0;jVys(u, j)
jelg leig 1/pop jels
where 0 = 1/pop()) Finally, the gradient expectation of the

2ierg 1/pop(l)”
integrated loss given the training pair (u, i) and the mini-batch
follows as:

E[VoL(w)]
== Vos(wi)+y >, P(jlu)Vas(u, j)+(1=y) D 0;Vps(u,j)

Jjels Jjels
== Vs (wi)+ Y (yP(jlu) +(1-1)o;) Vos(u,j)
jelg

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

REFERENCES

(1]

A

=

=
0

[10

[11

[12]

[13

[14]

[15]

[16]

Yoshua Bengio and Jean-Sébastien Senecal. 2003. Quick Training of Probabilistic
Neural Nets by Importance Sampling. In Proceedings of the Ninth International
Workshop on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. R4). 17-24.

Yoshua Bengio and Jean-Sébastien Senécal. 2008. Adaptive importance sampling
to accelerate training of a neural probabilistic language model. IEEE Transactions
on Neural Networks 19, 4 (2008), 713-722.

Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. 2000. Vicinal
Risk Minimization. In Proceedings of the 13th International Conference on Neural
Information Processing Systems (NIPS’00). 395-401.

Feihu Che, Guohua Yang, Pengpeng Shao, Dawei Zhang, and Jianhua Tao. 2022.
MixKG: Mixing for harder negative samples in knowledge graph. arXiv preprint
arXiv:2202.09606 (2022).

Jin Chen, Defu Lian, Binbin Jin, Xu Huang, Kai Zheng, and Enhong Chen. 2022.
Fast variational autoencoder with inverted multi-index for collaborative filtering.
In Proceedings of the ACM Web Conference 2022. 1944-1954.

Jin Chen, Defu Lian, Binbin Jin, Kai Zheng, and Enhong Chen. 2022. Learning
Recommenders for Implicit Feedback with Importance Resampling. In Proceedings
of the ACM Web Conference 2022. 1997-2005.

Jin Chen, Defu Lian, Yucheng Li, Baoyun Wang, Kai Zheng, and Enhong Chen.
2022. Cache-Augmented Inbatch Importance Resampling for Training Recom-
mender Retriever. In Advances in Neural Information Processing Systems, Vol. 35.
34817-34830.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7-10.

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191-198.

Jingtao Ding, Yuhan Quan, Quanming Yao, Yong Li, and Depeng Jin. 2020. Simplify
and robustify negative sampling for implicit collaborative filtering. Advances in
Neural Information Processing Systems 33 (2020), 1094-1105.

Carlos A. Gomez-Uribe and Neil Hunt. 2016. The Netflix Recommender System:
Algorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4,
Article 13 (dec 2016), 19 pages.

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019.
with mixup for sentence classification: An empirical study.
arXiv:1905.08941 (2019).

Cheng-Kang Hsieh, Longgi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of the 26th
international conference on world wide web. 193-201.

Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu
Wang, and Jie Tang. 2021. MixGCF: An Improved Training Method for Graph
Neural Network-Based Recommender Systems. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining (KDD ’21). 665-674.

Kalervo Jarvelin and Jaana Kekélainen. 2002. Cumulated Gain-Based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (oct 2002), 422-446.

Jang-Hyun Kim, Wonho Choo, Hosan Jeong, and Hyun Oh Song. 2021. Co-
mixup: Saliency guided joint mixup with supermodular diversity. arXiv preprint
arXiv:2102.03065 (2021).

Augmenting data
arXiv preprint

(17

[18

[19

[20

[
-

[22

[23

[24]

[25]

[26]

[27

(28]

[29

[30

[31

(32

Yongfu Fan et al.

Defu Lian, Qi Liu, and Enhong Chen. 2020. Personalized ranking with importance
sampling. In Proceedings of The Web Conference 2020. 1093-1103.

Erik Lindgren, Sashank Reddi, Ruiqi Guo, and Sanjiv Kumar. 2021. In Advances
in Neural Information Processing Systems, Vol. 34. 4134-4146.

Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining. 273-282.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI *09).
452-461.

Zhigiang Shen, Zechun Liu, Zhuang Liu, Marios Savvides, and Trevor Darrell.
2020. Rethinking image mixture for unsupervised visual representation learning.
arXiv preprint arXiv:2003.05438 3, 7 (2020), 8.

Wentao Shi, Jiawei Chen, Fuli Feng, Jizhi Zhang, Junkang Wu, Chongming Gao,
and Xiangnan He. 2023. On the Theories Behind Hard Negative Sampling for
Recommendation. In Proceedings of the ACM Web Conference 2023. 812-822.
Tianchi. 2018. IJCAI-16 Brick-and-Mortar Store Recommendation Dataset. https:
//tianchi.aliyun.com/dataset/dataDetail?datald=53

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,
David Lopez-Paz, and Yoshua Bengio. 2019. Manifold Mixup: Better Representa-
tions by Interpolating Hidden States. In Proceedings of the 36th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 97).
6438-6447.

Jinpeng Wang, Jieming Zhu, and Xiugiang He. 2021. Cross-batch negative sam-
pling for training two-tower recommenders. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval. 1632-1636.

Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaom-
ing Wang, Taibai Xu, and Ed H Chi. 2020. Mixed negative sampling for learning
two-tower neural networks in recommendations. In Companion Proceedings of
the Web Conference 2020. 441-447.

Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee
Kumthekar, Zhe Zhao, Li Wei, and Ed Chi. 2019. Sampling-bias-corrected neural
modeling for large corpus item recommendations. In Proceedings of the 13th ACM
Conference on Recommender Systems. 269-277.

Wenpeng Yin, Huan Wang, Jin Qu, and Caiming Xiong. 2021. BatchMixup:
Improving training by interpolating hidden states of the entire mini-batch. In
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. 4908—
4912.

Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon
Yoo, and Junsuk Choe. 2019. CutMix: Regularization Strategy to Train Strong
Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV). 6022-6031.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

Rongzhi Zhang, Yue Yu, and Chao Zhang. 2020. SeqMix: Augmenting Active
Sequence Labeling via Sequence Mixup. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 8566-8579.
Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing Top-n
Collaborative Filtering via Dynamic Negative Item Sampling. In Proceedings of
the 36th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’13). 785-788.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53

	Abstract
	1 Introduction
	2 Related Work
	2.1 Negative Sampling in Recsys
	2.2 MixUp Strategy

	3 Methodology
	3.1 Preliminaries
	3.2 Batch-Mix Negative Sampling
	3.3 Corrected Strategy for Sampled Softmax
	3.4 Complexity Analysis

	4 Experiment Results
	4.1 Experiment Settings
	4.2 Performance Comparison
	4.3 Varying the loss coefficient
	4.4 Varying the number of generated samples
	4.5 Effect of Batch Size
	4.6 Running Time Experiments
	4.7 Effect of Corrected Strategy
	4.8 Comparison of different mix method

	5 Conclusion
	Acknowledgments
	A Gradient Analysis
	References

