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ABSTRACT
Recommendation retrievers commonly retrieve user potentially
preferred items from numerous items, where the query and item
representation are learned according to the dual encoders with the
log-softmax loss. Under real scenarios, the number of items becomes
considerably large, making it exceedingly difficult to calculate the
partition function with the whole item corpus. Negative sampling,
which samples a subset from the item corpus, is widely used to
accelerate the model training. Among different samplers, the in-
batch sampling is commonly adopted for online recommendation
retrievers, which regards the other items within the mini-batch
as the negative samples for the given query, owing to its time
and memory efficiency. However, the sample selection bias occurs
due to the skewed feedback, harming the retrieval quality. In this
paper, we propose a negative sampling approach named Batch-Mix
Negative Sampling (BMNS), which adopts batch mixing operation
to generate additional negatives for model training. Concretely,
BMNS first generates new negative items with the sampled mix
coefficient from the Beta distribution, after which a tailored correct
strategy guided by frequency is designed to match the sampled
softmax loss. In this way, the effort of re-encoding items out of
the mini-batch is reduced while also improving the representation
space of the negative set. The empirical experiments on four real-
world datasets demonstrate BMNS is superior to the competitive
negative inbatch sampling method.
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1 INTRODUCTION
With the rapid development of the Internet, the problem of informa-
tion overload has become increasingly severe. The recommender
system, which typically infers users’ preferences based on their his-
torical behavior, has become one of the crucial solutions to alleviate
the problem of information overload. As a key stage of large-scale
recommenders [8, 9, 11], the recommender retrievers attempt to
mine highly relevant items from the whole corpus. Recently, the
popular retriever framework often trains dual-encoders (also called
two-towers) [9, 26, 27], with each encoder dedicated to learning the
representation of users and items, respectively. During the training,
for each given user-item pair, the loss function, i.e., log-softmax [9],
encourages the model to assign a higher score to the positive sam-
ples against other items. However, in large-systems, the scale of the
items often reaches millions or even more, resulting in unbearable
computational expenses for the partition function calculation.

Negative sampling [7, 18, 25–27] is an extensively used and effec-
tive technique for reducing the computational load during model
training. It involves sampling a subset of samples from the entire
corpus to approximate the gradient over all items. Considering the
real scenarios with a huge number of items and deep networks,
sampling from the entire corpus requires additional memory foot-
print to encode the unseen items out of the mini-batch through the
large-scale network, which may not meet the latency and memory
requirements. The in-batch sampling [26, 27], which directly consid-
ers other samples within the mini-batch as negatives, has becomes
popular and has been successfully deployed in many recommender
systems owing to its memory-efficient computation.

Unfortunately, the items in the mini-batches are more frequently
exposed and follow the long-tail distribution, which leads to in-
batch sampling excessively punishing the popular items and result-
ing in poor gradient approximating, usually referred to the sample
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Figure 1: The illustration of Batch-Mix Negative Sampling

selection bias. Several works [26, 27] correct the sampling bias with
the exposure frequency, which is actually consistent with the sam-
pled softmax [2] with the popularity-based sampling distribution.
To further alleviate the long-tail effect, MNS [26] mixes up the in-
batch items with the additionally uniformly sampled items to enrich
the representation space. XIR [7] caches the informative items in
preceding iterations as the augmented negatives for current train-
ing. However, despite the better performance of MNS and XIR, they
both require re-encoding of sampled items, which becomes incredi-
bly inefficient with numerous features and large-scale encoders. On
the one hand, loading items with their rich features among disks,
CPU memory and GPU memory takes much time, which usually
occupies the majority of running time. On the other hand, extensive
computations for encoding additionally sampled items out of the
mini-batch incurs unneglected computational expense.

To expand the negative set of in-batch sampling without in-
troducing additional data loading and re-encoding by training
two-tower models, we propose the Batch-Mix Negative Sampling,
shortly as BMNS, which generates the new negative samples ac-
cording to the mini-batch items. Inspired by Mixup [30], which
augments the new data points by linearly mixing up two data
points according to the Beta distribution, we generate the virtual
negatives in a better representation space, thereby improving the
performance and generalization of the model. Different fromMixup,
which only exploits two data points to generate a new point, we
mix up virtual negative items with multiple items within the mini-
batch. Concretely, the weights according to the Beta distribution
are assigned to each item, which are later normalized through the
softmax function over items for each user query. The normalized
weights are then utilized to mix up the virtual negatives, without
the need of sampling additional items from the whole corpus. More-
over, in order to be consistent with the native sampled softmax
loss with in-batch sampling, the frequency probabilities are fit into
the loss function, where we conduct a theoretical analysis on the
gradient. In this way, BMNS achieves the goal of alleviating the
selection bias of in-batch sampling without additionally sampling
items out of the mini-batch, which is both time and cost efficient.

In this paper, our contributions can be summarized as follows:

• We propose a new negative sampling method, BMNS, which can
generate virtual negatives using in-batch negatives for a better
representation space, without additionally sampling items out of
the mini-batch.

• We integrate the popularity into the mixing coefficient for adapt-
ing to the sampled softmax loss, with the aim of reducing the
sample selection bias, after which a loss function containing in-
batch samples and generated samples is utilized for optimization.

• We evaluate the proposed approach on four real-world datasets.
The results indicate that our method can significantly improve
recommendation performance compared to the baseline while
keeping high efficiency.

2 RELATEDWORK
2.1 Negative Sampling in Recsys
Negative sampling technique is widely used to accelerate the train-
ing process for implicit feedback in recommender systems, espe-
cially under the pair-wise loss functions, e.g., BPR loss [20], Margin-
based loss [13] and Sampled Softmax loss [5]. According to the
types of sampling distributions, the samplers can be divided into
two groups: the static samplers and the adaptive samplers. The
static samplers usually select items according to the static distribu-
tions, e.g., the uniform distribution [20] and the popularity-based
distribution [19]. Despite of their simplicity and efficiency, they are
prone to overfitting to easy samples in the later training process [17].
The adaptive samplers, whose sampling distribution changes along
with the model updates, select those items with higher similarity
scores as negatives [10, 32] and thus achieve faster convergence
and better performance. With further research, the community has
reached the agreement that the softmax distribution is the optimal
sampling distribution [22]. Existing efforts [5, 17, 22] have been
devoted to alleviating the bias of the sampling from the softmax
distribution with keeping low cost.

However, these approaches sample items from the entire item
corpus. Considering the scenarios of online recommender retriev-
ers, the user-item pairs with their numerous features are grouped
into mini-batches inputted into the models. Thus encoding the
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items outside of the mini-batch requires additional calculations,
which may exceed the storage and latency limitations with limited
hardware resources. In-batch sampling, which treats other items
within the batch as negative samples, has become a general strat-
egy for online recommender retrievers. To better approximate the
softmax distribution with limited in-batch items, correct-sfx [27]
corrects the sampling bias based on the streaming popularity esti-
mation. MNS [26] further increases the sampler number by mixing
the globally uniformly sampled items. XIR [7] caches the historical
informative items for faster converge.

2.2 MixUp Strategy
Mixup [30] is a powerful data augmentation method for contrastive
learning and has gained widespread adoption in various fields. The
vanilla Mixup [30] focuses the vicinal risk minimization [3] and
performs linear interpolation on two raw data points based on the
Beta distribution to generate the new data point. Subsequently, sev-
eral approaches work for data samples, such as images [16, 21, 29]
and sentences [12, 31], are proposed to generate the augmented
samples. Cutmix [29] proposes to combine Cutout and Mixup, mix-
ing image information by exchanging some continuous regions
in two images. SeqMix [31] introduces Mixup into NLP tasks by
mixing sentence pairs based on score functions. The other type of
Mixup strategy performs the mixup operation on hidden spaces,
such as Manifold Mixup [24], being popular owing to the better
representation learning. Furthermore, BatchMix [28] interpolates
hidden states of the entire mini-batch to improve training. In rec-
ommender systems, Mixup technique is introduced in MixGCF [14]
for graph-based learning through positive mixing and hop mixing
to generate hard negatives for each layer. MixKG [4] also adopts the
mixup for sampling harder negatives in knowledge graph tasks.

3 METHODOLOGY
This section first introduces the preliminaries of the problem, and
then describes the two important components of BMNS, i.e., the
mixup based negative sampling strategy and the tailored popularity
guided corrected strategy, along with the modified loss function
adapted for this method, where we conduct the gradient analysis.
We also analyze the time complexity and space complexity of the
proposed method. Figure 1 illustrates the workflow of BMNS.

3.1 Preliminaries
Given a query, the task of retriever models is retrieving the most
relevant items over numerous item corpus. In a retriever system
comprising 𝑀 queries and 𝑁 items, the sets of queries and items
are represented by {𝒒𝑖 ∈ R𝑑𝑄 }𝑀

𝑖=1 and {𝒛𝑖 ∈ R𝑑𝐼 }𝑁𝑖=1, respectively.
Here 𝒒𝑖 and 𝒛𝑖 are both vector of continuous or categorical fea-
tures, which can be mapped into dense embedding space with two
trainable embedding functions 𝜙𝑄 : R𝑑𝑄 → R𝑑𝐷 , 𝜙𝐼 : R𝑑𝐼 → R𝑑𝐷 .
Under the two-tower architecture, the similarity of specific query
𝑢 and item 𝑖 can be calculated by the inner-product score function:
𝑠 (𝑢, 𝑖) =

〈
𝜙𝑄 (𝒒𝑢 ;\ ), 𝜙𝐼 (𝒛𝑖 ;\ )

〉
, where \ denotes the model parame-

ters. The retrieval task is usually treated as a classification problem
by optimizing the log-softmax loss function. Specifically, given a
user query 𝑢, the likelihood of the user preferences with respect to

the item 𝑖 is represented as:

𝑃 (𝑖 |𝑢) = exp 𝑠 (𝑢, 𝑖)∑
𝑗∈I exp 𝑠 (𝑢, 𝑗)

where I denotes the item set. The objective is to maximize the
likelihood of each user-item pair (𝑢, 𝑖) in the train data D. There-
fore, by the maximum likelihood estimation, the retrieval model is
trained with log-softmax loss:

L (D,Θ) = − 1
|D|

∑︁
(𝑢,𝑖 ) ∈D

log 𝑃 (𝑖 |𝑢)

= − 1
|D|

∑︁
(𝑢,𝑖 ) ∈D

log
exp (𝑠 (𝑢, 𝑖))∑
𝑗∈I exp (𝑠 (𝑢, 𝑗))

where | · | denotes the element number of the set. In the large-
scale reommender, the computation of partition function, i.e., the
denominator of the softmax function, will become significantly
complicated as the enlarging of |I |. A popular strategy to alleviate
this problem is in-batch sampling, i.e., treating other items within
the batch as negatives. Compared with other global sampling meth-
ods, i.e., static sampling over the entire corpus, in-batch sampling
is free from encoding out-batch items. Moreover, the sophisticated
features and neural networks leveraged in online systems usually
lead to significant time consumption for re-encoding items. There-
fore, in-batch sampling obtains more extensive application in real
recommendation scenarios.

However, due to the long-tail effect, popular items aremore likely
to appear within a batch. Therefore, the sampling distribution of in-
batch sampling is biased from the softmax distribution since popular
items are frequently selected as negatives. According to the sampled
softmax [1, 2], the correction term log𝑄 reduces sampling bias by
lowering the penalty for popular items. Thus, the loss function with
respect to the mini-batch B is following as:

L (B,Θ) = − 1
|B|

∑︁
(𝑢,𝑖 ) ∈B

log
exp (𝑠𝑐 (𝑢, 𝑖))∑

𝑗∈IB exp (𝑠𝑐 (𝑢, 𝑗)) (1)

where IB denotes the item set of mini-batch B. The corrected logit
𝑠𝑐 (𝑢, 𝑖) is defined as:

𝑠𝑐 (𝑢, 𝑗) = 𝑠 (𝑢, 𝑗) − log𝑝𝑜𝑝 ( 𝑗), 𝑝𝑜𝑝 ( 𝑗) =
𝑓𝑗∑

𝑘∈I 𝑓𝑘
(2)

where 𝑓𝑗 denotes the occurrence numbers of item 𝑗 in the training
data. Here we do not consider the streaming data and the popularity
is the accurate estimation of all training data.

3.2 Batch-Mix Negative Sampling
In-batch negative sampling directly samples negatives from the
current batch and achieves better training efficiency. Increasing the
batch size can provide more diverse negatives during the model
training. However, the batch size is limited due to the constraint of
computing resources, which engenders the bottleneck of in-batch
sampling strategy. Although a series of methods [7, 26] based on
in-batch sampling improve the sampling distribution by incorporat-
ing additional negative samples from the entire corpus or caching
historical informative items, these methods inevitably introduce
considerable computational overhead for re-encoding items. Due
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to the complex features and deep neural networks, this expense is
especially remarkable in large-scale recommendation systems.

Thus, we are motivated to design new sampling strategy to ex-
pand the sampling set without introducing additional re-encoding
computation. Inspired by Mixup [30], which interpolates two sam-
ples as the new sample to augment the model training, we recognize
that generating virtual negative samples may be amore efficient and
effective way to sample negatives. Given two samples (𝑥𝑖 , 𝑦𝑖 ) and
(𝑥 𝑗 , 𝑦 𝑗 ) drawn from training data, the standard Mixup synthesizes
the new sample as follows:

𝑥 = _𝑥𝑖 + (1 − _)𝑥 𝑗 , 𝑦 = _𝑦𝑖 + (1 − _)𝑦 𝑗

where 𝑥 and𝑦 denote input data and label, respectively. _ is the mix-
ing coefficient sampled from Beta(𝛼, 𝛼). The subsequent works [24,
28] further interpolate the representations in the hidden space in-
stead of the original input data point for better representation space.
This is different from that of negative sampling, where the items to
be sampled are universally treated as negatives and thus the label
mixup is not required. Based on this fact, we develop a negative
sampling strategy which only depends on negative mixup.

Our method involves two important stages: sampling andmixing.
In the first stage, for each mini-batch B, we treat in-batch items
as part of training negatives and encode them into embeddings.
Meanwhile, we also sample mixing coefficient from the Beta dis-
tribution for each item. Then, in the mixing stage, BMNS employs
hidden space interpolation to generate new negatives. Specifically,
the embedding of new virtual negative 𝑘 is generated as follows:

𝒆′
𝑘
=

∑︁
𝑗∈IB

�̂�
(𝑘 )
𝑗
𝜙𝐼 (𝒛 𝑗 ;\ ), �̂� (𝑘 )

𝑗
=

exp
(
𝑤

(𝑘 )
𝑗

)
∑
𝑙∈IB exp

(
𝑤

(𝑘 )
𝑙

) (3)

where𝑤 (𝑘 )
𝑗

is the unnormalized mixing coefficient sampled from
Beta(𝛼, 𝛼). 𝑘 ∈ {1, 2, ..., 𝐾} denotes the 𝑘-th sampling to generate
the total𝐾 virtual negatives. Ideally, each pair of (query, item) would
be assigned with a mixing coefficient to generate a new negative for
each query, which takes O(|B| × |B|) complexity and finally takes
O(𝐾 × |B| × |B|) time complexity. However, considering the huge
computational cost of sampling and mixing, we reuse the mixing
coefficient for each item, thus only requiring to sample𝐾 · |B| times
from Beta(𝛼, 𝛼) for the generation of 𝐾 batch-shared negatives.

Futhermore, due to the large batch size applied in retriever model
training, linear interpolation based on latent representation space
incursO(|B|×𝑑𝐷 ) time complexity for synthesizing a new negative.
Especially when the embedding dimension is larger, the computa-
tional overhead of performing inner-product on numerous items
will become more unacceptable. Fortunately, note that the mixup,
i.e., Eq (3), is a linear operation, the score of generated negative 𝑘
can be rewritten as:

𝑠𝑚𝑖𝑥 (𝑢, 𝑘) =< 𝜙𝑄 (𝒒𝑢 ;\ ),
∑︁
𝑗∈IB

�̂�
(𝑘 )
𝑗
𝜙𝐼 (𝒛 𝑗 ;\ ) >

=
∑︁
𝑗∈IB

�̂�
(𝑘 )
𝑗

< 𝜙𝑄 (𝒒𝑢 ;\ ), 𝜙𝐼 (𝒛 𝑗 ;\ ) >

=
∑︁
𝑗∈IB

�̂�
(𝑘 )
𝑗
𝑠 (𝑢, 𝑗)

(4)

Naturally, by directly mixing the scores of negative samples, we
eliminate the need for repetitive calculation of inner-product, thereby
reducing the computational complexity of the mixing step from
O(|B| × 𝑑𝐷 ) to O(|B|).

3.3 Corrected Strategy for Sampled Softmax
Similar to the corrected logit in sampled softmax with in-batch sam-
pling, we design the corrected strategy for the generated negatives
according to BMNS, with the aim of alleviating the selection bias
of in-batch sampling. Specifically, we correct the mixing coefficient
based on the popularity of the corresponding item as follows:

�̂�
(𝑘 )
𝑗

=

exp
(
𝑤

(𝑘 )
𝑗

− log𝑝𝑜𝑝 ( 𝑗)
)

∑
𝑙∈IB exp

(
𝑤

(𝑘 )
𝑙

− log 𝑝𝑜𝑝 (𝑙)
) (5)

where 𝑤 (𝑘 )
𝑗

denotes the mixing coefficient sampled according to
the Beta distribution and 𝑝𝑜𝑝 (·) denotes the popularity of the item
over the training data.

After negative sampling, we use both in-batch negatives and
generated negatives for model training. To endow the adjustable
capableness for loss function, we calculate the loss separately for
two pieces of data and integrate them through a hyperparameter:

LBMNS (B,Θ) = −𝛾
∑︁

(𝑢,𝑖 ) ∈B
log

exp (𝑠𝑐 (𝑢, 𝑖))∑
𝑗∈IB exp (𝑠𝑐 (𝑢, 𝑗))

− (1 − 𝛾)
∑︁

(𝑢,𝑖 ) ∈B
log

exp (𝑠𝑐 (𝑢, 𝑖))∑
𝑗∈KB exp

(
𝑠𝑚𝑖𝑥 (𝑢, 𝑗)

) (6)

where 𝑠𝑐 (𝑢, 𝑖) = 𝑠 (𝑢, 𝑖) − log𝑝𝑜𝑝 (𝑖) denotes the corrected logit and
𝑠𝑚𝑖𝑥 (𝑢, 𝑗) denotes the similarity score of the generated negative 𝑗 .
KB denotes the set of generated negatives. The hyperparameter𝛾 ∈
[0, 1] controls the proportion of the loss function that corresponds
to in-batch negatives and generated negatives. Note that when 𝛾=1,
the loss function degenerates to in-batch sampled softmax loss, i.e.,
Eq (1). In other words, the BMNS strategy can be interpreted as the
generalization of in-batch sampling. The algorithm 1 describes the
pseudocode of Batch-Mix Negative Sampling.

Compared to the vanilla in-batch sampling, BMNS generates
more negatives according to the in-batch items, without introducing
additional items outside of the mini-batch. We further analyze the
gradient with respect to the LBMNS to investigate the influence
of the generated negative samples. To simplify the analysis, we
consider the loss with respect to each user-item pair (𝑢, 𝑖) within
the mini-batch:

L(𝑢, 𝑖) = −𝑠𝑐 (𝑢, 𝑖) + 𝛾 log
∑︁
𝑗∈IB

exp
(
𝑠𝑐 (𝑢, 𝑗)

)
+ (1 − 𝛾) log

∑︁
𝑗∈KB

exp
(
𝑠𝑚𝑖𝑥 (𝑢, 𝑗)

) (7)

The gradient of Equation (7) w.r.t the parameters \ follows as:

∇\L(𝑢, 𝑖) = −∇\𝑠𝑐 (𝑢, 𝑖) + 𝛾
∑︁
𝑗∈IB

𝑃 ( 𝑗 |𝑢)∇\𝑠𝑐 (𝑢, 𝑗)

+ (1 − 𝛾)
∑︁
𝑘∈KB

𝑃∗ (𝑘 |𝑢)
∑︁
𝑗∈IB

�̂�
(𝑘 )
𝑗

∇\𝑠 (𝑢, 𝑗)
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Algorithm 1: Batch-Mix Negative Sampling
Input: Train data set D = {(𝑢, 𝑖)}, Sampling distribution

Beta(𝛼, 𝛼), Generated negative sample size 𝐾 ,
Hyperparameter 𝛾 , The number of epochs 𝑇

Output:Model parameters \
1 Calculate the item popularity P = {𝑝𝑜𝑝 (𝑖) | 𝑖 ∈ I} based

on the training data D;
2 for 𝑡 = 1, 2, . . . ,𝑇 do
3 for𝑚𝑖𝑛𝑖-𝑏𝑎𝑡𝑐ℎ B ∈ D do
4 UB = {𝑢 | (𝑢, 𝑖) ∈ B},IB = {𝑖 | (𝑢, 𝑖) ∈ B};
5 Encode queries into embeddings 𝑬𝑼𝐵

based on 𝜙𝑄 ;
6 Encode items into embeddings 𝑬𝑰𝐵 based on 𝜙𝐼 ;
7 Calculate the score matrix 𝑺 = 𝑬𝑼𝐵

𝑬⊤
𝑰𝐵
;

8 Sample mixing weight𝑾 ∈ R𝐾×|B | from Beta(𝛼, 𝛼);
9 for 𝑘 = 1, 2, . . . , 𝐾 do

10 �̂�
(𝑘 )
𝑖

=
exp

(
𝑤

(𝑘 )
𝑖

−log𝑝𝑜𝑝 (𝑖 )
)

∑
𝑗 ∈IB exp

(
𝑤

(𝑘 )
𝑗

−log𝑝𝑜𝑝 ( 𝑗 )
) ,∀𝑖 ∈ IB ;

11 end
12 Calculate the mix score matrix 𝑺𝑚𝑖𝑥 = 𝑺 · �̂�⊤;
13 Update \ based on the loss function Eq (6);
14 end
15 end

where 𝑃 ( 𝑗 |𝑢) = exp 𝑠𝑐 (𝑢,𝑗 )∑
𝑙 ∈IB exp 𝑠𝑐 (𝑢,𝑙 ) and 𝑃

∗ (𝑘 |𝑢) = exp 𝑠𝑚𝑖𝑥 (𝑢,𝑘 )∑
𝑙 ∈KB exp 𝑠𝑚𝑖𝑥 (𝑢,𝑙 ) .

Taking expectation of the gradient, then we have:

E [∇\L(𝑢, 𝑖)] = −∇\𝑠 (𝑢, 𝑖) +
∑︁
𝑗∈IB

(
𝛾𝑃 ( 𝑗 |𝑢) + (1 − 𝛾)𝑜 𝑗

)
∇\𝑠 (𝑢, 𝑗)

where 𝑜 𝑗 =
1/𝑝𝑜𝑝 ( 𝑗 )∑

𝑙 ∈IB 1/𝑝𝑜𝑝 (𝑙 ) . For the sake of conciseness, we have
included the details of the derivation in the appendix. Compared
with the original in-batch sampling with sampled softmax, BMNS
actually introduces an additional gradient term, where items with
lower popularity tend to have higher weights. Assuming the gra-
dient of logits ∇\𝑠 (𝑢, 𝑗) meet with |∇\𝑠 (𝑢, 𝑗) | ≤ 𝐶 , where 𝐶 is a
positive constant. Then the absolute bias between the expected loss
gradient of the BMNS and that of in-batch sampling satisfies:

𝛿 = |E [∇\LBMNS (𝑢, 𝑖)] − E [∇\LIn-batch (𝑢, 𝑖)] |

=

������ ∑︁𝑗∈IB (1 − 𝛾) (
−𝑃 ( 𝑗 |𝑢) + 𝑜 𝑗

)
∇\𝑠 (𝑢, 𝑗)

������
≤ (1 − 𝛾)

∑︁
𝑗∈IB

��−𝑃 ( 𝑗 |𝑢) + 𝑜 𝑗
�� ·𝐶

where the upper bound of bias 𝛿 is determined by the hyper-
parameter 𝛾 and the deviation between the sampled softmax distri-
bution and the inverse-popularity-based distribution. We suggest
using appropriate 𝛾 to control the level of bias 𝛿 , since BMNS will
be significantly biased from the softmax distribution when 𝛾 → 0.
Finally, we highlight the two advantages of BMNS: 1) BMNS gen-
erates additional virtual negatives without introducing additional
encoding computational costs. 2) BMNS enforces the model training

Table 1: Details of Datasets

Dataset User Item Interaction Sparsity

Gowalla 29,858 40,988 1,027,464 99.9160%
Tmall 125,553 58,058 2,064,290 99.9717%
Yelp 77,277 45,638 2,105,480 99.9403%

Amazon 130,380 128,939 2,415,650 99.9856%

by mixing the gradient of negative to achieve better representation
learning.

3.4 Complexity Analysis
Time complexity. As mentioned above, BMNS trains the model
using both in-batch negative samples and generated negative sam-
ples. Therefore, compared to in-batch sampling, BMNS needs to
pay an additional sampling and mixing burden. Sampling from
Beta distribution and weight normalization have a complexity of
O (𝑇𝑠 × 𝐾 × |B| + 𝐾 × |B|) (Line 8-11 in Alg 1), where 𝑇𝑠 denotes
the time for sample an coefficient from Beta distribution. Consider-
ing the expectation of Beta(𝛼, 𝛼) is equivalent to𝑈 (0, 1), we choose
a simpler uniform distribution as the surrogate for Beta distribu-
tion. In the worst-case scenario, the time complexity of calculating
score matrix (Line 12 in Alg 1) is O (𝐾 × |B| × |B|). However, with
the help of excellent algorithm and GPU parallel computing, we
only need to pay computational cost far less than this upper bound.
The complexity of inner-product takes O (|B| × |B| × 𝑑𝐷 ), which
is acceptable. Moreover, in the computing of training loss, BMNS
consists two parts, leading to O (|B| × 𝐾 + |B| × |B|)) complexity.

Space complexity. Regardless of the space occupation caused
by dataset loading and model parameters, the main memory cost
in BMNS is the storage of mixing coefficient. Therefore, the space
complexity is O (𝐾 × |B|), which is proportional to the number of
samples drawn from the uniform distribution.

4 EXPERIMENT RESULTS
4.1 Experiment Settings
4.1.1 Dataset Setting. In this paper, we conduct experiments on
four public datasets: Gowalla, Tmall, Yelp andAmazon.Gowalla 1 is
a check-in dataset that collects users’ check-in location information.
Tmall 2 records users’ behavior (e.g., click and purchase) on the
Tmall platform and used in IJCAI16 contest [23]. Yelp 3 contains
reviews from users on yelp’s website. In this paper, we directly use
the preprocessed dataset in [6].Amazon 4 includes user rating data
for Amazon books. Fowllowing previous setting in [6], we consider
items rated above 4 in the explict dataset as positive samples.

To alleviate data sparsity, we adopt 5-core strategy to filter
dataset, i.e., retain users and items with at least 5 interactions. The
statistic details of these datasets are summaried in Tabel 1. We use a
hold-out strategy to partition the dataset, where for each user, 80%
of items are used for training and the rest are used for testing. The
hyperparameters of all methods are tuned through cross-validation.

1Gowalla: http://snap.stanford.edu/data/loc-gowalla.html
2Tmall: https://tianchi.aliyun.com/dataset/53
3Yelp: https://www.yelp.com/dataset
4Amazon: http://jmcauley.ucsd.edu/data/amazon

http://snap.stanford.edu/data/loc-gowalla.html
https://tianchi.aliyun.com/dataset/53
https://www.yelp.com/dataset
http://jmcauley.ucsd.edu/data/amazon
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Table 2: Overall Performance Comparison, 𝛿 = 1e-4

Gowalla Tmall
NDCG@10 NDCG@50 Recall@50 NDCG@10 NDCG@50 Recall@50

SSL 0.1440±5.0𝛿 0.2942±7.0𝛿 0.2653±4.8𝛿 0.0495±2.5𝛿 0.1052±1.9𝛿 0.1081±2.3𝛿
SSL-Pop 0.1597±9.4𝛿 0.3027±8.3𝛿 0.2640±7.1𝛿 0.0643±3.9𝛿 0.1405±5.8𝛿 0.1481±5.4 𝛿
correct-sfx 0.1560±7.0𝛿 0.3100±9.6𝛿 0.2767±8.7𝛿 0.0512±1.1𝛿 0.1073±1.8𝛿 0.1101±2.2𝛿

MNS 0.1602±9.5𝛿 0.3038±10.4𝛿 0.2651±8.6𝛿 0.0655±3.9𝛿 0.1421±4.9𝛿 0.1500±4.5𝛿
BMNS 0.1720±7.4𝛿 0.3392±9.9𝛿 0.3022±10.8𝛿 0.0717±4.6𝛿 0.1512±4.6𝛿 0.1580±4.5𝛿

Improvement 7.37% 9.42% 9.22% 9.47% 6.40% 5.33%

Yelp Amazon
NDCG@10 NDCG@50 Recall@50 NDCG@10 NDCG@50 Recall@50

SSL 0.0672±2.8𝛿 0.1627±2.2𝛿 0.1559±3.4𝛿 0.0815±2.0𝛿 0.1592±2.3𝛿 0.1767±3.0𝛿
SSL-Pop 0.0662±1.9𝛿 0.1680±6.0𝛿 0.1614±7.1𝛿 0.0941±3.8𝛿 0.1828±3.9𝛿 0.1997±4.6𝛿
correct-sfx 0.0673±4.1𝛿 0.1623±5.6𝛿 0.1548±6.6𝛿 0.0863±3.9𝛿 0.1673±3.5𝛿 0.1853±4.4𝛿

MNS 0.0661±3.8𝛿 0.1669±4.6𝛿 0.1603±4.3𝛿 0.0957±3.0𝛿 0.1845±2.9𝛿 0.2014±3.7𝛿
BMNS 0.0779±2.6𝛿 0.1927±7.6𝛿 0.1853±8.2𝛿 0.0970±3.2𝛿 0.1888±2.9𝛿 0.2052±4.2𝛿

Improvement 15.75% 14.70% 14.81% 1.36% 2.33% 1.89%

4.1.2 Evaluation Metrics . We choose Normalized Discounted Cu-
mulative Gain (NDCG) [15] and Recall to evaluate the performance
of recommenders. The NDCG metric introduces the positional in-
formation of the top-N list and further normalizes each user. The
Recall metric is the proportion of top-N items found in the test data.
In our experiments, the cutoff number 𝑁 is chosen from {10, 50}.

4.1.3 Implementation Settings. We use the two-tower model as
the basic recommender for retrieval task and all methods are im-
plemented by PyTorch 1.13.0 on a Linux operating system. For
clearer comparison, we only use ID feature as model input and
the dimension of the embedding layer is fixed by 32. Our exper-
iments use Adam as the parameter optimizer, with a batch size
of 2048 for each dataset, where the number of training epochs is
fixed as 100. The learning rate and 𝑙2-regularization are searched in
{1𝑒 − 2, 5𝑒 − 3, 1𝑒 − 3} and {1𝑒 − 4, 1𝑒 − 5, 1𝑒 − 6}, respectively. In our
proposed method, the generated negative number 𝐾 is consistent
with the batch size by default and the weight of loss function 𝛾 is
tuned in range [0, 1] with a 0.1 step size.

4.1.4 Baselines.

• SSL is the vanilla sampling method for sampled softmax loss
which directly samples in-batch items without bias correction.
SSL-Pop considers the proposal sampling distribution as the pop-
ularity of items across the entire corpus, which can effectively
mitigate the significant sampling bias, as shown in Eq (1).

• correct-sfx [27] improves correction term using streaming fre-
quency estimation algorithm. It estimates the frequency probabil-
ity by calculating the average interval between two consecutive
hits of the item with hash techniques.

• MNS [26] adopts a mixture distribution based on the popularity
and the uniform distribution in a certain proportion. The addi-
tional uniform negatives sampled from the entire corpus alleviate
the problem of selection bias. Following the setting of BMNS, the
number of uniform negatives is set as same as the batch size.

4.2 Performance Comparison
We run 5 times experiments with different random seeds (i.e., seed =
10, 20, . . . , 50) for each method and report the average performance
and standard deviation. The results are summarized in Table 2. The
best method is bold and the second-best method is underlined. We
have the following observations: SSL, which does not incorporate
with the item frequency, shows less favorable results over three
datasets. Among Gowalla, Tmall and Amazon, SSL performs the
worst, where in-batch sampling incurs sample selection bias but no
corrected bias is provided. This indicates the necessity of correcting
the sample selection caused by the in-batch sampling.

Both MNS and BMNS achieve better performance on relatively
large datasets, i.e., Tmall and Amazon. This finding suggests that
introducing additional negatives outside the batch contribute to
reduce selection bias, and capturing global information in the ex-
panded sample space is beneficial to model training, which has a
less biased approximation for the partition function.

The proposed method BMNS consistently outperforms all base-
lines. Specifically, BMNS achieves relative 7.37%, 9.47%, 15.75%,
1.36% improvements of NDCG@10 compared to the strongest base-
line for each dataset. With regard to Recall@50 metric, the relative
improvements are 9.22%, 5.33%, 14.81%, 1.89%. The results fully
demonstrate the significant improvement brought by the BMNS.

4.3 Varying the loss coefficient 𝛾
The hyperparameter 𝛾 controls the proportion of in-batch loss
and batch-mix loss. To investigate the impact of loss coefficient
on model performance, we conduct experiments under various
settings. We traverse the loss coefficient 𝛾 from 0 to 1 with a step
size of 0.1. The results on different datasets are presented in Figure
2, and we observe the following phenomena: 1) On all datasets, the
peak point corresponding to the ideal 𝛾 value is determined by the
dataset distribution. As 𝛾 increases, the performance curve shows
an upward trend, followed by a downward trend. 2) The model will
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Figure 3: The effect of generated negative number

experience a sharp degradation as 𝛾 asymptotically approaches 0,
which is radically different from the pattern as 𝛾 approaches 1.

For the first phenomenon, we attribute the reason to the adapt-
ability of BMNS to different dataset distributions. An appropriate
choice of 𝛾 can provide beneficial information for model training
and make the training process more robust. However, using only
generated negative samples would lead to a distorted sampling
distribution, resulting in the second phenomenon. The reason may
lie in that the huge gradient bias from the softmax loss.

4.4 Varying the number of generated samples
In the aforementioned experiments, we assume that the number
of generated negative samples 𝐾 is the same as the batch size
|B|. Usually, the batch size is large during model training, e.g.,
2048. As a result, significant time costs are incurred for generating
new negatives. In this section, we will release this restriction and
generate different number of batch-mix negatives to study the
impact of 𝐾 on the recommendation performance. In specific, we
select 𝐾 within a wide range {64, 128, 256, 512, 1024, 2048, 4096} to
conduct comparison experiments.

From Figure 3, we can see the number of generated negative
number 𝐾 slightly affects the performance of the retriever, espe-
cially on the Gowalla and Yelp datasets. On Tmall and Amazon
datasets, increasing the number of negative samples may not neces-
sarily lead to better performance. Taking into account the trade-off
between performance and efficiency, we believe that generating
128 negative samples is a relatively better choice.

4.5 Effect of Batch Size
We conduct further investigation into the influence of batch size
on BMNS. In this section, the number of generated negatives 𝐾 is
consistent with the batch size. As shown in Figure 4, we compare the

NDCG@10 improvement of BMNS with SSL-Pop on four datasets.
An important observation is that as the batch size increases, the
relative improvement on Yelp and Amazon datasets also increases,
whereas the conclusion is oppositive on Gowalla and Tmall datasets.
Therefore, the batch size of 2048 is more advantageous and yields
relatively balanced improvement in the previous experiments.

512 1024 2048 4096 8192
Batch Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
el

at
iv

e 
Im

pr
ov

em
en

t (
%

)

Gowalla Tmall Yelp Amazon

Figure 4: Batch Size vs. Relative Improvement

4.6 Running Time Experiments
To demonstrate the efficiency of the proposed method, we conduct
running time experiments to compare the convergence efficiency
of different sampling method on four datasets . As for BMNS, the
number of generated negatives 𝐾 affects its running speed. There-
fore, we use multiple configurations, e.g., 𝐾 = 128 and 𝐾 = |B|, to
plot their performance curves respectively. We also choose SSL-Pop,
correct-sfx and MNS as baselines for comparison. In the experi-
ments, we run each sampling method for 50 epochs and evaluate
the performance every two epochs. We repeat each experiment 5



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yongfu Fan et al.

0 10 20 30 40 50 60 70 80
Time(seconds)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

N
D

C
G

@
10

SSL-Pop
correct-sfx
MNS
Batch Mixup-2048
Batch Mixup-128

(a) Gowalla

0 25 50 75 100 125 150 175
Time(seconds)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
D

C
G

@
10

SSL-Pop
correct-sfx
MNS
Batch Mixup-2048
Batch Mixup-128

(b) Tmall

0 25 50 75 100 125 150 175
Time(seconds)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
D

C
G

@
10

SSL-Pop
correct-sfx
MNS
Batch Mixup-2048
Batch Mixup-128

(c) Yelp

0 50 100 150 200
Time(seconds)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

N
D

C
G

@
10

SSL-Pop
correct-sfx
MNS
Batch Mixup-2048
Batch Mixup-128

(d) Amazon

Figure 5: Running time vs. Performance convergence

times and report the average results in the Figure 5. The results
demonstrate the advantages of BMNS from two aspects: 1) High
training efficiency. BMNS achieves better recommendation perfor-
mance within the same training time, which reflects the excellent
training efficiency of BMNS. 2) Better performance. When all the
algorithms reach convergence, BMNS leads to a clear margin of
performance improvement compared to other baselines.

In Section 3.4, we discuss the time complexity of BMNS. The
additional computational cost incurred by the sampling and mixing
stage mainly stems from the mixing coefficient sampling and the
generation of virtual negative samples. During the training stage,
we also need to spend extra time on the loss computing of gen-
erated negatives. Note that the complexity of these operations is
closely related to the size of 𝐾 . In other words, if we decrease the
value of 𝐾 , i.e., the number of generated negatives, the additional
running time required for BMNS will also decrease. As depicted
in Figure 5, convergence time would notably reduce when gen-
erating only 128 negative samples. Moreover, since the number
of generated negatives has little impact on model performance,
it still works well compared with the default setting. Generally
speaking, BMNS improves the recommendation performance of the
two-tower model without consuming a lot of training time, thus
possessing the potential for application in practical scenarios.

Table 3: The impact of correction

dataset Gowalla Tmall
metric N@10 N@50 R@50 N@10 N@50 R@50
uniform 0.1722 0.3391 0.3021 0.0712 0.1505 0.1573

uniform+correct 0.1720 0.3392 0.3022 0.0717 0.1512 0.1580
dataset Yelp Amazon
metric N@10 N@50 R@50 N@10 N@50 R@50
uniform 0.0778 0.1926 0.1852 0.0970 0.1887 0.2051

uniform+correct 0.0779 0.1927 0.1853 0.0970 0.1888 0.2052
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Figure 6: Performance comparison of mixing methods over
different batch size on four datasets

4.7 Effect of Corrected Strategy
During the sampling stage, we sample mixing coefficient from
uniform distribution and adopt log𝑄 correction to enable unpopular
items are assigned higher mixing weights. In order to investigate
the role of the correction term, we conduct experiments on four
datasets to compare the effect of correction term. As shown in Table
3, in the vast majority of cases, correcting the mixing coefficient
can bring a certain performance improvement, which is relatively
evident on the Tmall dataset.

4.8 Comparison of different mix method
BMNS utilize all the in-batch negatives to generate the new negative.
A trivial solution is the positive mixing proposed in MixGCF [14],
which improves the quality of negatives by injecting the infor-
mation of positive samples into negatives. In particular, for given
interacted item 𝑖 and in-batch item 𝑗 , the score of new negative 𝑘
is calculated by:

𝑠𝑚𝑖𝑥 (𝑢, 𝑘) = 𝛼 (𝑘 )𝑠 (𝑢, 𝑖) + (1 − 𝛼 (𝑘 ) )𝑠 (𝑢, 𝑗) (8)

where 𝛼 (𝑘 ) ∈ 𝑈 (0, 1). The training pair (𝑢, 𝑖) denotes a positive
sample while (𝑢, 𝑗) represents a negative sample. For a fair compar-
ison, all the mixing strategies is based on the same loss function,
i.e., Eq (6). We report the performance of mixing methods under
different batch size. The results are shown in Figure 6 and we have
the following observations:

On all datasets, BMNS outperforms positive mixing. Especially
on the Gowalla and Tmall datasets, batch mixing results in an
obvious margin compared with positive mixing. This observation
demonstrates the contribution of BMNS. The scale of batch size
has an important effect on performance. Generally, batch mixing
achieves a more significant improvement on larger batch size.

MixGCF is optimized under the BPR loss function, which re-
quires fewer negative samples, e.g., near 5 samples would perform
good performance. The sampled softmax usually requires much
more negative samples, and pos-mixing strategy would get poor
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performance with over-emphasized positive samples. Besides, the
MF encoder may not be suitable for the MixGCF proposed for GNN.

5 CONCLUSION
In this paper, we propose a Batch-Mix Negative Sampling (BMNS)
strategy for two-towermodel training viamixing in-batch negatives.
Our method extracts additional virtual negatives from the repre-
sentation space of in-batch negatives to supplement the deficiency
of in-batch negative sampling. Furthermore, we develop a mixture
loss function to facilitate the coordinated training of in-batch nega-
tives and virtual negatives. The introduction of additional negatives
leads the model to benefit from different information and obtain
more robust training. The empirical experiments on four real-world
datasets fully demonstrate the effectiveness and efficiency of BMNS.
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A GRADIENT ANALYSIS
Given the fixed mini-batch B and the user-item pair (𝑢, 𝑖), the
expectation of the loss gradient ∇\L(𝑢, 𝑖) can be written as:

E [∇\L(𝑢, 𝑖)] = − ∇\𝑠𝑐 (𝑢, 𝑖) + 𝛾
∑︁
𝑗∈IB

𝑃 ( 𝑗 |𝑢)∇\𝑠𝑐 (𝑢, 𝑗)

+ (1 − 𝛾)E


∑︁
𝑘∈KB

𝑃∗ (𝑘 |𝑢)
∑︁
𝑗∈IB

�̂�
(𝑘 )
𝑗

∇\𝑠 (𝑢, 𝑗)

(9)

Here, we observe that ∇𝑠𝑐 = ∇𝑠 . The last term can be expanded as:

E
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For those generated negative 𝑙 , i.e., 𝑙 ∈ KB and 𝑙 ≠ 𝑘 , we obtain
the following expectations:

E𝑙∈KB ,𝑙≠𝑘
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1/𝑝𝑜𝑝 (𝑛)∑
𝑚∈IB 1/𝑝𝑜𝑝 (𝑚) 𝑠 (𝑢, 𝑛) = 𝑜

Thus, we have the following term:
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Similarly, we get the following expectation:
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=E𝑘∈KB


exp (1/2)/𝑝𝑜𝑝 ( 𝑗 )∑
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( ∑
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=E𝑘∈KB
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exp

( ∑
𝑚∈IB 𝑠 (𝑢,𝑚)/𝑝𝑜𝑝 (𝑚)∑

𝑛∈IB 1/𝑝𝑜𝑝 (𝑛)

)


=
1/𝑝𝑜𝑝 ( 𝑗 )∑

𝑙 ∈IB 1/𝑝𝑜𝑝 (𝑙 ) · 1
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Thus, the expectation of the last term in Eq (9) can be simplified as:

E


∑︁
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𝑃∗ (𝑘 |𝑢)
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𝑗∈IB
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(𝑘 )
𝑗
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𝑜 𝑗∇\𝑠 (𝑢, 𝑗)

where 𝑜 𝑗 =
1/𝑝𝑜𝑝 ( 𝑗 )∑

𝑙 ∈IB 1/𝑝𝑜𝑝 (𝑙 ) . Finally, the gradient expectation of the
integrated loss given the training pair (𝑢, 𝑖) and the mini-batch
follows as:
E [∇\L(𝑢, 𝑖)]

= − ∇\𝑠 (𝑢, 𝑖) + 𝛾
∑︁
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𝑃 ( 𝑗 |𝑢)∇\𝑠 (𝑢, 𝑗) + (1 − 𝛾)
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𝑜 𝑗∇\𝑠 (𝑢, 𝑗)
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(
𝛾𝑃 ( 𝑗 |𝑢) + (1 − 𝛾)𝑜 𝑗

)
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