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ABSTRACT
Autonomous driving is a rapidly advancing field that promises to
revolutionize the transportation industry through an intelligent
perception-and-decision paradigm. Despite decades of research,
existing methods are limited in adapting to complex scenarios or
expanding to unseen situations, which pose significant challenges
to the development of autonomous driving. Inspired by the process
of human learning to drive, autonomous vehicles can prioritize de-
veloping driving capabilities in basic scenarios and then extending
the atomic abilities to more complex scenarios. To this end, we pro-
posed a perception-and-decision framework, called ATEND, which
consists of an adaptive perception module and a maneuver decision
module. Specifically, the perception module based on Variational
Autoencoder is proposed to map perceptual data of complex sce-
narios into basic scenarios. Then the reinforcement learning-based
decision module can make high-level decisions in transformed sce-
narios. OnceATEND learns to drive in basic scenarios, it can achieve
safe and efficient driving in real scenarios without additional train-
ing. Extensive experiments in different traffic scenarios evidence
that the proposed framework advances the state of the art in terms
of both macroscopic and microscopic effectiveness.

CCS CONCEPTS
•Applied computing→Transportation; •Computingmethod-
ologies → Perception.
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1 INTRODUCTION
Autonomous driving has been developed with the promise of pre-
venting accidents, reducing emissions, transporting the mobility-
impaired, and reducing driving-related stress. With the rapid devel-
opment of autonomous driving systems [28], the technology stacks
converge to a modular perception-decision pipeline. As the eyes
and brains of autonomous vehicles, perception and decision mod-
ules are designed to comprehend dynamic environments and make
tactical lane/velocity changes. Both components can be developed
either based on classical non-learning approaches [24, 32] or deep
learning methodologies [9, 34], and they attempt to replace the
human drivers’ observation and arbitration to prevent dangerous
driving behaviors (e.g., hard braking and abrupt lane-changing).
Although they have achieved safe, efficient, and comfortable au-
tonomous driving in some trial scenarios [39], they still suffer from
a long tail of unseen or unfamiliar scenarios, which is one reason
why we have yet to see autonomous vehicles deployed at scale.

The perception stage enables the autonomous vehicle to sense
and interpret its surroundings using a combination of sensing hard-
ware and algorithms [27]. With the development of onboard sen-
sors and computer vision algorithms, we find that the bottleneck
of perceiving dynamic scenarios lies in comprehending the per-
ceived results. Some traditional approaches employ spatio-temporal
graphs [34, 36] to organize the states of surrounding vehicles and
utilize a graph-based neural network to encode the graph data
into compact vectors. Despite simplifying the complicated per-
ceived results, they do not adapt to varying lane structures and
vehicle counts. Recently, some methods [4, 31] fuse multi-modal
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perceived results into bird’s-eye view (BEV) images and then use
convolutional neural networks to extract relevant features and ob-
tain low-dimensional representations. Although BEV images retain
the road structures and vehicle states, comprehending complex
dynamic scenarios within the field of view of autonomous vehi-
cles remains a challenging task [4]. The decision stage employs
algorithms and decision-making processes to plan and execute the
movements of autonomous vehicles, utilizing the information gath-
ered from the perception stage. Despite decades of research, it is still
challenging to make safe and appropriate decisions in various sce-
narios. Traditional approaches (such as adaptive cruise control [24]
and lane-changing models [5]) heavily rely on rule-matching al-
gorithms, which struggle to make decisions in convoluted traffic
systems. While Reinforcement Learning (RL) methods perform bet-
ter [34, 39], they still suffer from a long tail of driving scenarios.
The training experience cannot cover all possible traffic conditions,
which results in incorrect decisions when encountering unfamiliar
scenarios. Overall, existing methods neither adapt to complex sce-
narios nor cannot expand to unseen scenarios, which hinders the
development of autonomous driving.

Developing a perception-and-decision framework that can adapt
to diverse scenarios is an open problem for autonomous driving.
One straightforward solution is to collect as many trial scenarios
as possible to train general perception and decision modules [37].
However, it not only needs to explore a large number of corner cases,
but also consumes a long training time. Given limited resources
and training scenarios, it is important to prioritize developing au-
tonomous driving capabilities in basic scenarios with simple road
layouts and then extending those abilities to more complex scenar-
ios. Human learning often starts with understanding and solving
simple problems, and then using analogy strategies to tackle more
complex challenges. Similarly, human drivers start with simple and
clear environments in driving schools. They then apply atomic
skills and environmental understanding to handle more complex
real-world driving scenarios, which is known as comprehending by
analogy. Based on the inspiration brought by the human driving
process, we attempt to design a BEV-based adaptive perception
module prior to an RL-based maneuver decision module. BEV im-
ages have the advantage of retaining the details of the surrounding
environment, and RL-based approaches excel at making intelligent
decisions in common driving scenarios. Once the adaptive percep-
tion module can translate diverse scenarios into basic scenarios,
the maneuver decision module can adaptively make tactical deci-
sions. However, the intuition will face two main challenges: (1) BEV
images capture rich and diverse environmental information, but
mapping such varying images into a basic and interpretable space
is a challenge. (2) RL-based decision-making can adapt well to basic
scenarios, but ensuring that the decision results of basic scenarios
remain valid in complex scenarios is a challenge. Addressing the
above challenges would enable autonomous vehicles to compre-
hend dynamic environments and make safe and efficient decisions,
similar to human drivers.

To this end, we proposed a novel perception-and-decision frame-
work, called ATEND, which consists of an Adaptive percepTion
modulE and a maNeuver Decision module. The adaptive percep-
tion module takes the BEV images captured in complex scenarios
and encodes them into geometric and distribution features. After

replacing the geometric features with those of basic scenarios, the
synthetic features will be decoded to generate new BEV images
specific to the basic scenarios. The transformed BEV images allow
the autonomous vehicle to quickly understand the dynamic sur-
roundings, providing input for our decision module. The maneuver
decision module is comprised of a deep reinforcement learning
model and a hybrid reward function. It aims to output a pair of
maneuvers (lane change and speed change) that optimize driving
safety and efficiency in basic scenarios. Since different scenarios
share the same high-level maneuvers, the decisions based on the
basic scenarios remain valid in complex scenarios.

To the best of our knowledge, this is the first solution to train
an autonomous vehicle in limited basic scenarios and apply it to
unfamiliar complex scenarios. In summary, we make the following
contributions:
• We propose a perception-and-decision framework that enables
autonomous driving in complex scenarios with minimal cost.

• We propose an adaptive perception module that can deal with
complex BEV images and map them into basic scenarios with
fixed lane counts and simple road topology.

• We design amaneuver decisionmodule that makes cross-scenario
decisions by optimizing driving safety and efficiency in basic
scenarios.

• We conduct extensive experiments to evaluate the proposed
framework in challenging traffic scenarios, verifying the effec-
tiveness on both macroscopic and microscopic metrics.

2 OVERVIEW
In this section, we briefly introduce a set of preliminary concepts,
based on which an overview of our problem and proposed frame-
work are presented.

2.1 Preliminary Concepts
We consider dynamic transportationwhere there is one autonomous
vehicle 𝐴 and a set of conventional vehicles C traveling in traffic
scenarios with diverse road topology. The autonomous vehicle
obtains preprocessed bird’s-eye view (BEV) images that involve
surrounding vehicles and road geometry through multi-sensor fu-
sion [23], and performs a maneuver at each time step 𝑡 within a
time duration T = {1, 2, . . . , 𝑡, . . . }. The time granularity between
consecutive time steps is fixed as Δ𝑡 = 0.5𝑠 [13]. We proceed to give
the necessary preliminaries and then define the problem addressed.

Road Position Velocity Brid-view Image

Scenario I

Scenario II

Figure 1: Example of Input Representation
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Figure 2: ATEND Framework Overview

BEV Representation. Bird’s Eye View (BEV) images capture road
geometry and vehicle states centered around the autonomous ve-
hicle. We represent each image as a bitmap with three semantic
channels: road, position, and velocity (as shown in Figure 1). In
the road and position channels, pixels occupied by lanes and lane
markings are set to 255 and 204, respectively, while other pixels
are set to 0. In the position channel, pixels occupied by vehicles are
set to 255, while other pixels are set to 0. In the velocity channel,
pixels occupied by vehicles are set to the velocity of the vehicles,
which maps the velocity (from 𝑣𝑚𝑖𝑛 to 𝑣𝑚𝑎𝑥 ) to grayscale values
(from 55 to 255). Each channel (100 × 100) covers a detection area
of 50𝑚 × 50𝑚, and unoccupied pixels are set to 0 as default.
Traffic Scenarios We divide various traffic scenarios into basic
and real scenarios. The basic scenarios have fixed lane counts and
simple road topology, and the real scenarios have varying lane
counts or complex road topology. As shown in Figure 1, the basic
scenario is a straight multi-lane road, while the real scenario is a
roundabout section. In this work, the basic scenarios are taken as
simple experimental environments, while the real scenarios are
viewed as long-tail deployment environments.
Maneuver. A maneuver is a pair of lane change behavior and veloc-
ity change behavior performed by a vehicle. (𝐴𝑡 .𝐿, 𝐴𝑡 .𝑉 ) represents
the maneuver of𝐴 at time step 𝑡 , where 𝐿 is one of three lane change
behaviors: change lane to left (𝑙𝑙 ), change lane to right (𝑙𝑟 ), and lane
keep (𝑙𝑘) (i.e., 𝐿 ∈ {𝑙𝑙, 𝑙𝑟 , 𝑙𝑘}), and 𝑉 is one of three velocity change
behaviors: speed-up (𝑠𝑢), speed-down (𝑠𝑑), and maintain speed (𝑠𝑚)
(i.e.,𝑉 ∈ {𝑠𝑢, 𝑠𝑑, 𝑠𝑚}). The high-level maneuvers are cross-scenario
since controllers [38] can perform them based on environments.
Objective. In this work, our objective is that after the autonomous
vehicle learns to drive in basic scenarios, it can achieve safe and
efficient driving in real scenarios without additional preparation.

2.2 Framework Overview
Figure 2 presents the architecture of ATEND, which consists of
two components: adaptive perception module andmaneuver decision
module. After the autonomous vehicle learns to drive in Scenario II
(basic straight road), we attempt to adapt it to Scenario I (real curved
road). We first use the pre-trained adaptive perception module to
encode BEV images from Scenario I and Scenario II into vectors
𝑍 (road distribution) and 𝐺 (road geometry). Then we exchange
the vectors 𝐺 of two scenarios, and the reorganized results are
decoded to generate new BEV images, which preserve the road

distribution and vehicle states but swap the road geometry. The
transformed BEV images of Scenario I are fed into the maneuver
decision module. The proximal policy optimization-based model
(PPO) combined with the hybrid reward function can make safe
and efficient decisions based on the transformed scenario, and the
high-level maneuvers can be acted in Scenario I.

3 ADAPTIVE PERCEPTION
To help autonomous vehicles adapt to diverse and complex sce-
narios, we propose an adaptive perception module, which maps
complex environmental attributes into basic space. In this section,
we first define the problems, and then we introduce the module.

3.1 Problem Definition
Converting real scenarios to basic scenarios can be viewed as a
domain transfer task. The perceived real scenario is the source do-
main D𝑆 , and the transformed basic scenario is the target domain
D𝑇 . Based on the Markov Decision Processes (MDPs), the source
domain is defined as D𝑆 = (S (𝑠 ) ,A,T , 𝑟 , 𝛾), and the target do-
main is denoted as D𝑇 = (S (𝑡 ) ,A,T , 𝑟 , 𝛾). The states (S (𝑠 ) , S (𝑡 ) )
indicate the acquired BEV images, which vary widely in different
domains. The action spacesA, transitions T , and reward functions
𝑟 are shared across both domains. The differences between S (𝑠 )

and S (𝑡 ) can be summarized into three categories: 1) the road ge-
ometry, 2) the road distribution, and 3) the vehicle information. As
shown in Figure 3, the road geometry involves road curvature and
lane counts, and the road distribution indicates the road layout in
the image determined by the position of the autonomous vehicle.
For example, the road distribution in Figure 3(d) is different from
that in Figure 3(a) because the autonomous vehicle changes from
the middle lane to the right lane. The vehicle information includes
the position and velocity of vehicles, which are represented by the
position and velocity channels in BEV images. The objective of the
adaptive perception module is to transform the road geometry of the
source domain into those of the target domain, while maintaining the
road distribution and the vehicle states.

The objective is motivated by the following analyses: (1) High-
level maneuvers of autonomous vehicles are independent of road ge-
ometry. We only need to preserve the correct lane distribution and
vehicle information in the basic scenario, so that the autonomous
vehicle can make appropriate decisions in both scenarios. (2) Ma-
neuver decision module can adapt to dynamic vehicle information
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(a) Standard Road (b) Road Curvature (c) Lane Counts (d) Road Distribution

Figure 3: Examples of Road Variations

and road distribution in basic scenarios. Since the basic scenar-
ios have simple road geometry, the RL-based maneuver decision
module can make optimized decisions based on different vehicle
information and road distribution. In order to achieve the objective,
we need to first identify the distribution features and geometric
features in the BEV images of real scenarios. Then we can replace
the complex geometric features with simple features derived from
basic scenarios. Finally, we should accurately map the vehicle in-
formation to convert the real scenario into a basic one. Next, we
elaborate the model that implements the above procedure.

3.2 EVA-AIN Model
We propose a model to convert real scenarios to basic scenarios,
called EVA-AIN (Encoder-Decoder with Variational Autoencoder
and Adaptive INstance normalization). As shown in Figure 4, the
VAE-based EVA-AIN model consists of an encoder with ResNet [7]
and a decoder with an AdaIN layer [10]. VAE-based models have
been proven to be effective in disentangling features for various
style transfer tasks [8, 11]. Similar to Cycle-Consistent VAE [11],
we employ the swapping strategy in the encoder to disentangle
the distribution features and geometric features in BEV images. In
addition, we concatenate the deconvolutional block and the AdaIN
layer [10] in the decoder, which can reconstruct the BEV images
that preset the road geometry of the basic scenario while keeping
the road distribution of the real scenario. Finally, we accurately
map the vehicle information from real scenarios to the generated
BEV images. Next, we introduce the workflow and the components
of the model.
Workflow. During the training phase, our EVA-AIN model learns
to disentangle road distribution and geometry with BEV images,
which are collected in some predefined basic scenarios and real
scenarios in a simulator [18]. Similar to [11], we use a pair of train-
ing BEV images from the same scenario in each iteration. Since
their road geometries are very similar, the difference between the
swapped latent spaces𝐺1 and𝐺2 is small. This training strategy can
enhance training stability and efficiency. After pre-training, we can
use a pair of BEV images from two scenarios as shown in Figure 4.
Then we can swap the latent space 𝐺1 and 𝐺2 that represent the
road geometry to transform the road geometry of Scenario I into
Scenario II while maintaining the road distribution.
Encoder. The encoder can be defined as a mapping function [11]
that takes a BEV image as input, denoted as Enc(𝑥) = (𝑓𝑧 (𝑥), 𝑓𝑔 (𝑥)),
where 𝑓𝑧 (𝑥) = (𝜇, 𝜎) = 𝑍𝑥 and 𝑓𝑔 (𝑥) = 𝐺𝑥 . The 𝑥 denotes the
input of the encoder. The function 𝑓𝑔 (𝑥) is a typical encoder with
vector latent space, and 𝑓𝑧 (𝑥) is an encoder that parameterizes the
approximate posterior 𝑞𝜙 (𝑧 |𝑥). In other tasks, 𝑓𝑧 (𝑥) is often used
for style feature mapping. As the autonomous vehicle remains in
the center of the image, any positional change is reflected as a road
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Figure 4: EVA-AIN Network Structure

distribution shift, similar to style features in style transfer tasks.
Thus, the road distribution in the BEV image is represented by 𝑓𝑧 (𝑥)
in our case. In the meantime, we employ 𝑓𝑔 (𝑥) to represent the road
geometry in various scenarios. To enhance representation accuracy
and efficiency, we employ a pre-trained ResNet-18 [7] to extract
features from the input state for mapping 𝑍 and 𝐺 . The entire
encoder shares weights except for the final layer, which branches
out to provide outputs for the two functions 𝑓𝑧 (𝑥) and 𝑓𝑔 (𝑥).
Decoder. The decoder 𝑥 ′ = Dec(𝑧, 𝑔) is represented by the condi-
tional likelihood 𝑝𝜃 (𝑥 |𝑧, 𝑔) [11]. Here, 𝑥 ′ denotes the reconstructed
image generated by the decoder, and the conditional likelihood
function 𝑝𝜃 (𝑥 |𝑧, 𝑔) represents the probability of generating the cor-
responding 𝑥 based on the given 𝑧 and 𝑔. When we maximize the
conditional likelihood, we are essentially optimizing the decoder’s
parameters 𝜃 to produce reconstructed samples that are closer to
the true samples, i.e., minimizing the squared reconstruction error.
In our case, we expect the decoder to obtain the features of road dis-
tribution from 𝑓𝑧 (𝑥) and the features of road geometry from 𝑓𝑔 (𝑥).
By using the latent space 𝑍 as input for each AdaIN module [10, 12]
and the latent space 𝐺 as input for the deconvolution layers, we
can generate the BEV images that reflect the road geometry of the
basic scenarios while still maintaining the road distribution of the
real scenarios.
Optimization. The EVA-AIN model needs to minimize the loss
function [11] as follows:

L1 = −E𝑞𝜙 (𝑧 |𝑥,𝑔) [log𝑝𝜃 (𝑥 | 𝑧, 𝑔)] + KL
(
𝑞𝜙 (𝑧 | 𝑥, 𝑔) ∥𝑝 (𝑧)

)
(1)

This loss function consists of two components: reconstruction error
and KL divergence. The reconstruction error measures the differ-
ence between the original data and the reconstructed data, which
is obtained by encoding input data 𝑥 into the latent space 𝑧 us-
ing the encoder, represented as 𝑞𝜙 (𝑧 | 𝑥, 𝑔) and decoding it back
through the decoder, represented as 𝑝𝜃 (𝑥 | 𝑧, 𝑔). On the other hand,
KL divergence measures the difference between the distribution
of the latent space z obtained by the encoder and the prior latent
space distribution 𝑝 (𝑧). Minimizing KL divergence ensures that the
learned latent space distribution is as close to the prior distribu-
tion as possible, avoiding overfitting and improving generalization
capabilities [11, 15].
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Vehicle Mapping. EVA-AIN adapts effectively to variations in
road geometry and distribution, ensuring the consistency of road
distribution in the transformed BEV image with the real scenario.
Consequently, we use the locations of the road and the autonomous
vehicle as a reference for vehicle position mapping [33]. By cal-
culating their relative distances to the lane centerline and the au-
tonomous vehicle, we can accurately transfer vehicle positions.

4 MANEUVER DECISION
Leveraging the adaptive perception module, we can first map the
states of real scenarios into basic scenarios, and then an RL-based
maneuver decision module only need to be trained on basic scenar-
ios to adapt to real scenarios. Therefore, our objective is to employ
a deep reinforcement learning-based model with a hybrid reward
function to solve the single-scenario MDP, focusing on learning
the optimal decision in basic scenarios.

4.1 Environment Modeling
Based on the problem defined in Section 3.1, we model the maneu-
ver decision task under the Markov decision process (MDP). An
MDP can be defined as: M = (S,A,T , 𝑟 , 𝛾), which includes the
state spaces S, the action spaces A, the transitions T , the reward
functions 𝑟 , and the discount factor 𝛾 . These components collec-
tively describe the entire interaction process between an agent and
the environment, as we proceed to detail the main tuples.
State. The state 𝑠𝑡 represents a BEV perception of the agent 𝐴’s
surroundings within a 50-meter driving range at time 𝑡 , including
the channels of road, position, and velocity, as defined in Section 2.
The adaptive perception module simplifies the state captured from
the real scenarios to the style of the basic scenarios, allowing the
autonomous vehicle to adapt and make proper maneuver decisions.
Action. According to the definition in Section 2, The maneuver of
the autonomous vehicle involves performing high-level actions to
change the desired lane or speed. We define the action 𝑎𝑡 of vehicle
𝐴 at time step 𝑡 as follows:

𝑎𝑡 = (𝐴𝑡 .𝐿, 𝐴𝑡 .𝑉 ) (2)

where 𝐿 ∈ {𝑙𝑙, 𝑙𝑟 , 𝑙𝑘} and 𝑉 ∈ {𝑠𝑢, 𝑠𝑑, 𝑠𝑚} represent the discrete
high-level actions for lateral lane change and speed change, re-
spectively. During the process of acceleration or deceleration, the
absolute value of acceleration is maintained at 2𝑚/𝑠2.
State Transition.After the autonomous vehicle executes an action
𝑎𝑡 at the state 𝑆𝑡 , we update the current state 𝑆𝑡+1 at time step 𝑡 + 1
by capturing the road, current positions of vehicles, and vehicle
speed information within the autonomous vehicle’s range, and
reflecting these updates in the BEV image.
Reward. After executing an action at a state 𝑆𝑡 , the autonomous
vehicle will obtain a reward as feedback, denoted as 𝑟𝑡 . We construct
a hybrid reward function to determine 𝑟𝑡 , taking into account three
aspects: 1) safety, 2) efficiency, and 3) impact, which are detailed in
Section 4.2.
Optimization. Based on the above MDP, our goal is to find a policy
𝜋 that guides the autonomous vehicle in selecting the best action
for each visual state 𝑆𝑡 . In this work, we utilize Proximal Policy
Optimization (PPO) [30] as the policy gradient algorithm in the
maneuver decision module. This module includes an action policy
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Figure 5: Network Structure of Maneuver Decision

𝜋 (𝑎 |𝑠) and a state-value function V(𝑠). At each time step 𝑡 , the
policy 𝜋 (𝑎 |𝑠) generates a probability distribution over actions 𝑎𝑡
based on the current state 𝑆𝑡 , guiding the agent to select an action
accordingly. Meanwhile, the state-value functionV(𝑠) estimates
the expected return or the cumulative discounted reward from the
current state 𝑆 . Unlike other reinforcement learning algorithms
such as DDPG [20], PPO does not directly compute the state-action
value function 𝑄𝜋 (𝑠, 𝑎) but rather estimates the advantage func-
tion 𝐷 (𝑡) using the GAE [29] method. Thus, data sampled from 𝑇

timesteps is used for updating the loss function, which incorporates
the advantage function as follows:

𝐷 (𝑡) = 𝛿𝑡 + 𝛾𝜆𝐷 (𝑡 + 1) (3)

where 𝛾 is a discount factor and 𝛿𝑡 is defined as follows:

𝛿𝑡 = 𝑟𝑡 + 𝛾V(𝑠𝑡+1) − V(𝑠𝑡 ) (4)

Moreover, traditional policy gradient methods tend to substantially
alter the policy at each update. To mitigate this, PPO introduces a
clipped objective function as follows:

maxL (𝜋 ′,𝜋 ) = E𝑡 [min (𝜌 (𝑡)𝐷 (𝑡), clip (𝜌 (𝑡), 1 − 𝜖, 1 + 𝜖) 𝐷 (𝑡))]
(5)

where 𝜌 (𝑡) represents the ratio between the current policy 𝜋 ′ and
the old policy 𝜋 at time 𝑡 . Clip is a function that ensures 𝜌 (𝑡) is
within the range of [1 − 𝜀, 1 + 𝜀]. Therefore, by optimizing this
objective, PPO ensures stable policy updates while still improving
the agent’s policy towards better actions.
Network Structure. As shown in Figure 5, PPO employs an actor-
critic structure in which the actor network is responsible for se-
lecting the optimal action given the current environment state.
Typically, the critic network represents the state value function,
which combined with the feedback reward, is used to calculate
the advantage function in order to direct the policy (i.e. action se-
lection) update. In addition, a convolutional feature extractor is
utilized to encode the state 𝑆𝑡 at time step 𝑡 . This extractor consists
of three convolutional layers that convert a 3-channel image into a
64-channel feature map 𝑀𝑡 that, after flattened, functions as the
input for our actor-critic network. Consisting of three linear layers,
the actor network branches into two outputs, with each output gen-
erating three categorical probability distributions. Sampling these
probability distributions determines the optimal action for the cur-
rent state. The two branches output high-level maneuver decisions
for lane-changing 𝑋 𝑡

out .𝐿 and speed-changing 𝑋 𝑡
out .𝑉 respectively,
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i.e., 𝐿 ∈ {𝑙𝑙, 𝑙𝑟 , 𝑙𝑘} and 𝑉 ∈ {𝑠𝑢, 𝑠𝑑, 𝑠𝑚}. The computations are as
follows:

𝑋 𝑡
out .𝐿 = ReLU(𝜙3 (ReLU(𝜙2 (ReLU(𝜙1𝑀𝑡 + 𝑏1)) + 𝑏2)) + 𝑏3) (6)

𝑋 𝑡
out .𝑉 = ReLU(𝜙4 (ReLU(𝜙2 (ReLU(𝜙1𝑀𝑡 + 𝑏1)) + 𝑏2)) + 𝑏4) (7)

where 𝜙1, 𝜙2, 𝜙3, 𝜙4 are the linear transformations, and 𝑏1, 𝑏2, 𝑏3,
𝑏4 are their biases.

The Critic-Network receives the same inputs as theActor-Network
for the calculation of state value functions, i.e. predicting an achiev-
able reward under the given state. The computations are as follows:

𝑋 𝑡
value = Tanh(𝜙7 (ReLU(𝜙6 (ReLU(𝜙5𝑀𝑡 + 𝑏5)) + 𝑏6)) + 𝑏7) (8)

where 𝜙5, 𝜙6, 𝜙7 are the linear transformations, and 𝑏5, 𝑏6, 𝑏7 are
their biases.

4.2 Hybrid Reward Function
The hybrid reward function guides the autonomous vehicle towards
learning the optimal policy by prioritizing safety, efficiency, and
minimal negative impacts on surrounding conventional vehicles.
Therefore, we construct a hybrid reward function considering three
aspects: 1) safety, 2) efficiency, and 3) impact, as follows:

𝑟𝑡 = 𝑤1𝑅
𝑡
safety +𝑤2𝑅

𝑡
efficiency +𝑤3𝑅

𝑡
impact (9)

where w1, w2, and w3 are three adjustable coefficients to balance
the importance of safety, efficiency, and impact, respectively.
Safety. Time to collision (TTC), a widely used safety indicator,
represents the time remaining before a collision occurs if two vehi-
cles maintain their current velocities [6]. In accordance with the
standard definition [39], the TTC of the autonomous vehicle 𝐴

with its front conventional vehicle 𝐶 , after the autonomous vehicle
performs an action, is defined as follows:

𝑇𝑇𝐶𝑡 =
𝑑 (𝐶𝑡 , 𝐴𝑡 )
−𝑣 (𝐶𝑡 , 𝐴𝑡 ) (10)

where𝐶𝑡 represents the front conventional vehicle of the autonomous
vehicle at time 𝑡 , 𝑑 and 𝑣 refer to the relative distance and speed
between the two vehicles in the lane direction, respectively. Be-
sides, when 𝑣 (𝐶𝑡 , 𝐴𝑡 ) < 0, i.e., 𝐶𝑡 .𝑣 ≥ 𝐴𝑡 .𝑣 , the calculated 𝑇𝑇𝐶𝑡 is
considered invalid. Additionally, if the autonomous vehicle causes a
collision, we assign a negative reward to indicate its compromised
safety. Therefore, the safety reward value 𝑅𝑡safety is defined in the
range of [-10, 0] as follows:

𝑅𝑡safety =


−10 collision
max

(
−10, log

(
𝑇𝑇𝐶𝑡

4

))
0 < 𝑇𝑇𝐶𝑡 < 4

0 otherwise
(11)

In this reward function, a collision refers to either a vehicular crash
or road boundary infringement. Often, the autonomous vehicle
instigates a collision when 𝑇𝑇𝐶𝑡 is less than 4 [32, 39], prompting
us to exponentially indicate its deteriorating safety.
Efficiency. The longitudinal velocity of the autonomous vehicle is
a direct measure of its driving efficiency. Therefore, we define the
efficiency reward as follows:

𝑅𝑡efficiency =
𝐴𝑡 .𝑣 − 𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
(12)

where 𝐴𝑡 .𝑣 denotes the speed of the agent along the road direction,
with the remaining symbols retaining their meanings as defined in
Section 2.
Impact. The actions of the autonomous vehicle, including deceler-
ation or lane changing, may impact the efficiency of nearby con-
ventional vehicles [22, 36]. To account for this, we incorporate an
impact reward that reflects how much the autonomous vehicle
influences the deceleration of other vehicles. This is assessed by
tracking the deceleration of the conventional vehicle behind the
autonomous vehicle following its action. This impact reward value,
𝑅𝑡impact ∈ [−1, 0], is defined as follows:

𝑅𝑡impact =

{
𝐶𝑡+1 .𝑣−𝐶𝑡 .𝑣

2𝑎′∗Δ𝑡 𝐶𝑡+1 .𝑣 −𝐶𝑡 .𝑣 > 𝑣impact
0 otherwise

(13)

where 𝑣impact is a velocity threshold employed to ascertain the
impact of the autonomous vehicle on the trailing conventional
vehicle C. Furthermore, 2𝑎′ ∗ Δ𝑡 denotes the maximum velocity
change occurring between two consecutive time steps.

5 EXPERIMENTS
5.1 Experimental Settings
Simulator Setting. As it requires interaction between autonomous
and conventional vehicles, most of the experiments are conducted
in a simulated environment called Highway-env [18]. Highway-env
is a 2D open-source and gym-like [3] autonomous driving simula-
tion environment. To gain more control and information during the
simulation process, we utilize Highway-env and Gym-related APIs
along with Python to conveniently establish interaction between
the simulator and the model. In Highway-env, the lane width is 5
meters for each scenario. There are many highway-env-controlled
conventional vehicles and one ATEND-controlled autonomous ve-
hicle traveling on the road. The road density is established at 150
vehicles per kilometer, which is a suitable setting for autonomous
driving research [25, 34]. The autonomous vehicle is initially placed
at the starting point of the road on a randomly selected lane. We set
the traffic restrictions as 𝑉min = 0 km/h, 𝑉max = 72 km/h = 20m/s,
and 𝑎′ = 5m/s2 , following the settings in the previous works
[22, 39]. We define an episode as the autonomous vehicle driving
from the origin to the destination of the road or driving from the
origin to the location of a collision. Each episode is initialized ran-
domly to ensure diversity. Meanwhile, we refer to the total number
of interactions between the autonomous vehicle and the environ-
ment in the simulator as total timesteps. In each timestep, the agent
selects and executes an action based on the observed information
and the reinforcement learning policy. We train for 4,000 episodes
in each experiment and test within 500 episodes.
Implementation Details. We implement the adaptive perception
and maneuver decision modules in ATEND as follows:
(1) Adaptive perception module. As described in Section 2, this
module utilizes a sensor with a 50𝑚 × 50𝑚 detection area and
processes three semantic channels: road, position, and velocity.
Regarding the network structure of the EVA-AIN model introduced
in section 3.2, we set the encoder’s output latent space dimensions
to 64. To ensure decision-making precision and generated image
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Table 1: Macroscopic Effectiveness: End-to-End Performance of Baselines and ATEND

Methods

Macroscopic Metrics
Highway Roundabout Bottleneck Tollgate

Rate
NC-C
(%)

Rate
NC-L
(%)

AvgT
-A
(𝑠)

Rate
NC-C
(%)

Rate
NC-L
(%)

AvgT
-A
(𝑠)

Rate
NC-C
(%)

Rate
NC-L
(%)

AvgT
-A
(𝑠)

Rate
NC-C
(%)

Rate
NC-L
(%)

AvgT
-A
(𝑠)

IDM 90.20 100.00 221.42 85.40 96.20 26.76 83.80 84.20 79.13 84.60 86.40 76.67
ACC-LC 92.40 100.00 215.12 89.60 97.80 24.22 82.40 86.60 76.80 83.80 88.20 72.15

ATEND-STG-w/o-EVA-AIN 97.80 96.20 190.90 - - - 86.60 87.20 64.48 87.20 88.60 62.09
ATEND-BEV-w/o-EVA-AIN 96.80 97.40 194.29 - - - 87.20 91.40 64.25 90.80 94.40 58.78

ATEND 96.60 98.40 192.56 95.40 96.80 19.49 92.80 95.20 61.06 95.60 96.80 55.25

quality, we apply a thresholding operation to the output of EVA-
AIN. pixel values within the range of 0.1 and 1 are mapped to 1, and
all other values are mapped to 0. In addition, we train the EVA-AIN
model by using Adam optimizer [14] for 100 epochs with a learning
rate of 0.0003 and a batch size of 64 by default.
(2)Maneuver decisionmodule. For the network structure of PPO,we
set the corresponding dimensions as 𝐷𝜙1 = 128, 𝐷𝜙2 = 64, 𝐷𝜙3 = 3,
𝐷𝜙4 = 3, 𝐷𝜙5 = 128, 𝐷𝜙6 = 64, 𝐷𝜙7 = 1. In addition, the tuneable
coefficients for the hybrid reward function are set as follows:𝑤1 =
0.90,𝑤2 = 0.80, and𝑤3 = 0.20, following the settings in the previous
works [22, 26, 34]. We train the maneuver decision module using
Adam optimizer [14] for 4,000 episodes with a scheduled learning
rate of 0.001. Our experimental results are reported based on the
above settings unless expressly specified.
Traffic Scenarios. We design four driving scenarios as follows:
(1) Highway: The autonomous vehicle negotiates a three-lane high-
way that is populated by other vehicles. The distance from the start
to the end in this scenario is 3 kilometers.
(2) Roundabout: The autonomous vehicle navigates a 50-meter
radius roundabout with flowing traffic. Assuming that all vehicles
travel in an anticlockwise direction, the start and end points are
chosen within the roundabout, with a total distance of 300 meters.
(3) Bottleneck: In this scenario, the lane count decreases from five
to three within the bottleneck area. The autonomous vehicle trav-
els a total distance of 800 meters. We use blue markers to denote
unreachable road obstacles in sections where the road changes.
(4) Tollgate: The lane count expands from three to seven forming a
tollgate area. The total distance is 800 meters.
Compared Methods. Since existing learning-based methods can-
not accomplish our multi-scenario driving tasks, we employ the
rule-based approaches and the variants of ATEND as the baselines:
(1) IDM [32]. The traditional Intelligent Driver Model (IDM) is a
rule-based method that incorporates an anticipated velocity and
following distance when in a free state.
(2) ACC-LC [18, 24, 35]. The Adaptive Cruise Control (ACC) with
a lane-changing policy from Highway-env serves as a traditional
rule-based decision-making system.
(3) ATEND-STG-w/o-EVA-AIN. We remove the adaptive percep-
tion module and adjust the model’s input to a traditional Spatial-
Temporal Graph(STG) [36], capturing the relative distances and
speeds of six surrounding vehicles.
(4) ATEND-BEV-w/o-EVA-AIN. We remove the adaptive perception
module but maintain our BEV input format.

5.2 End-to-End Evaluation
We evaluate the end-to-end performance of ATEND by compar-
ing it against several baselines (IDM, ACC-LC, ATEND-STG-w/o-
EVA-AIN, and ATEND-BEV-w/o-EVA-AIN). ATEND and its variant
baselines are trained in highway scenarios, followed by conduct-
ing 500 test episodes across all constructed scenarios. EVA-AIN is
trained using data sampled from the experimental scenarios. We
measure the effectiveness from both macroscopic and microscopic
perspectives.
Macroscopic Effectiveness.Wedesign threemacroscopicmetrics
to test the driving performance of the autonomous vehicle for each
test episode as follows:
(1) No-Collision with Conventional Vehicles Episode Rate (RateNC-
C): This metric quantifies the percentage of episodes in which
the autonomous vehicle successfully avoids collisions specifically
with conventional vehicles. A higher RateNC-C value implies safer
interactions with conventional traffic.
(2) No-Collision with Lane Boundaries Episode Rate (RateNC-L):
This is the proportion of episodes in which the autonomous vehicle
successfully avoids collisions with the boundaries of the lane in the
current scenario. A higher RateNC-L signifies improved scenario
adaptation by the autonomous vehicle.
(3) Average Driving Time of the Autonomous Vehicle (AvgT-A): We
record the end-to-end driving time for the autonomous vehicle in
each scenario from the starting point to the end in no-collision test
episodes. A smaller AvgT-A indicates greater driving efficiency for
the autonomous vehicle.

We report RateNC-C, RateNC-L, and AvgT-A in Table 1. As
shown, rule-based methods such as IDM and ACC-LC struggle to
execute efficient maneuvers, resulting in an increase in AvgT-A.
ATEND-STG-w/o-EVA-AIN and ATEND-BEV-w/o-EVA-AIN tend to
fail in the Roundabout scenario where road curvature changes and
their driving safety metrics RateNC-L and RateNC-C are lower in
Bottleneck and Tollgate scenarios where the lane count varies. In
addition, ATEND ach ieves a higher RateNC-L and RateNC-C and
a lower AvgT-A across the majority of training scenarios. These
results demonstrate that only using STG and BEV for perception
is not sufficient to adapt well to the scenario changes. However,
ATEND can not only adapt to varying scenarios but also makes safe
and efficient maneuvering decisions.
Microscopic Effectiveness. We record three microscopic metrics
based on our reward function in Section 4.2, to evaluate the driving
performance of the autonomous vehicle at each time step as follows:
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Table 2: Microscopic Effectiveness: End-to-End Performance of Baselines and ATEND

Methods

Microscopic Metrics
Highway Roundabout Bottleneck Tollgate

Min
TTC-A

(𝑠)

Avg
Vel-A
(𝑚/𝑠)

Avg
Dec-C
(𝑚/𝑠)

Min
TTC-A

(𝑠)

Avg
Vel-A
(𝑚/𝑠)

Avg
Dec-C
(𝑚/𝑠)

Min
TTC-A

(𝑠)

Avg
Vel-A
(𝑚/𝑠)

Avg
Dec-C
(𝑚/𝑠)

Min
TTC-A

(𝑠)

Avg
Vel-A
(𝑚/𝑠)

Avg
Dec-C
(𝑚/𝑠)

IDM 3.52 13.55 0.28 3.36 11.21 0.29 3.31 10.11 0.30 3.46 10.43 0.27
ACC-LC 3.61 13.95 0.26 3.56 12.39 0.27 3.48 10.42 0.28 3.54 11.09 0.26

ATEND-STG-w/o-EVA-AIN 3.74 15.72 0.21 - - - 3.61 12.41 0.23 3.61 12.88 0.20
ATEND-BEV-w/o-EVA-AIN 3.65 15.44 0.19 - - - 3.54 12.45 0.25 3.68 13.61 0.22

ATEND 3.76 15.58 0.20 3.85 15.39 0.18 3.65 13.10 0.21 3.67 14.48 0.18

(a) Scenario I (b) Scenario II (c) Scenario I à II (d) Scenario II à I

Figure 6: Curvature Change in Scenario Translation Tests

(1)MinimumTime to Collision of theAutonomous Vehicle (MinTTC-
A): This metric corresponds to the minimum value of TTC for the
autonomous vehicle. A larger AvgTTC-A value signifies a safer
performance by the autonomous vehicle.
(2) Average Velocity of the Autonomous Vehicle (AvgVel-A): This
is the mean velocity of the autonomous vehicle in no-collision test
episodes. A larger AvgVel-A suggests a faster autonomous vehicle,
thereby indicating better efficiency.
(3) Average Deceleration of the Conventional Vehicle Behind the
Autonomous Vehicle (AvgDec-C): This records the average decel-
eration of the conventional vehicle trailing the autonomous vehi-
cle across all test episodes. A smaller AvgDec-C signifies that the
autonomous vehicle imposes less disruption on the conventional
vehicles following it, indicating more harmonious interaction with
conventional traffic.

We report MinTTC-A, AvgVel-A, and AvgDec-C in Table 2. In the
majority of scenarios, ATEND has the longer MinTTC-A, the higher
AvgVel-A, and the lower AvgDec-C, proving that ATEND enables
the autonomous vehicle to execute safe cross-scenario maneuvers
with high velocity and minimal impact on surrounding vehicles.

5.3 Evaluation of Adaptive Perception
We evaluate EVA-AIN’s translation ability, i.e. how well it maps
BEV images from real scenarios into a basic and interpretable space.
During scenario transformation, we evaluate two subtasks of the
perception module: curvature change and lane count change. Ad-
ditionally, we employ t-SNE plots to evaluate the disentangling
capability of the encoder within EVA-AIN.
Curvature Change. We train EVA-AIN in Highway and Round-
about scenarios, utilizing observations collected by an agent oper-
ating under a random policy in these two scenarios. As depicted
in Figure 6, the pre-trained Adaptive Perception Module enables
the autonomous vehicle to support flexible mapping between the
perceived information from Scenario I (Highway) and Scenario II
(Roundabout). For instance, when the RL-based decision module of
the autonomous vehicle is trained in Scenario I (Highway), it can

(a) Bottleneck I (b) Bottleneck I à Highway (c) Bottleneck II (d) Bottleneck II à Highway

Figure 7: Lane Count Change in Scenario Translation Tests

use the Adaptive Perception Module to translate states encountered
in Scenario II into interpretable Scenario I’s style, and then process
these transformed states to efficiently execute high-level maneu-
vers. From the generated results, it’s evident that the distribution of
lane positions and the relative locations of surrounding vehicles in
the image are maintained during the scenario translation, ensuring
that decisions based on the transformed scenario remain valid and
applicable to the real scenario.
Lane Count Change. We trained EVA-AIN in Highway scenarios
with three and five lanes respectively, using the same sampling
method. This enables the autonomous vehicle to adapt to variations
in the number of lanes, as depicted by the Bottleneck scenario in
Figure 7. The blue markers, which represent unreachable road ob-
stacles, are incorporated into the transformation results during the
vehicle mapping phase. They serve as references in the autonomous
decision-making process. In the Bottleneck I scenario depicted in
Figure 7(a), the pre-trained Adaptive Perception Module enables an
autonomous vehicle trained in a Highway scenario to adapt to lane
variations by translating real scenario states into Highway-style
states when not in lane reduction areas. In scenarios like Bottleneck
II in Figure 7(c), the autonomous vehicle (situated in the image’s
center) retains its road-edge position in the transformed state. The
accurate translation of lane position distributions ensures that de-
cisions made by the autonomous vehicle, based on the transformed
state, prevent potentially dangerous actions such as collisions with
road boundaries or obstacles.
Evaluation of Disentangling Ability. Just like [11], we also use
t-SNE plots to evaluate the disentangling capability of the EVA-AIN
encoder. We randomly sampled 800 BEV images from Highway
and Roundabout scenarios, disentangling them into two latent
spaces representing road geometry and road distribution using
a pre-trained EVA-AIN, as described in Section 3.2. As shown in
Figure 8, we used t-SNE plots for visualization. The points are
color-coded to represent specific scenario types. Since the primary
difference between the two scenarios is road geometry, we can ob-
serve a good cluster formation according to the latent space of road
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Table 3: Generalization Performance of ATEND and ATEND-BEV-w/o-EVA-AIN Variants Across Various Scenarios

Methods Training
Scenarios

Macroscopic Metrics
Highway Roundabout Bottleneck Tollgate

Rate
NC-C
(%)

Rate
NC-L
(%)

AvgT
-A
(s)

Rate
NC-C
(%)

Rate
NC-L
(%)

AvgT
-A
(s)

Rate
NC-C
(%)

Rate
NC-L
(%)

AvgT
-A
(s)

Rate
NC-C
(%)

Rate
NC-L
(%)

AvgT
-A
(s)

ATEND-BEV-w/o-EVA-AIN-1 Highway 96.80 97.40 194.29 - - - 87.20 91.40 64.25 90.80 94.40 58.78
ATEND-BEV-w/o-EVA-AIN-2 Roundabout - - - 94.80 97.80 21.35 - - - - - -
ATEND-BEV-w/o-EVA-AIN-3 Bottleneck 90.20 94.80 195.83 - - - 92.60 96.40 59.49 91.40 94.60 59.85
ATEND-BEV-w/o-EVA-AIN-4 Tollgate 91.80 95.60 198.37 - - - 90.40 94.80 63.45 94.80 97.20 56.34

ATEND Highway 96.60 98.40 192.56 95.40 96.80 19.49 92.80 95.20 61.06 95.60 96.80 55.25

Highway
Roundabout

(a) Road Geometry

Highway
Roundabout

(b) Road Distribution

Figure 8: Scenario Disentanglement Tests

geometry in Figure 8(a). Figure 8(b) shows that the latent space of
road distribution is mixed between the two scenarios, proving it
doesn’t contain Road Geometry information that could separate sce-
nario types. These results demonstrate that EVA-AIN has a strong
disentangling ability for the two features of road geometry and
road distribution.

5.4 Generalization Effect of Maneuver Decision
We evaluate ATEND’s generalization capability by comparing it
to four ATEND-BEV-w/o-EVA-AIN variants, each with its decision
module trained in one of the four distinct scenarios: highway, round-
about, bottleneck, and tollgate. In this evaluation, all comparative
methods utilize the BEV state format. We measure the effectiveness
from a macroscopic perspective. We report RateNC-C, RateNC-L,
and AvgT-A in Table 3. The ATEND-BEV-w/o-EVA-AIN-1 variant
trained in the Highway scenario tends to fail in the Roundabout
scenario due to varying road curvature. Similarly, the ATEND-
BEV-w/o-EVA-AIN-2 variant trained in the Roundabout scenario is
prone to collisions in scenarios featuring straight roads such as the
Highway, Bottleneck, and Tollgate scenarios. In the Bottleneck and
Tollgate scenarios, ATEND-BEV-w/o-EVA-AIN-3 and ATEND-BEV-
w/o-EVA-AIN-4, both have lower RateNC-C, RateNC-L, and AvgT-A
in three scenarios outside of their training scenarios, compared to
ATEND. This demonstrates that they are largely limited to their
original training scenarios. Moreover, ATEND’s performance in all
test scenarios closely matches that of variants trained specifically
for those scenarios. As shown, these results demonstrate ATEND’s
adaptability across various scenarios. As well, the decisions made
by ATEND based on the transformed basic-style states remain valid
in real scenarios.

6 RELATEDWORK
Perception-and-decision frameworks aim to equip autonomous
vehicles with the ability to understand dynamic environments and
make lane and/or velocity changes. Next, we will introduce some
representative methods and analyze their shortcomings.
Perception. Traditional methods use spatiotemporal graphs to sim-
plify complex perceptual results [36], but they struggle with varying
lane structures and vehicle counts. Vision-based methods [1, 2, 21]
use forward-facing camera images to sense the environment, but
they face challenges with changing weather, lights, and road varia-
tions. Recently, some works [4, 31] encode bird’s-eye view images
into latent space to capture key environmental attributes. But these
methods may not cover all traffic conditions, and autonomous ve-
hicles struggle to comprehend complex and dynamic images.
Decision. Some traditional decision-makingmethods, e.g., IDM [32],
ACC [24, 35], and Krauss [17], employ rule-matching algorithms to
maintain vehicle spacing. However, as autonomous driving scenar-
ios become more complex, rule-based approaches often struggle to
adapt to environmental changes. Considering the mechanism when
a driver perceives the surrounding traffic and decides on amaneuver
decision suits well within the realm of reinforcement learning [16].
Numerous studies utilize reinforcement learning to make maneuver
decisions, e.g., AD-DDPG [39], MCTS-DRL [9], and EA-DQN [19].
However, these methods are trained in limited scenarios, which
makes them difficult to adapt to unfamiliar environments.

7 CONCLUSION
In this work, we propose a novel perception-and-decision frame-
work (ATEND) that enhances the ability of autonomous vehicles
to make suitable maneuvers in various scenarios. ATEND uses an
adaptive perception module to comprehend complex scenarios and
maps perceptions into basic scenarios. A reinforcement learning-
based decision module then makes high-level decisions by these
transformed scenarios. After ATEND learns in basic scenarios, it
can be applied in real scenarios without additional training. Our
experiments demonstrate ATEND’s superiority in terms of both
macroscopic and microscopic effectiveness.
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