
Personalized Location-Preference Learning for Federated Task
Assignment in Spatial Crowdsourcing

Xiaolong Zhong
University of Electronic Science and

Technology of China
xiaolongzhong2000@std.uestc.edu.cn

Hao Miao∗
Department of Computer Science,

Aalborg University
haom@cs.aau.dk

Dazhuo Qiu
Department of Computer Science,

Aalborg University
dazhuoq@cs.aau.dk

Yan Zhao∗
Department of Computer Science,

Aalborg University
yanz@cs.aau.dk

Kai Zheng†
University of Electronic Science and

Technology of China
zhengkai@uestc.edu.cn

ABSTRACT
With the proliferation of wireless andmobile devices, Spatial Crowd-
sourcing (SC) attracts increasing attention, where task assignment
plays a critically important role. However, recent task assignment
solutions in SC often assume that data is stored in a central station
while ignoring the issue of privacy leakage. To enable decentralized
training and privacy protection, we propose a federated task assign-
ment framework with personalized location-preference learning,
which performs efficient task assignment while keeping the data
decentralized and private in each platform center (e.g., a delivery
center of an SC company). The framework consists of two phases:
personalized federated location-preference learning and task as-
signment. Specifically, in the first phase, we design a personalized
location-preference learning model for each platform center by
simultaneously considering the location information and data het-
erogeneity across platform centers. Based on workers’ location
preference, the task assignment phase aims to achieve effective
and efficient task assignment by means of the Kuhn-Munkres (KM)
algorithm and the newly proposed conditional degree-reduction
algorithm. Extensive experiments on real-world data show the ef-
fectiveness of the proposed framework.
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1 INTRODUCTION
With the proliferation of edge devices (e.g., sensors), a new form of
crowdsourcing, namely Spatial Crowdsourcing (SC), has emerged
recently [7, 11, 31, 37, 47] including three important components:
tasks, workers, and the platform. The SC platform requires work-
ers with GPS devices to reach a specific location physically under
certain spatio-temporal restrictions to perform spatial tasks. Thus,
task assignment is one of the crucial tasks in SC, which benefits
a range of real-world applications, such as disaster response [50],
ride-hailing [21, 24, 32], and food delivery [26].

Privacy protection is critically concerned in task assignment [2,
18, 34]. Workers or platform centers are usually required to disclose
their raw information (e.g., workers’ locations), which can reveal
their identity, for effective SC services. However, it is dangerous
that real data is available to untrustworthy entities. Consequently,
people will be reluctant to voluntarily share their data on an SC
platform, resulting in low worker engagement. Previous studies
on privacy protection in SC mainly focus on providing location
privacy protection of workers or tasks [13, 27, 38], as well as secure
computation of distance [18, 25]. However, most existing studies on
privacy protection for task assignment in SC assume that the model
is trained with centralized data gathered from edge devices and
fails to handle the decentralized setting. To enable privacy protec-
tion and support data access restrictions due to existing licensing
agreements, it is critical to utilize decentralized data in SC with the
potential gains in lower latency, which calls for a new decentralized
model that can perform effective task assignment, as well as protect
privacy.

Some recent efforts have been made to use Federated Learning
(FL) to perform decentralized training and protect the privacy of
task assignment in SC [21, 28, 29]. FL is a machine learning setting
where many clients (e.g., edge devices, or platforms), keeping local
training data, collaboratively train a model under the orchestration
of a central server, which can mitigate systematic privacy risks [14,
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Figure 1: PTA-FLP Framework Overview

30]. It is critical for an SC platform to figure worker preference out,
which is a key to ensuring continuous worker participation and
satisfaction. A recent study [21] focuses on the worker preference
of task category for each platform while ignoring the individual
location preference, especially the destination information, for each
worker. It is challenging to satisfy the preference of workers if
task assignment are only based on the workers’ current spatial-
temporal (e.g., location) information and task requirements. Our
insight is that different workers have different preferences for task
destinations under specific spatiotemporal conditions, which may
heavily impact their work performance. Intuitively, if workers are
assigned tasks with their preferred locations, they are willing and
dedicated to completing these tasks. For example, in the context of
ride-hailing, workers prefer to finish their tasks at locations close
to their homes, especially during the mid-night.

In addition, there lacks an off-the-shelf method that can han-
dle data heterogeneity across platforms for federated task assign-
ment in SC. Due to various rules and regulations across different
platforms, the distributions of the data collected across different
platforms are usually not independent and identically distributed
(Non-IID). For example, the distributions of two platforms vary
where one platform is with the workers for food delivery, while the
other is with the workers for ride-hailing. In such cases, data hetero-
geneity across platforms will not lead to an optimal global model,
thus degrading the model performance. Moreover, it is challenging
to develop an efficient task assignment method in SC, which can
help the platforms earn more revenue and motivate the workers.

To tackle the aforementioned problems, we formulate a location-
aware task assignment problem and propose a personalized task
assignment framework with federated location preference learn-
ing (PTA-FLP). As shown in Figure 1, the PTA-FLP framework
consists of a personalized federated location-preference learning
(PLP) and a task assignment (TA) phase. In the PLP phase, to model
personalized location preference, we design a federated location
preference model for each local platform center, and all local mod-
els are combined with a central server. The local model contains a
multi-modal embedding module, a self-attention aggregation layer,
and an attention matching layer, aiming to learn more reliable and
effective location preferences. Additionally, we employ an adaptive
local aggregation method to alleviate the effect of data heterogene-
ity across platforms. Specifically, this approach enables learning
platform-specific parameters and adaptively aggregating local mod-
els on each platform to update the global model, allowing each

platform to learn distinct model parameters. In the TA phase, we
propose a location-aware task assignment algorithm that considers
certain spatio-temporal constraints. The task assignment algorithm
includes a location-aware KM algorithm and conditional degree-
reduction (CDR) algorithm, by taking into account the location
preference predicted by PLP and the distance to the task destina-
tion, improving efficiency. In particular, the location-aware KM
algorithm assigns weights based on geographical distances, while
the CDR algorithm prioritizes tasks with shorter distances.

In summary, our main contributions can be outlined as follows.
• We explore and investigate a novel problem of location pref-
erence based on spatial crowdsourcing, which utilizes work-
ers’ location preferences, especially the information of the
destination.
• We propose a personalized task-assignment framework with
federated location preference learning to ensure privacy pro-
tection, as well as handle data heterogeneity across platforms,
by means of adaptive local aggregation.
• An efficient task assignment algorithm is proposed, which
includes a location-aware KM and a conditional degree-
reduction algorithm.
• We conduct extensive experiments on real-world data, offer-
ing evidence of the effectiveness and efficiency of the paper’s
proposals.

The remainder of this paper is organized as follows. Section 2
provides an overview of related works. Preliminary concepts and
notations are introduced in Section 3. We then present the proposed
personalized location-aware algorithm in Section 4. The experimen-
tal results are reported in Section 5, and Section 6 offers conclusions.

2 RELATEDWORK
Spatial Crowdsourcing (SC) emerges recently, which involves three
components: tasks, workers, and the platform, requiring workers
with location-based (e.g., GPS) devices to reach a specific location
physically under certain restrictions to perform spatial tasks [8, 11,
31, 36, 42]. Task assignment is one of the core algorithmic issues
in SC [4, 5, 20, 33, 41, 48, 49], which can be divided into two cate-
gories: Worker-Selected Tasks (WST) and Server-Assigned Tasks
(SAT) [15]. Regarding WST in SC, the platform server first pub-
lishes spatially aware tasks. Then, the online workers are allowed
to independently select nearby tasks without negotiating with the
server [9, 16]. Cheng et al. [6] study a prediction-based task assign-
ment to improve global task assignment by considering both present
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and future aspects of workers and tasks through predictions. In
SAT, the platform server assigns suitable tasks to workers with the
consideration of their locations [3, 5, 19, 43, 44, 46]. Lai et al. [17] in-
vestigated loyalty-aware task assignment in spatial crowdsourcing,
while Xia et al. [35] focused on profit-oriented task assignment in
spatial crowdsourcing. Nonetheless, these studies ignore the effects
of task destination, which may reflect workers’ preference. Privacy
protection is a critical issue in SC. Existing studies mainly focus on
location mask during task assignment [2, 27, 34, 40]. Further, Liu
et al. proposed TA-FPL to find the optimal task assignment while
considering worker’s preference and protect worker’s raw data [21].
However, data heterogeneity across clients (i.e., platforms) is not
well-considered, which may cause performance degradation of task
assignment.

3 PROBLEM DEFINITION
We proceed to present the necessary preliminaries and then define
the problem addressed. Table 1 lists the notations used throughout
the paper.

Table 1: Summary of Notation

Symbol Definition Symbol Definition

𝑠 Spatial task 𝑤.𝑟 Reachable radius of 𝑤
𝑠.𝑜 Origin Location of 𝑠 𝑤.𝑠𝑝𝑒𝑒𝑑 Speed of worker 𝑤
𝑠.𝑑 Destination Location of 𝑠 𝑤.𝑆 A set of historical tasks of 𝑤
𝑠.𝑝 Publication time of 𝑠 pc Platform center
𝑠.𝑒 Expiration time of 𝑠 𝑝𝑐.𝑙 Location of 𝑝𝑐
𝑤 Worker 𝑝𝑐.𝑊 A worker set of 𝑝𝑐
𝑤.𝑙 Current location of 𝑤 𝐴 A spatial task assignment
𝑤.𝑡 Current timestamp of 𝑤 𝐴.𝑆 Allocated task set of 𝑆
𝑤.𝑝𝑐 Platform center of 𝑤 A Task assignment set

Definition 1 (Spatial Task). A spatial task, denoted by 𝑠 =

(𝑜, 𝑑, 𝑝, 𝑒), has an origin location 𝑠 .𝑜𝑟 , a destination location 𝑠 .𝑑𝑒 , a
publication time 𝑠 .𝑝 , and an expiration time 𝑠 .𝑒 .

Unlike previous works that only focus on the origin of a task,
we specify the location of the current task with a corresponding
time instance and identify an origin and a destination. The origin
is considered as a spatial constraint and the destination is a factor
for task assignment.

Definition 2 (Worker). A worker, which is denoted by 𝑤 =

(𝑙, 𝑡, 𝑃𝐶, 𝑟, 𝑠𝑝𝑒𝑒𝑑, 𝑆), has a current location 𝑤.𝑙 , associated with a
current timestamp 𝑤.𝑡 , a platform center 𝑤.𝑝𝑐 that the worker 𝑤
works for, a reachable radius𝑤.𝑟 , a traveling speed𝑤.𝑠𝑝𝑒𝑒𝑑 , and a
set of historical tasks𝑤.𝑆 .

The reachable area of worker𝑤 is centered around𝑤.𝑙 and con-
strained by a circle with a radius of𝑤.𝑟 . Assignments within this
reachable area are considered feasible for the worker. In practical
scenarios, there is a strict constraint that a worker can only under-
take a single task at any given time instance and can be associated
with just one platform [15]. Note that we follow this restriction in
this study.

Definition 3 (Platform Center). A platform center, denoted
by 𝑝𝑐 = (𝑙,𝑊 ), includes a location 𝑝𝑐.𝑙 and a set of workers 𝑝𝑐.𝑊 .

Definition 4 (Spatial Task Assignment). Given a set of plat-
form centers 𝑃𝐶 , a set of tasks 𝑆 , and a set of workers𝑊 , the spatial
task assignment 𝐴 is defined as a set of tuples 𝐴 = (𝑝𝑐,𝑤, 𝑠). The

spatial task assignment allocates each spatial task 𝑠 to a worker 𝑤
employed by a platform center 𝑝𝑐 , while all the spatial-temporal
constraints of the workers and tasks are guaranteed.

Based on the above definitions, the formal problem definition is
formulated as follows.

Location-Aware Task Assignment with Privacy Protection.
Consider a set of platforms 𝑃𝐶 that possess private local data (i.e.,
workers’ historical task records and workers’ locations) and work-
ers’ location preferences. Given a set of online workersW , and a set
of tasks S at the current time instance, our problem is to determine
an optimal task assignment 𝐴𝑜𝑝𝑡 that maximizes the total number
of assigned tasks, i.e.,

∀𝐴𝑖 ∈ A, |𝐴𝑜𝑝𝑡 .𝑆 | ≥ |𝐴𝑖 .𝑆 |, (1)

where A denotes the set of all possible assignments and 𝑆 denotes
the task set of corresponding assignment. Privacy protection is
guaranteed by federated learning.

4 ALGORITHM
In this section, we propose a personalized task assignment frame-
work with federated location-preference learning, namely PTA-FLP.
PTA-FLP consists of two phases: a personalized federated location-
preference learning (PLP), described in Section 4.1, and a task as-
signment phase 4.2.
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Figure 2: Location Preference Model

4.1 Personalized Federated Location-Preference
Learning

Personalized Federated Location-Preference Learning consists of
two components: Local Location-Preference Modeling for each Plat-
form Center and Personalized Federated Training. Local Location-
Preference Modeling aims to extract spatiotemporal features to
predict workers’ location preferences, while Personalized Feder-
ated Training protects the raw data of each platform and trains
platform-specific model parameters. We will elaborate on the pro-
cedure of location-preferences learning with local data for each
platform, and the proposed adaptive local aggregation method for
personalized federated learning, respectively.

4.1.1 Local Location-Preference Learning. It is crucial to properly
utilize the local platform data to learn effective workers’ location
preferences, which benefits the downstream task assignments. In
preference learning, we design a local location-preference model
by means of a multi-modal embedding module and attention mech-
anisms. As shown in Figure 2, the local location preference model
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comprises three modules: multi-modal embedding module, self-
attention aggregation layer, and attention matching layer. The de-
tails are illustrated as follows.

Data Preprocessing. Given a group of workers𝑊 with their
time-ordered completed tasks 𝑆𝑐 , we denote a task record as 𝑡𝑟 =
(𝑜, 𝑑, 𝑜𝑡, 𝑑𝑡), where 𝑜 and 𝑑 refer to origin and destination, 𝑜𝑡 and
𝑑𝑡 are their corresponding timestamps. We transform the task loca-
tion records into trajectories including an origin 𝑡𝑟𝑜 = (𝑜, 𝑜𝑡) and
a destination 𝑡𝑟𝑑 = (𝑑, 𝑑𝑡). For a worker𝑤 , we denote his histori-
cal trajectory as 𝐻𝑇 = {(𝑡𝑟𝑜1 , 𝑡𝑟

𝑑
1 ), (𝑡𝑟

𝑜
2 , 𝑡𝑟

𝑑
2 ), ..., (𝑡𝑟

𝑜
𝑁
, 𝑡𝑟𝑑

𝑁
)}, which

consists of a sequence of task records (whose length is 𝑁 ) sorted
by chronological order.

Multi-modal Embedding Module. The multi-modal embed-
ding module is designed to extract spatio-temporal correlations of
the processed trajectory data and learn its high-dimensional repre-
sentations, which includes two sub-layers: the worker trajectory
embedding layer and the spatio-temporal embedding layer.

In the worker trajectory embedding layer, each node 𝑡𝑟 in 𝐻𝑇 of
a worker𝑤 is encoded to learn its latent representation by mapping
the worker, location, and time into embedding vectors 𝑒𝑤 ∈ R𝑑 ,
𝑒𝑙 ∈ R𝑑 , and 𝑒𝑡 ∈ R𝑑 respectively. In addition, periodicity plays a
vital role in preference learning. To capture the periodicity (i.e., a
week), we map continuous timestamps into 168 = 24×7 dimensions,
representing the number of hours for one week. For each node in
the trajectory, we denote its embedding 𝑒𝑡𝑟 as the sum of above
learned embedding vectors 𝑒𝑡𝑟 = 𝑒𝑤 + 𝑒𝑙 + 𝑒𝑡 ∈ R𝑑 . Thus, the
trajectory embedding for each worker is represented as 𝐸 (𝑤) =
{𝑒𝑡𝑟1 , 𝑒

𝑡𝑟
2 , ..., 𝑒

𝑡𝑟
2𝑁 } ∈ R

2𝑁×𝑑 .
In the Spatio-Temporal Embedding Layer, we utilize two matri-

ces: the spatio-temporal matrices of trajectory and the candidate
spatio-temporal matrices, which are generated from the histor-
ical trajectory. The aim of the two matrices is to fully leverage
spatio-temporal information. The spatio-temporal matrices of tra-
jectory calculate the pairwise spatio-temporal relation between
every two trajectory nodes 𝑡𝑟𝑖 and 𝑡𝑟 𝑗 in HT, which preserves both
the time intervals and the spatial distances. Specifically, the tem-
poral interval between the 𝑖-th and 𝑗-th nodes in 𝐻𝑇 is denoted as
△𝑡
𝑖 𝑗

= |𝑡𝑖 −𝑡 𝑗 | and the spatial GPS distance between them is denoted
as △𝑠

𝑖 𝑗
= 𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (𝐺𝑃𝑆𝑖 ,𝐺𝑃𝑆 𝑗 ).

𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (𝑖, 𝑗 ) = 2 · 𝑅 · arcsin (𝐷𝑒𝑔𝑟𝑒𝑒 (𝑖, 𝑗 ) ) ,

𝐷𝑒𝑔𝑟𝑒𝑒 (𝑖, 𝑗 ) =

√︄
sin2

(
𝜙 𝑗 − 𝜙𝑖

2

)
+ cos(𝜙𝑖 ) · cos(𝜙 𝑗 ) · sin2

(
_ 𝑗 − _𝑖

2

) (2)

where 𝑅 represents the radius of the Earth, 𝜙𝑖 and _𝑖 correspond
to the latitude and longitude of 𝐺𝑃𝑆𝑖 , and 𝜙 𝑗 and _ 𝑗 correspond to
the latitude and longitude of 𝐺𝑃𝑆 𝑗 .

The Candidate Spatio-Temporal Relation Matrix represents the
time intervals between 𝑡𝑚+1 and 𝑡1, 𝑡2, ..., 𝑡𝑚 , where each element in
the matrix represents the absolute difference between 𝑡𝑚+1 and 𝑡 𝑗 .
The matrix captures the temporal distances between 𝑡𝑚+1 and each
of the L candidate locations with respect to the reference point (tr).
It is noted that 𝑡𝑚+1 corresponds to the last point in the trajectory.

The candidate spatio-temporal matrices calculate the spatio-
temporal relation between a pair of location candidate 𝑙𝑐 ∈ [1, 𝐿]
and trajectory node 𝑡𝑟 ∈ [1, 2𝑁 ]. The candidate spatial relation
is denoted as 𝑁 𝑠

𝑙𝑐,𝑡𝑟
= 𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (𝐺𝑃𝑆𝑙𝑐 ,𝐺𝑃𝑆𝑡𝑟 ), which represents

the spatial distance between location candidate 𝑙𝑐 and trajectory
node 𝑡𝑟 .

The candidate temporal relation is denoted as𝑁 𝑡
𝑙𝑐,𝑡𝑟

= |𝑡𝑚+1−𝑡𝑡𝑟 |,
where it represents the time interval between 𝑡𝑚+1 and 𝑡1, 𝑡2, ..., 𝑡𝑚 .In
particular, the time interval values for each 𝑙𝑐 are given by |𝑡𝑚+1 −
𝑡𝑡𝑟 |, where𝑚 + 1 represents the length of the trajectory. Finally,
we obtain the spatio-temporal matrices of trajectory △𝑠 ∈ R2𝑁×2𝑁
and △𝑡 ∈ R2𝑁×2𝑁 . Meanwhile, we prepare the candidate spatio-
temporal relation matrices 𝑁 𝑠 ∈ R𝐿×2𝑁 and 𝑁 𝑡 ∈ R𝐿×2𝑁 .

Self-Attention Aggregation Layer. This module applies the
self-attention mechanism [10, 12, 22] to integrate the spatial dis-
tance and temporal interval, as well as aggregate relevant visit 𝑡𝑟
and update the representation of each visit. The layer constructs a
matrix𝑀 ∈ R2𝑁×2𝑁 , where the top-left elementR𝑚×𝑚 is a unit ma-
trix and the rest of the elements are zeros. The multimodal embed-
ding layer outputs worker-embedded trajectory matrices 𝐸 (𝑤) and
spatiotemporal relation matrices 𝐸 (△). The layer calculates a new
sequence 𝑆 through these parameter matrices𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑
using Eq. 3 and Eq. 4.

𝑆 (𝑤 ) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝐸 (𝑤 )𝑊𝑄 , 𝐸 (𝑤 )𝑊𝐾 , 𝐸 (𝑤 )𝑊𝑉 , 𝐸 (△), 𝑀 ) . (3)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄,𝐾,𝑉 , △, 𝑀 ) =
(
𝑀 × 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄 · 𝐾𝑇 + △
√
𝑑

))
𝑉 . (4)

Attention Matching Layer. Utilizing the trajectories gener-
ated by the previous modules, this module matches the trajectory
with 𝐿 candidate locations to find the most preferred location. The
workers’ next preferred location is predicted by three embeddings:
embeddings of generated trajectory 𝑇𝑅(𝑤) ∈ R2𝑁×𝑑 , embeddings
of candidate position 𝐸 (𝑙) = {𝑒𝑙1, 𝑒

𝑙
2, ..., 𝑒

𝑙
𝐿
} ∈ R𝐿×𝑑 , and embed-

dings of candidate spatiotemporal relation matrix 𝐸 (𝑁 ) ∈ R𝐿×𝑑 .
The preference 𝐴(𝑤) ∈ R𝐿 for the next position is calculated as
follows:

𝐴(𝑤 ) = 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (𝐸 (𝑙 ), 𝑆 (𝑤 ), 𝐸 (𝑁 ) ) . (5)

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (𝑄,𝐾, 𝑁 ) = 𝑆𝑢𝑚
(
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄 · 𝐾𝑇 + 𝑁
√
𝑑

))
. (6)

4.1.2 Personalized Federated Training. In this section, we will show
the personalized federated training for preference learning, which
can alleviate the effect of data heterogeneity, as illustrated in Al-
gorithm 1. Specifically, we propose a Balanced Sampler based loss
to balance the positive and negative samples and an adaptive local
aggregation method for personalized federated training.

Balanced Sampler based Loss. Given a worker’s historical
trajectory 𝐻𝑇 , and the probabilities of each candidate location
𝑎 𝑗 ∈ 𝐴(𝑤), the standard cross-entropy loss, as shown in Eq. 7,
requires computing 𝐿 − 1 negative samples. However, due to the
biased distribution of positive and negative samples in 𝐴(𝑤), the
loss function can lead to low efficiency with high computational
costs. In our paper, we propose a balanced sampler that randomly
samples negative samples at each training step to improve the
efficiency, as shown in Eq. 8.

𝐿1 = −
∑︁
𝑖

∑︁
𝑚𝑖

©«𝑙𝑜𝑔𝜎 (𝑎𝑘 ) +
𝐿∑︁

𝑗=1, 𝑗≠𝑘
𝑙𝑜𝑔 (1 − 𝜎 (𝑎 𝑗 ) )

ª®¬ (7)

𝐿2 = −
∑︁
𝑖

∑︁
𝑚𝑖

©«𝑙𝑜𝑔𝜎 (𝑎𝑘 ) +
𝐿∑︁

𝑗1, 𝑗2,..., 𝑗𝑠 ∈ [1,𝐿],( 𝑗1, 𝑗2,..., 𝑗𝑠 )≠𝑘
𝑙𝑜𝑔 (1 − 𝜎 (𝑎 𝑗 ) )

ª®¬ (8)



Personalized Location-Preference Learning for Federated Task Assignment in Spatial Crowdsourcing CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

where 𝐿 represents the cross-entropy loss function, and 𝜎 denotes
a commonly used activation function.

Personalized Federated Training. We adopt personalized fed-
erated training with the adaptive local aggregation method, i.e.,
each platform individually trains a model with different parame-
ter weights, and the weights are integrated by the central server
to improve prediction accuracy and guarantee privacy protection.
Before jumping into the personalized federated algorithm, we first
introduce the Adaptive Layer Aggregation (ALA) mechanism [39],
where the parameters of the local models are updated through dif-
ferential aggregation with the parameters of the global model. Each
platform center downloads the global model \𝑡−1 from the central
server at iteration 𝑡 , and each platform center updates the local
model \̂𝑡

𝑖
for subsequent local model training, calculated as shown

in Eq. 9, where𝑊𝑖 is the aggregating weights. Before aggregation,
we first initialize W, where each element inW is initialized to one at
the beginning, and the value of𝑊 is iteratively updated. To reduce
computational overhead, we randomly sample 𝑠% of local data in
each iteration, and the𝑊𝑖 of each platform center is trained as
Eq. 10.

\̂𝑡𝑖 := \𝑡−1𝑖 + (\𝑡−1 − \𝑡−1𝑖 ) ⊙𝑊𝑖 , (9)

𝑊
𝑝

𝑖
←𝑊

𝑝

𝑖
− [∇

𝑊
𝑝
𝑖

𝐿 (\̂𝑡𝑖 ;𝐷
𝑠,𝑡
𝑖

;\𝑡−1 ), (10)

The process of proposed Federated Personalized Learning is shown
in Algorithm 1, which can be divided into two parts in each com-
munication round. The first part is for the central server, where
the central server transmits the trained model to each platform
center. In each iteration, we randomly sample a certain ratio of
platforms, and the central model parameters of the last iteration are
sent to these platform centers. After the completion of local train-
ing, the central server aggregates parameters from clients based on
FedAvg [23]. The second part is for the platform center, where an
Adaptive Local Aggregation (ALA) method is used to train local
models with the model. When 𝑡 = 1, we will train 𝑊 𝑝

𝑖
to con-

vergence; when 𝑡 > 2, we only train𝑊 𝑝

𝑖
for one epoch to adapt

to changing model parameters. Since \0 = \0𝑡 , ∀𝑖 ∈ [𝑇 ], ALA is
not used in the first iteration. Besides, each active platform center
computes its local gradient to satisfy local data, then transmits the
updated parameters to the central server.

4.2 Task Assignment
In this section, we first obtain available workers and reachable tasks
under spatiotemporal constraints. Each platform center trains a
personalized federated learning model to predict the top−𝑘 location
preferences of the employed workers. To maximize the number of
workers assigned to each platform and match the predicted loca-
tion preferences of workers with the task destination, we propose
two location-aware assignment algorithms: the location-aware KM
algorithm and the conditional degree-reduction algorithm.

4.2.1 Location-aware KM algorithm. We leverage the predicted
location preferences and prioritize tasks based on the distance be-
tween the task destination and the predicted location. Specifically,
we assign higher weights to tasks that have shorter distances be-
tween their destination and the worker’s location preference. In this

Algorithm 1: Personalized Federated Location Preference
Learning
Input: 𝑁 ,𝑇 , \ 0, 𝛼 , 𝑠%
Output: Local models \̂1, ..., \̂𝑁

1 The central server sends \ 0 to all clients to initialize local models.
2 Platform centers initialize𝑊𝑖 , ∀𝑖 ∈ [𝑁 ] to ones.
3 for each iteration 𝑡 in [1, ..,𝑇 ] do
4 Server samples platform centers 𝑃𝑡 ;
5 Server transmits \𝑡−1 to each selected platform center.
6 for each platform center 𝑝𝑐𝑘 ∈ 𝑃𝑡 in parallel do
7 Platform center i samples s % of local data.
8 if 𝑡 = 2 then
9 while𝑊𝑖 dose not converge do

10 Platform center i updates𝑊𝑖 by Eq. 10.
11 else if 𝑡 > 2 then
12 Platform center i updates𝑊𝑖 by Eq. 10.
13 Platform center i obtains \̂𝑖𝑡 by
14 \̂𝑡

𝑖
← \̂𝑡

𝑖
− 𝛼∇

\̂𝑡
𝑖
𝐿 (\̂𝑡

𝑖
;𝐷𝑖 ;\𝑡−1 ),

15 Transmit platform center model \𝑡
𝑖
to central server.

16 Server obtains \𝑡 by \𝑡 = 1
|𝑃𝑡 |

∑
𝑘∈𝑃𝑡 \

𝑡
𝑘
.

17 return \̂1, ..., \̂𝑁 ;

way, we transform the task assignment problem into a maximum-
weight matching problem, which can be solved by the KM algo-
rithm.

Before constructing the bipartite graph, which serves in KM
algorithm solving the maximum-weight matching problem, it is
necessary to obtain the available workers 𝐴𝑊 (𝑠) and reachable
tasks 𝑅𝑇 (𝑤). Given a set of online workers𝑊 = 𝑤1,𝑤2, ...,𝑤 |𝑊 |
and a set of currently online and unassigned tasks 𝑆 = 𝑠1, 𝑠2, ..., 𝑠 |𝑆 | ,
𝐴𝑊 (𝑠) (∀𝑤 ∈ 𝐴𝑊 (𝑠), 𝑠 ∈ 𝑆) and 𝑅𝑇 (𝑤) (∀𝑠 ∈ 𝑅𝑇 (𝑤),𝑤 ∈ 𝑊 )
should both satisfy the following conditions: first, the distance
between worker𝑤 and task 𝑠 is shorter than the worker’s reachable
radius𝑤𝑑 ; second, the worker𝑤 can reach the task location before
the task’s expiration time 𝑠 .𝑒 .

The constructed undirected bipartite graph, denoted as 𝐺 =

(𝑉 , 𝐸), consists of a set of vertices 𝑉 and a set of edges 𝐸. The
vertices of the bipartite graph are partitioned into𝐺𝑊 and𝐺𝑆 based
on𝑊 and 𝑆 . Each edge between vertices can be mapped into the
reachable tasks of workers 𝑅𝑇 (𝑤), and |𝐸 | is equal to the number
of reachable tasks of all workers in𝑊 . Specifically, we rank the
distances between the endpoint position and the top-𝐾 (𝐾 = 1, 2, 3)
preferred locations and choose the top-𝐾 positions with the nearest
distance between the task endpoint and the worker’s preferred
location. Then, we divide the weights of the edges into several
intervals according to the distances, i.e., 0 − 0.5, 0.5 − 1, 1 − 2, 2 − 5,
5 − 10, and 10+ kilometers, and assign weights of 6, 5, 4, 3, 2, and 1,
respectively.

After constructing the undirected bipartite graph, we introduce
the KM algorithm for task assignment, which is shown in Algo-
rithm 2. First, we initialize the expectations of each vertex 𝑣 ∈ 𝑉
in graph 𝐺 to the maximum weight among the edges associated
with it. Then, we call the AvailableTaskGeneration algorithm (Algo-
rithm 3), which is a traversal algorithm that recursively calculates
the difference between the weight of edges associated with two
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Algorithm 2: Location-aware KM Algorithm
Input: graph𝐺
Output: 𝐴

1 Initialize 𝐴, 𝑠𝑣𝑡𝑎𝑠𝑘 and 𝑠𝑙𝑎𝑐𝑘 ;
2 for each worker 𝑤 ∈𝑊 do
3 𝑤𝑣𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] ←𝑚𝑎𝑥 (𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑊𝑤 , 𝑣𝑆𝑠 ) ) ;
4 for each worker 𝑤 ∈𝑊 do
5 while 𝑤𝑣𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] > 0 do
6 Set 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑡𝑎𝑠𝑘 and 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑤𝑜𝑟𝑘𝑒𝑟 to 𝐹𝑎𝑙𝑠𝑒 ;
7 if AvailableTaskGeneration(𝑤) then
8 break ;
9 else

10 d=𝐼𝑁𝐹 ;
11 for each task 𝑠 ∈ 𝑆 do
12 if ! 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑡𝑎𝑠𝑘 [𝑠 ] then
13 d=min(d,𝑠𝑙𝑎𝑐𝑘 [𝑠 ]);
14 for each worker 𝑤 ∈𝑊 do
15 if 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] then
16 𝑤𝑣𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ]− = 𝑑 ;
17 for each task 𝑠 ∈ 𝑆 do
18 if 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑡𝑎𝑠𝑘 [𝑠 ] then
19 𝑠𝑣𝑡𝑎𝑠𝑘 [𝑠 ]+ = 𝑑 ;
20 else
21 𝑠𝑙𝑎𝑐𝑘 [𝑠 ]− = 𝑑 ;
22 return 𝐴;

Algorithm 3: AvailableTaskGeneration Algorithm
Input: 𝑤𝑜𝑟𝑘𝑒𝑟 𝑤
Output: 𝐵𝑜𝑜𝑙

1 Set 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] to𝑇𝑟𝑢𝑒 ;
2 for each task 𝑠 is adjacent to 𝑤 in𝐺 do
3 if 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑡𝑎𝑠𝑘 [𝑠 ] then continue ;
4 𝑑𝑖 𝑓 𝑓 ← 𝑤𝑣𝑤𝑜𝑟𝑘𝑒𝑟 [𝑤 ] + 𝑠𝑣𝑡𝑎𝑠𝑘 [𝑠 ] − 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑊𝑤 , 𝑣𝑆𝑠 ) ;
5 if 𝑑𝑖 𝑓 𝑓 == 0 then
6 if A[s] = -1 𝑜𝑟 AvailableTaskGeneration(A[s]) then
7 A[s]=𝑤;
8 return𝑇𝑟𝑢𝑒 ;
9 else

10 𝑠𝑙𝑎𝑐𝑘 [𝑠 ] =𝑚𝑖𝑛 (𝑠𝑙𝑎𝑐𝑘 [𝑠 ], 𝑑𝑖 𝑓 𝑓 ) ;
11 return 𝐹𝑎𝑙𝑠𝑒 ;

vertices and the expected sum of workers and tasks (line 4). If the
difference is 0, a task match is found for the worker. If no task can
be matched for worker 𝑤 , we update the expectations of the last
matched worker and task, changing the competitive relationship
among workers, and allowing for more choices between tasks and
workers (lines 9–21). Finally, the total task allocation 𝐴 is obtained
after traversing all workers.

4.2.2 Conditional Degree-reduction algorithm (CDR). To explain
the CDR algorithm,we visualize task distributions on the Foursquare
dataset, as illustrated in Figure 3. Workers are divided into three cat-
egories: red, blue, and orange. The center represents the simulated
location of the workers, and the radius represents their reachable
distance. Consequently, workers in different categories have access
to different task distributions within a fixed radius. During the task
assignment process, our objective is to ensure efficient allocation of

Figure 3: Various Tasks Distribution on Foursquare

Algorithm 4: Conditional Location-aware Degree-
reduction Algorithm
Input:𝑊 , 𝐴𝑆 ,𝐴𝑊
Output: 𝐴

1 Initialize 𝑓 𝑙𝑎𝑔 to𝑇𝑟𝑢𝑒 ;
2 while |𝑊 | > 0 and 𝑓 𝑙𝑎𝑔 do
3 𝑓 𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 ;
4 for each worker 𝑤 in𝑊 do
5 Calculate the degree 𝐷 (𝑤 ) of worker 𝑤 from 𝐴𝑆 (𝑤 ) ;
6 if !𝐷 (𝑤) then
7 remove 𝑤 from𝑊 ;
8 else if !𝑓 𝑙𝑎𝑔 and 𝐷 (𝑤 ) < 𝑑𝑡 then
9 𝑓 𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒 ;

10 𝑤𝑚𝑖𝑛 ← 𝑤 in𝑚𝑖𝑛 (𝐷 (𝑤 ) ) ;
11 𝑠𝑚𝑖𝑛 ← the task 𝑠 with the minimum distance in 𝐴𝑆 (𝑤𝑚𝑖𝑛 ) ;
12 𝐴[𝑠𝑚𝑖𝑛 ] = 𝑤𝑚𝑖𝑛 ;
13 remove 𝑤 from𝑊 ;
14 𝑤𝑙𝑖𝑠𝑡 = 𝐴𝑊 (𝑠𝑚𝑖𝑛 ) ;
15 for each worker 𝑤 ∈ 𝑤𝑙𝑖𝑠𝑡 do
16 if 𝑠𝑚𝑖𝑛 ∈ 𝐴𝑆 (𝑤 ) then
17 remove 𝑠𝑚𝑖𝑛 from 𝐴𝑆 (𝑤 ) ;
18 while |𝑊 | > 0 do
19 𝑠𝑚𝑖𝑛 ← the task 𝑠 with the minimum distance in 𝐴𝑆 (𝑤 ) ;
20 if 𝑠𝑚𝑖𝑛 < 0 then
21 remove 𝑤 from𝑊 and continue;
22 𝐴[𝑠𝑚𝑖𝑛 ] = 𝑤;
23 remove 𝑤 from𝑊 ;
24 𝑤𝑙𝑖𝑠𝑡 = 𝐴𝑊 (𝑠𝑚𝑖𝑛 ) ;
25 for each worker 𝑤 ∈ 𝑤𝑙𝑖𝑠𝑡 do
26 if 𝑠𝑚𝑖𝑛 ∈ 𝐴𝑆 (𝑤 ) then
27 remove 𝑠𝑚𝑖𝑛 from 𝐴𝑆 (𝑤 ) ;
28 return 𝐴;

tasks. The Degree-Reduction-based greedy algorithm [17, 45] sug-
gests selecting workers with the minimum degree for assignment.
However, we emphasize allocating tasks to workers in the blue and
orange categories as much as possible because they have fewer
reachable tasks. On the other hand, workers in the red category
can almost guarantee the completion of tasks assigned to them
due to the large number of reachable tasks. To achieve this goal
and improve task assignment efficiency, we propose a conditional
degree-reduction algorithm by considering the distribution bias
of reachable tasks and the distance between the destination and
preferred locations.
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Derived from Degree-Reduction-based (DR) greedy algorithm,
we apply location-based conditions to the algorithm, as shown in
Algorithm 4. Before𝑊 is empty, we calculate the degree 𝐷 (𝑤)
of each vertex 𝑤 , and if 𝐷 (𝑤𝑖 ) = 0, there is no task that can be
assigned to the worker, so we remove 𝑤𝑖 from𝑊 . Then, we find
the smallest |𝐷 (𝑤𝑖 ) | and assign the task 𝑠 𝑗 , where 𝑠 𝑗 is the task
with the minimum distance to the worker 𝑤𝑖 among the assign-
able tasks. Finally, we allocate the task assigned to the worker,
update𝐴𝑆 , where 𝑢𝑖 ∈ 𝐴𝑊 (𝑠 𝑗 ), and delete the node 𝑠 𝑗 from𝐴𝑆 (𝑢𝑖 ).
Our novelty is setting a degree threshold 𝑑𝑡 for the degree greedy
strategy(line 8), and if we find that all degrees of 𝑤 in𝑊 satisfy
𝐷 (𝑤) > 𝑑𝑡 after performing the degree greedy strategy for a period
of time, we will no longer calculate the degree of each𝑤 or find the
smallest |𝐷 (𝑤𝑖 ) |(line 9). Instead, we perform the task assignment
phase among the remaining workers(lines 18–27).

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We use the check-in dataset from Foursquare to simulate our spatio-
temporal crowdsourcing scenarios, which is a common practice
in evaluating SC platforms. FourSquare has a user base of 11,326
and a total number of 1,385,223 check-in records between January
to December 2011. We consider all users as workers and the latest
check-in location of each worker is considered as the current loca-
tion. Then, we generate 10 SC platform centers, and all workers are
randomly and uniformly assigned to the generated platforms. Each
worker is restricted to belonging to one platform. For each check-in,
two adjacent check-ins of a worker represent a completed task. The
origin of the task is set as the check-in location of the first check-in
information, and the destination is set as the check-in location of
the second check-in information. The publication time of the task
is set as the earliest time of the first check-in information. Each
platform individually possesses all historical data of the employed
workers. In addition, we set the ideal distance 𝑖𝑑 and assume that
the distance between the task ending point and the predicted lo-
cation preference is 𝑑 . When 𝑑 < 𝑖𝑑 , we consider the task as a
correctly assigned task. All the experiments are implemented on an
Intel (R) Xeon (R) CPU E5-2650 v4 @ 2.20GHz and NVidia TITAN
XP GPU.

5.2 Results
5.2.1 Performance of Personalized Federated Location Preference
Learning. We first elaborate on the performance of the proposed
Personalized Federated Location Preference Learning.

Baselines.We select the four most representative state-of-the-
art methods for comparison.
• POISeqPop [21]: The POISeqPop model ranks locations in
descending order based on the popularity of their origins in
the target worker’s sequence of tasks.
• CTP [21]: The CTP model assumes that all workers belong
to a platform center and all data is centralized for training.
• FedAvg [23]: FedAvg aggregates parameters collected from
clients by averaging, which is used to update the global
model.
• FedDyn [1]: The FedDyn is a dynamic regularization method,
which can address the non-iid data and concept drift in FL.

Metrics. To evaluate the accuracy of workers’ location prefer-
ence prediction, we use 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 as the evaluation metric, which
measures the proportion of relevant task positions retrieved among
the top-𝐾 predicted workers’ location preference. We filter workers
with less than 50 historical check-in sequences and fixed the length
of workers’ historical trajectories to 50. We conduct local training
in 10 platform centers separately, where the dataset was split into
60% for training, 20% for validation, and 20% for testing.

Table 2: Performance of Different Models

Methods Recall@1 Recall@5 Recall@10

POISeqPop 0.0069 0.0125 0.0236
CTP 0.1520 0.2914 0.3687

FedAvg 0.1316 0.2760 0.3642
FedDyn 0.1335 0.2838 0.3670
PLP 0.1495 0.3053 0.3859

Results. As shown in Table 2, PLP significantly outperforms the
POISeqPop model, which indicates that PLP is capable of predicting
more accurate worker location preferences. Among baselines, CTP
achieves the best result on 𝑅𝑒𝑐𝑎𝑙𝑙@1, This situation may occur
because training under CTP allows for more training data from
candidate locations, while using federated learning focuses more on
predicting the candidate locations in the platform data, which may
not be sufficient compared to CTP. Due to the proposed location-
preference learning and adaptive local aggregation method, PLP
achieves the best results in most cases, which performs better than
the baselines by up to 4.77% - 10.65%, with the exception of POISe-
qPop. The results demonstrate the superiority of the proposed PLP
to handle data heterogeneity across clients.

5.2.2 Performance of Task Assignment. We proceed to study the
performance of task assignment. Table 3 shows our experimental
settings, where the default values of all parameters are underlined.

Table 3: Experiment Parameters

Parameter Values

Valid time of tasks (h) 𝑒 − 𝑝 0.05, 0.1, 0.2, 0.5, 1
Reachable distance of workers (km) 𝑟 1, 2, 3, 4, 5

Number of workers |𝑊 | 2600, 2800, 3000, 3200, 3400
Number of tasks |𝑆 | 3200, 3400 3400, 3600, 3800
Degree threshold 𝑑𝑡 1, 5, 10, 20, 50

Evaluation Methods. We study the following task assignment
algorithms.
• KM: The original Kuhn-Munkres (KM) algorithm for finding
a maximum cardinality perfect matching in a bipartite graph.
• DR: The Degree-Reduction-based (DR) greedy algorithm
gradually constructs a solution by continuously reducing
the degrees of nodes.
• CDR: The Conditional Degree-Reduction-based (CDR) algo-
rithm improves upon DR by introducing a degree threshold,
which controls the number of iterations for the degree greedy
strategy.
• LP+KM: The LP+KM algorithm considers the workers’ lo-
cation preferences (LP), predicted by the proposed PLP, in
KM.
• LP+DR: The LP+DR algorithm incorporates the predicted
workers’ location preferences by the proposed PLP into DR.
• LP+CDR: An improved CDR algorithm considers workers’
location preferences predicted by the proposed PLP.
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Figure 4: Performance of Task Assignment: Effect of 𝑒 − 𝑝
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Figure 5: Performance of Task Assignment: Effect of 𝑟
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Figure 6: Performance of Task Assignment: Effect of |𝑊 |

Metrics. We apply three widely used metrics for task assign-
ment, including CPU time, Assignment Success Rate (ASR), and
the number of task assignments. The CPU time is the time cost for
finding the task assignment. ASR is the ratio between the number of
successfully assigned tasks and the total number of assigned tasks.
In our experiments, we consider a task assignment succeeds when
the assigned task destination is less than 2 km from the worker’s
preferred location.

Effect of 𝑒 − 𝑝. The impact of tasks’ valid time 𝑒 − 𝑝 on task
assignment is shown in Figure 4. As the valid time of tasks increases,
the CPU time and the number of task assignments for all algorithms
significantly increase (Figures 4(a) and 4(c)). The reason is that as
the valid time increases, more tasks are feasible for the workers and
the search space in the assignment process extends, but the CPU
time increases correspondingly. At the same time, the probability
of assigning new tasks to the workers increases. Additionally, as
shown in Figure 4(b), all preference-based algorithms obtain decent
ASR scores, which leads to an increase in the expansion of the valid
time.

Effect of 𝑟 . Next, we study the effect of workers’ reachable dis-
tance 𝑟 . As shown in Figure 5(a), with the increase of 𝑟 , the CPU

time for all algorithms shows an increasing trend, and both ASR
and the number of task assignments increase correspondingly (see
Figures 5(b) and 5(c)). This is because as the reachable distance 𝑟
of workers increases, the number of reachable tasks for the work-
ers also increases, leading to a larger search space during the task
assignment process. In our simulated dataset, the increase in reach-
able distance does not improve the probability of obtaining workers’
preferred tasks, which results in a substantial increase in KM+LP
time as well.

Effect of |𝑊 |. We also evaluate the impact of the number of
workers |𝑊 |. As shown in Figure 6(a), as |𝑊 | increases, the CPU
time for all algorithms increases accordingly. This is caused by the
need of assigning more available workers and leads to a significant
increase in assigning task assignments to workers. Additionally,
for the KM and KM+LP algorithms, limited tasks are available
for assignment, causing extra search time overhead. As shown
in Figure 6(b), for all location-preference-based algorithms, the
ASR slightly decreases as the number of workers increases, while
maintaining high ASR values, and the number of task assignments
also increases concurrently (see Figure 6(c)).
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Figure 7: Performance of Task Assignment: Effect of |𝑆 |
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Figure 8: Performance of Task Assignment: Effect of 𝑑𝑡

Effect of |𝑆 |. Figure 7(a) shows the effect of the number of tasks
|𝑆 |. As the number of tasks increases, the CPU time for KM increases,
but decreases for KM+LP. This is because, with an increased number
of tasks, the probability of the occurrence of tasks that workers
are most interested in also increases, reducing competition among
workers in the KM+LP algorithm. Meanwhile, for the KM algorithm,
the number of feasible tasks increases. Simultaneously, as observed
in Figures 7(b) and 7(c), with an increase in the number of tasks,
the ASR for KM+LP, DR+LP, and CDR+LP all increase, and the
number of assignments for all algorithms increases. This is due
to the fact that an increase in the number of tasks expands the
reachable number of tasks to workers and increases the probability
of occurring interest tasks.

Effect of 𝑑𝑡 . Finally, we study the effect of 𝑑𝑡 , which controls the
range value in the degree reduction greedy phase of CDR. We focus
on degree-based algorithms (i.e., DR, DR+LP, CDR, and CDR+LP)
in the experiments. As illustrated in Figure 8, 𝑑𝑡 has no significant
effect on the DR algorithm. The results of DR and DR+LP also
remain unchanged. As shown in Figure 8(a), when 𝑑𝑡 increases, the
CPU time consumed by CDR and CDR+LP algorithms gradually
increases but is still less than that of the Degree-Reduction-based
(DR) greedy algorithms.

Summary of our empirical study. During task assignment,
we experimented with five controlled variables (𝑒 − 𝑝 , 𝑟 , |𝑊 |, |𝑆 |,
𝑑𝑡 ), observing substantial variations in CPU time, ASR, and task
assignment numbers. From the Figures 4– 8, we can conclude that
in general, the basic allocation algorithms (i.e., KM, DR, and CDR)
consume less CPU time compared to the LP-based algorithms (i.e.,
KM+LP, DR+LP, and CDR+LP). Furthermore, the KM-based algo-
rithm consumes significantly more time compared to the degree-
based algorithms. In terms of ASR, the LP-based algorithms out-
perform the basic allocation algorithms, even though there was a

probability of a drop in the number of task assignments. Particu-
larly, CDR and CDR+LP show high efficiency, as they reduced CPU
time while maintaining ASR and task assignment numbers at a
level comparable to DR and DR+LP. The results show the efficiency
of the proposed CDR.

6 CONCLUSION
In this paper, we study a location-aware task assignment problem
and propose a personalized task assignment framework with feder-
ated location preference learning (PTA-FLP). PTA-FLP consists of
two phases: a personalized federated location-preference learning
(PLP) and a task assignment phase. In the PLP phase, we propose a
multi-modal embedding module to learn local location-preference
for each platform center. In addition, an adaptive local aggregation
method is proposed to alleviate the influence of data heterogeneity
across various platform centers (i.e., clients). In the phase of task as-
signment, a location-aware KM and a conditional degree-reduction
algorithm are proposed to ensure effective and efficient task assign-
ment, which considers workers’ location preference. We conducted
extensive experiments on real data to demonstrate the superiority
of the proposed algorithms.
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