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ABSTRACT
Autonomous driving systems (ADSs) have the potential to revolu-
tionize transportation by improving traffic safety and efficiency. As
the core component of ADSs, maneuver decision aims to make tacti-
cal decisions to accomplish road following, obstacle avoidance, and
efficient driving. In this work, we consider a typical but rarely stud-
ied task, called Target-Lane-Entering (TLE), where an autonomous
vehicle should enter a target lane before reaching an intersection to
ensure a smooth transition to another road. For navigation-assisted
autonomous driving, a maneuver decision module chooses the op-
timal timing to enter the target lane in each road section, thus
avoiding rerouting and reducing travel time. To achieve the TLE
task, we propose a ruLe-aIded reiNforcement lEarning framework,
called LINE, which combines the advantages of RL-based policy
and rule-based strategy, allowing the autonomous vehicle to make
target-oriented maneuver decisions. Specifically, an RL-based pol-
icy with a hybrid reward function is able to make safe, efficient, and
comfortable decisions while considering the factors of target lanes.
Then a strategy of rule revision aims to help the policy learn from
intervention and block the risk of missing target lanes. Extensive ex-
periments based on the SUMO simulator confirm the effectiveness
of our framework. The results show that LINE achieves state-of-
the-art driving performance with over 95% task success rate.
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1 INTRODUCTION
Autonomous driving is a promising technology that has the po-
tential to profoundly impact society by improving driving safety
and enhancing traffic efficiency in intelligent transportation sys-
tems [38]. Maneuver decision, as the brain of an autonomous vehi-
cle, determines the high-level driving commands in various traffic
scenarios [37]. To achieve safe and efficient driving, it is desired to
make proper decisions (lane and/or velocity changes) based on per-
ceptual information, so that the subsequent controller can take fine-
grained actions accordingly. The majority of the current maneuver
decision research focuses on three autonomous driving tasks: road
following, obstacle avoidance, and efficient driving [10, 16]. For road
following, an autonomous vehicle follows a highway or arterial
road safely by detecting the road markings and environments [25].
For obstacle avoidance, it maintains a safe distance from moving
objects (vehicles or pedestrians) and stationary obstacles [39]. For
efficient driving, it pursues a high velocity by overtaking the leading
vehicles or changing to free lanes [13, 35].

Another task that is common in real life but rarely studied in
literature is Target-Lane-Entering (TLE) task. Specifically, we con-
sider that a vehicle follows the route from a navigation system, and
it is required to enter a target lane before arriving at an intersec-
tion (crossroads, T-junction, roundabout, interchange, etc.), thus
switching to another road smoothly. Human drivers mainly rely on
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Figure 1: Scenario Examples

the navigation system and environment to judge how to enter the
proper lane, but they often miss the opportunity to change lanes in
the following cases: 1) Human drivers may miss the lane change
information that the navigation system mentions, which results in
ignorance of entering a target lane. 2) When the vehicle is about to
reach an intersection, human drivers may realize the requirement
of entering certain target lanes, but the target lanes are not always
available for inserting. Once the vehicle misses the target lanes
and enters an unplanned road, it will deviate from the intended
route and take longer travel time. Therefore, it is significant to help
human drivers deal with the TLE task in daily driving.

Ideally, a well-designed maneuver decision module may solve
the TLE task that human drivers are hard to tackle, and it should
meet two potential needs of the task. Firstly, it should help an au-
tonomous vehicle choose the proper timing to make lane changes
that approach or enter the target lanes. Secondly, it needs to ensure
that an autonomous vehicle is precisely in a target lane at the in-
tersection, which conforms with the turning direction based on the
planned route. The ideal module can better achieve autonomous
driving in complex scenarios as examples in Figure 1. For one thing,
an autonomous vehicle on highways or interchanges needs to en-
ter the rightmost/leftmost lane when leaving the roads through
off-ramps. For another, an autonomous vehicle on urban roads is
required to turn or go straight at each intersection along a planned
route. Since these scenarios frequently appear in any journey of
end-to-end autonomous driving (traveling from an origin to a des-
tination), the decision module should stand the TLE task.

The existingmaneuver decisionmethods can be divided into rule-
based and learning-based. Specifically, rule-based methods rely on
predefined rules or heuristics to change lanes or velocity. Learning-
based methods can be subdivided into two domains: Reinforcement
Learning (RL) methods and Imitation Learning (IL) methods. RL-
based methods train a policy to select maneuvers that maximize
cumulative future rewards [16]. IL-based methods learn a policy by
imitating human drivers’ maneuvers [3, 5]. After investigating the
above maneuver decision methods, we find that solely using these
methods fails to achieve the TLE task for the following reasons. (1)
Rule-based methods combine traditional decision-making models
and default strategies to force autonomous vehicles to enter the
target lane at the beginning or end of a road segment [15, 33].
Relying on rules tailored to specific driving scenarios, rule-based
methods are strong in interpretability but are short in choosing
tactical timing to change lanes. (2) RL-based methods have been
proven to improve various driving metrics (e.g., efficiency and
safety) by optimizing the cumulative reward [35, 39]. They can set

task goals flexibly withwell-designed reward functions, but they fail
to ensure the successful completion of the TLE task due to decision
uncertainty. (3) IL-based methods achieve autonomous driving by
imitating expert maneuvers and can be used as prior knowledge
for RL-based methods to reduce training time [17]. Although they
are superior in the high utilization of empirical data, they struggle
to collect expert demonstrations related to the TLE task. Overall,
rule-based and RL-based approaches hold great potential to solve
the TLE task, while IL-based methods are difficult to solve due to
the lack of specific experts that adapt to the corner cases.

The above analyses motivate us to solve the TLE task by fusing
rule-based and RL-based methods. An RL-based policy can choose
the proper timing to change lanes, and a rule-based strategy can
ensure task accomplishment. However, this intuition mainly faces
three challenges. (1) The RL-based policy is required to comprehend
how urgent the autonomous vehicle should enter target lanes. If
the autonomous vehicle enters the target lane too early, it will
encounter traffic jams when the density of the target lane is high.
If the autonomous vehicle attempts to enter the target lane too
late, it may hinder traffic flow or even cause accidents. (2) How
to effectively fuse the RL-based policy and the rule-based strategy
that achieves complementary advantages is complicated. The RL-
based policy should maintain its intelligence while improving its
reliability with the help of the rule-based strategy. (3) Since the TLE
task is more complex than efficient driving, how to speed up the
convergence efficiency of the RL-based policy needs to be studied.

To address these challenges, we propose a novel ruLe-aIded
reiNforcement lEarning framework, named as LINE, to solve the
TLE task. Given a meta scenario where an autonomous vehicle
needs to travel from the upstream of the road to the downstream
intersection and enter the target lanes, we first send the real-time
perceptual state to an RL-based model with a hybrid reward func-
tion that takes the target lanes into consideration. We then employ
rule-based guidance to help the RL-based policy learn from interven-
tion and block the risk of missing target lanes. In order to enhance
the training efficiency of the RL-based model under target lane
conditions, we apply curriculum learning [2, 11, 23] to expose the
model in increasingly complex tasks, that is, from a road following
task to a safe interaction task and finally to the TLE task.

To sum up, the main contributions of this work are as follows:

• To the best of our knowledge, this is the first work to propose
and address the target-lane-entering (TLE) problem that requires
an autonomous vehicle to enter target lanes before arriving at
an intersection.

• We develop a rule-aided reinforcement learning framework to
deal with the TLE task, which achieves complementary advan-
tages of RL-based policy and rule-based strategy.

• We propose a four-term hybrid reward function (safety, efficiency,
comfort, and emergency) to enable the autonomous vehicle to
make target-oriented maneuver decisions.

• We design a strategy of rule revision to supervise the maneuver
decisions from the RL-based policy and also to guide the policy
to learn from intervention.

• We conduct extensive experiments to evaluate the proposed
framework in both meta and urban scenarios, verifying the effec-
tiveness on both macroscopic and microscopic metrics.
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Figure 2: Example of Meta Scenario

2 PROBLEM STATEMENT
In this study, the maneuvers of an autonomous vehicle are con-
trolled by the proposed model, LINE, in an interactive environment.
In Figure 2, we present an example of the meta scenario. As shown,
there is one autonomous vehicle 𝐴 and a set of conventional vehi-
cles𝐶 traveling on a multi-lane road ending at an intersection. The
autonomous vehicle 𝐴 can obtain real-time information about the
locations and velocities of surrounding vehicles and itself through
onboard sensors, such as planned navigation routes, Lidar, and
IMU. This allows the autonomous vehicle to perform maneuvers
(lane change action and velocity change action), at each time step 𝑡
within a time duration T = {1, 2, . . . , 𝑡, . . . }. We note that the cross-
roads is a representative scenario in intersections. Without loss of
generality, we use the crossroads scenario as the meta scenario in
the rest of this work.
Lane. A lane is part of a road to guide the traveling direction of
vehicles. For example, lanes of a 𝑘-lane road are represented as
𝑙1, 𝑙2, . . . , 𝑙𝑘 , and each lane has its allowed turning directions at the
crossroads as shown in Figure 2. In order to follow the planned
route, the autonomous vehicle𝐴 needs to enter a lane that conforms
with the desired turning direction, which is defined as a target
lane. Usually, there are multiple target lanes TL = {𝑡𝑙1, 𝑡𝑙2, . . . , 𝑡𝑙𝑚}
among the 𝑘 lanes, and the autonomous vehicle must be located in
one of them before reaching the crossroads.
Location. A vehicle’s location at time step 𝑡 is denoted as a two-
dimension position. The first axis points in the direction of a road,
and the second axis is the direction perpendicular to it. For example,
(𝐶𝑡

𝑖
.𝑙𝑎𝑡,𝐶𝑡

𝑖
.𝑙𝑜𝑛) and (𝐴𝑡 .𝑙𝑎𝑡, 𝐴𝑡 .𝑙𝑜𝑛) represent the locations of 𝐶𝑖

and 𝐴, respectively.
Velocity. The longitudinal velocities of 𝐶𝑖 and 𝐴 at time step 𝑡 are
denoted as (𝐶𝑡

𝑖
.𝑣) and (𝐴𝑡 .𝑣), respectively. Considering the discrete

time step, we assume the lateral motion between two consecutive
time steps to be the uniform motion [18], and thus the lateral veloc-
ity change is ignored in this work. In the rest of this paper, velocity
merely refers to longitudinal velocity.
Maneuver. At every time step 𝑡 , the autonomous vehicle 𝐴 per-
forms a maneuver (𝐴𝑡 .𝑙𝑐, 𝐴𝑡 .𝑣𝑐) with two components. In details,
𝑙𝑐 ∈ {𝑙𝑙𝑐, 𝑟𝑙𝑐, 𝑙𝑘} is one of three lateral lane change action: left lane
change action (𝑙𝑙𝑐), right lane change action (𝑟𝑙𝑐) and lane keeping
(𝑙𝑘). 𝑣𝑐 ∈ [−𝑎𝑐𝑐, +𝑎𝑐𝑐] refers to the longitudinal velocity change
action ranging from −𝑎𝑐𝑐 to 𝑎𝑐𝑐 .
Restriction. We pose some traffic restrictions on all vehicles.
(1) Speed limit. All vehicles are required to travel within the speed
limit, i.e., 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 .
(2) Lane change restriction. Between two consecutive time steps, a
vehicle can only make a lane change to an adjacent lane.

(3) Velocity change restriction. Vehicles are required to perform
velocity changes that obey the acceleration restriction [−𝑎𝑐𝑐, +𝑎𝑐𝑐].
Objective. In this work, our objective is that the autonomous vehi-
cle can make safe, efficient, and comfortable decisions for entering
a target lane before reaching an intersection.

3 METHODOLOGY
3.1 Framework Overview
Figure 3 shows the proposed rule-aided reinforcement learning
framework that makes maneuver decisions as the autonomous
vehicle interacts with the environment. It consists of three main
components: environment modeling, RL-based policy, and rule
revision.
Environment Modeling.Wemodel the task as a Markov decision
process and generate states that indicate the locations and velocities
of the autonomous vehicle and surrounding vehicles, as well as the
target lanes of the autonomous vehicle. To speed up the training
process, we apply a curriculum learning strategy characterized by
stages with increasing task complexity.
RL-based Policy.We pass the state as input of the RL-based policy
module which then returns an action pair, including a discrete lane
change action and a continuous velocity change action. Note that
the reward is not sure yet, as the action pair may be revised via
subsequent rule revision. As the example illustrated in Figure 3, the
RL-based policy aims to maximize the reward where efficiency is
stressed, and tends to make lane change at time step 𝑡 + 2 when the
autonomous vehicle nearly arrives at the crossroads. However, it
may fail to achieve the TLE task if the lane change action is blocked
by other vehicles at time step 𝑡 + 2.
Rule Revision. To successfully complete the TLE task, we apply a
strategy of rule revision into the decision-making process to revise
the returned action generated by the RL-based policy. Specifically,
rule-based guidance first compares the returned lane change ac-
tion to a rule-based lane change action and then decides whether
revision intervention is necessary based on two judgments. If in-
tervention is needed, rule revision provides a revised action pair;
otherwise, it outputs the returned action pair. According to the state
before and after the action is executed, the reward is calculated
using a four-term hybrid reward function.

3.2 Environment Modeling
Considering the mechanism by which an autonomous vehicle per-
ceives its dynamic surrounding traffic and makes maneuver deci-
sions, the TLE task conforms well to the principle of reinforcement
learning. Based on the definitions of the TLE task, we model the
maneuver decision of an autonomous vehicle, namely an agent 𝐴,
as a Markov decision process (MDP) [1] with a hybrid discrete-
continuous action space. Specifically, the MDP can be defined as:
M =< S,A,P,𝑟 , 𝛾 >, which includes the state spaceS, the discrete-
continuous action space A, the state transition probability distri-
bution P, the reward 𝑟 , and the discount factor 𝛾 ∈ [0, 1).
State. To help the agent 𝐴 fulfill the TLE task, we extract a state
matrix 𝑠𝑡 from the environment at each time step 𝑡 , including the
state features of vehicles ℎ𝑡𝑣 and target lanes ℎ𝑡

𝑡𝑙
, i.e., 𝑠𝑡 = [ℎ𝑡𝑣, ℎ𝑡𝑡𝑙 ].

(1) Vehicles. The vehicle features ℎ𝑡𝑣 = [ℎ𝑡
𝐴
, ℎ𝑡𝑐1 , ℎ

𝑡
𝑐2 , . . . , ℎ

𝑡
𝑐6 ] in-

cludes the feature vectors of the agent 𝐴 and six surrounding
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Figure 3: Framework Overview. Take the returned action and revised action in the figure as an example. Since the autonomous
vehicle is about to reach the crossroads, the lane change action is revised from 𝑙𝑘 to 𝑙𝑙𝑐 at time step 𝑡 to meet the TLE task.

conventional vehicles 𝐶 = {𝐶1,𝐶2, . . . ,𝐶6} [7]. To elaborate fur-
ther, ℎ𝑡

𝐴
includes the position and velocity features of agent 𝐴,

denoted as ℎ𝑡
𝐴
= (𝐴𝑡 .𝑙𝑜𝑛,𝐴𝑡 .𝑙𝑎𝑡, 𝐴𝑡 .𝑣). Additionally, each ℎ𝑡𝑐𝑖 char-

acterizes the relative features between 𝐴 and 𝐶𝑖 , represented as
ℎ𝑡𝑐𝑖 = (𝑑𝑙𝑜𝑛 (𝐶𝑡

𝑖
, 𝐴𝑡 ), 𝑑𝑙𝑎𝑡 (𝐶𝑡

𝑖
, 𝐴𝑡 ), 𝑣 (𝐶𝑡

𝑖
, 𝐴𝑡 )), where 𝑑𝑙𝑜𝑛 (𝐶𝑡

𝑖
, 𝐴) and

𝑑𝑙𝑎𝑡 (𝐶𝑡
𝑖
, 𝐴) refer to the relative longitudinal and lateral distances

between 𝐴 and 𝐶𝑖 , respectively, and 𝑣 (𝐶𝑡
𝑖
, 𝐴) denotes the relative

longitudinal velocity. The relative features are calculated as follows:

ℎ𝑡𝑐𝑖 = (𝐶𝑡
𝑖 .𝑙𝑜𝑛 −𝐴𝑡 .𝑙𝑜𝑛,𝐶𝑡

𝑖 .𝑙𝑎𝑡 −𝐴𝑡 .𝑙𝑎𝑡,𝐶𝑡
𝑖 .𝑣 −𝐴𝑡 .𝑣) (1)

(2) Target lanes. The features of target lanesℎ𝑡
𝑡𝑙
on a 𝑘-lane road can

be represented as ℎ𝑡
𝑡𝑙

= (𝑡𝑔𝑡𝑡
𝑑
, 𝑡𝑔𝑡𝑡

𝑙
), where 𝑡𝑔𝑡𝑡

𝑑
is a 𝑘-dimension

vector to indicate the distribution of target lanes, and 𝑡𝑔𝑡𝑡
𝑙
is a

2-dimension vector serving as an auxiliary message to indicate
turning direction. For example, consider a scenario where the agent
travels on a 5-lane road before a crossroads, and its target lanes are
the leftmost two lanes. In this case, 𝑡𝑔𝑡𝑡

𝑑
will be denoted as [1, 1, 0,

0, 0], where the codes of target lanes are set to 1 and the others are
set to 0, and 𝑡𝑔𝑡𝑡

𝑙
∈ {[0, 1], [1, 1], [1, 0]} indicates the agent to turn

right, keep straight, or turn left at the crossroads.
Action. Following the maneuver mentioned in Section 2, the action
of the agent 𝐴 can be regarded as a hybrid discrete-continuous
action pair, which can be represented as follows:

𝑎𝑡 = (𝐴𝑡 .𝑙𝑐, 𝐴𝑡 .𝑣𝑐), (2)

where 𝐴𝑡 .𝑙𝑐 ∈ {𝑙𝑙𝑐, 𝑟𝑙𝑐, 𝑙𝑘} is the lane change action with discrete
action space, and𝐴𝑡 .𝑣𝑐 ∈ [−𝑎𝑐𝑐, +𝑎𝑐𝑐] is the velocity change action
with continuous action space.
State Transition.After the agent performs an action 𝑎𝑡 , we update
the state 𝑠𝑡 into the next state 𝑠𝑡+1. For vehicle features, the feature
vector of agent ℎ𝑡+1

𝐴
= (𝐴𝑡+1 .𝑙𝑜𝑛,𝐴𝑡+1 .𝑙𝑎𝑡, 𝐴𝑡+1 .𝑣) at time step 𝑡 + 1

is updated as follows:

𝐴𝑡+1 .𝑙𝑜𝑛 = 𝐴𝑡 .𝑙𝑜𝑛 + Δ𝑡 · 𝐴𝑡 .𝑣 + 1
2
𝐴𝑡 .𝑣𝑐 · (Δ𝑡)2

𝐴𝑡+1 .𝑙𝑎𝑡 = 𝐴𝑡 .𝑙𝑎𝑡 +𝐴𝑡 .𝑙𝑐 · 𝐿𝑤
𝐴𝑡+1 .𝑣 = 𝐴𝑡 .𝑣 + Δ𝑡 · 𝐴𝑡 .𝑣𝑐

(3)

where Δ𝑡 denotes the time interval between two consecutive time
steps, 𝐿𝑤 is the width of a lane, and 𝐴𝑡 .𝑙𝑐 is equal to −1, 0, and +1

in the case that lane change action is 𝑙𝑙𝑐 , 𝑙𝑘 , and 𝑟𝑙𝑐 , respectively.
The feature vector ℎ𝑡+1𝑐𝑖

of each conventional vehicle 𝐶𝑖 ∈ 𝐶 that
is controlled by a human-like algorithm, is then obtained via on-
board sensors. For target lane features, we update the codes in ℎ𝑡

𝑡𝑙
according to the planned route.
Reward. The agent 𝐴 receives a reward 𝑟𝑡 according to the action
𝑎𝑡 and the state transition from 𝑠𝑡 to 𝑠𝑡+1. After testing various
reward combinations, we design a four-term reward function that
takes 1) safety, 2) efficiency, 3) comfort, and 4) emergency into
account. The reward function is introduced in Section 3.3 in detail.
Curriculum Learning. Given the difficulty of the TLE task com-
pared to simpler tasks like road following and obstacle avoidance,
we apply curriculum learning to speed up the learning process.
When human beings learn how to drive a car, the learning process
is a natural curriculum that starts with speed control and gradually
transits to both speed and steering control. Inspired by human na-
ture in learning, we adopt the strategy of curriculum learning and
break the whole training process into three stages with growing
complexity. By training in a process with specialized stages, the
agent 𝐴 can effectively fine-tune network parameters learned from
earlier stages to adapt to the subsequent stages [2, 11].
(1) Stage 1: road following. To facilitate the learning of efficient
driving with less jerk, the agent 𝐴 is required to simply drive along
a road in low traffic density. Two measures are employed to help
the agent 𝐴 focus on its velocity change. First, when the agent 𝐴
is generated at the starting point, it is positioned far away from
other vehicles in the low-density environment. This spatial arrange-
ment minimizes the attention for agent 𝐴 to extensive interaction
with other vehicles. Second, to encourage the agent 𝐴 to prioritize
smooth driving, the reward value of emergency is intentionally not
stressed in Stage 1 with no target lane.
(2) Stage 2: safe interaction. To learn a safer driving strategy in
more congested traffic conditions compared to Stage 1, the agent 𝐴
needs to drive along a road in high traffic density without target
lanes. Since more vehicles are likely to travel around, the agent
𝐴 should maintain a safe distance from its surrounding vehicles,
which aligns with the reward value of safety.
(3) Stage 3: the TLE task. Based on Stage 2, Stage 3 further incorpo-
rates the target lanes. Even though the agent𝐴 can perform change
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Figure 4: Network Structure in LINE

lanes for efficiency and safety in Stages 1 and 2, lane change action
that considers target lanes is more demanding in Stage 3.

3.3 RL-based Policy for Maneuver Decision
Based on the environment modeling, we design a reinforcement
learning-based model to compute a discrete-continuous action of
the autonomous vehicle. The model consists of three key compo-
nents: optimization paradigm, network structure, and reward func-
tion. Notably, the reward value of emergency is carefully designed
to make target-oriented maneuver decisions.
Optimization. Given a state 𝑠𝑡 , the goal of the agent 𝐴 is to learn
a policy 𝑢 with maximal expected 𝛾-discounted cumulative reward,
i.e., action-value function 𝑄∗ [22], as follows:

𝑄∗ (𝑠𝑡 , 𝑎𝑡 ) = max
𝑢
E

[
𝑇∑︁

𝑡 ′≥𝑡
𝛾𝑡

′−𝑡𝑟 (𝑠𝑡
′
, 𝑎𝑡

′
) |𝑢

]
(4)

where𝛾 ∈ [0, 1) is a discount factor. Based on the discrete-continuous
action space of our TLE task, we apply P-DQN [36] as the reinforce-
ment learning paradigm, which defines a Bellman equation [21, 27]
to estimate 𝑄∗ as follows:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑄 (𝑠𝑡 , 𝐴𝑡 .𝑙𝑐, 𝐴𝑡 .𝑣𝑐) = E𝑠𝑡+1
[
𝑟 (𝑠𝑡 , 𝑎𝑡 )+

𝛾 max𝐴𝑡+1 .𝑙𝑐 ∈ {𝑙𝑙𝑐, 𝑟𝑙𝑐, 𝑙𝑘}𝑄 (𝑠𝑡+1, 𝐴𝑡+1 .𝑙𝑐,𝑢 (𝑠𝑡+1, 𝐴𝑡+1 .𝑙𝑐))
] (5)

where the𝑚𝑎𝑥 operation gets an optimal lane change action from
{𝑙𝑙𝑐, 𝑟𝑙𝑐, 𝑙𝑘} and policy 𝑢 gets an optimal velocity change action.
Network Structure. As shown in Figure 4, the network structure
is divided into a policy network and a value network. The policy
network outputs the accelerations of each discrete lane change
action, and the value network outputs𝑄 values of each acceleration.
(1) Policy network. The input is the state 𝑠𝑡 = [ℎ𝑡𝑣, ℎ𝑡𝑡𝑙 ], and the
output 𝑋 𝑡 = [𝑥𝑡1, 𝑥

𝑡
2, 𝑥

𝑡
3] are three velocity change actions of each

lane change action 𝑙𝑐𝑖 ∈ {𝐴𝑡 .𝑙𝑐 = 𝑙𝑙𝑐, 𝐴𝑡 .𝑙𝑐 = 𝑟𝑙𝑐, 𝐴𝑡 .𝑙𝑐 = 𝑙𝑘}, i.e.,
𝑥𝑡
𝑖
= 𝐴𝑡 .𝑣𝑐 |𝑙𝑐𝑖 . The output 𝑋 𝑡 is calculated as follows:

𝑋 𝑡 = 𝑎𝑐𝑐 ·𝑇𝑎𝑛ℎ(𝜙3 (𝑅𝑒𝐿𝑈 (𝜙2𝑅𝑒𝐿𝑈 (𝜙1𝑠𝑡 + 𝑏1) + 𝑏2) + 𝑏3)) (6)

where 𝑎𝑐𝑐 is the acceleration bound, 𝜙1, 𝜙2 and 𝜙3 are linear trans-
formations, and 𝑏1, 𝑏2 and 𝑏3 are biases. Since Tanh function can
limit output in [−1, 1] as an activation function, the values of ve-
locity change actions in 𝑋 𝑡 are limited in [−𝑎𝑐𝑐, +𝑎𝑐𝑐].
(2) Value network. It receives both the state 𝑠𝑡 and the 𝑋 𝑡 as input
and processes them through a linear transformation at first. Similar
to Rainbow DQN [12], the dueling technique [32] is used later to
estimate 𝑄 values as the output 𝑄𝑡 = [𝑞𝑡1, 𝑞

𝑡
2, 𝑞

𝑡
3]. In detail, the du-

eling technique combines a value stream and an advantage stream
that are both composed of noise linear layers [26]. The value stream

estimates the state value 𝑉 𝑡 (𝑠) of the general state, while the ad-
vantage stream estimates the relative state-action value𝑈 𝑡

𝑖
(𝑠, 𝑙𝑐𝑖 )

of each lane change action. The state value 𝑉 𝑡 (𝑠) and the relative
state-action value𝑈 𝑡

𝑖
(𝑠, 𝑙𝑐𝑖 ) are calculated as follows:

𝑉 𝑡 (𝑠) = 𝜙6 (𝜙5 (𝑅𝑒𝐿𝑈 (𝜙4𝑋 𝑡 + 𝑏4)))
𝑈 𝑡
𝑖 (𝑠, 𝑙𝑐𝑖 ) = 𝜙8 (𝜙7 (𝑅𝑒𝐿𝑈 (𝜙4𝑋 𝑡 + 𝑏4)))

(7)

where 𝜙4 and 𝑏4 are a linear transformation and its bias, 𝜙5, 𝜙6, 𝜙7
and 𝜙8 denote noise linear transformations.

The output 𝑄𝑡 is then calculated as follows:

𝑞𝑡𝑖 = 𝑉 𝑡 (𝑠) +𝑈 𝑡
𝑖 (𝑠, 𝑙𝑐𝑖 ) −

1
|𝑈 |

|𝑈 |∑︁
𝑖=1

𝑈 𝑡
𝑖 (𝑠, 𝑙𝑐𝑖 ) (8)

where |𝑈 | = 3 is the number of discrete actions in action space.
Hence, the policy 𝑢 selects the lane change action 𝐴𝑡 .𝑙𝑐 with the

highest𝑄 values, and its corresponding continuous velocity change
actions 𝐴𝑡 .𝑣𝑐 as follows:

𝐴𝑡 .𝑙𝑐 = argmax
𝑥𝑡
𝑖
∈𝑋 𝑡

𝑄𝑡
𝑜𝑢𝑡

𝐴𝑡 .𝑣𝑐 = 𝑥𝑡𝑖 |𝐴𝑡 .𝑙𝑐

(9)

The action 𝑎𝑡 = (𝐴𝑡 .𝑙𝑐, 𝐴𝑡 .𝑣𝑐) is then revised via rule-based guid-
ance, with detailed design in Section 3.4.
Reward Function. The reward function is a highly important role
to guide the optimization of a policy. To deal with the TLE task, we
construct a hybrid reward function concerning four elements, 1)
safety, 2) efficiency, 3) comfort, and 4) emergency. The reward at
time step 𝑡 is defined as follows:

𝑟𝑡 = 𝑤1𝑟
𝑡
𝑠 +𝑤2𝑟

𝑡
𝑒 +𝑤3𝑟

𝑡
𝑐 +𝑤4𝑟

𝑡
𝑚 (10)

where𝑤1,𝑤2,𝑤3,𝑤4 are four weights to represent the importance
of each part, and 𝑟𝑡𝑠 , 𝑟𝑡𝑒 , 𝑟𝑡𝑐 , 𝑟𝑡𝑚 refer to the reward values of safety,
efficiency, comfort, and emergency, respectively.
(1) Safety. Time to collision (TTC) [9] is used to indicate the safety
of maneuver decisions generated by the agent 𝐴. Specifically, TTC
is the remaining time before two vehicles collide, supposing no
alteration of speed or lane during the remaining time. Since we do
not focus on lateral velocity, lateral TTC is not considered. The
𝑇𝑇𝐶𝑡 between the agent 𝐴 and its leading conventional vehicle 𝐶𝑖
is valid when 𝑣 (𝐶𝑡

𝑖
, 𝐴𝑡 ) < 0, which can be defined as:

𝑇𝑇𝐶𝑡 =

{
−𝑑𝑙𝑜𝑛 (𝐶𝑡

𝑖
,𝐴𝑡 )

𝑣 (𝐶𝑡
𝑖
,𝐴𝑡 ) , 𝑣 (𝐶𝑡

𝑖
, 𝐴𝑡 ) < 0

0, 𝑣 (𝐶𝑡
𝑖
, 𝐴𝑡 ) ≥ 0

(11)

With 𝑇𝑇𝐶𝑡 , the reward value of safety 𝑟𝑡𝑠 ∈ [−10, 0] is a term
penalizing dangerous driving behaviors, which is defined as:

𝑟𝑡𝑠 =


−10, 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

𝑚𝑎𝑥 (−2, 𝑙𝑜𝑔(𝑇𝑇𝐶𝑡

𝛿
)), 0 < 𝑇𝑇𝐶𝑡 ≤ 𝛿

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

where 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 infers the agent 𝐴 encountering collision, and 𝛿

denotes a 𝛿-second time limitation for TTC.
(2) Efficiency. The reward value of efficiency [18] 𝑟𝑡𝑒 ∈ [0, 1] is a
term encouraging the agent 𝐴 to move forward efficiently within
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the speed limit, which is defined as follows:

𝑟𝑡𝑒 =

{
0, 𝐴𝑡

𝑣 > 𝑣𝑚𝑎𝑥
𝐴𝑡
𝑣

𝑣𝑚𝑎𝑥
, 0 ≤ 𝐴𝑡

𝑣 ≤ 𝑣𝑚𝑎𝑥
(13)

where 𝑣𝑚𝑎𝑥 is the speed upper limit. Note that the autonomous
vehicle is able to speeding without a clip for 𝐴𝑡

𝑣 , but such behavior
will lead to a zero reward value of 𝑟𝑒 .
(3) Comfort. As a penalty term discouraging a high change rate of
velocity that brings a negative jerk experience for passengers [39],
the reward value of comfort 𝑟𝑡𝑐 ∈ [−1, 0] is defined as:

𝑟𝑡𝑐 = − |𝐴𝑡 .𝑣𝑐 −𝐴𝑡−1 .𝑣𝑐 |2

(𝑎𝑐𝑐 − (−𝑎𝑐𝑐))2
(14)

(4) Emergency. We introduce a term 𝑟𝑡𝑚 in the reward function
that reflects the emergency associated with changing lanes to enter
the target lanes for two reasons. First, even if the target lanes are
constructed in state 𝑠𝑡 , the policy 𝑢 can hardly notice target lanes
during optimization without the feedback of target lanes in the
reward function. Second, an intuitive way to design the reward
value for target lanes is to measure the number of lanes from a
target lane. However, such a design may force the agent 𝐴 to move
to a target lane too early which potentially leads to low efficiency,
because the urgency and difficulty of achieving the TLE task varies
in different states. Hence, we design an emergency penalty 𝑟𝑡𝑚 that
increases when the agent 𝐴 leaves further away from target lanes
TL and/or gets closer to the crossroads, which is calculated as:

𝑟𝑡𝑚 = −𝐴
𝑡 .𝑙𝑜𝑛

𝐿𝑙
· 𝑚𝑖𝑛( |𝐴𝑡 .𝑙𝑎𝑡 − 𝑡𝑙𝑖 .𝑐 |)

𝐿𝑤 · 𝐿𝑛
(15)

where 𝑡𝑙𝑖 .𝑐 is the lateral center position of a target lane 𝑡𝑙𝑖 ∈ TL,
𝐿𝑙 is the total length of a road, and 𝐿𝑛 is the number of lanes on
a road. Since all target lanes can be regarded as the same for the
TLE task, we use the𝑚𝑖𝑛 function to choose the closest distance
between the agent 𝐴 and target lanes TL.

3.4 Rule Revision
We provide a rule-based strategy to help target-oriented maneuver
decisions for two motivations. (1) Task guarantee. Learning-based
methods alone (e.g., reinforcement learning and imitation learning)
are insufficient to ensure the fulfillment of the TLE task [14, 20, 30],
while rule revision can serve as a guaranteed measure to meet the
TLE task by altering the maneuver decision of RL-based policy.
However, a challenge lies in determining when to intervene with
rule-based guidance in different situations. To deal with this chal-
lenge, we use a pipeline in Algorithm 1 to determine whether to use
rule-based guidance in a certain state. (2) Optimization feedback.
Apart from monitoring and modifying the agent’s maneuver deci-
sions, rule revision can also guide the agent to learn from interven-
tion via experience augmentation during the learning progress [34].
In detail, besides normal state transitions, extra state transitions that
are intervened by rule-based guidance are also saved in experience.
Rule-based Guidance. As depicted in Algorithm 1, a pipeline that
considers both distance and lane judgment can revise the action pair
before execution at every time step. The pipeline receives the state
𝑠𝑡 and an action pair 𝑎𝑡 = (𝐴𝑡 .𝑙𝑐, 𝐴𝑡 .𝑣𝑐) generated by the maneuver
decision of RL-based policy, and then outputs the revised action

Algorithm 1: Intervention of rule-based guidance
Input: state 𝑠𝑡 , returned action 𝑎𝑡 = (𝐴𝑡 .𝑙𝑐, 𝐴𝑡 .𝑣𝑐),

R𝑡 .𝑙𝑐 ∈ {𝑙𝑙𝑐, 𝑟𝑙𝑐, 𝑙𝑘}
Output: revised action 𝑎𝑡

′
= (𝐴𝑡 ′ .𝑙𝑐, 𝐴𝑡 ′ .𝑣𝑐)

1 𝑎𝑡
′ is set as 𝑎𝑡 ;

2 initialize no intervention;
3 if 𝐴𝑡 .𝑙𝑐 ≠ R𝑡 .𝑙𝑐 and 𝐴 is far away from the crossroads then
4 // not suitable to leave a target lane

5 if 𝐴 in TL then
6 implement intervention;
7 else
8 no intervention;
9 // urgent need to act as R𝑡 .𝑙𝑐

10 if 𝐴𝑡 .𝑙𝑐 ≠ R𝑡 .𝑙𝑐 and 𝐴 is about to reach the crossroads then
11 implement intervention;
12 if implement intervention then
13 𝐴𝑡 ′ .𝑙𝑐 is set as R𝑡 .𝑙𝑐 ;
14 𝐴𝑡 ′ .𝑣𝑐 is set as 𝐴𝑡 .𝑣𝑐 |𝐴𝑡 .𝑙𝑐=R𝑡 .𝑙𝑐 ;

pair 𝑎𝑡 ′ = (𝐴𝑡 ′ .𝑙𝑐, 𝐴𝑡 ′ .𝑣𝑐) with or without intervention. To indicate
the mechanism of the rule, we introduce R𝑡 .𝑙𝑐 ∈ {𝑙𝑙𝑐, 𝑟𝑙𝑐, 𝑙𝑘} to
show a rule-based lane change action approaching the nearest
target lane, i.e., R𝑡 .𝑙𝑐 = 𝑙𝑘 when the agent is on a target lane.
Moreover, two judgments decide the necessity of intervention. A
distance judgment is based on the distance from the crossroads,
and a lane judgment is based on the target lanes. Specifically, the
pipeline first compares the returned lane change action 𝐴𝑡 .𝑙𝑐 with
the rule-based lane change action R𝑡 .𝑙𝑐 . Two types of intervention
are triggered when the actions are inconsistent. 1) When the agent
is far away from the crossroads and travels exactly on a target lane,
the rule-based guidance makes the agent keep moving straight in
the target lane as R𝑡 .𝑙𝑐 = 𝑙𝑘 (lines 3-8). 2) When the agent is about
to reach the crossroads ahead, it is advised to move to a target
lane promptly (lines 9-11). Hence, the rule-based guidance makes
the agent act as R𝑡 .𝑙𝑐 . When intervention is implemented in the
above two situations, the pipeline then sets the revised action pair
𝐴𝑡 ′ .𝑙𝑐 as R𝑡 .𝑙𝑐 and sets the revised velocity change action 𝐴𝑡 ′ .𝑣𝑐
correspondingly (lines 12-14). Otherwise, the revised action pair
𝑎𝑡

′ is the same as the return action pair 𝑎𝑡 .
Reward Revision. As a measure of experience augmentation, the
state transition of returned action 𝑎𝑡 with reward 𝑟𝑡 and revised ac-
tion 𝑎𝑡 ′ with reward 𝑟𝑡 ′ are both saved in the experience memory of
RL-based policy. To indicate the deficiency of 𝑎𝑡 when intervention
happens, its reward 𝑟𝑡 is further revised as follows:

𝑟𝑡 = 𝑟𝑡
′ + 𝜌

𝜌 = 𝑤5 |𝐴𝑡 ′ .𝑙𝑐 −𝐴𝑡 .𝑙𝑐 | +𝑤6 |𝐴𝑡 ′ .𝑣𝑐 −𝐴𝑡 .𝑣𝑐 |
(16)

where 𝜌 describes the difference between 𝑎𝑡 = (𝐴𝑡 .𝑙𝑐, 𝐴𝑡 .𝑣𝑐) and
revised action 𝑎𝑡

′
= (𝐴𝑡 ′ .𝑙𝑐, 𝐴𝑡 ′ .𝑣𝑐), 𝑤5 and 𝑤6 are combination

weights. It is notable that in the following experiments, rule-based
guidance and reward revision are only applied in the training pro-
cess, rather than in both the training and testing process. Thismeans
that we try to use rule revision to guide the RL policy to learn from
intervention and to optimize the networks correspondingly.
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4 EXPERIMENTS
To verify the effectiveness of our framework, we conduct compre-
hensive experiments of LINE from both macroscopic and micro-
scopic aspects. We first introduce experiments in meta scenarios,
while those for urban scenarios are illustrated in Section 4.6.
4.1 Experimental Settings
Implementation Details. To simulate the interaction between
the autonomous vehicle and its surrounding conventional vehi-
cles, all experiments are conducted in an open-source simulation
environment, SUMO [19]. Without loss of generality, we simulate
a straight five-lane road in meta scenarios, and a grid road net-
work in urban scenarios, where a road segment spans 2𝑘𝑚 and
the width of each lane 𝐿𝑤 is 3.2𝑚. To reflect real-world traffic
constraints and to follow previous works [18, 35], we set traffic lim-
itations as 𝑣𝑚𝑖𝑛 = 5𝑘𝑚/ℎ ≈ 1.39𝑚/𝑠 , 𝑣𝑚𝑎𝑥 = 90𝑘𝑚/ℎ = 25𝑚/𝑠 , and
𝑎𝑐𝑐 = 3𝑚/𝑠2. The detection range of sensors on the autonomous
vehicle is set to 100𝑚. The time granularity between consecutive
time steps is Δ𝑡 = 0.5𝑠 [37]. The time threshold in TTC is set as
𝛿 = 4. The different traffic densities in curriculum stages are set as,
200 vehicles per kilometer in high-density stages and 100 vehicles
per kilometer in low-density stages.

We conduct 4000 episodes for the training process and 500 for
the testing process. An episode involves the autonomous vehicle
driving from the origin to the crossroads ahead in meta scenarios,
to the destination in urban scenarios, or to the location of a collision
before its arrival. Two measures are implemented to mimic the real
traffic patterns so that the agent can be trained in diverse episodes.
First, all vehicles are initialized in random lanes, and the departure
sequence of the autonomous vehicle among the fleet is randomized.
Second, conventional vehicles also vary in driving habits like the
aggression of lane changes.

The Adam optimizer is used to train the network with a batch
size of 128 and a learning rate of 0.001. Following P-DQN [36],
target networks are added to update the network in LINE with
a soft update ratio of 0.01. Via grid searching, the coefficients in
the reward function are set as 𝑤1 = 1.0, 𝑤2 = 0.4, 𝑤3 = 1.0, and
𝑤4 = 2.0, and the combination factors in the reward revision are
set as 𝑤5 = 0.5 and 𝑤6 = 1. The epsilon greedy strategy is set as
0.05 in exploration.
Baselines. Since nearly no existing work can solve the TLE task,
we add the rule revision or the hybrid reward function in a few
representatives as baselines. The detailed baselines are as follows:
(1) IDM-LC [15]. Traditional intelligent driver model with a lane-
changing model used in SUMO [19] for maneuver decision.
(2) ILR. An imitation learning method that tries to learn a rule-based
maneuver decision strategy with expert demonstrations in IDM-LC.
(3) D3QN-Reward [32]. A classical DRL model that outputs discrete
lane change and velocity change actions with the same reward
function in LINE.
(4) PDQN-Rule [36]. A DRL model that uses a vanilla P-DQN with
the same rule revision strategy proposed in LINE.

4.2 Macroscopic Evaluation
We use macroscopic metrics to illustrate the intuitive performance
of a whole episode. Four metrics (i.e., Suc, Col, AvgRR, AvgLC)
that are related to the fulfillment of the TLE task are introduced

Table 1: Macroscopic Performance of Baselines and LINE

Method Suc
(%)

Col
(%)

Avg-
RR

Avg-
LC

AvgT
(𝑠)

Avg-
Aff

IDM-LC 98.6 0 - 1.95 98.91 13.93
ILR 85.2 10.6 - 6.82 92.41 12.84

D3QN-Reward 89.4 8.4 - 7.49 81.65 11.52
PDQN-Rule 94.0 5.6 0.758 4.95 87.57 10.90

LINE 99.2 0 0.442 1.53 84.36 10.22

Table 2: Microscopic Performance of Baselines and LINE

Method MinTTC
(𝑠)

AvgV
(𝑚/𝑠)

AvgJ
(𝑚/𝑠2)

IDM-LC 2.60 20.22 0.2725
ILR 2.73 21.64 0.2892

D3QN-Reward 1.13 24.49 0.2355
PDQN-Rule 3.04 22.83 0.2224

LINE 3.35 23.70 0.2161

at first. We then present a metric about traveling time (AvgT) and
another metric about affection (AvgAff). The macroscopic metrics
are designed as follows:
(1) Success rate. We record the success rate of task accomplishment
of the autonomous vehicle (Suc). We regard task accomplishment to
be successful in an episode when the autonomous vehicle reaches
the crossroads on a target lane. The larger value of Suc implies that
the autonomous vehicle learns the task better.
(2) Collision rate of colliding with conventional vehicles (Col). We
record the possibility of an autonomous vehicle colliding with con-
ventional vehicles in an episode. The smaller value of Col implies
higher safety for the autonomous vehicle.
(3) Average number of rule revisions (AvgRR). The smaller value of
AvgRV implies that the autonomous vehicle has a good policy for
maneuver decisions with fewer rule interventions. AvgRR is not
considered when rule revision is not applied in a method.
(4) Average number of lane changes for the autonomous vehicle
from the origin to the crossroads (AvgLC). The smaller value of
AvgLC implies that the autonomous vehicle takes a more rigorous
lane change strategy.
(5) Average traveling time of the autonomous vehicle traveling
from the origin to the crossroads (AvgT). The smaller value of AvgT
implies that the autonomous vehicle has better driving efficiency.
(6) Average affection time that the autonomous vehicle has a nega-
tive impact on its following conventional vehicle (AvgAff) [18, 35].
The smaller value of AvgAff implies a less negative impact on the
following vehicle.
Results Analysis. Table 1 reveals the macroscopic performance of
LINE compared with baselines. Regarding the fulfillment of the TLE
task, LINE achieves the highest success rate (Suc) with the fewest
rule revisions (AvgRR), the most optimal lane change decisions
(AvgLC), and nearly no collision happening (Col). In addition, LINE
performs efficiently with a low AvgT, resulting in a reduction of
3.6%-14.7% in travel time. The reason lies in that LINE enables the
autonomous vehicle to travel with high efficiency via the maneuver
decision based on the surrounding traffic information provided in
the input state. Even though no term directly indicates affection to
the following vehicle (AvgAff) in the reward function, we evaluate
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Table 3: Macroscopic and Microscopic Performance of Variants and LINE

Method Macroscopic Microscopic
Suc (%) Col (%) AvgRR AvgLC AvgT (𝑠) AvgAff MinTTC (𝑠) AvgV (𝑚/𝑠) AvgJ (𝑚/𝑠2)

LINE-w/o-CL 96.4 2.8 0.468 2.02 86.94 10.70 2.42 23.00 0.2648
LINE-w/o-RV 91.8 4.2 - 1.76 86.17 10.43 3.20 23.21 0.2234
LINE-w/o-emg 95.2 3.6 0.896 1.75 89.08 10.40 2.71 22.45 0.2195

LINE 99.2 0 0.442 1.53 84.36 10.22 3.35 23.70 0.2161

it because hash deceleration and casual lane change behaviors can
cause AvgAff indirectly, which are related to the reward value of
comfort and emergency, respectively. LINE also shows superior
performance with the lowest AvgAff which saves 6.2%-26.6% af-
fection time. This can be explained that LINE effectively avoids
unnecessary lane changes with the target lanes considered.

Among the other methods, IDM-LC is another method that
achieves high Suc, but it falls short in achieving efficient driving
with the longest AvgT. ILR, which attempts to mimic the policy
in IDM-LC, performs no better than IDM-LC generally. Lacking
rule revision or the ability for continuous velocity change, D3QN-
Reward is more likely to collide with other vehicles (Col). Even
though D3QN-Reward spends the least AvgT, it has the worst per-
formance in terms of Suc and AvgLC, for it may act in a hasty way.
Owning to the aid of rule revision, PDQN-Rule performs better
than ILR and D3QN-Reward. However, PDQN-Rule requires more
rule intervention (AvgRR), since its maneuver decision policy is
weaker than that of LINE.

4.3 Microscopic Evaluation
We use microscopic metrics to illustrate the hint performance of a
time step. The microscopic metrics are designed as follows:
(1) Minimum TTC of the autonomous vehicle (MinTTC). We record
the minimum TTC between the autonomous vehicle and its leading
vehicle. The smaller value of MinTTC implies that the autonomous
vehicle tends to remain an unsafe distance from its leading vehicle.
(2) Average velocity of the autonomous vehicle (AvgV). We record
the velocity of the autonomous vehicle at every time step. The
larger value of AvgV implies that the autonomous vehicle stays at
high efficiency.
(3) Average jerk of the autonomous vehicle (AvgJ). We also record
the jerk value of the autonomous vehicle at every time step. The
smaller value of AvgJ implies that the autonomous vehicle has fewer
reckless velocity changes.
Results Analysis.As illustrated in Table 2, LINE achieves the high-
est MinTTC, a high AvgV, and the lowest AvgJ. This indicates that
LINE can keep a safe following distance and stay at a stable high
speed simultaneously. Due to the intrinsic limitation in rules, IDM-
LC tends to prioritize safety over efficiency, resulting in the lowest
average velocity (AvgV). ILR still performs like IDM-LC but is no
better than IDM-LC, because it struggles to fully understand the
TLE task and fails to capture the complex determination process
in IDM-LC. Consistent with the macroscopic evaluation, D3QN-
Reward tends to travel impulsively with the lowest MinTTC and
the highest AvgV. Different from LINE in network structure, re-
ward function, and curriculum learning strategy, the performance
of PDQN-Rule is not as good as that of LINE.

4.4 Ablation Study
We conduct an ablation study to evaluate the effectiveness of some
key components in LINE when tackling the TLE task. Both the
macroscopic and microscopic metrics in Section 4.2 and 4.3 are
applied in the ablation study.
Variants. We study three variants that are related to curriculum
learning, rule revision, and emergency reward, respectively. The
detailed set of variants is as follows:
(1) LINE-w/o-CL. It is trained in Stage 3 during the whole training
process without the strategy of curriculum learning.
(2) LINE-w/o-RR. The executed maneuver is exactly what the agent
outputs without rule revision.
(3) LINE-w/o-emg. The emergency is removed from the reward
function, while curriculum learning and rule revision still work.
Results Analysis. From Table 3, it can be concluded that LINE
shows superior performance than all variants. Compared with
LINE-w/o-CL, LINE with curriculum learning demonstrates a more
advanced maneuver decision strategy, especially in terms of success
rate (Suc) and collision rate (Col). The reason is that policy with cur-
riculum learning can avoid overfitting with noises generated from
different training stages, and thus leads to a better performance
in the TLE task. Compared with LINE-w/o-RR, LINE with rule re-
vision achieves a higher success rate (Suc). This can support the
advantage that both RL and rule-guidance experience are replayed
when experience is used during policy optimization. Compared
with LINE-w/o-emg, LINE with the reward value of emergency
exhibits a lower average number of rule revisions (AvgRR). The
reason lies in that this reward component, emergency, also plays an
important role when the reward function works, so that the policy
itself is able to fulfill the task without much aid from rule revision.

4.5 Training Efficiency
To illustrate the effectiveness of curriculum learning that is expected
to speed up the training process, we compare the training efficiency
of LINE and several baselines and variants (i.e., D3QN-Reward,
PDQN-Rule, LINE-w/o-CL). Visualized as learning curves in Figure
5, solid lines represent the mean values of average reward and
shaded areas imply the standard deviations during the training
process. The stages of curriculum learning applied in LINE are
distinguished with green dashed lines.
Results Analysis. As we can see in Figure 5, the learning curve
of LINE stands out with its remarkable stability and superior per-
formance compared to the other curves. Benefiting from training
in a simpler stage at first, LINE begins with the highest average
reward in the early episodes. The strategy of curriculum learning
also helps LINE to steadily converge in each stage and to rapidly
achieve the TLE task, as we can see that the curve of LINE shows a
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Figure 5: Effectiveness of Curriculum Learning

downward trend when transitioning to a new stage. On the con-
trary, the learning curves of PDQN-Rule and LINE-w/o-CL that
lack the implementation of curriculum learning exhibit fluctuations
and a downward trend in the later episodes. As for D3QN-Reward,
it starts and ends with the lowest average reward for its inherent
limitation of coarse granularity in discrete velocity change actions.

4.6 End-to-end Extension
We further conduct an experiment to compare LINE and baselines
in a more complex urban scenario, which extends a multi-lane road
to an end-to-end route in a grid road network.
Extension Experiment Settings. Similar to the objective in the
former experiments, in the end-to-end extension experiment, the
autonomous vehicle is required to make safe and efficient maneu-
ver decisions while traveling from a start point to the destina-
tion along a planned route. Precisely, the entire route consists of
five two-kilometer-long roads, and the start point and destination
are randomly selected in the grid road network. To successfully
travel along the route, the autonomous vehicle needs to achieve the
TLE task sequentially when traveling on different road segments
with corresponding target lanes, while it is controlled by classical
rules [28] when traveling through a crossroads.We use macroscopic
metrics in the extension experiment to evaluate the performance
in the whole route, since microscopic metrics are not measurable
in crossroads.
Results Analysis. As shown in Table 4, the disparities between
LINE and baselines on the success rate (Suc) and the collision rate
(Col) become significant in the end-to-end urban scenario. This
can be explained that the fulfillment of the TLE task on one road
segment affects the completion of the TLE task on the whole route,
and the overall success rate of the entire route is influenced by the
cumulative success rates of individual road segments. With more
TLE tasks to tackle, LINE outperforms in all metrics except for AvgT.
The relative performance between methods is consistent with what
we analyze in experiments of meta scenarios.

5 RELATEDWORK
Rule-based Methods. Rule-based methods are often used in low-
level control tasks, such as lane following and speed control. A clas-
sical control algorithm in autonomous driving is the Proportional-
Integral-Derivative (PID) controller [24], which calculates the steer-
ing angle to keep the vehicle on the center line of a lane. Adaptive

Table 4: Performance of Baselines and LINE in Extension
Experiments

Method Suc
(%)

Col
(%)

Avg-
RR

Avg-
LC

AvgT
(𝑠)

Avg-
Aff

IDM-LC 92.4 0 - 10.47 513.87 74.53
ILR 43.6 43.8 - 36.04 506.84 69.27

D3QN-Reward 56.8 37.2 - 42.45 416.31 58.62
PDQN-Rule 72.6 20.4 3.816 21.39 458.29 55.31

LINE 95.6 0 2.267 7.93 435.35 52.60

Cruise Control (ACC) [29, 33] is a cruise control system that helps
ego vehicle to adjust speed maintenance and safe following dis-
tance, via detecting the speed and location of the leading vehicle
with sensors such as radar or lidar.
RL-based Methods. Reinforcement learning can be used to train
an agent to interact with the driving environment based on input
from sensors. [31] defines action space as vehicle yaw acceleration
and designs a Q-function approximator with a closed-form greedy
policy in DQN. [4] breaks down overall behavior into sub-policies
with a hierarchical action structure that fits lane change behavior.
Later, more works are proposed to solve more problems in au-
tonomous driving, such as dealing with harsh velocity changes [35]
and using space-weighted information fusion [8].
IL-based Methods. Imitation learning involves learning a policy
that leverages human expertise and driving skills, allowing the
autonomous vehicle to imitate the behavior of expert drivers. To
improve the safety of maneuver decisions using IL, [3] proposes a
framework that can handle complex urban scenarios with IL and an
enhanced safety controller. [6] trains an IL agent with an attention
model to receive image input and output steering angles.

Rule-based methods struggle to handle various scenarios flexibly
due to the reliance on predefined rules. RL-based methods and IL-
based methods learn from the trial-and-error process and expert
demonstrations, respectively, but they can neither guarantee the
successful completion of the TLE task. Hence, one shared limitation
among these three types of methods is their inability to solely
address the TLE task.

6 CONCLUSION
In this work, we propose a novel rule-aided reinforcement learning
framework, named LINE, to address the TLE task in autonomous
driving. LINE first uses an RL-based policy with a four-term hybrid
reward function to make target-oriented maneuver decisions. Then
LINE applies rule revision with distance and lane judgment to super-
vise and guide the RL-based policy. Through experiments in both
meta and urban scenarios, we demonstrate the superiority of LINE
over state-of-the-art methods in the TLE task with macroscopic
and microscopic metrics.
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