
CrowdPlanner: A Crowd-Based Route
Recommendation System

Han Su #1, Kai Zheng #2, Jiamin Huang ⇤1, Hoyoung Jeung †1, Lei Chen ‡1, Xiaofang Zhou #3

#The University of Queensland, Australia ⇤Nanjing University, China †SAP Australia ‡HKUST, Hong Kong
#1,2,3{h.su1,uqkzheng,uqxzhou}@uq.edu.au ⇤1

hjm10@software.nju.edu.cn

†1
hoyoung.jeung@sap.com

‡1
leichen@cse.ust.hk

Abstract— As travel is taking more significant part in our
life, route recommendation service becomes a big business and
attracts many major players in IT industry. Given a pair of user-
specified origin and destination, a route recommendation service
aims to provide users with the routes of best travelling experience
according to criteria, such as travelling distance, travelling
time, traffic condition, etc. However, previous research shows
that even the routes recommended by the big-thumb service
providers can deviate significantly from the routes travelled by
experienced drivers. It means travellers’ preferences on route
selection are influenced by many latent and dynamic factors
that are hard to model exactly with pre-defined formulas. In
this work we approach this challenging problem with a very
different perspective– leveraging crowds’ knowledge to improve
the recommendation quality. In this light, CrowdPlanner –
a novel crowd-based route recommendation system has been
developed, which requests human workers to evaluate candidate
routes recommended by different sources and methods, and
determine the best route based on their feedbacks. In this paper,
we particularly focus on two important issues that affect system
performance significantly: (1) how to efficiently generate tasks
which are simple to answer but possess sufficient information to
derive user-preferred routes; and (2) how to quickly identify a
set of appropriate domain experts to answer the questions timely
and accurately.Specifically, the task generation component in our
system generates a series of informative and concise questions
with optimized ordering for a given candidate route set so that
workers feel comfortable and easy to answer. In addition, the
worker selection component utilizes a set of selection criteria
and an efficient algorithm to find the most eligible workers to
answer the questions with high accuracy. A prototype system has
been deployed to many voluntary mobile clients and extensive
tests on real-scenario queries have shown the superiority of
CrowdPlanner in comparison with the results given by map
services and popular route mining algorithms.

I. INTRODUCTION

Travelling plays a vital role in our daily life. Thanks to
the rapid development of GPS technologies and a number of
navigation service providers (e.g., Google Map, Bing Map,
TomTom), we can now travel to unfamiliar places with much
less effort, by simply following the recommended routes.
While the detailed mechanisms that are adopted to recom-
mend routes are different, travelling distance and time are the
most important criteria and factors in those recommendation
algorithms, which result in the shortest route and/or fastest
route. With increasing numbers of users who rely on these
map services to travel, a natural question arises: are these
routes always good enough to be the best choice when people
travel? Ceikute et al [3] are the first to assess the routing

service quality by comparing the popular routes, the ones most
drivers prefer, and the ones recommended by a big thumb map
service provider. The study concludes that there are substantial
differences between popular routes and recommended routes,
in which experienced/frequent drivers’ preferences do not al-
ways correspond to the routes recommended by the navigation
service. The primary reason for the route differences is that
drivers’ preferences are influenced by lots of factors in addition
to distance and time, such as the number of traffic lights, speed
limitation, road condition, weather, amongst many others.

 0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9

Si
m

ila
r P

ro
po

rti
on

Length(km)

MPR vs. WS
LDR vs. WS
MFP vs. WS

(a) Similarity between routes obtained from
web services and popular route mining algo-
rithms

(b) Recommended
routes from different
sources

Fig. 1. Efficiency of landmark selection algorithms

In order to take into account the diversity of the prefer-
ence factors simultaneously, some previous studies propose
to use popular routes mined from historical trajectories as
recommended routes. This approach, however, has significant
drawbacks. First, it is not always possible to have a suffi-
cient amount of historical trajectories to derive reliable route
recommendation. Second, there exists a number of popular
route mining algorithms. The definitions of popularity in those
algorithms slightly differ from each other, which can suggest
different routes for users. As a result, it is still difficult for
users to select one particular route as a best choice. For
example, Fig. 1(a) shows different popular routes mined using
different algorithms. In this experiment, we first randomly
select 5000 source-destination pairs as the testing queries.
For each of them, we test the similarity between the route
recommended by a big thumb Web map service (WS) and the
route obtained from three popular route mining algorithms,
namely Most Popular Route (MPR) [4], Local Driver Route
(LDR) [3] and Most Frequent Path (MFP) [14], all of which
perform reasonably well according to their reported results.
The results of average similarity are shown in Fig. 1(a). One

978-1-4799-2555-1/14/$31.00 © 2014 IEEE ICDE Conference 20141144

can see that, the similarities are at best around 60%, which
means that different sources recommend quite different routes.
Fig. 1(b) demonstrates the recommended routes from different
sources on map, where two routes recommended by WS are
different from those by MPR and MFP respectively.

Going beyond the limitation of the route recommendation
based on popular routes, we take the emerging concept of
crowd sourcing that explicitly leverages human knowledge to
resolve complex problems. Specifically, we propose a novel
crowd-based route recommendation system, CrowdPlanner,
which can effectively blend domain-expert knowledge for
route recommendation. Instead of proposing new or optimiz-
ing existing routing algorithms, our work takes an entirely
different approach by consolidating candidate routes from
different sources (e.g., map service providers, popular routes)
and requesting experienced drivers to select amongst them.
Our system returns the most promising one according to the
selection of drivers.

Taking domain-expert’s knowledge to evaluate the route
quality is a very challenging task. The first yard stone to be
placed is how to automatically generate a user-friendly task
so that domain experts can do the job more comfortably and
accurately. As the performance of system largely relies on the
quality of an answer given by each worker, how to choose a
set of suitable worker for a given task is another problem we
need to solve.

CrowdPlanner tackles the above challenges by two carefully
designed core components. More specifically, task generation
component utilizes a set of significant and discriminative land-
marks to generate a binary question set by analysing the given
candidate route set. Then those questions are presented to the
workers with optimized orders based on the informativeness
of each question (whether it is more likely to lead to the final
answer) and the response of the worker. In worker selection
component, we identify a few key attributes of workers that
mostly affect their performance on a given task and propose
an efficient search algorithm to find the most eligible workers.

Our key contributions in this work can be summarized as
follows.

• We identify the intrinsic difficulties in the route rec-
ommendation task by solely relying on computational
methodologies, and propose an entirely new approach that
actively involves human to improve the recommendation
quality.

• We design and develop a novel crowd-based route rec-
ommendation system, CrowdPlanner, which is able to
generate concise yet informative task intelligently and
assign it to the selected worker who can accomplish the
task with high accuracy and low latency.

• We deploy the system and conduct extensive experiments
with a large number of workers, users and queries in
real scenarios. The results demonstrate that CrowdPlanner
can recommend the most satisfactory routes efficiently in
most cases.

The rest of this paper is organized as follows. Section II
introduces the preliminary concepts and overviews the Crowd-

Planner system. The two core components, task generation and
worker selection, are discussed in Section III and Section IV
respectively. The experimental observations are presented in
Section V, followed by a brief review of related work in
Section VI. Section VII concludes the paper and outlines some
future work.

II. PROBLEM STATEMENT

In this section, we present some preliminary concepts and
give an overview of the CrowdPlanner system. Table I sum-
marized the major notations used in the rest of the paper.

TABLE I
SUMMARIZE OF NOTATIONS

Notation Definition
R a recommended route
R candidate set of recommended routes
p a place in the space
l a landmark in the space
l.s significance of landmark l
L a landmark set
LR the questioned landmark set of route set R
d(l

i

, l
j

) Euclidean distance between landmarks l
i

and l
j

w a worker of the system
W a worker set
WR the selected workers of routes set R

A. Preliminary Concepts

Definition 1: Route: A route R is a continuous travelling
path. We use a sequence [p1, p2, · · · , pn], which consists of
a source, a destination, and a sequence of consecutive road
intersections in-between, to represent a route.

Definition 2: Landmark: A landmark is a geographical ob-
ject in the space, which is stable and independent of the
recommended routes. A landmark can be either a point (i.e.,
Point Of Interest), a line (i.e., street and high way) or a region
(i.e., block and suburb) in the space.

Definition 3: Landmark-based Route: A landmark-based
route ¯R is a route represented as a finite sequence of land-
marks, i.e., ¯R = [l1, l2, ..., ln].
In this paper, we will also use ¯R as the set {l1, l2, · · · , ln}
without ambiguity.

In order to obtain the landmark-based route from a raw
route, we employ our previous research results on anchor-
based trajectory calibration [24] to rewrite the continuous
recommend routes into landmark-based routes, by treating
landmarks as anchor points.

Definition 4: Discriminative landmarks: A landmark set L
is called discriminative to a set of landmark-based routes ¯R if
for any two routes ¯R1 and ¯R2 of ¯R, the joint sets ¯R1 \L and
¯R2 \ L are different.

For example, L1 = {l3, l4} is discriminative to R1 =

{l1, l2, l3} and R2 = {l1, l2, l4}, since the joint sets R1\L1 =

{l3} and R2 \ L1 = {l4} are different, but L2 = {l1, l2} is
not discriminative to R1 and R2.

1145

Historical
trajectories

 Map
web services

Route
Generation

Verified
truth

Reuse
truth

Control
logic

Route
Evaluation

Worker
Selection

Task
Generation

Rewarding

Early
stop

Route
request

Response
a task

Assign
task

TR CR

Fig. 2. System Overview

B. Overview of CrowdPlanner
CrowdPlanner is a two-layer system (mobile client layer and

server layer) which receives user’s request from mobile client
specifying the source and destination, processes the request
on the server and finally returns the verified best routes to the
user. Fig. 2 shows the overview of the proposed CrowdPlanner
system, which comprises two modules: traditional route rec-
ommendation (TR) and crowd-based route recommendation
(CR). The workflow of CrowdPlanner is as follows: the TR
module firstly processes user’s request by trying to evaluating
the quality of candidate routes obtained from external sources
such as map services and historical trajectory mining; the
CR module will generate a crowdsourcing task when the TR
module can not judge the quality of candidate routes, and
return the best route based on the feedbacks of human workers
of the system.

1) Traditional Route Recommendation Module: This mod-
ule processes the user’s request by generating a set of can-
didate routes from external sources (route generation compo-
nent) and evaluating the quality of those routes automatically
without involving human effort (route evaluation component).

Control logic component: This component receives the
user’s request and controls the workflow of the entire system.
It also coordinates the interactions between the TR module
and CR module. Once a user’s request is received by the
control logic component, it will invoke reuse truth component
to match the request to the verified routes (truth) between two
places at his departure time. If the new coming request is
a hit of the truth, the system will return result immediately.
Otherwise the component will invoke the route evaluation
component to automatically generate some candidate routes
and evaluate the qualities of these candidate routes using the
verified truth.

Route evaluation component: This component evaluates
the routes using computer power and it provides an efficient
way to reduce the cost of CrowdPlanner, since it can largely
reduce the amount of tasks generated. The component will
firstly build up a candidate route set by invoking route
generation component. If some of these routes agree with
each other to a high degree, one of them will be selected as
the best recommended route and added into a truth database
with the corresponding time tag. If a best recommended route
can not be determined, the system will assign each candidate

route a confidence score, which is generated by the verified
truths and illustrates the possibility of the route to be the best
recommended route. A route with the highest confidence score
that is greater than a threshold ⌘ will be regarded to be the
best recommended and returned to the user; otherwise the logic
control will hand over the request to the CR module.

Route generation component: This component generates
two types of candidate routes, the one provide by web services
such as Google Map and the one generated from historical
trajectories by using popular route mining algorithms, i.e.,
MPR, LDR and MFP.

2) Crowd Route Recommendation Module: Crowd route
recommendation module will take over the route recommen-
dation request when the traditional route recommendation
module cannot provide the best route with confidence high
enough. The module will generate a Crowdsourcing task
consisting of a series simple but informative binary questions
(task generation component), and assign the task to a set
of selected worker who are most suitable to answer these
questions (worker selection component).

Task generation component: As the core of CrowdPlanner,
this component generates a task by proposing a series of
questions for workers to answer. It is beneficial to have these
questions as simple and compact as possible, since both the
accuracy and economic effectiveness of the system can be
improved. The design of this component will address two
important issues: what to ask in questions and how to ask
the questions. We will discuss the detailed mechanism of this
part in Section III.

Worker selection component: This is another core compo-
nent of CrowdPlanner. In order to maximize the effectiveness
of the system, we need to select a set of eligible workers
who are most suitable to answer the questions in a given
task, by estimating the worker’s familiarity with the area of
request. Technical details of this component will be presented
in Section IV.

Early stop component: In most cases, we do not to need to
wait for all the answers of the assigned workers. When partial
feedbacks have been collected, this component will evaluate
the confidence of the answer and return the result to the user
as early as possible when the confidence is high enough.

Rewarding component: This component rewards the work-
ers according to their workload and the quality of their
answers. The reward points can be used later when they
request a route recommendation in CrowdPlanner.

In the following two sections, we will present the design and
technical details of the two core components of CrowdPlanner:
task generation and worker selection.

III. TASK GENERATION

Almost everyone has the experience of being unable to
explicitly describe a route even you know the directions
clearly, which implies that this kind of job is hard for humans
in its nature. Therefore, we cannot simply publish a task
to workers and expect them to describe the best route in a

1146

turn-by-turn manner. In an alternative and more friendly way,
we may provide several pictures, which demonstrate several
candidate routes on a map, as a multiple-choice question for
workers to choose. Take the route recommendation request in
Fig. 3 as an example, we publish a multiple-choice question to
workers by showing four routes on a map, and asking them to
pick the route they most prefer. Even when all the routes have
been visualized on a map, it is still effort-demanding to tell the
subtle differences between candidate routes, and especially so
if doing it on a small-screen device, say a smartphone. To make
the question easier to answer, we take into consideration that it
is human nature to utilize significant locations, i.e., landmarks,
to help describe a route in high-level, whereas a computer sees
a route as a sequence of continuous roads indifferently. Thus,
we choose to proactively present the differences in candidate
routes to the workers using landmarks , instead of waiting for
them to find out. Besides, how the questions are presented can
also affect the complexity of a task. For example, a multiple-
choice question with all candidate routes presented at the same
time would be more difficult to answer than an equivalent
combination of binary questions such as “do you prefer the
route passing landmark A at 2:00pm?”. Actually, [23] has
pointed out that several binary choice questions are easier and
more accurate than a multiple-choice question. Based on the
above analysis, we will generate a task as a sequence of binary
questions, each relating to a landmark that can discriminate
some of the candidate routes from the others.

l9
l1

l4

l7

l6
l2

l3 l8

l10
l5

0.9 0.7

0.3 0.8

0.2

0.4
0.5

0.2

R1

R2

R3 R4

Fig. 3. An example of landmark-based recommended routes between l1 and
l10

Next we will present in detail our task generation process,
which can be divided into three phases: inferring landmark
significance, landmark selection and question ordering. In
specific, the first phase infers the significance of each landmark
which indicates people’s familiarity. The second phase tries
to use a set of most significant landmarks to summarize
the difference among the candidate routes. The third phase
generates the final task by ordering the questions in a smart
way so that the expected number of issued questions is as
small as possible.

A. Inferring Landmark Significance
It is common sense that landmarks have different signifi-

cances. For instance, the White House is world famous, but
Pennsylvania Ave, where the White House is located, is only
known by locals of Washington DC. People tend to be more
familiar with the landmarks that are frequently referred to by
different sources, e.g., public praise, news, bus stop, yellow
pages. In this work, we utilize the online check-in records
from a popular location-based social network (LBSN) and
trajectories of cars in the target city to infer the significance
of landmarks, for these two datasets are large enough to cover

most areas of a city. By regarding the travellers as authorities,
landmarks as hubs, and check-ins/visits as hyperlinks, we
can leverage a HITS-like algorithm such as [27] to infer the
significance of a landmark. Readers who are interested in the
technical details can refer to [27].

B. Landmark Selection

Although any landmark can be used to generate a question,
not all of them are suitable for the purpose of generating
easy questions for a certain candidate route set ¯R (notably
throughout this section we use the landmark-based routes ¯R,
which is generated by rewriting all the routes in R as described
in Section II). First, the selected landmark set L should be
discriminative to the candidate routes ¯R, which ensures that the
difference between any two routes can be presented. Second,
the landmarks of L should have high significance, so that more
people can answer the question accurately. Third, in order to
reduce the work load of workers, the selected landmark set
L should be as small as possible. Therefore the problem of
landmark selection is to find a small set of highly significant
landmarks which are discriminative to all the candidate routes.
It can be formally represented as an optimization problem as
below:
Given n landmark-based candidate routes ¯R, and the signifi-
cance of each landmark,
Select a landmark set L with the size of k (dlog2(n)e k
n) which is discriminative to ¯R,
Maximize |L|�1 ·

P
l2L l.s

Here the target function aims to maximize the total signif-
icance of selected landmarks (

P
l2L l.s), normalized by the

size of L (|L|).
It is a non-trivial task to trade-off between maximizing

accumulate significance of the selected landmark set L and
minimizing the size of L, while guarantees the restriction that
L must be discriminative to ¯R. A straightforward method is to
enumerate all combinations of the landmarks from ¯R, and find
a discriminative landmark set with the maximized target value.
However, the time cost of this algorithm grows exponentially
with the size of landmark set, making this method impractical.
To speed up this process, we propose a greedy algorithm,
called GreedySelect. The main idea is to enumerate all the
possible landmark combinations in a smart order so that it
enables pruning early in the enumeration process. Let S denote
the current testing landmark set and L

best

denote the best
landmark set which is discriminative and has the highest target
value. The landmark selection process can be divided into
three steps:

Preparation step: During preparation, we filter out some
non-beneficial landmarks, i.e., the ones which cannot discrim-
inate any routes of ¯R. A straightforward way is to filter out all
landmarks which are shared by all the candidate routes, and
those which do not appear on any candidate route. Thus the
beneficial landmarks set of ¯R can be generated as following:
L =

S

R̄2R̄
¯R �

T

R̄2R̄
¯R. We sort L in descending order of their

significances in order to enable our pruning technique later.

1147

We still use L to refer to the sorted beneficial landmarks.
Expansion step: This step generates the test landmark set

S. We recursively generate and test the test landmark set S as
shown in Algorithm 1. The test step will be explained below.
In each recursion step, for each discriminative S we find all the
landmarks not in S, pick non-added biggest landmark of them,
and add the landmark to S. For example as shown in Fig. 6(a),
the algorithm starts by adding l2 to S. Since S = {l2} is
not discriminative, the S will be expanded by adding l8 to S
which is shown in Fig. 6(b), so as adding l7 to S = {l2, l8},
shown in Fig. 6(c). Once S is discriminative, we stop adding
landmark to it, no longer visit supersets of S, and roll back to
upper layer recursion. E.g. in Fig. 6(c), S = {l2, l8, l7} will
not be expanded, and the system will roll back l7 and expand
S = {l2, l8} with l6. Due to the same S may be generated
in different order, to eliminate duplication, we only consider
those landmarks with a lower significance than any element in
S. The process stops when all the possible combinations have
been visited.

Test step: Each time a new S is generated, we conduct a
test to see whether S is discriminative. If S is not discrimi-
native, return false. Otherwise, we use GetMaxSet(S) to get
maximum superset of S, i.e., the set which contains all the
points in S, and maximizes the target function. We compare
the superset got with the current best set L

best

. If the target
value of the superset is bigger than that of L

best

, then the
superset is current best landmark combination, and we assign
the superset to L

best

. Note that since the landmarks in L are
sorted, the time complexity of GetMaxSet(S) is O(k), where
k is no larger than n (the number of candidate routes).

Algorithm 1: Expand and Test
1 if |S| = n then
2 stop or S landmark with the next biggest significance;
3 else
4 SetOfS all the landmarks has a lower sinificance than

any landmark of S;
5 Sort SetOfS in descending order of the significances of

landmarks;
6 for each l 2 SetOfS do
7 isDiscriminative = test(S [{l})
8 if isDiscriminative is false then
9 expand(S [{l});

However, the above process can be very time consuming
when the sizes of L and n are large, since there will be a large
amount of landmark sets to be tested. In order to improve the
efficiency, we need to filter out more non-beneficial landmarks
in the preparation step, test less landmark combinations in
test step and generate less landmark combination in expansion
step. Next we will present the optimizations for each step.

1) Optimization at preparation step: Each landmark l of
L can divide the routes set R into two parts: the set of routes
that pass l, and the set of routes that dose not. The divided
two parts are defined as the discriminative information of l. For

instance, the discriminative information of all the landmarks
of Fig. 3 are shown in Fig. 4. We can see that l2 has the same
discriminative information of l3, so as l8 and l9. For each
discriminative combination S containing l3, there must exist
an discriminative combination (S � {l3})[{l2} according to
the following theorem:

Landmark Discriminative
 information

Significance Keep or
drop

l2 {R1, R2}, {R3, R4} 0.9 Keep

l3 {R1, R2}, {R3, R4} 0.3 Drop

l4 {R2}, { R1,R3, R4} 0.2 Keep

l5 {R3}, { R1,R2, R4} 0.4 Keep

l6 {R1, R4}, {R2, R3} 0.5 Keep

l7 {R1}, { R2,R3, R4} 0.7 Keep

l8 {R4}, { R1,R2, R3} 0.8 Keep

l9 {R4}, { R1,R2, R3} 0.2 Drop

Fig. 4. Discriminative information of landmarks
Theorem 1: Given two landmarks l

i

and l
j

sharing the same
discriminative information and a landmark combination S,
the two combinations S [{l

i

} and S [{l
j

} are either both
discriminative or both non-discriminative to ¯R.

Proof: Consider any two routes ¯R, ¯R0 from ¯R. If S
is discriminative to ¯R and ¯R0, i.e. ¯R \ S 6= ¯R0 \ S, clearly
¯R \ (S [{l

i

}) 6= ¯R0 \ (S [{l
i

}), so as S [{l
j

}, that is,
S [{l

i

} (S [{l
j

}) is discriminative to ¯R, ¯R0. Otherwise,
¯R \ S =

¯R0 \ S. There are two cases:
(1) Both l

i

and l
j

are discriminative to ¯R and ¯R0. W.l.o.g.,
assume l

i

, l
j

2 ¯R but l
i

, l
j

/2 ¯R0. Then l
i

2 ¯R\ (S [{l
i

}) but
l
i

/2 ¯R0 \ (S [{l
i

}), so as l
j

. Thus S [{l
i

} and S [{l
j

} are
discriminative to ¯R and ¯R0.
(2) Both l

i

and l
j

are not discriminative to ¯R and ¯R0. W.l.o.g.,
assume l

i

, l
j

2 ¯R, ¯R0. Then ¯R\ (S[{l
i

}) = (

¯R\S)[{l
i

} =

(

¯R0 \S)[{l
i

} =

¯R0 \ (S [{l
i

}), so as l
j

. Thus S [{l
i

} and
S [{l

j

} are not discriminative to ¯R and ¯R0.
According to Theorem 1, and since the target value of (S�

{l3})[{l2} is no less than S, all the combinations containing
l3 can be pruned. So for landmarks which share the same
discriminative information, we keep the landmark with the
highest significance and drop others. Thus we drop l3 and
l9, while keep l2 and l8.

2) Optimization at expansion step: In each recursion step
within the expansion step, given the current selected landmark
set S, there are a set of routes ND(S) where for any ¯R 2
ND(S), there exists some other route ¯R0 2 ND(S), such that
S is non-discriminative to ¯R and ¯R0, i.e., ¯R\S =

¯R0\S. We
call ND(S) the non-discriminative route set of S. Depending
on ND(S), there are two special set of landmarks in the set
of landmarks to explore (SetOfS in Algorithm 1): contributive
set and conflict set. A contributive set is the set of landmarks
where each landmark can discriminate some pair of routes in
ND(S), A conflict set is the set of landmarks where adding
any of the landmarks to S will form a superset of some
discriminative set that has already been pruned.

1148

Next we will introduce how to generate the contributive set
of S. For each non-discriminative set S, ND(S) is not empty.
A landmark l is a contributive landmark for S if there exists
two routes ¯R

i

and ¯R
j

from ND(S) such that l is only on
one route of ¯R

i

and ¯R
j

. So the contributive set L
contri

can
be generate by the following equation:

L
contri

=
[

R̄

i

,R̄

j

2ND(S),R̄
i

\S=R̄

j

\S

(R̄
i

� R̄
j

) [(R̄
j

� R̄
i

)

As the discriminative landmarks of two routes are fixed,
we can pre-compute all the discriminative landmarks between
any two routes in ¯R. Fig. 5 demonstrates the discriminative
landmarks of routes in Fig. 3.

Routes combinations Discriminative
landmarks

R1, R2 l7, l6, l4
R1, R3 l2, l7, l6, l5
R1, R4 l2, l8, l7
R2, R3 l2, l5, l4
R2, R4 l2, l8, l6, l4
R3, R4 l8, l6, l5

Fig. 5. Discriminative landmarks of any two routes

A landmark l is an element of the conflict set L
conflict

of
a non-discriminative set S if and only if S [{l} is a superset
of an discriminative set already being pruned. In other words,
a landmark l is an element of L

conflict

of S if there exists
a pruned discriminative set S0 satisfying l 2 S0 � S ^ |S0 �
S| = 1. Therefore, during processing we keep track of all the
pruned discriminative sets in S

record

. The L
conflict

of S can
be generated as follows:

L
conflict

=
[

S

02S
record

{l|l 2 S0 � S ^ |S0 � S| = 1}

However, the above equation needs to compare with all the
pruned discriminative sets, which is costly when there are
a large amount of pruned discriminative sets. To speed up
the conflict set generating, we build inverted index for each
landmark to indicate which pruned discriminative sets contain
it.

3) Optimization at test step: Our optimization for the test
step comes from this important observation:

Observation 1: For any set S and S0, where S ⇢ S0, if
8l

i

2 S, l
j

2 S0 � S, l
i

.s > l
j

.s, then the target value of
GetMaxSet(S0

) is always smaller than the target value of
GetMaxSet(S).
Based on this observation, during testing, we eagerly retrieve
the maximum super of the current S. If the maximum target
value is less than the target value of the current L

best

, then we
stop expanding S, as all the following added landmark will
have a lower significance than the elements in S, and following
Observation 1, the following expansion cannot generate a
better landmark set than the current L

best

. For example in
Fig. 6(d), the target value of current L

best

equals to 0.8 which

is given by S = {l2, l8, l7}. Since the possible maximum
target values given by landmark sets containing {l2, l6} and
{l2, l4} are 0.725 (given by {l2, l6, l8, l7}) and 0.65 (given by
{l2, l4, l8, l7}) respectively, then the landmark sets containing
{l2, l6} or {l2, l4} will be not be expanded, so as the landmark
sets containing {l6}, {l5} or {l4} in Fig. 6(e).

l2
unidentifiable

(a) GreedySelect
starts

l2

l8
unidentifiable

(b) Adding l8 to S

l2

l8

l7
maxValue=0.8
identifiable

(c) Adding l7 to S and
Pruning supersets of S

l2

l8

l7
max=0.725

l6 l4
max=0.65

CurrentMax=0.8

(d) Use upper bound to
prune landmark combina-
tions

l8 l6

l2

l7 l5 l4
max=0.8 max=0.725 max=0.7 max=0.65

CurrentMax=0.8

(e) Use upper bound to prune landmark combi-
nations

Fig. 6. ILS algorithm

C. Question Ordering
In the previous step we select questions (landmarks), which

can be regarded as the question library. However, presenting
those question to workers with random order is unwise because
of the following two reasons: 1) it is not necessary to ask
all the questions in most cases. For example, in Fig. 3 if a
worker indicates that she prefers the routes passing l2 from
l1 to l10, we do not need to ask whether he recommend to
pass l8 since all the routes passing l2 do not pass l8; 2)
each time we ask a question, we would like to obtain the
most informative feedback, which is more likely to identify
the final answer. This implies that 1) the next question to be
asked depends on the result of the previous question, so the
question order is a tree-like structure; 2) the informativeness of
a question (landmark) l is proportional to people’s familiarity
of the landmark (the significance of the landmark), and how
many routes the landmark can prune (the information gain if
we ask the question).

In order to arrange the questions into a tree-like structure,
we first give the formula to calculate the strength of a
question. Here we use ¯R

l

+/�
k1

l

+/�
k2

···l+/�
k

i

to denote the subset

of ¯R in which each route satisfies the answers of questions
l
k1 , lk2 · · · , lki

and the l+
k

i

denotes that the answer of k
i

is
yes and l�

k

i

denotes that the answer of k
i

is no. Thus the
informativeness IS(l

k

i

) of question l
k

i

is defined as following:

IS(l
k

i

) =l
k

i

.s[H(R̄
k

i�1
)�

R̄+
k

i

R̄+
k

i

+R̄�
k

i

H(R̄+
k

i

)�
R̄�
k

i

R̄+
k

i

+R̄�
k

i

H(R̄�
k

i

)]

where H(⇤) is the empirical entropy of ⇤, ¯R
k

i�1 stands for
¯R
l

+/�
k1

l

+/�
k2

···l+/�
k

i�1

, while ¯R+
k

i

and ¯R�
k

i

represent ¯R
l

+/�
k1

···l+/�
k

i�1
l

+
k

i

and ¯R
l

+/�
k1

···l+/�
k

i�1
l

�
k

i

respectively.

1149

In order to get more information after each question, we
employ the Iterative Dichotomiser 3 (ID3) algorithm [20],
which recursively selects the question with the largest infor-
mativeness as the next question, to build tree-like question
format T . The algorithm consists of four steps: 1) Calculate
the informativeness of every question using the whole routes
set ¯R. 2) Split the routes set ¯R

k

i�1 into two subsets ¯R+
k

i

and
¯R�
k

i

.3) make a decision node of T containing question l
k

i

.4)
perform the above steps recursively on routes subsets ¯R+

k

i

and
¯R�
k

i

using remaining questions until all the subsets have only
one route.

For example, the question ordering result of the routes in
Fig. 3 is shown in Fig 7. The system will issue questions
according to the workers’ answers to each question. Here
workers’ only need to answer two questions till the system
getting their preference.

l2

l8l7

R4 R3R1 R2

noyes

yes noyes no

Fig. 7. Discriminative landmarks of any two routes

IV. WORKER SELECTION

Some Crowdsourcing platforms such as AMT and Crowd-
Flower give workers the freedom to choose any questions.
However this may cause some problems. For example, many
workers choose to answer a same question while some other
questions are not picked by anyone; workers have to view
all the questions before they choose; workers may answer
questions that they are not familiar with. CrowdPlanner avoids
these problems by designing a dedicated component to assign
each task to a set of eligible workers. In order to judge whether
a worker is eligible for a task, many aspects of the worker have
to be taken into consideration, i.e., number of outstanding
tasks, worker’s response time and familiarity with a certain
area. First, since each worker may have many outstanding
tasks, in order to balance the workload and reduce the response
time, we use a threshold ⌘#q

to restrict the maximum number
of tasks for each worker. Second, each user of CrowdPlanner
can specify the longest time delay she allows to get an answer,
so this task will not be assigned to workers who have a
high probability to miss the due time. Last, a recommended
route will have high confidence to be correct if the assigned
workers are very familiar with this area. Again, the worker’s
familiarity with respect to a certain area can also be affected
by several factors, such as whether the worker lives around
the area, whether the worker has answered questions relating
to this area correctly in the past, etc. In summary, an eligible
worker should meet three conditions: 1. has quota to answer
the question; 2. has high probability to answer a question
before the due time; 3. has relatively high familiarity level
with the query regions.

A. Response Time

Each task has a user-specified response time, by which an
answer must be returned. We assume the probability of the
response time t of a worker follows an exponential distribu-
tion, i.e., f(t;�) = � exp��t, which is standard assumption in
estimating worker’s response time. The cumulative distribution
function of f(t;�) is F (t;�) = 1� exp

��t. If the probability
of a worker to respond a task within time t, represented by
F (t;�), is less than the threshold ⌘

time

, we will not assign
the task to him.

B. Worker’s Familiarity Score

People usually have the best knowledge for areas where
they live or visit frequently. In CrowdPlanner, we develop a
familiarity score f l

w

to estimate the knowledge of a worker
w about a landmark l. f l

w

is mainly affected by two factors:
(1) worker’s profile information, including her home address
p
home

, work place p
work

and familiar suburbs p
fs

, which can
be collected during her registration to the system, and (2)
history of worker’s tasks around this area. f l

w

of landmark
is defined as:

f l

w

=↵ · exp {�(d(l, p
home

) + d(l, p
work

) + d(l, p
fs

)}
+ (1� ↵) · (#correct+ � ·#wrong)

where ↵ is a smoothing variable, d(l, p⇤) is the distance be-
tween l and p⇤, #correct is the number of correctly answered
questions of l, #wrong is the number of incorrectly answered
questions of l, and � is a constant less than 1, which measures
the gain of a wrong answer. Notably, to avoid one’s knowledge
of far away places affect the calculating of her knowledge here,
we assign +1 to d(l, x) if d(l, p⇤) is bigger than a threshold
⌘
dis

. With all the n workers and m landmarks in our system, a
n⇤m matrix M with m

ij

= f
l

j

w

i

is built, where f
l

j

w

i

is worker
w

i

’s familiarity score of landmark l
j

. Since the number of
landmarks a worker has answered is always small compared
with the large number of landmarks in the space, M is very
sparse. Hence, if task assigning is only based on the sparse M ,
the assigning process has a strong bias to assign tasks to only
a few well-performed workers. Actually, workers who have
similar profile information or have answered several similar
questions are highly possible to share the similar knowledge.
For example, if a worker w1 has high familiarity score with
l1, l2 and l3 and another worker w2 living nearby has high
familiarity score with l1 and l2, w2 is also likely to be familiar
with l3 though w2 has not answered any question relating to
l3. Similar situations hold for landmarks. Therefore, we need
to predict familiarity scores of workers on landmarks using
the latent similarity between workers and that of landmarks.

The familiarity scores of different pairs of (worker, land-
mark) are determined by some unweighed or even unob-
served factors, which are regarded as some hidden knowledge
categories, e.g. certain type of landmarks. However, we do
not manually specify these factors, as hard-coded factors are
usually limited and biased. Instead, we assume the familiarity

1150

score of each worker-landmark pair is a linear combination of
two groups of scores, i.e. (1) how a worker is familiar with
each hidden knowledge category, and (2) how a landmark is
related to each hidden knowledge category. Then we employ
Probabilistic Matrix Factorization (PMF) [16] to factorize M
into two latent feature matrices, W 2 Rd⇥n and Ld⇥m,
which are the latent worker and landmark feature matrices,
respectively. That is, M = WTL, where W

i,k

describes how
familiar worker w

i

is with knowledge category k, and L
j,l

describes how related landmark l
j

is to knowledge category
k. Further, we assume there exists observation uncertainty
R, and the uncertain follows a normal distribution. Thus the
distribution of a new worker-landmark familiarity matrix M 0,
which predicts some familiarity by leveraging the similarity
between different workers and landmarks, conditioned on W
and L is defined as follows:

p(M 0|W,L,�2) =
nY

i=1

mY

j=1

[N (M
ij

|WT

i

L
j

,�2)]
I

ij (1)

where N (x|µ, ✓2) is the probability density function of the
normal distribution with mean µ and variance ✓2, and I

ij

is a
indicator which is equal to 1 if M

ij

is not zero, otherwise 0.
The prior of W and L are defined as follows:

p(W |�2
W

) =
nY

i=1

N (W
i

|0,�2
W

I)

p(L|�2
L

) =
mY

i=1

N (L
i

|0,�2
L

I)

where I is identity matrix. The following objective function
maximizes the posterior of W and L with regularization
terms, which minimizes the prediction difference between our
model and the observed M , and also automatically detects
the appropriate number of factors d through the regularization
terms:

nX

i=1

mX

j=1

I
ij

(M
ij

�WT

i

L
j

)
2
+�

W

nX

i=1

kW
i

k2
F

+�
L

mX

j=1

kL
j

k2
F

where �
W

= ✓2/✓2
W

, �
L

= ✓2/✓2
L

, and k·k2
F

denotes the
Frobenius norm. A local minimum of the objective function
can be found by performing gradient descent in W and
L. Afterwards, more familiarity scores between workers and
landmarks are inferred in M .

A worker with a familiarity score of a landmark means he
has some knowledge about the region around the landmark,
not just the landmark itself. As a result, the accumulated
familiarity score F

l

j

w

i

of l
j

of a worker w
i

is a weighted sum
of all the landmarks in the ⌘

dis

range of l
j

. We assume the
weight around a landmark l follows a normal distribution of
the distance to l, and the region that the knowledge of l can
cover is limited in a circle with the center of l and the radius
of ⌘

dis

. Thus, F l

j

w

i

is evaluated as follows:

F
l

j

w

i

=
X

l2L
near

[{l
j

}
�
l

f l

w

i

where L
near

is the set of landmarks in the ⌘
dis

range of l.
The weight �

l

= N (d(l, l
j

)|0,�2
0) where �0 = ⌘

dis

/3. We use
M⇤ to denote the worker-landmark matrix of the accumulated
familiarity score, where m⇤

ij

equals to F
l

j

w

i

.

C. Finding Top-k Eligible Workers
Next we discuss how to find the top-k eligible workers for

a given task. Given a task (the selected n landmarks LR), the
worker-landmark accumulated familiarity score matrix M⇤,
a response time t, a positive integer k, a top-k eligible
workers query returns k workers who have the most knowledge
of landmarks in LR among all the workers and have high
possibility to finish the task within time t.

For a single landmark l
j

, there may be several workers,
denoted as W

l

j

, who have non-zero accumulated familiar
scores, which means these workers have some knowledge of
l
j

. For a task (a set of landmarks LR),
S

l2LR
W

l

represents

workers who have knowledge of any landmark of LR. Then we
filter out workers, of who the possibility of finishing the task
within time t is no more than ⌘

time

, from
S

l2LR
W

l

. Afterwards

the remained workers in
S

l2LR
W

l

are regarded as candidate

workers denoted by W. However, simply adding up a worker’s
accumulated familiarity scores on all the landmarks of LR may
lead biased result in worker selection. For example, there are
ten landmarks in a task and two candidates workers w1 and
w2, that w1 only has a very good knowledge of landmark
l1, say F l1

w1
=2, and knows nothing about the rest landmarks,

F l

i

w1
= 0, (2 i 10); while w2 has some knowledge of all

the landmarks that F
w2(li) = 0.1 (1 i 10). Comparing

the adding up sum of accumulated familiarity scores of the
ten landmarks, w1 will be selected to be assigned the task.
However, the coverage of w1’s knowledge of the landmark
set is too narrow, that w1 may feel hard to answer questions
about l2, l3, · · · , l10, in the knowledge coverage manner, w2 is
a better choice. Thus, when selecting workers from candidate
workers, not only their sum of accumulated familiarity scores
of all the landmarks, but also the knowledge coverage of all
the landmarks should be considered. The choosing rules are
quite similar to rated voting system [17], of which the wining
option is chosen according to the voters preferences score of
options and the number of voters preferring the options. In
our system, we can treat each landmark of LR as a voter and
each worker of W as an option. Adopting the idea of rated
voting system, we can measure the landmark l

j

’s preference
of all the candidate workers by the following two steps: 1)
rank workers of W

l

j

\W, who are in the candidate workers
set W and have accumulated familiar scores F

l

j

w

bigger than
zero, in descending order of F

l

j

w

; 2) the preference score pw
l

j

of l
j

to each worker w in W
l

j

\W is defined as follows:

pw
l

j

=

(
1� rank(w)�1

|W
l

j

\W| , if w 2 W
l

j

\W
0, otherwise

where rank(w) is the ranked place of w among W
l

j

\W. In
this way the worker with high accumulate familiarity score will

1151

get a relatively high preference score and ensure the preference
score will not result in a bias in worker selecting. Afterwards,
all the landmarks will vote their preferences to the candidate
workers. Then we sum up the preferences of each worker voted
by landmarks, and choose the workers with the top-k biggest
adding up preference scores as the query results.

V. EXPERIMENTS

In this section, we conduct extensive experiments to validate
the effectiveness and efficiency of the two core components of
our proposed CrowdPlanner system, namely landmark selec-
tion and worker selection. All the algorithms in our system are
implemented in Java and run on a computer with Intel Core
i5-3210 CPU (2.50GHz) and 4 GB memory.

A. Experiment Setup
Trajectory Dataset: We use two real trajectory datasets

generated by taxis, trucks and private cars in Beijing and
Nanjing (big cities of China). The detail information of these
trajectory datasets is shown in Table II.

TABLE II
DATASET

Id City #trajectory Duration
A Beijing 112,232 six months
B Nanjing 35,340 three months

POI Clusters: We get two POI datasets of the Beijing
and Nanjing cities from a reliable third-party company in
China. After performing DBSCAN on these POI datasets,
approximately 50,000 POI clusters are obtained and each POI
cluster is used as a landmark.

Ground truth route: We carefully choose 1000 popular
routes agreed by all three route mining algorithms in each
city as the ground truth. These routes are treated as the
correct answers for the route recommendation request between
corresponding places.

Workers: In each of the cities we have several volunteers
to answer the questions generated by CrowdPlanner.

B. Evaluation Approach
For each ground truth route, we query a big thumb map

service provider to get three recommended routes from its
source to its destination. The ground truth and the recom-
mended routes form the candidate route set, based on which
a task will be generated and assigned to workers. In this way,
we can assess the accuracy of the answers returned by the
system by comparing the answer with the ground truth.

Table III lists all the parameters we use throughout the
experiments. All the parameters are assigned the default values
unless specified explicitly.

C. Performance Evaluation
1) Case Study: Before conducting the quantitative perfor-

mance evaluation, we give a demonstration of the Crowd-
Planner system. Fig. 8 shows the system interface when a

TABLE III
PARAMETER SETTINGS

Notation Explanation Default value
n number of candidate routes 6
|L| size of landmarks on candidate routes 200
↵ influence factor of people’s living space

to their knowledge
0.3

� influence factor of people answering a
question wrong to their knowledge

0.3

⌘#q

the maximum number of outstanding
tasks of each worker

3

⌘
dis

radius of knowledge influence region 500m
⌘
t

the minimal possibility to answer a
question in time

80%

client user submit a recommendation request, which specifies
she wants to get the best recommended routes from ‘Nan-
jing Confucius Temple’ to ‘Nanjing Railway Station’ fifteen
minutes later (about 1:48am) and she awards the request
for five coins (the virtual currency of CrowdPlanner). After

Fig. 8. A request for route evaluating

receiving the request, the server matches the request to the
verified routes and generating candidates routes by invoking
web services and popular route mining algorithms in turn.
Since the system cannot automatically evaluate these candidate
routes, it generates a route evaluation task and assigns it
to some eligible workers. Fig. 9(a) illustrates the evaluation
task on a client, where four candidate routes from Nanjing
Confucius temple to Nanjing railway station are shown in red
and blue lines. The first binary question is ’do you prefer to go
past “Xinjiekou” from Nanjing Confucius temple to Nanjing
railway station at 1:48?’. Xinjiekou is one of the most flushing
commercial districts of Nanjing. Thus, to avoid traffic, the
worker may prefer not to pass Xinjiekou, which prunes the
two red routes. The second question for her is whether the
route should pass “Jiuhuashan Tunnel”. As shown in Fig. 9(b),
“Jiuhuashan Tunnel” is the most famous tunnel under the
Xuanwu Lake, which is the major difference between the two
routes left.

1152

(a) Question 1 (b) Question 2

Fig. 9. Questions of evaluating best route from Nanjing Confucius Temple
to Nanjing Railway Station

2) Quality of Recommendation: The goal of CrowdPlanner
is to give users the verified best routes between two places. In
the first set of experiments, we evaluate the accuracy of routes
recommended by CrowdPlanner by comparing with the ground
truth. As shown in Fig. 10(a), the system can achieve very high
accuracy (� 90%) in the cities when suitable workers are
selected, which means our system can recommend the best
route from the set of candidate routes in most cases. Note
that, as shown in Fig. 10(b), the system still has about 70%
accuracy even if the tasks are assigned to random workers,
demonstrating the robustness and tolerance to the workers’
qualities of our system.

 0%

20%

40%

60%

80%

100%

Bejing Nanjing

P
re

ci
si

on

Name of City

(a) Precision with worker selection

 0%

20%

40%

60%

80%

100%

Bejing Nanjing

P
re

ci
si

on

Name of City

(b) Precision without worker selection

Fig. 10. Accuracy of route recommendation

3) Effectiveness of Worker Selection: In this experiment we
test whether the overall performance of the system can be
improved by assigning tasks to suitable workers with good
knowledge about the query area. As a comparison, we also
assign the same tasks to random workers without any selection
algorithms applied. The accuracy of the route recommendation
is shown in Fig. 10, from which we can see that the overall
accuracy can improve by 20% by applying the proposed
worker selection methods.

We also collect statistics of the workers’ knowledge about
the queried area to further demonstrate why worker selection

is necessary. Since a worker’s knowledge is hard to quantify
exactly, we propose to use four familiarity levels to assess the
worker’s knowledge: (1) has no idea of the area; (2) have heard
the area but never been there; (3) have visited the area several
times; (4) knows this area very well (local resident). We ask
the workers to classify themselves into one of the four levels
based on her familiarity to the query area. Fig. 11(a) shows
the knowledge level of randomly picked workers (RPW) and
selected workers (SW) of the querying regions. We can see
that nearly 70% of the randomly picked workers have not
travelled to the query regions and even 27% know nothing
about the regions; on the other hand, 70% of selected workers
have travelled at least once in these regions and about 20%
selected workers know the area very well. This implies that
the proposed worker selection algorithms can effectively find
the workers with good knowledge about the query area.

 0%

10%

20%

30%

40%

50%

60%

1 2 3 4

Pr
op

or
tio

n

Knowledge Level

RPW
SW

(a) Workers knowledge about query-
ing places

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4

Pr
ec

isi
on

Knowledge Level

(b) Relationship between knowledge
and precision

Fig. 11. Analysis of worker’s knowledge

To further demonstrate the relationship between worker’s
knowledge and the accuracy of an answer, we analyze the
relationship between the precision of recommended routes and
workers’ knowledge level. The result is shown in Fig. 11(b),
from which we can see that the precision grows steadily with
workers getting more familiar with the area.

4) Effect of Question Format: The question format adopted
by CrowdPlanner is a series of binary questions with a
certain order. In this experiment, we evaluate the effect of
different question formats to the performance of the system.
We compare our question format (BO) with three other format
candidates: (1) map only format (MO: show the candidate
routes directly on map and ask workers to choose), (2) check-
box format (CB: workers need to choose all the landmarks on
their preferred routes) and (3) binary question without smart
ordering (BwO: the questions are asked in the descending
order of the significance). We generate the same tasks using the
four question formats and assign to the same set of workers.
Both efficiency and accuracy are evaluated. The results are
shown in Fig. 12. From Fig. 12(a) we can see that MO takes
the longest time for workers to finish a task, which is because
the workers need to spend lots of time to realize the differences
between candidate routes. All other question formats, of which
the differences are automatically summarized by the system,
cost around 10s for each task. Notably, BO format costs
less time than BwO since by presenting the questions in a
smarter order the number of questions needed for each task

1153

has reduced. CB takes the least time as many workers do
not bother to check a lot of landmarks and simply skip the
questions. Fig. 12(b) shows the results of accuracy, in which
CB format has the lowest precision since people pay least time
and attention on this type of question. Binary question format,
both BwO and BO, outperform MO in precision since MO is
hard for people to realize the difference between candidate
routes on a map. Furthermore, the precision of BO is more
than 10% higher than that of BwO, demonstrating that smart
ordering not only reduces the time cost but also improves the
accuracy of answers.

 6

 8

 10

 12

 14

 16

 18

MO CB BwO BO

Tim
e C

os
t(s

)

Question Format

(a) Time cost of different question
formats

 0%

20%

40%

60%

80%

100%

MO CB BwO BO

Pr
ec

isi
on

Question Format

(b) Precision of different question
formats

Fig. 12. Influence of question formats

5) Time Cost of Landmark Selection: We also test the
time cost of landmark selection process, which is important
for CrowdPlanner to respond to user request in real-time. In
general two factors can influence the time cost, (a) the number
of landmarks on the candidate routes and (b) the number of
candidate routes. Both factors are tested in our experiments
by comparing the GreedySelecting (GS) method with the
Incremental Landmark Selecting (ILS) introduced by [22]. The
average time cost for selecting landmarks of a candidate route
set with the size of 6 is shown in Fig. 13(a), from which we
observe that both the time costs of GS and ILS grow with
the landmark size increasing from 50 to 400. However, GS
constantly outperforms ILS by three orders of magnitudes.
The average time costs for selecting landmarks with different
number of candidate route set are shown in Fig. 13(b). It
illustrates that the running time of GS is much more stable
as the number of candidate routes grows, compared to the
exponential growth of the time cost of ILS.

101

102

103

104

105

106

107

50 100 200 300 400

Ti
m

e(
m

s)

Number of Landmarks

ILS
GS

(a) Time cost of k = 6

101

102

103

104

105

106

107

108

4 5 6 7 8

Ti
m

e(
m

s)

Number of Candidate Routes

ILS
GS

(b) Time cost of |L| = 200

Fig. 13. Efficiency of landmark selection algorithms

6) Precision of Map Service and Popular Route Mining
Algorithms: The last set of experiments are conducted to
demonstrate the precision of six kind of candidate routes, i.e.,

three provided by the web service and the others provided by
three popular routes mining algorithms, respectively. The three
routes, denoted by WS1, WS2 and WS3, are recommended
by the web service with different levels of recommendation,
where WS1 is the best recommended route of the web service,
while WS3 is the least. We randomly generate 100 route
recommendation tasks in each city and assign each task to
its top-5 eligible workers to get the best route of each task.
Fig. 14 shows the percentage of desirable results of each
kind candidate route, defined as precision. Clearly, it shows
that the precision of routes provided by web services (WS1,
WS2 and WS3) is about 70%, however, the best recommended
route WS1 has less 40% precision. Moreover, none of these
providers can have the probability high enough to provide best
routes. Though the precision of MFP is the highest, about 43%,
among the six kinds of routes, it is still not satisfactory.

 0%

10%

20%

30%

40%

50%

WS1 WS2 WS3 MPR LDR MFP

P
re

ci
si

on
Provider

Fig. 14. Precision of routes from different sources

VI. RELATED WORK

To our knowledge, there is no existing work on evaluating
the quality of recommended routes. As the goal of this work
is to evaluate the quality of recommended routes by web
services and mining algorithms, the route recommendation
algorithms (mining frequent path algorithms) used in this
paper are reviewed first. Also we leverage the generating easy
questions and finding target workers to improve the quality
of evaluating and reduce the workers’ workload, which share
the same motivation of some research works of Crowdsourcing
question designing and workers selecting. Therefore in the last
of this section, we will review previous works of these two
aspects.

Route Recommendation Algorithms. The popular routes
mining has received tremendous research interests for a decade
and a lot of works are on it, such as [21], [15], [6], [7], [27],
[6], [15], [7], [27], [12], [11], [5], [10]. Among these works,
[4], [26], [14], [3] are the most representative. Chen et al.
[4] proposes a novel popularity function for path desirability
evaluation using historical trajectory datasets. The popular
routes recommended by it tends to have fewer vertices. The
work in [26] provides k popular routes by mining uncertain
trajectories. The recommendation routes of this work tend
to be rough routes instead of correct routes. [14] claims the
popular routes change with time, so it carries out a popular
routes mining algorithms which can provide the recommended

1154

routes in arbitrary time periods specified by the users. [3]
provides the evidences that the routes recommended by web
services are sometimes different from drivers’ preference.
Thus it mines the individual popular routes from his historical
trajectories. The recommended routes of this method reflect
certain people’s preference.

Question Designing. Question designing is always an ap-
plication dependent strategy, which may consider the cost
of questions or the number of questions. [8], [18] propose
strategies to minimize the cost of the questions designed. The
question designing strategy of [25] is to minimize the number
of questions. The question designing strategy of [19] is to
generate the optimal set of questions. [13] builds the desired
traveling plans incrementally, optimally choosing at each step
the best questions so that the overall number of questions to
minimize the number of the asked questions.

Worker Selecting. Selecting workers with high individual
qualities for tasks always does beneficial to the final quality
of answers. Thus [9] propose an algorithm to select workers
fulfilling some skills with the minimized the cost of choosing
them. In [1] use emails communication to identifying skillful
workers. Cao et al [2] assign tasks to micro-blog users by
mining users’ knowledge and measuring their error rate.

VII. CONCLUSIONS

In this work we present a novel crowd-based route rec-
ommendation system – CrowdPlanner, which evaluates the
quality of routes recommended from different sources by
leveraging the knowledge and opinions of the crowd. Two core
components, task generation and worker selection, have been
carefully designed such that informative and concise questions
will be created and assigned to the most suitable workers.
By having the system deployed and tested in real scenarios,
we demonstrate CrowdPlanner is able to recommend users
the most satisfactory routes with at least 90-percent chances,
much higher than either the most well-known map services or
the state-of-art route mining algorithms. Besides, this research
sheds light on some other crowd-based recommendation sys-
tems such as location recommendation and itinerary planning,
which can be used in more application scenarios.

ACKNOWLEDGMENTS

This research is partially supported by Natural Science
Foundation of China (Grant No.61232006) and the Australian
Research Council (Grants No. DP110103423, DP120102829
and LP130100164). Lei Chen’s work is partially supported by
Hong Kong RGC-NSFC N HKUST637/13, National Grand
Fundamental Research 973 Program of China under Grant
2012-CB316200, Microsoft Research Asia Gift Grant and
Google Faculty Award 2013

REFERENCES

[1] C. Campbell, P. Maglio, A. x. Cozzi, and B. Dom. Expertise identifi-
cation using email communications. In CIKM, pages 528–531. ACM,
2003.

[2] C. Cao, J. g. She, Y. Tong, and L. Chen. Whom to ask? jury selection
for decision making tasks on micro-blog services. PVLDB, 5(11):1495–
1506, 2012.

[3] V. Ceikut and C. Jensen. Routing service qualityłlocal driver behavior
versus routing services. In MDM, pages 195–203. IEEE, 2013.

[4] Z. Chen, H. Shen, and X. Zhou. Discovering popular routes from
trajectories. In ICDE, pages 900–911, 2011.

[5] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of
regression models. In SIGKDD, pages 63–72. ACM, 1999.

[6] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory pattern
mining. In KDD, pages 330–339, 2007.

[7] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. Sondag. Adaptive
fastest path computation on a road network: A traffic mining approach.
In PVLDB, pages 794–805, 2007.

[8] S. Guo, A. Parameswaran, and H. Garcia-Molina. So who won? dynamic
max discovery with the crowd. In SIGMOD, pages 385–396. ACM,
2012.

[9] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social
networks. In SIGKDD, pages 467–476. ACM, 2009.

[10] J. Lee, J. Han, X. Li, and H. Gonzalez. Traclass: trajectory classification
using hierarchical region-based and trajectory-based clustering. PVLDB,
1(1):1081–1094, 2008.

[11] J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-
group framework. In SIGMOD, pages 593–604. ACM, 2007.

[12] X. Li, J. Han, J. Lee, and H. Gonzalez. Traffic density-based discovery
of hot routes in road networks. Advances in Spatial and Temporal
Databases, pages 441–459, 2007.

[13] I. Lotosh, T. Milo, and S. Novgorodov. Crowdplanr: Planning made easy
with crowd. In Data Engineering (ICDE), 2013 IEEE 29th International
Conference on, pages 1344–1347, 2013.

[14] W. Luo, H. Tan, L. Chen, and L. Ni. Finding time period-based most
frequent path in big trajectory data. In SIGMOD, pages 195–203. ACM,
2013.

[15] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and
D. Cheung. Mining, indexing, and querying historical spatiotemporal
data. In KDD, pages 236–245, 2004.

[16] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In
NIPS, pages 1257–1264, 2007.

[17] L. Nordmann and H. Pham. Weighted voting systems. Reliability, IEEE
Transactions on, 48(1):42–49, 1999.

[18] A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh,
and J. Widom. Crowdscreen: Algorithms for filtering data with humans.
In SIGMOD, pages 361–372. ACM, 2012.

[19] A. Parameswaran, A. Sarma, H. Garcia-Molina, N. Polyzotis, and
J. Widom. Human-assisted graph search: it’s okay to ask questions.
PVLDB, 4(5):267–278, 2011.

[20] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–
106, 1986.

[21] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias,
K. Mouratidis, and T. Sellis. On-line discovery of hot motion paths. In
EDBT, pages 392–403, 2008.

[22] H. Su. Crowdplanner: A crowd-based route recommendation system.
CoRR, abs/1309.2687, 2013.

[23] H. Su, J. Deng, and F. Li. Crowdsourcing annotations for visual object
detection. In AAAI, 2012.

[24] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. Calibrating trajectory
data for similarity-based analysis. In SIGMOD, pages 833–844. ACM,
2013.

[25] J. Wang, T. Kraska, M. Franklin, and J. Feng. Crowder: Crowdsourcing
entity resolution. PVLDB, 5(11):1483–1494, 2012.

[26] L.-Y. Wei, Y. Zheng, and W.-C. Peng. Constructing popular routes
from uncertain trajectories. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 195–203. ACM, 2012.

[27] Y. Zheng, L. Zhang, X. Xie, and W. Ma. Mining interesting locations
and travel sequences from gps trajectories. In WWW, pages 791–800,
2009.

1155

