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Abstract—Conventional top-k spatial keyword queries require
users to explicitly specify their preferences between spatial prox-
imity and keyword relevance. In this work we investigate how to
eliminate this requirement by enhancing the conventional queries
with interaction, resulting in Interactive Top-k Spatial Keyword
(ITkSK) query. Having confirmed the feasibility by theoretical
analysis, we propose a three-phase solution focusing on both
effectiveness and efficiency. The first phase substantially narrows
down the search space for subsequent phases by efficiently
retrieving a set of geo-textual k-skyband objects as the initial
candidates. In the second phase three practical strategies for
selecting a subset of candidates are developed with the aim of
maximizing the expected benefit for learning user preferences at
each round of interaction. Finally we discuss how to determine the
termination condition automatically and estimate the preference
based on the user’s feedback. Empirical study based on real PoI
datasets verifies our theoretical observation that the quality of
top-k results in spatial keyword queries can be greatly improved
through only a few rounds of interactions.

I. INTRODUCTION

With the rapid transformation of web clients from desk-
top computers to mobile devices such as smartphones and
tablets, increasing volumes of geo-textual objects are becoming
available on the web that represent Points of Interest (PoIs)
such as restaurants, cafes and hotels. Specifically, a geo-
textual object contains the geo-location (usually in the form
of longitude and latitude) of its PoI and textual descriptions
of the PoI (e.g., features, facilities, reviews). There are now
numerous online sources, from which large-scale geo-textual
objects can be acquired, including business directories such
as Google Places for Business1 and Yahoo!Local2, location-
bases social networks such as Foursquare3, as well as rating
and review services such as TripAdvisor4 and Dianping5.
This calls for techniques to support the efficient processing
of spatial keyword queries, which take a geo-location and a
set of keywords as arguments and return relevant PoIs that
matches the arguments. According to [1][2], these queries can

1http://www.google.com.au/business/placesforbusiness/
2https://local.yahoo.com/
3https://foursquare.com/
4http://www.tripadvisor.com/
5http://www.dianping.com/

be categorized as follows based on their way of specifying
spatial and textual predicates.

• Boolean Range Queries [3] retrieve all objects whose
text description contains all the query keywords and
whose location is within the query region.

• Boolean kNN Queries [4][5] retrieve the k objects
nearest to the query location and each object’s text
description contains all the query keywords.

• Top-k Range Queries retrieve up to k objects whose
location is within the query region and has the highest
textual relevance to the query keywords.

• Top-k kNN Queries [6][7] retrieve the k objects with
the highest ranking scores, measured by a weighted
combination of their distances to the query location
and the textual similarity between their textual descrip-
tions and query keywords.

We summarise the major characteristics of each query type
in Table I. Generally, a new query type is proposed in order
to improve previous queries. For instance, the result set of
Boolean Range Queries has uncontrolled size and is unranked,
leading to too many/few results. Boolean kNN Queries address
this problem by applying a rank over the results according
to their distances to the query location and returning the k
closest objects only. However, both types of queries require
each result to contain all the query keywords, which may find
too few results and/or the results are far away from the query
location. Top-k Range Queries and Top-k kNN Queries relax
this requirement by introducing textual relevance function
as the similarity measure between query keywords and text
description of PoIs. Top-k Range Queries rank the result set
by considering their textual similarity to the query only, while
Top-k kNN Queries combine the similarities over spatial and
textual dimensions together into a unified utility function and
return the top-k results based on this utility function. To some
extent, Top-k kNN Queries are the most novel and advanced
type of spatial keyword queries in literature, which are often
referred to as Top-k Spatial Keyword Queries (TkSK) when
the context is clear.

Despite the high flexibility and expressiveness, TkSK
queries are faced with two issues regarding to the query
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TABLE I: Characteristics of different types of spatial keyword queries

Query type Matching all query
keywords required

Controlled re-
sult size

Results are
ranked

Preferences on spatial and tex-
tual dimensions are considered

Preferences on different query
keywords are considered

Boolean Range Query yes no no no no

Boolean kNN Query yes yes yes no no

Top-k Range Query no yes yes no no

Top-k kNN Query no yes yes yes, but users need to specify their
preferences explicitly

no

Interactive Top-k Spatial Key-
word Query

no yes yes yes and the preferences are learnt
from user feedback

yes and the preferences are learnt
from user feedback

practicality and result intuitiveness, as explained in below.

(1) It is impractical to ask users to specify their preferences.
As mentioned before, TkSK queries combine spatial similarity
and textual similarity into one utility function in the form of
βSspatial+(1−β)Stext, in which Sspatial, Stext are spatial and
textual similarity between query and object respectively and
β ∈ [0, 1] is a weighting parameter indicating user’s preference
over spatial and textual dimensions. A high β favours the ob-
jects that are geographically closer to the query location while
a small β tends to return the objects whose text description is
more relevant to the query keywords. Nevertheless the value
of β needs to be specified by the user a priori, which can be
quite impractical in real applications. In fact, user preferences
are often latent and thus hard to be quantified exactly and
explicitly.

(2) The results of TkSK queries with respect to the textual
similarity may not be as intuitive as the boolean keyword
queries. More specifically, consider the well-known vector
space model [8] that has been adopted in existing TkSK
queries [7]. It calculates the weight for each common key-
word of query’s and object’s text using TF-IDF measure and
computes the normalized dot product between vectors of query
keywords and object keywords. Though mathematically sound,
the results derived from this model may not be desired by the
users, since a user would like to assign a larger weight to some
keyword simply because she feels it is more important rather
than it occurs less frequently in the entire dataset.

q: (fish&chips, music)

o2:(0.05, Pizza, Pasta)
o1:(0.1, steak, fish&chips)

o6:(0.1, music, Cafe)

o4:(0.25, music, fish&chips)

o3:(0.15, seafood, fish&chips)

o5:(0.14, Pasta, fish&chips)

Fig. 1: An example of spatial keyword query

We use Figure 1 as an example to demonstrate the above
two issues. Consider a user who is looking for a Cafe nearby,
which must serve fish&chips (more important) and ideally
plays music (less important). She issues a spatial keyword
query q with her current location and two keywords fish&ships,
music, as shown in Figure 1. o1 to o6 are restaurants/Cafes
nearby q with the keywords shown in the parentheses, wherein
the number indicates the normalized distance to q. It is not
uncommon the user has no idea about how to specify the
weight β in the TkSK query [7], so she just accepts the default
value β = 0.5. Since the weight for each keyword is assigned
based on TF-IDF model in TkSK query, music has much
higher weight (= 0.5) than fish&chips (=0.25). After a simple

calculation, o6 turns out to be the best object. However this is
obviously not a satisfactory result for the user: o1 is equally
close to q with o6, but contains a more important keyword
fish&chips, so o6 is at least worse than o1.

This work aims to address the above limitations by en-
hancing spatial keyword queries with user interactions. We
assume that the database system interacts with the user in
rounds and in each round when presented with a set of geo-
textual objects the user can pick the object that she prefers
the most. The only arguments needed for this query q are the
query location q.ρ, a set of query keywords q.ψ and the desired
output size q.k. Instead of asking the user for her preferences
on spatial dimension and different keywords, we learn them
automatically from the user’s feedback. Our proposed query
will have the following desirable features: (1) the importance
of each keyword can be distinguished based on user’s personal
preference; and (2) all the preference weights on spatial
proximity and each keyword will be learnt automatically based
on user’s feedback. Continuing the example in Figure 1, if we
present o1 and o6 to the user and she picks o1, then it becomes
obvious that she prefers fish&chips than music.

It is worth mentioning that our work shares some similar-
ities with [9] in terms of the interaction style, which studies
the problem of minimizing the regret ratio when the system
is enhanced with interactions. Informally speaking, the regret
ratio reflects the gap between the maximum utility a user
can obtain from the returned k results and from the whole
database. It is shown that by carefully presenting k tuples
and analysing the user’s feedback at each round, the regret
ratio can be reduced to an arbitrarily small value. Although
their theoretical findings of [9] are promising, its proposed
methodologies cannot be applied to our problem due to the
following reasons.

First, though it is claimed in [9] that “genuineness” is
important for interactive queries, in their work there is only
one tuple at each round that “genuinely” exists in the database.
Though at the end the system can still retrieve the actual tuple
from the database that maximizes the utility function, a user
may feel confused or even frustrating during the course of in-
teraction. Consider a location recommendation system that is a
typical application of spatial keyword queries. Displaying a lot
of faked PoIs may give the users the feeling of unreliability or
even fraud. In our proposed system, all the results presented to
the users including intermediate and final results are genuine.

Second, the algorithm proposed in [9] (i.e., Algorithm 2)
for creating the k−1 virtual tuples is relying on the assumption
that each attribute of the tuple is numerical, since it will adjust
the value of a particular attribute slightly while keeping the
other attributes unchanged. However, in geo-textual dataset
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only the spatial dimension is numerical. It is not clear how
the algorithm of [9] can deal with textual attributes.

In our proposal, all the intermediate results presented to
users during interaction are real tuples existing in the database.
Compared to the manipulation based method [9], we are
essentially dealing with a more challenging search problem:
efficiently search for a subset of tuples in the database at each
round that can effectively learn the user’s preference based
on her choice. We propose an end-to-end solution that includes
practical and efficient algorithms to address these challenges.
Our contributions are summarized in below.

• We identify limitations of existing spatial keyword
queries. Based on this, we define a novel Interactive
Top-k Spatial Keyword (ITkSK) query, which not
just allows users to control the preference weights
on distance and individual keyword in an intuition-
consistent way, but also eliminates the hassles to
specify all these parameters explicitly by involving
interactions with the users.

• We propose a three-phase solution to process ITkSK
query. The first phase (candidate generation phase)
quickly narrows the search space from the entire
database down to a set of candidates by retrieving
Geo-textual k-skyband set from the database with
respect to the query. In the second phase (interaction
phase) we develop several strategies to select a subset
of candidates and present them to users at each round,
with the aim of maximizing the benefit of learning
from the user’s feedback. In the last phase (finalisation
phase) we discuss how to terminate the interaction
automatically and estimate the final preference vector
based on a set of linear constraints.

• We conduct empirical study based on real PoI datasets.
The favourable results verifies our expectation that
ITkSK queries indeed return more satisfactory results
by learning a more accurate user preference. More-
over, our interaction strategies are shown to be quite
effective in terms of convergence speed.

The remainder of this paper is organized as follows. Sec-
tion II gives a formal definition of ITkSK query and overviews
the solution. Section III,IV and V discuss the technical details
of the three phases. Our experimental observations are pre-
sented in Section VI, followed by a brief discussion of related
work in Section VII. Section VIII concludes this paper.

II. PROBLEM STATEMENT

This section formally defines the ITkSK query and outlines
the proposed solution. Some major notations used throughout
the paper are listed in Table II.

A. Preliminaries

Definition 1 (Geo-textual object). Let D be a geo-textual
dataset. Each geo-textual object o ∈ D is defined as a
pair (o.ρ, o.ψ), where o.ρ is a 2-dimensional geographical
location with longitude and latitude and o.ψ is a text document
represented by a set of keywords or terms.

TABLE II: Summary of notations

Notation Definition
D A database of geo-textual objects

q A spatial keyword query

o A geo-textual object

o.ρ Geographical location of o
o.ψ A set of keywords associated with o
w A user preference vector

w′ An estimated user preference vector

uq,w(o) A utility function evaluating the utility score of o w.r.t. q
and w

k The number of final results

κ The maximum number of intermediate results displayed at
each round

S The candidate set

R The selected candidate to present to users at each round

Lα The set of constraints obtained in round α
P A polytope in multi-dimensional space

Definition 2 (Utility function). Let (q.ρ, q.ψ =
{t1, t2, ..., tm}) be a spatial keyword query specified by
a user, w = {w0, w1, w2, ..., wm} be a vector representing
user preference, in which ∀i ∈ [0,m], 0 ≤ wi ≤ 1. For each
geo-textual object o ∈ D, the user’s utility obtained from o
can be evaluated by the following utility function,

uq,w(o) = w0(1 − d(q.ρ, o.ρ)) +

m∑
i=1

wiho(q.ti) (1)

where d(q.ρ, o.ρ) is a function that normalizes the Euclidean
distance between o and q into the range [0, 1] and h is a
function indicating the existence of ti in o, i.e.,

ho(q.ti) =

{
1, if q.ti ∈ o.ψ
0, otherwise

When context about q and w is clear, we simply use u(o) to
represent uq,w(o).

Compared to the scoring functions adopted in previous
work of top-k spatial keyword search such as [7], this utility
function has two advantages: (1) finer-grained preferences can
be specified on each keyword in the query; and (2) the weight
of each keyword intuitively reflects the user’s preference on it.

Definition 3 (Top-k Spatial Keyword Query). Given a geo-
textual dataset D, a query q : (q.ρ, q.ψ), a preference vector
w and the number of results k, a top-k spatial keyword (TkSK)
query returns a set S of up to k objects from D such that they
have the highest utilities w.r.t. u(o), i.e.,

S = {S ⊆ D, |S| = k|∀o ∈ S, o′ ∈ D \ S, u(o) ≥ u(o′)}

If the preference vectorw is specified by the user explicitly,
this query can be answered efficiently by utilising existing
hybrid indexing structures and query processing algorithms [2].
However, it is often impractical to require a non-expert user
to provide the exact value for each element of w. Even worse,
sometimes a user may be unsure of her preference before
exploring some tuples in the database. In other words, the
user preferences in real applications are usually latent. This
motivates us to automatically infer the user preferences by
involving interactions during query processing. We formally
state the problem to be studied in this paper as follows.

Definition 4 (Interactive Top-k Spatial Keyword Query).
Given a geo-textual dataset D, a query q : (q.ρ, q.ψ), an
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integer k and an unknown preference vector w, the interactive
top-k spatial keyword (ITkSK) query will be processed in
rounds. In each round, the system displays at most κ tuples to
the user and asks her to pick the favourite one according to w.
After interaction, the system will estimate the user’s preference
as w′ based on her feedbacks and return a final set of k tuples
based on w′.

In this above definition κ is a predefined constant in order
to limit the number of objects displayed to the user. The
value of κ can be specified by HCI experts, determined based
on psychological study (to make users feel conformable) or
customized by end users. In this work we assume that the
user’s preference remains unchanged during the interaction
process. That is, the object o selected by the user at each
round must be the one with the highest utility according to
uq,w(o) among the k tuples presented at the same round. We
leave the scenarios where the user’s preference may shift as
she sees more tuples in the database as an interesting problem
to be investigated in the future.

B. Solution Overview

The proposed solution consists of three phases:

1) Candidate generation: This phase will find a set of
geo-textual k-skyband tuples from the entire database
as the initial candidates.

2) Interaction: This phase proceeds in the fashion of
rounds. At each round, the system strategically selects
a subset of candidates and presents them to the user,
who will pick her favourite tuple according to her
latent preference. The system will refine the candidate
set based on her feedback and continue the process
by selecting another subset of candidates. Meanwhile,
a termination condition is checked automatically and
once satisfied the system exits this phase.

3) Finalisation: This phase estimates the user’s prefer-
encew′ based on her feedbacks during the interaction
phase and retrieve the topk results based on w′.

III. CANDIDATE GENERATION

There usually exists a large number of geo-textual objects
in databases. Therefore it is quite inefficient to search for
intermediate results through the entire database at each round
during the interaction process. The purpose of this phase is to
reduce the search space by generating a smaller candidate set.

A. Geo-textual dominance

Since the user preferences on spatial distance and keywords
are unknown at this stage, the desired candidate set should
include all the objects that could possibly become a final result
given a certain preference vector. Naturally we can adopt the
notion of skyline [10], which is a set of tuples in a database
that are not dominated by any other tuple. Here a tuple a is
said to dominate tuple b if a has better or equal values in all
attributes and a better value in at least one attribute than b. In
the sequel, we first define the dominance relationship between
two geo-textual objects.

Definition 5 (Dominance). Let a and b be two geo-textual
objects in D. Given a spatial keyword query q, a dominates

b w.r.t. q, denoted by a ≺q b, if (i) d(q.ρ, a.ρ) ≤ d(q.ρ, b.ρ),
q.ψ ∩ a.ψ ⊃ q.ψ ∩ b.ψ; or (ii) d(q.ρ, a.ρ) ≤ d(q.ρ, b.ρ), q.ψ ∩
a.ψ ⊇ q.ψ∩b.ψ. Otherwise a does not dominate b, denoted as
a ⊀q b. Whenever context of q is clear, we simply write a ≺ b
(a ⊀ b).

Based on the dominance relationship, we can define geo-
textual skyline in below.

Definition 6 (Geo-textual Skyline). Given a spatial keyword
query q, an object o ∈ D is a geo-textual skyline tuple w.r.t.
q if and only if ∀o′ ∈ D, o′ ⊀q o.

For a given D and q, the geo-textual skyline is guaranteed
to contain the top-1 (best) result w.r.t. the utility function uq,w

for any preference vector w. In order to guarantee the top-k
candidates, we extend skyline to k-skyband [11].

Definition 7 (Geo-textual k-Skyband). Given a spatial key-
word query q, an object o ∈ D is a geo-textual k-skyband
tuple w.r.t. q if and only if o is dominated by at most k tuples
in D. We denote the set of tuples forming the k-skyband of D
as SBk

q (D).

Lemma 1. ∀o ∈ D\SBk−1
q (D), o cannot belong to the top-k

results w.r.t. uq,w for any preference vector w.

Proof: By definition of skyband, if o /∈ SBk−1
q (D), then

o is dominated by at least k tuples in D, which means there
exist at least k tuples o′ such that u(o′) > u(o) for any w.

B. Search Algorithm

Following the branch-and-bound paradigm [11], next we
propose the GSB (Geo-textual SkyBand) algorithm to find the
candidate set efficiently.

IR2-Tree Index: GSB makes use of an IR2-Tree that has
been widely adopted to facilitate top-k spatial keyword queries.
Basically an IR2-Tree is a combination of R-Tree and signature
files, where each node contains two types of information: (1)
the minimum bounding area of its subtree; (2) signature of
the node, which is the superimposition (OR-ing) of all the
signatures of its entries. A signature of a word is fixed-length
bit string generated by using a hash function and a signature
of a keyword set simply superimposes the hash values of all
keywords. A nice property of signature is that, given a query
signature sa and node signature sn, if sa = sa ∧ sn, then the
node may contain some query keywords; otherwise, the query
keywords do not exist in the node. Readers can refer to [5] for
more implementation details of IR2-Tree.

GSB Algorithm: Algorithm 1 illustrates the basic process
of GSB search. First GSB initializes a list S that will contain
skyband tuples and an empty heap H to hold entries (either a
node or a point) in IR2-Tree to be visited. The heap is sorted in
ascending order according to the minimum geo-textual distance
(MINGTD) of an entry w.r.t. the query q. Let e be the entry
with signature se and MBR Me, MINGTD of e is defined by
the following function

MINGTDq(e) = MINDIST (q.ρ,Me)+
∑
t∈q.ψ

(st∧se)⊕st (2)
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where MINDIST is the normalized minimum distance between
a point and a MBR [12]. The second term compares each query
keyword t against the signature of the entry and returns (i)
zero if t may be contained in the entry; (ii) one otherwise.
Essentially it measures the minimum textual distance between
the query and the entry.

Then GSB iteratively removes the top entry e from H and
then performs the following actions depending on the entry
type, until H becomes empty.

• If e is a non-leaf node, GSB performs a dominance
check for each of its child entries to see if it is
dominated by more than k − 1 skyband tuples found
so far. An entry e is dominated by a skyband tuple o
w.r.t. q if the following conditions are both satisfied:

◦ d(o.ρ, q.ρ) < MINDIST (q.ρ,Me);
◦ ∀t ∈ q.ψ \ o.ψ, (st ∧ se) 
= st

That is, all the objects in e are farther away from q
than o,and do not contain any keyword t in q that is
not covered by o. If a sub-entry passes the dominance
check, it is added to H; otherwise it is discarded
immediately.

• If e is a leaf node, then it contains geo-textual objects
only. We perform the dominance check for each object
based on Definition 5 using the exact location and
keyword information (instead of signature). An object
is added to S if it is dominated by less than k tuples
in S.

If the heap is empty, the above process terminates. All the
objects added to S during the process are guaranteed to be the
geo-textual (k − 1)-skyband tuples, as formally stated by the
following theorem.

Theorem 1 (Correctness). All objects added to S are geo-
textual (k − 1)-skyband tuples.

Proof: Assume to the contrary that an object o′ was added
to S but does not belong to the (k− 1)-skyband. This implies
there are at least k objects o1, o2, ..., ok dominating o′. Then
according to the nature of GSB algorithm and the evaluation
function of MINGTD in Eq. (2), oi(1 ≤ i ≤ k) should have
been added to S prior to o. Therefore o could not pass the
dominance check, which is in contradiction with the fact that
o was added to S. Theorem is proved.

IV. INTERACTION PROCESS

In this phase, our system will interact with end users in
rounds. More specifically, the system at each round will choose
a subset of objects from the candidate set generated in the
previous phase and then present them to the users who will
browse and pick one favourite object from them. The system
keeps refining the user’s preference that has been learnt based
on the user’s selections in current and all previous rounds.
The interaction will continue until the user stops it explicitly
or the system automatically decides to exit when it believes
no more benefit of doing so. Theoretically the interaction can
continue with sufficient rounds to test every pair of objects in
the candidate set, such that we know exactly which k objects
are preferred most by the users. However in practice this
requires so large number of rounds (quadratic to the cardinality

Algorithm 1: Geo-textual Skyband Search (GSB)

Input: IR2-Tree index of dataset: tr, query q, k
Output: skyband set S

1 Initialize an empty set S;
2 Initialize an empty min-heap H;
3 Add root node of tr to H;
4 while H is not empty do
5 e ← top entry of H;
6 if e is non-leaf entry then
7 for each child ei in e do
8 if ei is dominated by less than k tuples in S then
9 Add ei to H;

10 else
11 for each object oi in e do
12 if oi is dominated by less than k tuples in S then
13 Add oi to S;

14 return S;

of candidate set) that no one is patient enough to go through
this process. So the key problem of this phase is to strategically
select a subset of candidate objects in each round such that
this iterative process could converge quickly. Here we slightly
abuse the notion of “converge” as in our problem it means
getting a preference vector w′ that can nicely approximate
w. Next we will first give a theoretical analysis to explain
why we can get better approximation of user preference by
involving user interaction. Then we describe the framework of
the interaction process and propose several strategies for the
subset selection from candidates.

A. Theoretical Analysis

Let S denote the candidate set generated from the previous
phase. Given a spatial keyword query q with a location q.ρ
and m keywords q.ψ : (t1, t2, ..., tm), we can represent
each object o ∈ S with a (m + 1)-length vector o : (1 −
d(o.ρ, q.ρ), ho(t1), ho(t2), ..., ho(tm)), where functions d and
h are as defined in Definition 2. Then the utility function u(o)
(Eq. (1)) can be simply reformulated as wᵀo. Now suppose a
subset R ⊂ S has been selected and the user has picked an
object oi as her favourite within R. The choice of the user
implies that the utility she can get from oi is larger than any
other object in R. Mathematically this can be represented by
a set of inequalities on u(o), i.e.,

u(oi) > u(oj), ∀oj ∈ R ∧ oj �= oi (3)

After simple rewrite we get:

(oi − oj)
ᵀw > 0, ∀oj ∈ R ∧ oj �= oi (4)

Since w is the unknown vector we would like to infer, the
above inequalities can be treated as a set of linear constraints
on w. Let Lα denote the set of linear constraints obtained
at the α-th round. Recall that we have another set of linear
constraints for w in the first place, which is 0 < wi < 1,
∀i ∈ [0,m + 1]. We denote them as L0 as they are in place
before the interaction starts. From geometrical perspective,
Lα can be represented by the intersection of a set of half-
spaces and L0 corresponds to a hyper-cube with side-length
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Algorithm 2: Interaction Framework

Input: Candidate set S, query q
Output: Linear constraint set L

1 Initialize L ← {L0};
2 α ← 1;
3 while true do
4 R ← SelectCandidate(S, q);
5 Present objects in R to the user;
6 oi ← user pick her favourite from R;
7 Lα ← new linear constraints based on user’s feedback;
8 Add Lα into L;
9 RefineCandidate(S,L);
10 α ← α + 1;
11 if Terminate() is true then
12 Break;

13 return L;

of 1, which together form a convex polytope [13] in the
(m + 1)-dimensional space. Let L denote the union of all
the linear constraints obtained up to the current round, i.e.,
L = {L0, L1, ..., Lα}. As the interaction process goes on, more
constraints will be added to L and the convex polytope formed
by L will keep shrinking. In other words, the possible values
that w can take are restricted within a space, which is getting
smaller and smaller after receiving more user feedbacks. When
the solution space to L is small enough, we can use any
vector inside that space to approximate w. The above analysis
theoretically confirms that the goal and methodology of our
work is feasible: the user preference vector w can be better
estimated by involving user interaction.

B. Interaction Framework

The proposed interaction framework is illustrated by Al-
gorithm 2, which will take the candidate set and query as
input and return a set of linear constraints at the end of the
iteration. The process starts with initializing L and α and then
proceeds to a loop, in which a procedure SelectCandidate()
will be invoked to select a subset R from S. The selection
strategy taken by this procedure is pivotal to our framework
and will be investigated more carefully later. After presenting
all the objects in R and receiving user’s favourite object, a
new set of linear constraints Lα can be computed based on
Eq. (4) and added into L. Then another important procedure
RefineCandidate(), which will be discussed later as well, is
invoked to make necessary changes to the candidate set by
analysing the new constraint set L. At last, the termination
condition of this interaction process is checked by the proce-
dure Terminate(), which can be either manually specified by
the user or automatically decided by the system. We are more
interested in the latter case and will discuss mechanisms for
automatic termination condition check in Section V.

C. Candidate Selection Strategy

SelectCandidate() is the most critical procedure in the
interaction framework, which affects the quality of preference
approximation and speed of convergence (i.e., the number of
rounds needed before termination). Next we will discuss three
selection strategies based on different heuristics.

1) Random Selection (RS) Strategy: The most straightfor-
ward approach to construct R is to randomly pick κ objects
from S and present them to the user. The reason we want
to select as many objects as possible (capped by κ) at each
round is that the number of linear constraints we can get is
proportional to the cardinality of R. The more constraints we
have, the better estimation about w we are more likely to get.
Still consider Figure 1 as an example and assume that we have
got a candidate set {o1, o3, o4, o5, o6} (o2 is not a candidate
since it does not contain any query keyword). If κ = 3, we
just randomly choose three objects from the candidate set, for
instance o1, o3, o4, and present them to the user.

2) Densest Subgraph (DS) Strategy: RS strategy suffers
from the fact that it ignores the dominance relationship be-
tween candidates and thus may present object pairs, from
which no effective constraint can be obtained. In particular,
if there exist two objects oi, oj in R such that oi ≺ oj ,
then the inequality (oi − oj)ᵀw > 0 holds true for all w. In
other words, this inequality does not help estimate w better.
Continuing with the previous example, if we present o1, o3, o4
to the user, she will not pick o3 as it is known to be dominated
by o1; if she picks o1, the inequality derived from o1, o3 is also
useless since we already know o1 is better than o3.

Essentially, in order to make most use of each round, R is
most desirable if the expected number of constraints, denoted
as C(R), that can be derived when the user pick any object
from R is maximized. More formally,

R = argmax
R⊆S,|R|≤κ

E[C(R)] = argmax
R⊆S,|R|≤κ

∑
oi∈R

Pr[oi]NR(oi) (5)

where Pr[oi] is the probability of oi being picked by the
user and NR(oi) is the number of objects in R that have no
dominance relationship with oi, i.e., the number of constraints
that can be obtained if the user picks oi. Let R′ denote the
subset of R, in which every object is not dominated by any
object of R, i.e., R′ = {o ∈ R|�o′ ∈ R, o′ ≺ o}. Assume
a user has equal chance to choose any object in R′, then we
have

Pr[oi] =

{
1/|R′|, if oi ∈ R′

0, otherwise
(6)

Taking Figure 1 as our example, if we choose o1, o3, o4 as R,
then E[C(R)] = 0.5 ∗ 1 + 0.5 ∗ 2 = 1.5, since the user has
equal chance to pick o1 and o4.

Theorem 2. Finding the optimal R is an NP-complete prob-
lem.

Proof: We prove by a reduction from k-clique problem,
which is one of the 21 classic NPC problems [14]. We
can construct an instance of graph G(V,E) containing a κ-
clique (a complete subgraph of size κ). Each vertex vi ∈ V
corresponds to an object oi ∈ S and an edge e = 〈vi, vj〉 ∈ E
indicates there is no dominance relationship between oi and
oj . It is obvious that the optimal R corresponds to the κ-clique
in G. If there exists a deterministic polynomial algorithm to
find the optimal R, then the κ-clique can also be detected in
polynomial time.

Since the optimal R is hard to find efficiently, we resort to
heuristic methods that are simple, practical and efficient. We
first define a notion of dominance graph.
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Definition 8 (Dominance graph). Given a geo-textual dataset
S, its dominance graph GS is a graph wherein each vertex vi
represents an object oi ∈ S and each edge 〈vi, vj〉 indicates
that no dominance relationship exists between vi and vj , i.e.,
vi ⊀ vj and vj ⊀ vi.

The dominance graph of the candidate set in Figure 1 is
illustrated in Figure 2a. By modeling S as a dominance graph
GS , the problem of finding the optimal R is very similar
with the problem of finding the densest subgraph, i.e., the
subgraph with highest edge-to-vertex ratio (called density).
Finding the densest subgraph with arbitrary size can solved
in polynomial time6 [16], [17] and linear algorithm exists
for approximate solution [18]. The only difference is that in
the densest subgraph problem all the vertices are considered
when computing the density, while in our problem only the
vertices not dominated by others are considered. Nevertheless,
as we are not aiming at optimal solution, it suffices to find the
(approximate) densest subgraph with arbitrary size first and
adjust it in favour of Eq. (5). For example, by looking for the
densest subgraph with three nodes in Figure 2a, we get an
optimal R as {o1, o4, o6} ({o3, o4, o6}, {o4, o5, o6} are also
optimal). It is easy to validate that E[C(R)] = 2 that is greater
than {o1, o3, o4}.

In the sequel, we only highlight some important steps of
our method. Once the (approximate) densest subgraph has
been found, we will be faced with one of the three possible
situations: (1) |R| > κ; (2) |R| = κ; or (3) |R| < κ. The
algorithm will step into a loop and take different actions for
each case.

1) |R| > κ: we will remove the most dominant objects,
the one that dominates the most other objects, in R
until |R| = κ and exit the loop;

2) |R| = κ: we will try to remove the most dominant
object in R and test if E[C(R)] can be improved. If
so, mark the removed object as visited and continues
the loop; otherwise exit the loop;

3) |R| < κ: we will try to add one unvisited object from
S \ R that is adjacent to the most objects in R and
test if E[C(R)] can be improved. If so, the process
continues; otherwise exist the loop.

The rational behind our algorithm is to treat the densest
subgraph as a good base and gradually adjust it (one object at
a time) as long as the objective function can still be improved.
The time complexity of this algorithm is linear since the
number of loop does not depend on |S|. If we adopt the
approximate algorithm [18] for the densest subgraph, which is
also linear, the overall time complexity of the above procedure
is linear.

3) Uncertainty Reduction (UR) Strategy: DS strategy aims
to maximize the number of effective constraints that can be
derived at each round, but does not differentiate the effective-
ness of each constraint in estimating the preference vector.
As mentioned earlier in this section, the set Lα of linear
constraints obtained at round α together with the set L of all
previous constraints form a convex polytope P and all possible

6However, finding the densest subgraph with at most k vertices is proved
to be NP-complete [15]
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Fig. 2: Selection strategies

values of w lie within P . According to information theory, the
uncertainty of w can be modeled as its entropy, i.e.,

h[w] = −
∫

w∈P
Pr[w] logPr[w]dw (7)

Assuming w has equal chance to take any value inside P ,
we have h[w] = log V (P ), where V (P ) is the volume of P .
Therefore to reduce the uncertainty, we need to reduce the
volume of P as much as possible. Based on this observation,
we aim to find an R such that the expected volume of the
derived polytope is minimized, formalized as the following
objective function:

R = argmin
R⊆S,|R|≤κ

E[V (P )] = argmin
R⊆S,|R|≤κ

∑
oi∈R

Pr[oi]V (Poi) (8)

where Poi is the polytope formed by the constraints based
upon oi being picked by the user, together with all previous
constraints L. Figure 2b gives the geometric representations
of some constraints about w7. Each line labelled with oi,j
represents a linear constraint derived from the pair 〈oi, oj〉. The
squared area indicates the initial constraint before interaction.
If we select {o1, o4, o6} as R and the user picks o4, then the
new uncertain space Po4 will be reduced to the area B∪C∪D.

Greedy algorithm. Finding the optimal R according to Eq. (8)
is also NP-complete (with similar proof of Theorem 2). To
maintain the low latency of the interaction process, we propose
a greedy algorithm based on a heuristic computed for each pair
of candidate objects, which indicates its potential capability of
reducing uncertainty of w when presented to the user.

For each pair of adjacent nodes oi, oj in the dominance
graph GS , the hyperplane (oi − oj)ᵀw = 0 will divide the
hypercube into two polytopes, denoted by P+(oi, oj) and
P−(oi, oj). At the α-th round of interaction, let Pα denote the
polytope formed by all the constraints obtained from previous
rounds, i.e., L. Since w can take any value inside Pα with
equal chance, when the pair of objects oi, oj is presented, a
user’s probability of choosing oi is proportional to the relative
volume of the intersection between P+(oi, oj) and Pα, i.e.,
Pr[oi] = V (P+(oi, oj)∩Pα)/V (Pα). Therefore the expected
volume of the new polytope P ′(oi, oj) after the user’s choice
between oi and oj is

E[V (P ′(oi, oj))] = Pr[oi]V (P+(oi, oj) ∩ Pα)

+ (1 − Pr[oi])(V (Pα) − V (P+(oi, oj) ∩ Pα))
(9)

7This figure is for illustration purpose only. Actually they should be in
three-dimensional space as their are two query keywords.
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It is not difficult to see that Eq. (9) reaches its minimum
value when Pr[oi] = 1/2, which means the hyperplane
(oi − oj)ᵀw = 0 divides Pα into two halves. Hence our
algorithm uses the volume ratio γ(oi, oj) between the smaller
newly intersected polytopes and Pα the heuristic, i.e.,

γ(oi, oj) =
min{V (P+(oi, oj) ∩ Pα), V (P−(oi, oj) ∩ Pα)}

V (Pα)
(10)

Higher γ(oi, oj) implies more uncertainty could be reduced if
the user chooses any one between oi and oj . Therefore our
greedy algorithm will add one pair of objects oi, oj ∈ S into
R at a time in descending order of γ(oi, oj) until |R| = κ.
Easy to see the time complexity of this algorithm is quadratic
to the number of candidates since it needs to calculate γ for
each pair of objects. Consider all the constraints in Figure 2b. If
Pα refers to the original uncertain space (i.e., the unit square),
then the pair 〈o4, o5〉 will be chosen first since the line o4,5
almost equally divides the square. Nevertheless if Pα comes
down to B∪C∪D, 〈o5, o6〉 becomes the most promising pair.

Efficient approximation. However computing the exact vol-
ume of a polytope in multi-dimensional space is an expen-
sive process in general case [19], so we resort to efficient
approximation methods. The basic idea of our approach is to
approximate a polytope with a finite set of points and translate
the problem of calculating volume of polytope to joint set
counting problem, which can be solved more efficiently. We
first randomly generate a set of points X : {x1, x2, ..., xM} in
the (m+1)-dimensional unit hypercube, that is X ⊂ [0, 1]m+1.
Then the volume of each polytope can be approximated by the
cardinality of a subset of X as follows:

V (Pα) ≈ |Xα : {x ∈ X|x satisfies all constraints in L}|
V (P+(oi, oj)) ≈ |X+(oi, oj) : {x ∈ X|(oi − oj)x > 0}|
V (P−(oi, oj)) ≈ |X−(oi, oj) : {x ∈ X|(oi − oj)x < 0}|

(11)

Here a better approximation of the polytopes can be
obtained by increasing M , though it would incur more compu-
tational cost. Since all the polytopes have been approximated
by subsets of X, we can approximate γ(oi, oj) as follows:

γ(oi, oj) ≈ min{|X+(oi, oj) ∩Xα|, |X−(oi, oj) ∩Xα|}
|Xα| (12)

However it still requires iterating through all pairs of candi-
dates and calculating their γ. To further improve the efficiency,
we index the set X+/−(oi, oj) for each pair of adjacent
nodes 〈oi, oj〉 in GS with an inverted list at the beginning
of interaction phase. Note that we only need to index the one
between X+(oi, oj) and X−(oi, oj) with fewer points to save
index space. Afterwards, given an Xα at each round, we look
up each entry x ∈ Xα in the inverted list and in the meantime
maintain a counter C(oi, oj) for each encountered pair in the
list. At last the value C(oi, oj) is exactly the cardinality of the
joint set X+(oi, oj)∩Xα (or X−(oi, oj)∩Xα). Now we only
need to sort all the encountered pairs in their ascending order
of |C(oi, oj)− |Xα|/2| and pick them from the beginning of
the ranked list. Figure 3 illustrates the above process using
our running example. The grey areas represent the subsets
X+(o5, o4) and X−(o4, o6) respectively and the coloured area
represents Xα. Red shaded area in the inverted list means the

entries that overlap with Xα and thus get accessed. At the end
the pair 〈o5, o4〉 is ranked the highest. We can see that indeed
the line o5,4 almost divides the coloured area equally, which
means the approximation is quite effective.

Summary: The essential difference between DS and UR
strategies lies in their different objectives. DS tries to maximize
the expected number of effective constraints that can be
obtained at each round, while UR aims to reduce the expected
volume of uncertain space of w as much as possible. To some
extent, we can regard DS as a quantity-oriented strategy and
UR as a quality-oriented strategy.

D. Candidate Refinement

As outlined by the interaction framework, after a new
constraint set Lα has been added to L, a function RefineCan-
didate() will be invoked. Its main purpose is to reduce the
number of candidates that need to be considered in the next
round of interaction by taking the following actions on the
dominance graph GS :

• For each adjacent pair of nodes oi, oj in GS , if it can
be inferred from Lα that oi is superior/inferior than
oj , then the edge between oi and oj is removed;

• For each object oi ∈ S, if there exist more than k− 1
objects in S that are superior, either by dominance or
inference, than oi, then oi is removed from S.

V. FINALISATION

In this section we briefly discuss the finalisation phase of
the interactive query processing, which includes the explana-
tion of the function Terminate() and final estimation of w.

A. Termination condition

In Algorithm 2, the subroutine Terminate() checks whether
the interaction phase should terminate. This can be explicitly
instructed by the user when she does not want to continue
the interaction, but more preferably it should be done by the
system automatically. Recall that the uncertainty of w can be
measured by the volume of the polytope Pα at each round α,
which keeps decreasing as the interaction goes on. At the end

of each round, we can examine if the ratio
V (Pα)
V (P ) is below a

certain termination threshold τ ∈ (0, 1). Setting a high τ means
the interaction is easier to terminate (converge) but results in
a more uncertain preference; and vice versa.

B. Estimation of w

Once the interaction phase has been terminated, it will
output a constraint set L. Any vector w′ subject to L can be
a valid estimation of w. Inspired by the theory behind SVM
techniques, we try to find the w′ with the highest confidence
to separate superior and inferior objects. This translates to
minimizing ||w′||2 subject to all the constraints in L, where
|| · || is the 2-norm of a vector. The optimal value of w′
can be obtained by any Linear Programming solver such as
LpSolve8 or many mathematical libraries9. Finally, we issue

8http://sourceforge.net/projects/lpsolve/
9For instance, Apache Commons Mathematics Library,

http://commons.apache.org/proper/commons-math/
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Fig. 3: Efficient approximation of UR strategy

TABLE III: Statistics of dataset

Attribute CH NY

Total number of PoIs 8,203,485 206,416

Total number of unique keywords 154,904 87,394

Average number of unique keywords 8 18

a top-k query with w′ to retrieve the topk results from the
remaining candidates.

VI. EXPERIMENTAL EVALUATION

A. Experimental Settings

Algorithms. We study the performance of the GSB algorithm
in Sect. III for retrieving candidates, and the three strategies
for selecting candidates, namely RS, DS and UR, proposed
in Sect. IV. All algorithms were implemented in Java on
Windows 7, and run on an Intel(R) CPU i7-3770 @3.40GHz
with 16GB RAM.

Data and queries. We use two real PoI datasets crawled
from online SNS for our experimental study. The first dataset
(CH) is crawled from Sina Weibo10 and contains around 8
million PoIs in China. Each PoI has a name, location (in the
form of longitude, latitude) and category tags (with several
subcategories). We combine the name and categories as the
textual information of each PoI. The second dataset (NY)
contains around 200 thousand PoIs in New York referred by
the check-in records of Foursquare11. We use the name, tags
and check-in comments as the textual information for each
PoI. The detailed statistics of the datasets are summarized in
Table III. These two datasets are quite different in terms of
the size, area of distribution and the number of keywords per
object.

To generate a spatial keyword query, we first randomly
pick an object in the dataset and regard its location as the
query location. Then we randomly choose a specified number
of words from the object as the query keywords. This object
is temporarily excluded from the database during the query
execution. Each query set contains 100 queries and the average
performance is reported.

B. Experimental Results on CH Dataset

All the parameters and their default values in the experi-
ments on CH dataset are summarized in Table IV.

10http://www.weibo.com
11http://foursqure.com

TABLE IV: Experiment parameter settings

Parameter Values (default in bold)

Data cardinality 0.5M, 1M, 2M, 4M, 8M
Number of query keywords 2,3, 4, 5, 6

k 5, 10, 20, 50, 100

Number of presented candidates κ 2, 4, 6, 8, 10

Termination threshold τ 0.2, 0.4, 0.6, 0.8

Number of rounds 3

1) Experiments on Candidate Generation Phase: We first
test the performance of GSB algorithm proposed in Sect. III.
Since the performances of IR2-tree with different settings
have been studied extensively in [2], we only report our
experimental results of GSB algorithm on IR2-tree with 4K
page size, 1GB LRU buffer size and signature length of 7000.
Each set of experiments measure the CPU time and the number
of I/Os. The CPU time excludes the time cost for loading
data from disk, which dominates the computational time cost.
Rather than measuring physical I/Os, we report simulated I/O
costs. If a leaf node is visited, the cost is increased by 1, and if
a signature file is loaded, the cost is increased by the number
of disk pages used for storing the signature file.

Baseline. Since there is no existing algorithm for geo-textual
skyline search, we devise a baseline method as follows. Each
object is indexed by R-tree based on its spatial location and
inverted index based on its keywords respectively. The baseline
algorithms will first look up the inverted lists to obtain the
objects containing at least one query keyword, and then apply
the BNL skyline search algorithm ( [10] etc. ) to get the final
results. The simulated I/O costs are measured as the number
of accessed page blocks for storing the inverted file.

Effect of data cardinality. To evaluate the scalability of
the GSB algorithm, four additional datasets are generated by
sampling CH from 0.5 million to 4 million PoIs. As shown in
Figure 4a, while the CPU time and I/O costs of both methods
increase with the cardinality of the dataset, the scalability of
GSB algorithm is much better. We find that when the dataset
is relatively small (0.5M), the I/O cost of GSB is even greater
than that of the baseline method. A possible explanation is, the
I/O cost of baseline method is only dependent on the number of
objects sharing common keywords with the query, while GSB
algorithm may need to access extra nodes that are farther away
from query location when data become sparser.

Effect of query keywords. Figure 4b shows the performances
of both algorithms when the number of query keywords vary
from 2 to 6. We did not further increase this number as in
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Fig. 4: Performance evaluation of GSB algorithm (CH)

practice a user would not bother to type too many keywords.
As expected, increasing the number of query keywords will
incur more CPU time and I/O costs for both algorithms.
This is because (1) it is getting harder for an object to be
dominated when more keywords are involved in determining
the dominance relation and thus more objects become skyband;
and (2) the chance of a node being filtered using the signature
is lower; and (3) more inverted lists in the baseline algorithm
need to be retrieved when there are more query keywords.

Effect of k. We also evaluate the performance of candidate
generation by varying k from 5 to 100. From Figure 4c we
observe that the I/O cost of the baseline method is not affected
but its CPU time increases dramatically. This is due to the
fact that the same amount of objects are loaded from disk
regardless of how k changes. Nevertheless a greater k means
more dominance checks need to be performed against all the
candidates. The CPU time and I/O cost of GSB algorithm also
rise with k but at much lower rates.

2) Experiments on Interaction Phase: Next we evaluate
the performance of different candidate selection strategies
proposed in Sect. IV. In particular, we evaluate both effec-
tiveness and efficiency of the three strategies, namely Random
Selection (RS), Densest Subgraph (DS) and Uncertainty Re-
duction (UR). For the UR method, we generate 10K points
to uniformly distribute in the preference space. We perform
three rounds of interactions for each query. The efficiency
is measured as the average running time per round during
interaction.
Effectiveness measure. To measure the effectiveness, for each
query we randomly generate a vector w to simulate a user’s
preference. At each round, the candidate with the highest utility
score w.r.t. w is picked and finally w′ is estimated. Let π and
π′ denote the top-k results based on w and w′ respectively.
We adopt a highly cited distance function proposed by Fagin
et al [20] to compare two top-k lists, i.e.,

F (π, π′) =
∑

o∈π∩π′
|π(o) − π′(o)| + 2(k − |π ∩ π′|)(k + 1)

−
∑

o∈π\π′
π(o) −

∑
o∈π′\π

π′(o)
(13)

where π(o) represents the position of object o in the top-k list
π. It is easy to prove the inequality 0 ≤ F (π, π′) ≤ k(k + 1)
holds. F reaches the minimum when two lists are exactly the
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Fig. 5: Interaction performance with varying k (CH)

same and maximum when they are completely different. We
translate this distance into an accuracy measure as follows.

Accuracy = 1 − F (π, π′)
k(k + 1)

(14)

In each effectiveness test, we also construct a baseline top-
k list using an equal-weighted preference vector and compare
it with the interactive methods. Next we present the effect of
k, the number of query keywords and the number of objects
displayed to users at each round. We do not show the effect of
the database cardinality since it does not affect the interaction
performance once all the candidates have been retrieved.

Effect of k. As demonstrated in Figure 5a, DS and UR become
more time consuming when k increases since more candidates
are generated. The running time of UR climbs up more quickly
than DS because it examines (almost) every pair of candidates.
Nor surprisingly, random selection is the most efficient strategy
and consumes constant time regardless of k. Regarding their
accuracies (Figure 5b), UR performs the best followed by DS
closely and then RS. It is interesting to see that even RS can
outperform the equal-weighted vector by a large margin. All
accuracies deteriorate with greater k since it is more likely to
include incorrect objects within a longer top-k list.

Effect of query keywords. The number of query keywords
has similar effect on both efficiency and accuracy of interaction
phase, as demonstrated in Figure 6a and 6b. This is because
the number of query keywords means the dimensionality of
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Fig. 7: Interaction performance with varying κ (CH)

the user’s preference, thus the more query keywords, the more
candidates can be generated and the higher uncertainty there
is in the user’s preference.

Effect of κ. Figure 7a shows the time costs of different
selection strategies by varying number of candidates presented
at each round from 2 to 10. We do not further increase κ
since it is difficult to identify the favourite object from too
many candidates in practice. Besides of RS, which remains
unaffected, UR is also insensitive to this parameter due to the
fact that the predominant cost of UR lies in ranking all pairs of
candidates according to Eq. (12) that is independent of κ. An
interesting observation is that DS becomes less efficient when
presenting fewer candidates. To explain this, recall that DS
will first find the densest subgraph and adjust it based on the
relationship between the subgraph cardinality and κ. Usually
the densest subgraph cardinality is greater than the chosen κ,
so it takes extra time to drop the vertices with the least edges.
Figure 7b demonstrates that all the interaction based methods
lead to higher accuracies when presenting more candidates
per round. This is as expected since more constraints on the
preference vector are potentially to be derived. We also notice
that the marginal benefit of increasing κ is more obvious for
DS than UR because DS needs more candidates presented in
order to obtain more constraints while UR relies more on the
power of individual constraint in terms of the ability to reduce
uncertainty.
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Fig. 8: Effect of τ (CH)

3) Experiments on Finalisation Phase: The last set of
experiments evaluate the effect of τ , the termination threshold
in Sect. V, on the query accuracies and convergence speeds
of the three selection strategies. The convergence speed is
measured as the number of rounds needed before the termi-
nation condition is satisfied. We cap the maximum number of
rounds to be 10 to avoid the cases when τ is hard to achieve.
Figure 8a compares the convergence speeds of three selection
strategies. Generally RS has much slower convergence speed
than the other two methods, especially it cannot even terminate
automatically when τ is set too low. UR can converge more
quickly than DS especially for low τ as it aims to reduce
the volume of the preference space as much as possible at
each round. Figure 8b shows that all accuracies decline as
the threshold is raised (relaxed). Moreover, once τ is set,
the accuracies of all strategies are quite similar since the
uncertainty in the final preference is decided by τ .

C. Experimental Results on NY Dataset

We test the same set of parameters on NY dataset and
observe the similar results. The main difference with CH
dataset is that: (1) time and I/O costs of GSB algorithm
are lower because NY is a smaller dataset and the dis-
tribution of objects is more concentrated; (2) interaction
phase becomes more efficient since less candidates have been
generated. An explanation is that the average number of
unique keywords on each object in NY is greater than CH,
which means there is higher chance for fewer objects to
dominate the rest. Due to space limitation, we show the
complete experiment results on NY in our technical report
(http://staff.itee.uq.edu.au/kevinz/papers/itksk2014.pdf).

VII. RELATED WORK

Spatial keyword queries. Searching geo-textual objects with
query location and keywords has gained increasing attention
recently due to the popularity of location-based services.
Besides of the work that have been classified in Sect. I,
many variants of spatial keyword queries have also been
proposed such as moving spatial keyword query [21], reverse
spatial-textual nearest neighbor query [22], m-closest keyword
queries [23][24], approximate spatial keyword query [25],
direction-aware spatial keyword query [26], region based
spatio-textual query [27] and so on. While various novel
indexes and query processing algorithms have been devel-
oped, they all assume the users know exactly about their
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preferences between spatial proximity and textual relevance,
so query efficiency is the only focus of these work. On the
other hand, we observe this assumption may not be always
realistic and thus investigate how to automatically learn the
user’s preference through interactions. Therefore we focus on
both the effectiveness of learning and efficiency of interaction
process.

Interactive queries. There are also papers that consider in-
ferencing the utility function by requiring feedbacks from
the user. Mindolin et al. [28] propose the p-skyline query
which is a framework that assumes that different attributes
have varying levels of importance. This enables the system to
rank the tuples and control the output size. To avoid asking
users directly for weights, they offer an alternative approach
to discover importance from user feedback, i.e., the user
has to partition example tuples to desirable and undesirable
groups. Jiang et al. [29] propose to mine user preferences
on some categorical attributes of tuples that have no natural
partial order. Their interaction process requires the user to pick
superior and inferior examples from the presented tuples. In
our paper, we ask users to pick one tuple per round, which is
less demanding than the partition-based feedback approach but
more challenging since less information can be obtained each
round. We adopt the same interaction style with the work [9].
However, as discussed in Sect. I, it constructs virtual tuples
rather than searching existing tuples to present at each round,
which means their method cannot be applied to solve our
problem in this work.

VIII. CONCLUSION

In this work we have analysed the hardness of specifying
preference weights between spatial proximity and keyword
relevance in conventional top-k spatial keyword queries and
proposed the ITkSK query that can learn the users’ preferences
automatically based on their feedback. Our solution starts
with finding the k geo-textual skyband objects as the initial
candidates, then strategically presents a subset of candidates
to the user at each round during the interaction iteration
and finally retrieve the top-k tuples based on the estimated
preference vector. Extensive experiments based on real PoI
datasets have been conducted and the favourable results have
confirmed that the quality of top-k spatial keyword queries can
be enhanced significantly with even a small number of rounds.
In future it is also interesting to investigate the effect of other
interaction approach, e.g., allowing the user to pick multiple
favourable objects per round.
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