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Abstract—What-if analysis is a data-intensive exploration to
inspect how changes in a set of input parameters of a model
influence some outcomes. It is motivated by a user trying to
understand the sensitivity of a model to a certain parameter
in order to reach a set of goals that are defined over the
outcomes. To avoid an exploration of all possible combinations of
parameter values, efficient what-if analysis calls for a partitioning
of parameter values into data ranges and a unified representation
of the obtained outcomes per range. Traditional techniques to
capture data ranges, such as histograms, are limited to one
outcome dimension. Yet, in practice, what-if analysis often in-
volves conflicting goals that are defined over different dimensions
of the outcome. Working on each of those goals independently
cannot capture the inherent trade-off between them. In this paper,
we propose techniques to recommend data ranges for what-if
analysis, which capture not only data regularities, but also the
trade-off between conflicting goals. Specifically, we formulate a
parametric data partitioning problem and propose a method
to find an optimal solution for it. Targeting scalability to large
datasets, we further provide a heuristic solution to this problem.
By theoretical and empirical analyses, we establish performance
guarantees in terms of runtime and result quality.

I. INTRODUCTION

Given a simulation model of some complex system, what-
if analysis aims at exploring the dependencies imposed by

the model between input parameters and outcomes [12]. It is

performed if the outcomes cannot be easily captured as a math-

ematical function over the input parameters. What-if analysis

has diverse applications, e.g., in data warehousing [27], system

workload profiling [17], policy design and forecasting [16],

and source code management [4].

Traditional What-if Analysis. What-if analysis involves (i) a

set of input parameters for which values are chosen by a user;

(ii) a simulation model that, given a set of values for the input

parameters, produces an outcome; and (iii) a goal according to

which some outcomes are preferred over others [12]. What-if

analysis enables a user to understand the dependencies between

parameters and outcomes, exploring how the outcome improves

(w.r.t. the given goal) when changing particular parameters [12].

Although a goal is often specified as an optimisation problem,

its actual solution is typically not the primary concern of a

user. Rather, a user strives for insights that go beyond knowing

an optimal solution in order to take well-informed decisions.

A common approach to what-if analysis is interactive and

iterative, driven by a visualisation of the relation between
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input parameters and outcomes. One of the parameters is

profiled by varying the remaining parameters and relying on

the model to derive the outcomes. The obtained results are then

visualised, e.g., as a histogram [11, 24]. By exploring its shape,

a user derives insights on the regularities and patterns of the

system represented by the model. However, having a histogram

show the outcomes for all parameter values is overwhelming

for users. Hence, models such as maxdiff-histograms [39]

or v-optimal histograms [23] partition parameter values into

ranges and visualise aggregated outcomes. The partitioning

and aggregation, in turns, aim at preserving characteristics and

patterns in the relation between parameters and outcomes.

What-if Analysis with Conflicting Goals. Methods for what-

if analysis based on histograms do not generalise to scenarios,

in which multiple goals are defined over different dimensions

of outcomes. Such goals are often conflicting: an outcome may

be preferred over another one according to one goal, but not

according to a second goal. What-if analysis enables users to

explore and thereby understand these trade-offs between goals.

As an example, we consider the scenario of a user exploring

flight connections between two cities as captured in Table I.

Here, the travel date, changed explicitly by the user, and various

implicit factors (not shown, e.g., airline and number of stops)

serve as input parameters. The outputs are specific connections,

evaluated along two dimensions: price and duration. The user’s

goal is to minimize both, the price and the duration. Using

a model given as a query over some database of flight data,

these goals turn out to be conflicting—some short connections

are more expensive than those with a long duration.

TABLE I: Data for what-if analysis of flight connections.

Travel Date Duration (min) Price (USD)

01/12/2016 480 485.65
03/12/2016 540 534.87
04/12/2016 620 1616.2
06/12/2016 600 362.1
06/12/2016 600 398.57

To explore this trade-off, a user may rely on the plot in

Fig. 1. Here, the x-axis represents possible values of the explicit

parameter, the travel date. Each value is associated with a data
grid of possible outcomes. Each outcome is a data point in

two dimensions: price and duration of the flight connection.

It is apparent that the visualisation offered in Fig. 1 does not

scale in the number of explored parameter values, e.g., a few
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Fig. 1: Grids of possible outcomes

Data Grid

T[��, ��]

Fig. 2: Merged grids

years of flight data. Therefore, what-if analysis requires data

aggregation methods to provide a more compact representation

of the data, while preserving specific patterns in the data.

However, simply merging all grids (Fig. 2) hides data patterns

and is thus not particularly useful for data exploration [22].

Rather, users shall be supported in the precise definition of their

interests, which requires illustration of existing data patterns.

Challenges. To enable effective what-if analysis in the presence

of conflicting goals, the number of visualised data grids needs

to be reduced, as done by maxdiff-histograms or v-optimal

histograms for scenarios with a single goal. Parameter values

need to be merged into ranges and their associated grids shall

be summarised by a new representative grid. The extent of data

aggregation is then controlled by a user selecting a pre-defined

number b (buckets) of data ranges to appear in the result.

When summarising data grids for what-if analysis, two

questions need to be answered:

(1) Which data to aggregate? Aggregation incurs information

loss. Yet, effective analysis requires the characteristics of the

data to be preserved as much as possible, raising an optimisation

problem: data range partitioning aims at finding a partition

of the domain of an input parameter, so that the resulting

aggregation of data grids has minimal information loss.

(2) How to aggregate data? Once parameter ranges have been

identified, their associated data grids need to be aggregated.

The challenge here is the construction of a representative data

grid that effectively summarises the original grids.

Answering the above questions is difficult not only from a

conceptual point of view, but also in terms of the induced

scalability challenges. What-if analysis often faces large

datasets. The parameter domains to explore may show up

to 100K values [35], meaning that a large number of data

grids, each comprising up to millions of data points [5], need

to be aggregated. Also, there is a combinatorial explosion of the

number of possible aggregations. Since the lengths of the data

ranges in the result are arbitrary, there is a factorial number of

possible partitions of the domain of a parameter. For example,

Fig. 3 shows two possible partitions of Fig. 1. Fig. 3b turns out

to be more informative than Fig. 3a, since it shows a pattern of

flights on t4 and t5 (i.e., weekend days) being worse in price

and duration compared to the remaining dates.

Approach. We argue that for large-scale what-if analysis with

conflicting goals, it is neither feasible nor reasonable to consider

all available data. In fact, many data points are dominated by

other points regarding all goals. In Fig. 1, there are flight

options (grey dots) that are dominated by other options (green

dots) in price and duration. Such redundant points are not of
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Fig. 3: Sample data range partitions

interest to a user and shall be neglected in data aggregation.

Against this background, we ground what-if analysis in

skylines [5] (or Pareto sets) of data grids, i.e., the set of their

non-redundant data points (i.e., the green points in Fig. 1). This

has several advantages. It enables us to compute the similarity

of two grids as the distance of their skylines, measured

efficiently based on the multi-dimensional area bounded by

them. Such similarity assessment then guides the selection of

data grids to be aggregated. Furthermore, the construction of a

representative data grid becomes another skyline computation

based on all non-redundant data points of the original data

grids. Then, the information loss implied by the aggregation

is measured by the total distances between the skyline of the

representative grid and the skylines of the original grids.

Based on this general idea, the contributions of this paper

are summarised as follows:

• We present a computational model to measure the similarity

of data grids, to construct a representative grid, and to

quantify the information loss induced by aggregation. This

model is based on skylines of data grids.

• To find an optimal data range partition, we propose an

algorithm with a time complexity of O(n2 ·b) and space

complexity of O(n2), b being the number of data ranges

and n being the number of original data grids. We show that

the problem has an optimal sub-structure property, which

gives rise to a dynamic programming procedure.

• Analysing properties of our computational model, we

propose improvements of the algorithm to solve the data

range partitioning problem. By amortizing the computation

of the information loss, we are able to reduce the time

complexity to O(n2) and the space complexity to O(n ·b).
• We propose a heuristic solution to data range partitioning,

which exploits that highly similar neighbouring data grids

typically end up in the same representative grid. This

heuristic solution has pseudo-linear complexity, i.e., it runs

in O(b ·m ·n) time and O(b ·m) space with m� n.

• Finally, for interactive data exploration scenarios, we

present techniques that support parameter domain exten-

sions, dynamic adaptation of the number of buckets, and

drill-down into specific ranges.

Structure. The next section reviews related work. The data

range partitioning problem is introduced in §III, before §IV

describes the measurement of information loss, the construction

of a representative data grid, and the computation of an optimal

solution for data range partitioning. §V presents scalability

improvements and a heuristic algorithm. We then discuss

interactive data explorations scenarios in §VI, before §VII
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presents an experimental evaluation. §VIII concludes the paper.

II. RELATED WORK

What-if analysis studies the effects of parameters on the

outputs of a complex system [12]. Types of what-if analy-

sis vary in how a complex system is modelled, including

hypothetical modifications [9], stochastic simulation [2], or

statistical methods [28]. In this work, we study what-if

analysis for data exploration, where the model of a system

is non-trivial. Although the setting is similar to sensitivity

analysis [41], traditional techniques consider only one outcome

dimension and, thus, one goal. Our use cases are scenarios

with multiple, conflicting goals, for which skylines turn out to

be an appropriate representation of data grids.

Our problem setting is similar to the one of database

exploration techniques [22], especially in the context of multi-

objective optimisation problems [7]. That is, users cannot

formulate their interests as a query until the data of interest is

shown to them. However, in what-if analysis, users commonly

share some constraints to optimize (e.g., the price), whereas

their requirements differ in other dimensions (e.g., setting a

threshold for the maximal duration). Moreover, what-if analysis

cannot be tracked back to multi-objective optimisation as the

trade-off between conflicting goals cannot be encoded. For

instance, there is no deterministic weighting of goals to apply.

Histograms. Data exploration scenarios with a single goal often

employ histograms to approximate the distribution of data [11,

14, 15, 24, 25]. Different types of histograms have been studied

in the literature, such as: (i) equi-width histograms [35], (ii)

equi-depth histograms [35], (iii) v-optimal histograms [23], (iv)

maxdiff-histograms [39], (v) compressed histograms [39]. The

quality of histogram construction is measured by error functions

that are specific to application domains and data characteristics.

Examples include the sum of squares of absolute errors [46],

maximum error metrics, and relative error metrics [24].

Histograms have also been studied in signal and image

processing [26] under the name of wavelets. Here, the idea is

to apply hierarchical decomposition functions to transform raw

data into wavelet coefficients. Despite having different concepts

and techniques, wavelet construction shares some similar

complexity and quality results with histogram construction.

The state-of-the-art in histogram construction is limited

to a single outcome dimension. So-called multi-dimensional

histograms [32, 40] are either based on dimensionality reduc-

tion (SVD and Hilbert numbering) and lack guarantees on

the result quality, or partition each dimension incrementally

(MHIST [40]). In the latter case, a dimension is partitioned

only based on the partition of the previous dimension, which

neglects any trade-off between outcome dimensions.

Skyline Computation. The computation of skylines (or Pareto

sets) has been investigated in the context of databases [5] and

decision-support [34]. A first skyline algorithm (solving the

maximal vector problem) was presented in the seminal work by

Kung et al. [30]. More recently, skyline computation exploits

block-nested loop and divide-and-conquer algorithms [5]. For

the special case of modelling each skyline point by a monotone

function over all dimensions, a nearest neighbour algorithm

may also be used [29]. A state-of-the-art algorithm for skyline

computation over static data is based on branch-and-bound-

search [36]. Most algorithms to compute skylines utilise R*-

trees and have a time complexity of O(n · logn).
Recently, variations of skylines, e.g., dynamic skylines and

reverse skylines [33], gained popularity in P2P applications [31]

and for streaming and uncertain data [3, 51]. Also, to query a

skyline without scanning the whole input data, progressive

algorithms [36, 44] and parallelisation schemes [37] have

been proposed. Yet, skylines have not yet been studied in

what-if analysis. We will demonstrate that what-if analysis

motivates novel techniques for merging skylines and computing

the distance between them.

III. MODEL AND PROBLEM STATEMENT

Consider a parameter T that a user wants to explore. T takes

a finite sequence of possible values 〈t1, . . . , tn〉 that defines

a natural order of the domain R of T , where t1 < .. . < tn
and ti ∈ R, 1 ≤ i ≤ n. A user is interested in profiling this

parameter by running the simulation model for each parameter

value, while varying other parameters to generate possible

outcomes. As a result, each parameter value ti is associated

with a data grid πi. Each data grid is a set of possible outcomes,

i.e., π = {p1, . . . , pm}. In this work, we consider outcomes

to be two-dimensional as a starting point for generic what-

if visualisation [42]. Technically, an outcome is a data point

p = (x,y)∈ R×R representing the trade-off along two outcome

dimensions. As a short-hand, we use p|x = x and p|y = y to

denote the values of the outcome. The domain of x and y is

discrete and finite and, without loss of generality, assumed to

be the same as for the parameter. User preference is encoded

for x and y in an increasing order, such that the smaller the

value of x or y, the more preferred the respective outcome.

Denote by Π = 〈π1, . . . ,πn〉 the finite sequence of data grids

associated with the value sequence of T . By Π∪ = {π1, . . . ,πn},
we denote the set of the grids in Π. Further, P =

⋃n
i=1 πi is

the set of all possible outcomes of T . To limit the cognitive

load imposed on a user, outcomes are not considered for all

possible values of T , but for a predefined number b of data

ranges. This requires construction of a representative data grid

for a set of original data grids by a function f : 2Π∪ → 2P.

The construction of a representative data grid implies

information loss. To capture this information loss, we define

the distance between two data grids (aka information distortion)

as d : 2P×2P → R. Then, the information loss for a given set

of grids A ⊆ Π∪ is measured by the total distances between

the representative data grid and the original grids:

ζ(A) = ∑
π∈A

d( f (A),π). (1)

Recommending b data ranges of the parameter T for a user

is equivalent to constructing a non-overlapping partition of

parameter values. Since the value domain of T is a sequence,

we can define the partition over the indices for simplicity’s sake.

91



That is, a partition V = 〈v0,v1, . . . ,vk−1,vk〉 is valid if k = b and

0= v0 < v1 < .. . < vk−1 < vk = n, which distributes the original

values 〈t1, . . . , tn〉 to subsets 〈⋃v1
i=v0+1 ti, . . . ,

⋃vb
i=vb−1+1 ti〉. With

V as the set of all valid partitions, we define to the problem

of data range partitioning for what-if analysis:

Problem 1 (Data Range Partitioning): Given a sequence of

data grids Π = 〈π1, . . . ,πn〉 and a number of data ranges b, find

a valid partition V ∗ ∈ V with minimal total information loss:

V ∗ = argmin
V=〈v0,v1,...,vb−1,vb〉∈V

b−1

∑
k=0

ζ

( vk+1⋃

i=vk+1

πi

)
(2)

Using a solution V ∗, the original data grids in each data

range of the partition 〈⋃v1
i=v0+1 πi, . . . ,

⋃vb
i=vb−1+1 πi〉 replaced by

representative data grids 〈 f (
⋃v1

i=v0+1 πi), . . ., f (
⋃vb

i=vb−1+1 πi)〉.
Table II summarizes important notations.

Example 1: The example from Fig. 1 can be represented in

this model as follows: The parameter T is a possible start date

of the trip. For each date, Fig. 1 shows a data grid with several

flight options in two dimensions, x being the duration and y
being the price. The example also illustrates the data range

partitioning problem: The price for connections on a weekend

(t4 and t5) is higher than for the other days. Hence, a good

partition with b = 3 might be 〈t1, t4, t6〉 since the range [t4, t5]
would capture the high-price pattern for the weekend days.

TABLE II: Overview of notations.

Πk = 〈π1, . . . ,πk〉 A sequence of data grids
Ωk = 〈ω1, . . . ,ωk〉 A sequence of skylines
V = 〈v0,v1, . . . ,vb−1,n〉 A valid partition of data ranges
d : 2P×2P → R The distance between two data grids

f : 2Π∪ → 2P Function to merge data grids into a single grid

ζ : 2Π∪ → R Information loss of a subset of data grids
I(ω) Dominated value space of a skyline ω

IV. A METHOD FOR DATA RANGE

PARTITIONING BASED ON SKYLINES

This section instantiates the problem of data range parti-

tioning for what-if analysis with conflicting goals. Based on

skylines, we show how to measure the similarity of data grids

(§IV-A), how to construct a representative data grid (§IV-B),

and how to quantify the information loss incurred by aggre-

gation (§IV-C). Finally, we present a dynamic programming

algorithm to solve the data range partitioning problem (§IV-D).

A. Distance between data grids

We capture the amount of difference in user interest in

the outcomes of data grids by measuring their distance. In

the presence of conflicting goals, a distance measure shall be

agnostic to redundant outcomes, which are dominated by other

outcomes in all dimensions and thus not of interest to a user.

Consequently, we trace back the distance between data grids

to the distance between their skylines.

Skyline construction. Given a set of data points, a skyline [5]

comprises only points that are not dominated by other data

points. Formally, a point p dominates another distinct point

q, denoted as p� q, if and only if the values of p are equal

or smaller than those of q, p|x ≤ q|x ∧ p|y ≤ q|y. A point is

redundant, if it is dominated by at least one point.
Using existing techniques [36], a skyline is computed in

O(|π| log |π|) time, where |π| is the number of data points.

That is, each data grid π is reduced into a skyline ω of non-

dominated points, i.e., ω = {p ∈ π : � p′ ∈ π, p′ � p}, such

that ∀ p′ ∈ π\ω,∃ p ∈ ω, p� p′. A skyline is generally much

smaller than the original data grid [5]. Below, we assume

skylines to be precomputed for all data grids, with their points

sorted by their x-values (breaking ties by the y-values) [44].
We further define Σ as the space of all possible points

and, based thereon, the dominated value space of a skyline

ω as I(ω) = {p ∈ Σ : ∃ p′ ∈ ω, p′ � p}. This notion induces

a partial ordering on distinct skylines: We write ω � ω′ if

and only if ∀ p′ ∈ ω′,∃ p ∈ ω, p � p′. Hence, it holds that

ω� ω′ ⇔ I(ω′)⊆ I(ω).
Distance between skylines. A skyline defines a bound for the

outcomes of a data grid that can be represented by a staircase

line [36]. Data points not belonging to the skyline are above this

line. The distance between two skylines can thus be measured

by the area bounded by the staircase line. Formally, we define

this distance as the symmetric difference between the dominated

value spaces: d(ω,ω′) = |(I(ω)∪ I(ω′))\ (I(ω)∩ I(ω′))|.


(�) �(�, �) 
(�) 

Fig. 4: Distance between two data grids

Example 2: The distance between data grids π and π′, with

skylines ω and ω′, is illustrated in Fig. 4. The solid areas show

the dominated value spaces. Intuitively, the distance between ω
and ω′ is the difference between these areas (shown as dashed).

We present an algorithm to compute the distance between

two skylines in the supplement [45] of this paper. It sweeps

through two skylines in the order of increasing x-values and

finds crossings of line segments to measure the overlap of

the dominated value spaces. Using this algorithm, the distance

between skylines ω and ω′ is computed in O(|ω|+ |ω′|) time.

B. Construction of a representative data grid
To construct a representative data grid from a set of data

grids, we need to merge their data points, retaining dominating

points and discarding the redundant ones, which again yields

a skyline. A naive construction would take the union of all

data points and then compute the skyline. However, since the

skylines of the original data grids are available, it is more

efficient (and equivalent) to work on the original skylines.
Formally, the representative data grid of a set of grids Π∪k =

{π1, . . . ,πk} is obtained by constructing their skyline. With

Ω∪k = {ω1, . . . ,ωk} as a set of skylines, ωi being the skyline

of grid πi, the representative grid as a skyline is defined as:

f (Π∪k ) = f (Ω∪k ) =

⎧⎨
⎩p ∈

⋃

ω∈Ω∪
k

ω | � q ∈
⋃

ω∈Ω∪
k

ω,q �= p,q≤ p

⎫⎬
⎭ (3)
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such that | f (Ω∪k )| is maximal.

However, merging skylines can introduce new redundant

points, which need to be removed when performing the merge.

Another challenge is to preserve the order of data points in

the x-values for further computations.

To address these challenges, we propose an optimal solution

in Alg. 1. The input is given as k arrays of skyline points

sorted by their x-value. The main idea is that, when merging

skylines, one keeps track of the minimal y-value and discards

all redundant points. To preserve the order in the x-values,

a priority queue tracks the minimal value of the currently

traversed elements (i.e., heads) of input arrays. According to

the definition of a skyline, we ensure that there are no points

with the same x-value or the same y-value (lines 2, 3 and 11),

since two skylines may have two different points with the same

x- or y-values. More precisely, we iterate over all points in

increasing order of their x-values (line 6) with the help of a

priority queue Q. As part of each iteration, we compare the

y-value of the current point with ymin (line 11). If it is larger,

p is redundant due to the definition of a skyline. The output

is a new skyline ω̂ which is also sorted by the x-values.

Correctness of the algorithm follows directly: the result

contains only points of the original skylines that are not

dominated by another point in the result.

Theorem 1: The time complexity of Alg. 1 is O(k logk),
with k being the number of skylines.

All proofs are part of the supplement [45] of this paper.

� �(�,�) �
 

Fig. 5: Merging of skylines

Example 3: For skylines ω and ω′ of two data grids, Fig. 5

illustrates the merged skyline of the representative data grid. It

contains solely non-redundant points of the original skylines.

C. Computation of information loss

We now show how to compute the information loss induced

by the construction of a representative data grid. Following

the above rationale to neglect redundant data points, we work

directly on the skylines. That is, we measure information loss

based on the distances between the skyline of the representative

data grid and those of the original data grids:

ζ({π1, . . . ,πk}) = ζ({ω1, . . . ,ωk}) = 1

k

k

∑
i=1

d( f (
k⋃

j=1

ω j),ωi) (4)

where ωi is the skyline of data grid πi.

As detailed above, merging k skylines by means of Alg. 1

takes O(∑k
i=1 |ωi| logk) time, while measuring the k distances

requires O(∑k
i=1 |ωi|) time. Hence, computing information loss

requires O(m · k logk) time, where m is the average size of

skylines. If m is small or fixed, we can consider it as a constant.

Algorithm 1: Merging skylines

input : A set of skylines Ω∪
k = {ω1, . . . ,ωk}, each sorted by their x-dimension

output : A new skyline ω̂ = f (Ω∪
k )

1 ω̂ = 〈〉 ;
2 ymin =+∞ ;
3 xmax =−∞; � Ensure no duplicate

// Initialise priority queue
4 Q[i] = ωi[1]|x for all 1≤ i≤ k; � Head elements of k arrays
5 pivot[i] = 1 for all 1≤ i≤ k; � Pivots for k arrays
6 while Q is not empty do

// Select the array whose pivot element has minimal x-value
7 m = argmin1≤i≤k Q[i]; � Remove the head of priority queue
8 p = ωm[pivot[m]] ;
9 pivot[m] = pivot[m]+1 ;

// Insert next element into priority queue
10 if pivot[m]≤ |ωm| then Q[m] = ωm[pivot[m]]|x ;

// Check the redundancy
11 if p|x > xmax and p|y < ymin then
12 ω̂ = ω̂.〈p〉; � Append p to output
13 ymin = p|y;
14 xmax = p|x;

15 return ω̂;

D. Optimal data range partitioning

Using the notions introduced above, we now present an

algorithm to solve the problem of data range partitioning

(Problem 1). Our algorithm exploits the optimal sub-structure

property of the problem: the solution for a sequence of skylines,

and thus data grids, can be computed from the solutions of

sub-sequences. Such an approach, however, requires knowing

the information loss induced by merging a set of skylines that

fall into a particular range. We therefore first focus on the

pre-computation of information loss for sets of skylines.

Pre-computation of information loss. Given a sequence of

skylines Ω = 〈ω1, . . . ,ωn〉, we construct an n× n matrix of

information loss. Each element L[ j, i] is the information loss

of merging the j-th to i-th skylines (L[ j, j] = 0 by definition):

L[ j, i] = ζ(
i⋃

t= j

ωt) (5)

For a static number of data points in the skylines, the matrix

is constructed in O(n3 logn) time and with O(n2) space, since

we iterate over all possible ranges (1≤ j < i≤ n).

Finding optimal boundary positions. Our algorithm is mo-

tivated as follows. Let V [i,k] be an optimal partition for the

sequence 〈π1, . . . ,πi〉 of data grids into k data ranges. Then,

the respective total of information loss Q[i,k] (referred to as

optimal information loss) is given as:

Q[i,k] =
k−1

∑
l=0

ζ(
vl+1⋃

t=vl+1

πt) =
k−1

∑
l=0

L[vl +1,vl+1] (6)

where vt ∈V [i,k] and vk = i, while Q[i,1] = L[1, i] by definition.

We note that the optimal information loss of the sequence

from 1 to i with k data ranges can be computed from the

sequence from 1 to i−1 with k−1 data ranges:

Q[i,k] = min
1≤ j<i

{Q[ j,k−1]+L[ j+1, i]} (7)

That is, the solution for k data ranges can be reduced to the case

of k−1 data ranges by considering all possible partitions of the
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Algorithm 2: Obtaining an optimal solution

input : An n×n information loss matrix L, a number of data ranges b
output : An optimal partition V ∗ and the minimal information loss Q[n,b]

1 Initialise an empty matrix Q[i,k]n×b ;
2 Initialise an empty matrix V [i,k]n×b ;

// Dynamic programming
3 for k = 1 to b do
4 for i = 1 to n do
5 min =+∞ ;
6 for j = i-1 to 1 do
7 if Q[ j,k−1]+L[ j+1, i]< min then
8 min = Q[ j,k−1]+L[ j+1, i] ;
9 V [i,k] = j ;

10 Q[i,k] = min ;

// Construct the boundary positions of the partition
11 V ∗ = 〈〉 ;
12 j = n ;
13 k = b ;
14 while j > 0 do
15 j =V [ j,k] ;
16 k = k−1 ;
17 V ∗ = 〈 j〉.V ∗ ; � Insert j into the head of V ∗

18 return V ∗, Q[n,b];

rightmost (k-th) data ranges. The correctness of this observation

is proved by induction and contradiction: By definition, the

optimal information loss Q[i,k] is the sum of information losses

over all data ranges L[vt +1,vt ] of an optimal partition.

Exploiting this observation, Alg. 2 solves the data range par-

titioning problem using dynamic programming. The algorithm

calculates the information loss matrix bottom-up: It computes

Q[i,k] for 1≤ i≤ n and 1≤ k < b, in increasing order of k, for

any fixed k, in increasing order of i. These values are stored,

so that they can be retrieved if needed in the computation

of later values. The result parts are obtained by maintaining

an additional matrix V [i,k] to keep track of the data range

boundary positions of evaluated partial solution.

Theorem 2: The time complexity of Alg. 2 is O(n2 ·b) with

n and b being the numbers of skylines and data ranges.

Again, the proof can be found in the supplement [45].

Furthermore, the output of Alg. 2 is an optimal solution with at
most b data ranges in the result. To generate exactly b ranges,

we skip the computation of Q[i,k] for any i < k and set it to

+∞. Then, these solutions will not be chosen when searching

the optimal boundary position j.

V. PERFORMANCE IMPROVEMENTS

Targeting large-scale what-if analysis, this section focuses

on solving the data range partitioning problem more efficiently

than the above algorithm. We first identify properties of our

model that help to reduce the complexity of our algorithm,

while maintaining optimality (§V-A). Second, we present a

heuristic solution with pseudo-linear complexity (§V-B).

A. Improvements of the optimal algorithm

Efficient pre-computation. The naive approach to pre-

compute the information loss matrix outlined in §IV-D has

cubic time complexity. However, both functions, f (.) to merge

skylines and d(., .) to measure the distance between skylines,

can be computed incrementally. Hence, the computation of the

information loss matrix can be amortized.

Algorithm 3: Pre-computing information loss

input : A sequence of skylines Ω = 〈ω1, . . . ,ωn〉
output : An information loss matrix L

1 for 1≤ i≤ n do
2 L′ = 0 ;
3 ω̂′ = ωi ;
4 for i > j ≥ 1 do
5 ω̂ = f (ω̂′,ω j) ; � Merge two skylines
6 L′ = L′+(i− j)d(ω̂, ω̂′)+d(ω̂,ω j) ; � Compute information loss
7 ω̂′ = ω̂ ;
8 L[ j, i] = L′;

9 return L;

Specifically, for Ω∪1 and Ω∪2 as sets of skylines, we exploit

the following properties:

• Merging of skylines is associative, i.e., the result of applying

the function to a set of skylines is equivalent to applying

it to the result for any subset and the remaining elements:

f (Ω∪1 ∪Ω∪2 ) = f ( f (Ω∪1 )∪Ω∪2 ).
• Computation of the information loss induced by merging

can be done recursively. If Ω∪1 = Ω∪2 ∪{ω}, it holds that:

ζ(Ω∪1 ) = ζ(Ω∪2 )+ |Ω∪2 |d( f (Ω∪1 ), f (Ω∪2 ))+d( f (Ω∪1 ),ω).
Proofs of these properties along with auxiliary results needed

to derive them can be found in the supplement [45].

Exploiting these properties, Alg. 3 computes the information

loss matrix, while amortizing the cost of both, merging skylines

and computing the information loss induced by the merged

skyline. The algorithm takes as input a sequence of skylines

and returns the information loss matrix, which is computed

incrementally. We use a variable ω̂ to keep track of the merge

result of i− j skylines. Adding a skyline ω j, we compute the

new merge result in line 5. Similarly, information loss induced

by merging j− i+1 skylines is computed from the result for

j−1 skylines in line 6 using the above recursion property.

Theorem 3: The time and space complexity of Alg. 3 are

O(n2), with n being the number of skylines.

Search space pruning. Alg. 2 to solve the data range

partitioning problem includes a search step (the loop in line 6)

to find the boundary position j (from i−1 to 1), such that the

value of Q[ j,k−1]+L[ j+1, i] is minimal. The search space

for this step can be reduced based on the observation that the

sum of two values (Q[ j,k−1]+L[ j+1, i] in line 7) is always

greater than each individual value. Hence, the minimal value

found so far for the sum serves as an upper bound for each

individual value. In general, however, we do not know which

values of j can be pruned in the search, since Q[ j,k−1] or

L[ j+1, i] may increase or decrease when changing j.
To tackle this challenge, we exploit the monotonicity of

information loss. That is, for i, j, t with 0 ≤ i ≤ t < j ≤ n,

it holds that L[i, j] ≥ L[i, t] +L[t + 1, j] (we provide a proof

in [45]). Intuitively, this means that merging two data ranges

into one will incur an information loss greater or equal than

the total of the information loss induced by the original ranges.

We use the monotonicity of information loss to guide the

search step in Alg. 2 by two pruning heuristics. Both heuristics

do not change the worst case complexity of the algorithm, but

are likely to yield significant speed-ups in practice.
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Bootstrapping: The monotonicity property tells us that L[ j+
1, i] monotonically increases when j decreases, from i−1 down

to 1 (line 6 of Alg. 2). Thus, knowing the minimum solution

Q0 computed for Q[ j,k−1]+L[ j+1, i] so far, enables us to

stop the search when arriving at a j0 with L[ j0 + 1, i] > Q0.

Smaller values of j would lead to a larger information loss. We

exploit this idea by bootstrapping a value of Q0 by executing

the respective loop (line 6) in the algorithm a few times, e.g.,

i/k times following the maximum entropy principle [1]. Using

the determined value of Q0, binary search is then performed to

find j0 ∈ [1, i− i/k] with L[ j0 +1, i]> Q0. Finally, the search

is completed on the shorter interval [ j0, i− i/b] to find the

minimum value of Q[i,k].
Bounding: Our second heuristic improves the first one by

exploiting that Q[ j,k− 1] monotonically increases when j
increases. Thus, the lower bound of the search range can

be lifted, recursively reducing the search interval by means

of binary search. To realise this idea, we first bootstrap an

initial value Q0 as the suspected upper bound of Q[i,k], again,

following the maximum entropy principle. Binary search finds

j0, the minimum j such that L[ j0+1, i]> Q0, ensuring that the

optimal solution is some j > j0. Then, Q[ j0,k−1] is a lower

bound for any Q[ j,k− 1] with j > j0 and, due to dynamic

programming, the value of Q[ j0,k−1] is known already. We

now define Q1 =Q0−Q[ j0,k−1] and perform binary search to

find the minimum j1 ∈ [ j0, i− i/k], such that L[ j1 +1, i]> Q1,

meaning that the optimal solution is some j > j1. In general,

we define Qm = Q0−Q[ jm−1,k− 1] and repeat this process

until jm = jm−1. We then use this jm as the lower limit and

complete the search in the interval [ jm, i− i/k].
Online computation of information loss. The need to store

the information loss matrix implies that our approach has

quadratic space complexity. As detailed above, the information

loss induced by a certain data range can be computed from the

one induced by smaller ranges in constant time. Hence, Alg. 2

can be adapted, such that only the information loss induced by

a single skyline per data range is stored. Intuitively, the i-loop

(line 1) and the j-loop (line 4) in Alg. 3 for the pre-computation

of information loss become the i-loop (line 4) and the j-loop

(line 6) in Alg. 2. Then, information loss is computed online,

amortized into constant time and space, reducing the space

complexity to O(n · b). In that case, the above heuristics to

prune the search space are no longer applicable, though.

B. Heuristic solution

Despite the above improvements, the complexity of com-

puting information loss (O(n2) time and O(n2) space) and the

construction of an optimal partition (O(n2 ·b) time and O(n ·b)
space) may still be intractable for large-scale what-if analysis.

Datasets may define parameter domains with up to 100K val-

ues [35] for data grids containing up to 1M data points [5]. We

thus propose a heuristic solution with pseudo-linear complexity

that is based on the following observation. Aggregation of

similar data grids implies comparatively low information loss.

Hence, adjacent grids that are highly dissimilar are likely to

induce a boundary of the result partition.

Algorithm 4: Finding candidate boundary positions

input : A sequence Ω = 〈ω1, . . .ωn〉 of skylines, the number of candidate
boundary positions (scalable parameter) m

output : The most promising boundary positions V̂
// The first m−1 positions

1 for 1≤ i≤ m−1 do
2 T [i] = d(ωi,ωi+1); � Priority queue
3 V [i] = i; � m most promising boundary positions

// Investigate remaining positions and replace minimal distance
4 for m≤ i < n do
5 kmin = argmink T [k] ;
6 if d(ωi,ωi+1)> T [kmin] then
7 T [kmin] = d(ωi,ωi+1) ;
8 V [kmin] = i;

9 V̂ = 〈V [1], . . . ,V [m−1],V [m] = n〉 ;

10 return V̂

The above algorithms ignore this aspect in order to guarantee

optimality. Exploring all possible boundary positions, their time

complexity is at least quadratic in n, the number of considered

data grids or skylines, respectively. When compromising

optimality, however, a scalable solution may be derived by

exploring a small number m of ‘promising’ boundary positions

(b < m < n). Then, m becomes a trade-off parameter: higher

values lead to a better result and higher time complexity.

Below, we exploit this observation and first outline how to

find the m most promising boundary positions before showing

how to use these positions to find the near-optimal solution.

Finding candidate partition boundary positions. Given a

sequence of skylines Ω = 〈ω1, . . .ωn〉, we consider the skyline

at position i to be a promising candidate for a partition boundary,

if the distance between ωi and ωi+1 is large. Here, it suffices

to focus on partition end-points, since start-points are given

by their subsequent positions.

An approach to identify the m most promising candidate

boundary positions for a given sequence of skylines is presented

in Alg. 4. This algorithm finds the top-m largest distances

between two consecutive positions in the sequence. It maintains

a priority queue T of distances and tracks the positions of

skylines in the original sequence in V . That is, T [i] contains

the distance between skylines at positions V [i] and V [i] + 1

in the original sequence. Iterating over all skylines, the m
positions with the largest distances are derived.

Theorem 4: The time and space complexity of Alg. 4 are

O(n · logm) and O(m), respectively, with n being the number

of skylines and m being the trade-off parameter.

Merging skylines with minimal information loss. To scale

up the solution to the data range partitioning problem based

on the determined boundary positions, we adapt the dynamic

programming procedure of Alg. 2 used to compute an optimal

solution. Instead of exploring all possible positions, we evaluate

solely the candidate positions when identifying the best

partition. Moreover, Alg. 2 assumes that the information loss

matrix has been pre-computed. Since this pre-computation step

takes O(n2) time (Theorem 3), it may dominate the overall

time complexity of the heuristic. Thus, we adapt Alg. 2 to

amortize the computation of information loss by exploiting its

optimal sub-structure property (see §V-A). Yet, incremental
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Algorithm 5: Heuristic solution

input : A sequence Ω = 〈ω1, . . .ωn〉 of skylines, a sequence of m candidate
boundary positions V̂ , a number of data ranges b (b < m < n)

output : The scalable solution with b candidate boundary positions V̂ ∗
1 Initialise an empty matrix Q̂[i,k]m×b ;
2 Initialise an empty matrix V [i,k]m×b;
3 L = 0 � Temporary variable as in Alg. 3
4 for 1≤ k ≤ b do
5 for 1≤ i≤ m do
6 if k = 1 then
7 Calculate L = ζ(

⋃i
1 ωl) from ζ(

⋃i−1
1 ωl) ;

8 Q̂[i,k] = L;

9 else
10 Q̂[i,k] = +∞ ;
11 t = i−1 ;

12 for V̂ [i]−1≥ j ≥ 1 do
13 Calculate L = ζ(

⋃V̂ [i]
j+1 ωl) from ζ(

⋃V̂ [i]
j+2 ωl) ;

14 if j = V̂ [t] then
15 Q̂[i,k] = min(Q̂[i,k], Q̂[t,k−1]+L) ;

16 V [i,k] = t if Q̂[i,k] takes value from second term ;
17 t = t−1 ;

// Construct the boundary positions of the partition
18 Determine V̂ ∗ from V analogously to V ∗ in Alg. 2 (lines 11- 17) with j = m;

19 return V̂ ∗, Q̂[m,b];

computation of information loss is not possible for the first

position. Instead, we need to spend n/m iterations on average

for incremental computation.

Against this background, Alg. 5 takes as input a sequence

of skylines, the number of data ranges in the result, and a

sequence of candidate boundary positions derived by Alg. 4. It

returns a partition V̂ represents a scalable solution to the data

range partitioning problem, along with the induced information

loss Q̂. The solution is stored in a matrix Q̂m×b (line 8, 10,

15), such that Q̂[i,k] denotes the minimal information loss

for the input sequence from position 1 to position V̂ [i] using

k data ranges. Here, the idea is that Q̂[i,k] is computed by

iterating over all the preceding candidate boundary positions

(1 ≤ t ≤ i− 1) and computing the sum of the sub-structural

solution Q̂[t,k− 1] and information loss for the data range

[V̂ [t]+ 1,V [i]] in the input sequence. Since we amortize the

computation of information loss as in Alg. 3, we only need

to keep a single variable L (lines 7 and 13). While this still

requires iteration over n positions in the original sequence of

skylines (line 12), we only evaluate an optimal solution for

each of the candidate boundary positions (line 15).

Theorem 5: The time and space complexity of Alg. 5 are

O(b ·m ·n) and O(b ·m), respectively, with n being the number

of skylines, m being the trade-off parameter, and b being the

number of data ranges.

While Alg. 5 yields a heuristic solution to data range

partitioning, it finds an optimal solution under the given set

of positions. Hence, if the optimal positions are subsumed by

the candidate positions, the resulting solution is no longer an

approximation, but an optimal solution (proofs can be found

in the supplement [45] of this paper):

Lemma 1: Let V ∗ = 〈v0,v1, . . . ,vb−1,vb〉 the partition re-

turned by Alg. 2 and let V̂ ∗ be the partition returned by Alg. 5,

given some candidate positions V̂ = 〈v′1, . . . ,v′m〉. If for all

0≤ i≤ b there exists 1≤ j ≤ m with vi = v′j, then V̂ ∗ =V ∗.

Finally, we observe an inherent trade-off between the result

quality obtained with this heuristic and its computational

complexity. By increasing the number of candidate boundary

positions (m→ n), we get closer to the optimal solution, yet the

worst-case complexity of the heuristic (O(b ·m2)) converges

to the one of optimal algorithm (O(b ·n2)).
Theorem 6: Let Q̂[m1,b] and Q̂[m2,b] be the information

loss of scalable solutions returned by Alg. 5 for candidate

boundary positions V̂1 = 〈v1, . . . ,vm1
〉 and V̂2 = 〈v′1, . . . ,v′m2

〉
derived by Alg. 4, respectively. If m1 ≤ m2, then it holds that

Q̂[m2,b]≤ Q̂[m1,b].

VI. SUPPORTING DATA EXPLORATION

Having introduced algorithms for data range partitioning, we

now turn to methods to support interactive data exploration [38].

Extending the domain of the profiled parameter. During

data exploration, a user may extend the domain of the profiled

parameter, thereby enlarging the sequence of considered data

grids. If the number of parameter values is increased from n to

n′, computation is rather efficient, taking O((n′2−n2) ·b) time.

The reason is that n′ − n further rows need to be computed

for the information loss matrix (Q[., .]), each element of which

needs n + n′ iterations, while matrix L[., .] is amortized in

O(n′2−n2) time. As such, users may be encouraged to start

with a restricted domain of the profiled parameter, subsequently

extending this domain with little computational overhead.

Adapting the number of data ranges. The number of data

ranges in the result is typically chosen by a user and may be

adapted after obtaining initial results. Our approach supports

such a dynamic adaptation without re-computing the entire

result. If a user decreases the number of data ranges in the result

from b to b′, our approach can rely on the solutions L[n,b′] (n
being the number of values of the profiled parameter) to obtain

the optimal result for the data range partitioning problem.

If a user increases the number of ranges from b to b′′, our

approach can derive the result by running Alg. 2 with the

outer loop starting at b+ 1 and ending at b′′, which takes

O(n2 · (b′′ −b)) time.

Drilling down. After exploring a partition of b data ranges, a

user might want to expand a single range into smaller ones.

Since this is a time-consuming tasks, a user shall be guided

to ‘interesting’ ranges for exploration. To this end, for each

generated data range, we compute a measure of interestingness

and rank ranges accordingly.

We quantify the interestingness of a skyline by the area

bounded by it. The rationale is that the larger this area, the

higher the preference (in terms of the goals of what-if analysis)

for the data points in the skyline. Using the distance of skylines

introduced earlier, the interestingness of a skyline ω is:

g(ω) = d(ω,{(xmax,ymax)}) (8)

where {(xmax,ymax)} is a skyline containing only the point with

maximum x-value and maximum y-value in the data space.

Based thereon, data ranges are ranked in decreasing order of

the interestingness of the respective skylines.
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Maintenance of skylines. Finally, during data exploration,

new data points may become available and shall be considered

in the analysis. Being based on skylines of datasets, such

new data can be incorporated incrementally in our approach.

That is, online computation of skylines is exploited, so that

the update complexity is at most proportional to the size of

skyline, see [36] and the work discussed in §II.

VII. EXPERIMENTAL EVALUATION

We evaluated our approach to what-if analysis using real-

life as well as synthetic datasets. Below, we first clarify the

setup (§VII-A) in terms of datasets and evaluation measures,

before turning to an analysis of the efficiency of our methods

(§VII-B). We then present results on the quality of the obtained

summaries of data grids (§VII-C), also compared to baseline

partitioning methods. Finally, we evaluate the efficiency of our

methods to support interactive exploration (§VII-D).

A. Setup

Real-world datasets. We rely on two real-world datasets from

the domain of travel planning, which are publicly available.1

Airline dataset: This dataset contains information on airline

ticket bookings for 213 days (June to December 2016), crawled

from Skyscanner. Each record is made up of an entire trip and

comprises information on the price, total duration, date, origin,

destination, number of connecting airports, etc. We target what-

if analysis that explores the price and duration of bookings and

spans all departure dates. We further choose all connections

between five major cities. Each connection between two cities

can be seen as a separate dataset that contains a data grid

for each of the 213 days. The average size of data grids is

1000 data points. The skylines are of size 31 on average, a

common size in multi-criteria databases [5]. In the remainder,

we average the results over all pairs of cities.

Hotel dataset: We consider accommodation offers by hotels

in the five major cities for the same period of time, also crawled

from Skyscanner. Here, what-if analysis focuses on the price
and the distance to the city centre of the offers. Each city is

a separate dataset, with the average sizes of data grids and

skylines being 100 and 22, respectively. Again, we report

average results over all cities.

Synthetic data. To test our approach in a controlled manner,

we also used synthetic data. To this end, we combine a strategy

to generate points for data grids with a strategy to distribute

these data points across parameter values.

Data grid generation: To control the size and elements of

skylines, we follow state-of-the-art procedures [5, 37], fixing

data size to 1M and generating 2-dimensional data points that

are either (i) independent, (ii) correlated, or (iii) anti-correlated.

By doing so, we control the average size of the skylines, since

a correlated (anti-correlated) distribution induces rather small

(large) skylines. Each distribution has a seed factor ω to control

its skewness and the value domain of each dimension.

1The real-world datasets can be downloaded at https://goo.gl/UyJQUk.

Sequence simulation: We control the distance between data

grids and their order in the input sequence by means of common

distributions [6, 13, 35] (e.g., normal, zipfian, exponential).

However, these distributions are one-dimensional, whereas we

consider two-dimensional data grids. Therefore, we generate

the seed factor ω by a sequence distribution, before it is used

as input for data grid generation. We study the following

sequence distributions that are meaningful in practice: (1)

no shift, so that we use the original normal, zipfian, and

exponential distributions; (2) normal shifts that simulate the

recurring patterns in real-world data by shifting the mean of

a normal distribution multiple times; (3) random shifts that

simulate multiple shifts and for each shift, randomly select

between a normal and an exponential distribution.

Metrics. To assess how well a partition V represents the

original sequence of data grids Π, the distortion of V is

measured by the relative distance between an original grid

and the representative grid averaged by the sequence length n:

Δ(V ) =
1

n

b−1

∑
k=0

∑
π∈pk

d( f (pk),π)
g(π)

(9)

where pk =
⋃vk+1

i=vk+1 πi is the (k + 1)-th partition of V and

g(π) = d(π,{(xmax,ymax)}) is the interestingness of π, mea-

sured by its distance with the maximum point (xmax,ymax).
To evaluate the heuristic solution, we measure the approxi-

mation ratio, the relative difference in total information loss

between the obtained partition V̂ ∗ and an optimal one V ∗:

ε(V ∗,V̂ ∗) =
b−1

∑
k=0

ζ(pk)/
b−1

∑
l=0

ζ(p̂l) (10)

where pk =
⋃vk+1

i=vk+1 πi is the (k + 1)-th partition of V ∗ and

p̂l =
⋃vl+1

i=vl+1 πi is the (l +1)-th partition of V̂ ∗.
Experimental environment. All results have been obtained

on an Intel Core i7 system (3.4Ghz, 16GB RAM).

B. Evaluating the efficiency

Using synthetic data, we first evaluate the efficiency of our

methods to compute the information loss matrix and to search

for the optimal partition.

1) Computing the information loss: We compare the com-

putation of information loss using two algorithms: (i) naive:
constructs the information loss matrix directly using Eq. 5; (ii)

amortize: constructs the matrix incrementally by Alg. 3. In the

experiment, we vary the length of the input sequence, since

the complexity of both approaches depends on the number of

data grids. The results are averaged over different data grid

distributions with an average size of skylines being 1000.
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Fig. 6: Inf. loss computation
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Fig. 7: Pre-computation effects
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The results in Fig. 6 highlight that the incremental approach

(amortize) outperforms the naive one. The performance differ-

ence is more than an order of magnitude, which illustrates the

importance of considering the properties of information loss

that enable efficient computation.

We further study the benefits of the information loss matrix

pre-computation on the efficiency of the dynamic programming

(DP) approach (Alg. 2) to derive an optimal partition. We

consider three ways to incorporate this pre-computation: (i)

DP+precomp: the information loss matrix is pre-computed by

Alg. 3 exploiting incremental computation; (ii) DP-precomp-
amortize: Alg. 2 is executed without pre-computation of

information loss and not exploiting incremental computation;

and (iii) DP-precomp+amortize: Alg. 2 no pre-computation,

but incremental computation of information loss.

We use the synthetic dataset, setting b= 20 following studies

on human cognitive load [8, 10, 18, 19, 42, 50]. The observed

runtimes, when varying the length of the input sequence,

are shown in Fig. 7. Pre-computation of information loss

greatly reduces the time to construct an optimal partition. The

fastest algorithm (DP+precomp) outperforms the slowest one

(DP-precomp-amortize) by three orders of magnitude. Around

one order of magnitude is due to incremental computation,

as illustrated by the results for DP-precomp+amortize. Yet,

computing information loss on-the-fly still involves complex

operations, such as merging of skylines and the computation

of their distance, so that pre-computation is beneficial.

2) Obtaining a partition: We next turn to the efficiency

of obtaining a partition and compare our method based on

dynamic programming with the two pruning heuristics (§V-A)

and the heuristic solution (§V-B): (i) DP: derives the optimal

partition; (ii) Bootstrap: applies the bootstrapping heuristic

(§V-A) to prune the search space; (iii) Bound: prunes based on

the bounding heuristic (§V-A); and (iv) Approx: is the heuristic

solution (Alg. 4 and Alg. 5). The information loss matrix is

pre-computed as required by the pruning heuristics.

Impact of the sequence length. We first set b = 20 and vary

the length of the input sequence from 100 to 10000. The number

of candidate boundary positions in the heuristic solution is

fixed to m = 100. Note that the overall runtime of the heuristic

solution depends on the sequence length, as the latter affects

Alg. 4 to find candidate positions.

Fig. 8a illustrates that the heuristic solution yields the lowest

runtime and scales linearly with the sequence length. Yet, the

pruning heuristics also help to improve the runtime considerably

compared to the standard approach (DP).

Impact of the number of data ranges. Next, we vary the

number of data ranges from 10 to 100, while the sequence

length is fixed to n = 5000 and, as above, we set m = 100.

To avoid any influence of the length of the input sequence in

this experiment, the runtime for the heuristic solution does not

include the time to extract candidate boundary positions.

Fig. 8b shows that the runtime improvement achieved by

the pruning heuristics compared to the standard approach

(DP) increases with the number of data ranges. This is

attributed to the look-ahead applied by the heuristics: The

large the number of data ranges, the more information loss

values are accumulated, which results in a higher chance of

pruning redundant split positions. The heuristic solution still

outperforms the other algorithms.

Impact of the scalability level. We further investigate the

heuristic solution (Approx) and vary the number of considered

candidate boundary positions m from 100 to 5000 (fixing

n = 5000 and b = 100).

As illustrated in Fig. 8c, when m increases, the heuristic

algorithm converges to the optimal one. This is expected

as, approaching m = n, the candidate positions include all

possible positions, so that both algorithms consider the same

input. Furthermore, we observe the runtime to scale sublinear.

This is because the time complexity of Alg. 5 to return an

approximate solution becomes O(b ·m2) instead of O(b ·m ·n),
if the information loss matrix is pre-computed.

Real-world datasets. Finally, we test the efficiency of all

algorithms for the real-world datasets, using b = 20 for

the number of data ranges and setting m = 100 for the

approximation scheme. The results in Fig. 8d confirm the

trends observed for the synthetic data in the above experiments.

Note that the scalability of heuristic approaches does not only

depend on the size of datasets, but is also influenced by dataset

characteristics. Absolute runtimes are very low (≈ 10ms), which

indeed enables support for interactive data exploration.

C. Evaluating the partition quality

We now turn to the quality of the data summaries obtained by

solving the data range partitioning problem. We first consider

optimal partitions, before turning to approximate solutions.

1) Representativeness of an optimal partition: We start by

evaluating the distortion (the lower, the better) of an optimal

partition. To this end, we consider the ‘compression ratio’ b/n
between the number of data ranges in the result and the number

data ranges used as input (the sequence length) as a measure to

capture the extent of summarisation. We vary the compression

ratio from 10% to 100%. For the real-world datasets, this is

equivalent to varying parameter b, since the sequence length is

fixed. For the synthetic datasets, we vary n from 100 to 1000

and set b such that the respective ratio is obtained.

A uniform partition that divides the input sequence into

equal-size parts serves as a baseline for this experiment. With

x as the quotient of n/b, we construct x parts of equal size

and an additional part for the remaining data grids. For a fair

comparison, our methods use a solution with b+1 data ranges.
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Fig. 9: Representativeness of an optimal partition

98



1K 5K 10K
Sequence length

10−3

10−2

10−1

100

101

102
R

un
ni

ng
tim

e
(s

)

DP
bootstrap

bound
approx

(a) Varying the sequence length

10 20 50 100
Number of data ranges

10−3

10−2

10−1

100

101

102

R
un

ni
ng

tim
e

(s
)

DP
bootstrap

bound
approx

(b) Varying # data ranges

100 1K 2K 3K 4K 5K
Number of candidate boundaries

0

10

20

30

40

R
un

ni
ng

tim
e

(s
)

DP
bootstrap
bound
approx

(c) Varying the scale level

airline hotel
Datasets

10−3

10−2

R
un

ni
ng

tim
e

(s
)

DP
bootstrap

bound
approx

(d) Real-world datasets

Fig. 8: Experiments on algorithms to obtain a solution for the data range partitioning problem

Fig. 9a and Fig. 9b show the average results over the

real-world datasets and synthetic datasets, respectively. Our

technique (DP) turns out to be robust against changes in the

compression ratio across datasets. For the representative grids,

the average distortion w.r.t. the original data grids is small.

Even with a low compression ratio (10%), the distortion is less

than or equal 10% of the original data.

Also, the baseline performs worse for small compression

ratios (e.g. 10%), highlighting the practicality of our approach:

Acknowledging cognitive load limits of users (b≤ 20 according

to [20, 21, 42, 43, 47–49]), our approach helps to identify

important data regularities, outperforming a (naive) uniform

partitioning. Even with a compression ratio of 90%, the

distortion of uniform partitioning is two times higher than

our approach.

2) Error of the heuristic solution: Having evaluated the

efficiency of the heuristic solution already, we now turn to the

introduced error and compare the observed information loss to

the one obtained for an optimal partition. Specifically, we test

the approximation ratio (Eq. 10) depending on the trade-off

rate m/n, defined over the sequence length n and the trade-off

parameter m. We rely on this rate to provide a guideline on how

to choose m for a particular sequence length. We further set

b = 20 and vary r = m/n from 10% to 100%. For real-world

datasets, this is equivalent to varying m only, since n is fixed.

For the synthetic datasets, for each value of ri, we increase

the sequence length n from b/ri (keeping m≥ b) to 1000 and

set m = n · ri accordingly. The approximation ratio reported for

each value ri is averaged over all values of n.
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Fig. 10: Approximation – Effects of candidate boundary positions

Fig. 10 shows that the approximation ratio increases, over

all datasets, with larger trade-off ratios. For example, when

40% of the input sequence are chosen as potential boundary

positions, the approximation ratio is higher than 80%, i.e.,

the relative difference in information loss compared to the

optimal partition is less than 20%. Combined with the results

on the approximation efficiency, we conclude that the heuristic

solution can help to speed-up what-if analysis significantly

under a moderate reduction in the result quality.

D. Efficiency of interactive data exploration

Finally, we consider the efficiency of the techniques to

support interactive data exploration.

Extending the domain of the profiled parameter. In this ex-

periment, we compare the runtime of the incremental approach

introduced in §VI with the non-incremental computation when

extending the parameter domain by one value. We set b = 20

and vary the initial domain size from 100 to 10K.

As shown in Fig. 11a, the non-incremental approach has the

expected quadratic time complexity. The incremental version,

in turn, scales linearly and thus better supports interactive data

exploration, which is important in what-if analysis.
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Fig. 11: Efficiency of interactive data exploration
Adapting the number of data ranges. We also test the incre-
mental approach (§VI) against its non-incremental counterpart,

when increasing the number of data ranges by one. In this

adaptation, the information loss matrix is reused and, thus,

does not incur any computational overhead. We vary the initial

number of data ranges from 20 to 100 and set the length of

the input sequence to n = 10K.

The non-incremental method has comparably long runtimes,

which increases with the number of data ranges, see Fig. 11b.

The incremental approach is fast in all configurations, which is

particularly useful in practice, since in what-if analysis, users

tend to iteratively examine diverse configurations.

VIII. CONCLUSIONS

In this paper, we studied how to support what-if analysis

by effective and efficient aggregation of data grids. We

argued that what-if analysis with conflicting goals shall be

grounded in skylines, i.e., sets of non-redundant data points.

For this model, we presented a method to find an optimal

partition of the domain of an explored parameter, enabling

aggregation of the data grids under minimal information loss.
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We proposed several optimisations for this method and also

introduced a heuristic solution with pseudo-linear complexity.

The algorithms are complemented by techniques to support

interactive data exploration scenarios. Our experimental results

underline the scalability and utility of the presented techniques.

Compared to baseline methods, our approach significantly

lowers the data distortion introduced by the aggregation.
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