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Abstract—In Pickup-and-Delivery problems (PDP), mobile
workers are employed to pick up and deliver items with the goal
of reducing travel and fuel consumption. Unlike most existing
efforts that focus on finding a schedule that enables the delivery
of as many items as possible at the lowest cost, we consider
trichromatic (worker-item-task) utility that encompasses worker
reliability, item quality, and task profitability. Moreover, we
allow customers to specify keywords for desired items when
they submit tasks, which may result in multiple pickup options,
thus further increasing the difficulty of the problem. Specifically,
we formulate the problem of Online Trichromatic Pickup and
Delivery Scheduling (OTPD) that aims to find optimal delivery
schedules with highest overall utility. In order to quickly respond
to submitted tasks, we propose a greedy solution that finds the
schedule with the highest utility-cost ratio. Next, we introduce a
skyline kinetic tree-based solution that materializes intermediate
results to improve the result quality. Finally, we propose a
density-based grouping solution that partitions streaming tasks
and efficiently assigns them to the workers with high overall
utility. Extensive experiments with real and synthetic data offer
evidence that the proposed solutions excel over baselines with
respect to both effectiveness and efficiency.

Index Terms—Spatial Crowdsourcing, pickup and delivery,
scheduling, real-time, query optimization

I. INTRODUCTION

With the prevalence of mobile Internet access and the
growth of the sharing economy, we have witnessed the advent
of different spatial crowdsourcing (SC) platforms. In many
real-world SC applications, online crowd workers are assigned
tasks through their smartphones, two examples being real-
time transportation tasks as offered by, e.g., Uber [5] and
Didi [1], and supermarket product placement checking tasks
as offered by, e.g., Gigwalk [3]. Further, online food ordering
and delivery services (e.g., Meituan [4], Ele [2], and Ubereats
[6]) are gaining popularity. Using these services, customers
can search for a favorite restaurant, usually filtered by type of
cuisine, and can choose from available items. Their order is
then delivered by a worker assigned by the service. According
to one report [8], as of September 2016, online delivery
accounted for about 3 percent of 61 billion U.S. restaurant
transactions.

Many SC problems that require crowd workers to retrieve
and deliver sets of items are instances of the Pickup-and-
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Delivery Problem (PDP) in which crowd workers service
spatially located requests. Given a set of item pickup and
delivery locations along with a set of crowd workers, the goal
is to find a schedule for the crowd workers that minimizes the
energy consumed or the delivery time, given constraints such
as time windows and capacities [13]. The PDP is NP-hard and
has been studied extensively. An existing study [7] offers a
detailed review of general issues as well as solution strategies
of dynamic pickup and delivery problems where items have
to be collected and delivered in real-time.

Going beyond the classical application scenario, the emer-
gence of real-world applications (e.g., Meituan) brings new
requirements and challenges to existing PDP techniques in SC
platforms. For instance, the pickup location of a desired item
may not be a single location. A customer may simply order
“Kung Pao Chicken”, which offers the worker the possibility
of selecting any among multiple nearby Chinese restaurants
as the pickup location. Moreover, a customer’s level of sat-
isfaction is mainly affected by their restaurant preferences
(e.g., the quality, price and rating), the worker (e.g., rating),
and the waiting time. For example, customers may prefer to
order food from nearby restaurants with higher ratings and
have it delivered quickly by a reliable worker. In addition,
workers may receive extra rewards for completing urgent tasks
in a timely manner. Therefore, SC platforms can stimulate
workers by assigning higher rewards to tasks. Consequently, a
clear trend for SC platforms is to promote their businesses
by attempting to maximize the overall satisfaction of both
customers and workers.

To this end, we study a novel generalization of the pickup
and delivery problem that takes both utility and keywords
into consideration, namely the online trichromatic pickup and
delivery scheduling (OTPD) problem. In real-world settings, a
set of pickup Point-of-Interests (PoIs) are available from which
customers can order their items online. Each PoI is associated
with a set of keywords that describes the available items, and
a score which can either be the rating that captures the quality
of its services/items, or simply the price. The orders or tasks
submitted by customers are received over time. Each consists
of a destination, a set of keywords describing the desired items,
a task radius that denotes the region of the items that are
considered, an expiration time before which the task must be
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Fig. 1. Running Example

completed, and an extra reward that the customer would like to
offer. A set of workers are available to conduct delivery tasks
assigned by the SC platform or server, and each completed
task is rated by the customer involved. Each worker has a
radius that denotes the region of delivery locations serviced by
the worker. For each worker-item-task match, a trichromatic
matching utility is proposed to comprehensively evaluate the
satisfaction with the worker’s reliability, the item’s quality,
and the task’s profitability. When new tasks are submitted, the
OTPD problem is to immediately assign the tasks to workers
with the goal of maximizing the overall utility, subject to given
spatial, temporal, keyword, and capacity constraints.

Example 1. Fig.1 shows a running example. Fig.1(a) in-
dicates the locations of each worker, pickup PoI, and
customer. Fig.1(b) gives information on the tasks T =
{τ1, τ2, τ3, τ4, τ5}, the pickup PoIs P = {p1, p2, p3, p4}, and
the workers W = {w1, w2, w3}. Fig.1(c) shows the time-
ordered task schedule. The capacity of each worker is 2. The
unified task and worker radii are set to 4. As will be explained
in Section II-B, we use α = 0.3 and β = 0.3 to compute the
utility for a worker-item-task match.

At time 0, τ1 is submitted with expiration time τ1.e = 6,
the desired item is described by τ1.φ = {c}, and the extra
reward τ1.r is 0.4. As the task and worker radii are 4, p1 and
p2 are candidate pickup PoIs, and w1 and w2 are candidate
workers. The OTPD assigns τ1 to w2 that picks up item {c}
at p1 with utility µ(w2, p1, τ1) = 0.52. At time 1, both τ2 and
τ3 are submitted. Task τ2 is assigned to w3 that picks up {a}
at p3 with utility µ(w3, p3, τ2) = 0.59, and τ3 is also assigned
to w3 that picks up {e} at p3 with utility µ(w3, p3, τ3) = 0.63.
At time 2, τ4 is submitted and assigned to w2 that picks up
{b} at p2 with the utility µ(w2, p2, τ4) = 0.62. Note that w2

has already picked up {c} from p1 at the time τ4 is accepted.
At time 3, τ5 is submitted and assigned to w1 that picks up
{d} at p4 with utility µ(w1, p4, τ5) = 0.57.

From Fig.1(c), we can see that the delivery schedule for w1

is w1 → p4 → τ5, for w2 is w2 → p1 → τ1 → p2 → τ4, and
for w3 is w3 → p3 → τ3 → τ2. Therefore, the overall utility
of the schedule is 2.93.

In particular, as the OTPD problem is NP-hard and difficult
to address. Therefore, we first propose a greedy algorithm that
finds a schedule with the highest utility-cost ratio for each
upcoming task while taking both the utility and incremental
travel cost into account such that more tasks are likely to
be served. Moreover, we develop a novel index structure
called skyline kinetic tree (SK-tree), which stores not only
a selected schedule, but also all its skyline schedules for each
worker to execute. A key technical novelty is that the SK-
tree materializes these intermediate results and improves the
overall utility. Finally, in order to process tasks in a batch, we
exploit a density-based grouping method that partitions the
tasks from a short timespan into different groups and forms
the matches with small incremental travel cost within a group,
thus avoiding the overhead of enumerating all combinations.

In brief, the key contributions are summarized as follows:
• We formalize the Online Trichromatic Pickup and Deliv-

ery Scheduling (OTPD) problem.
• We propose a greedy assignment algorithm that finds the

schedule with the highest utility-cost ratio. In order to
improve the result quality, we introduce a skyline kinetic
tree-based algorithm to materialize and reuse intermediate
results. Finally, we propose a density-based grouping
algorithm to handle the tasks in a batch.

• We conduct extensive experiments with real and synthetic
datasets, providing evidence that the proposed solutions
excel over baselines with respect to both effectiveness
and efficiency.

The rest of the paper is organized as follows. We formulate
the OTPD problem in Section II. Section III introduces
the system framework. We develop the greedy assignment
algorithm in Section IV and the skyline kinetic tree-based
algorithm to materialize intermediate results in Section V.
We introduce the density based grouping algorithm in Section
VI. Section VII reports on the experimental study. We review
related work in Section VIII and conclude in Section IX.

II. PRELIMINARIES

We proceed to define the OTPD problem. Frequently used
notation is summarized in Table I.



TABLE I
SUMMARY OF NOTATION

Notation Definition
τ = (l, t, e, φ, ρ, r) A delivery task τ
w = (l, t, c, ρ, r) A worker w
p = (l,Φ, r) A pickup PoI p
µ(w, p, τ) The utility of of a match (w, p, τ)
A(w,P, T ) A worker w with tasks T and PoIs P
DS(w) A pickup and delivery schedule for w
dist(DS(w)) The travel distance of DS(w)
cost(DS(w)) The travel cost of DS(w)
U(DS(w)) The overall utility of DS(w)

A. Settings

Definition 1 (Pickup and Delivery Task). A pickup and
delivery task τ = (l, t, e, φ, ρ, r) is submitted by a customer at
time τ.t to pickup an item τ.φ and deliver it to a destination
τ.l before an expiration time τ.e. In a task, τ.φ is a set of
keywords that indicate the type of the item to be delivered,
τ.ρ is the radius of a region centered at τ.l that denotes the
region of the items that are considered, and τ.r ∈ [0, 1] is an
extra reward offered for successfully completing task τ .

Definition 2 (Worker). A worker w = (l, t, c, ρ, r) is an entity
who is able to deliver items, where w.l is the location of w
at the current time w.t. Worker w has task capacity w.c that
denotes the maximum number of active tasks the worker can
handle at the same time. Furthermore, w.ρ is the radius of
the circular region centered at w.l that denotes the region of
delivery locations serviced by the worker, and w.r ∈ [0, 1] is
the rating of the worker given by the customers.

An active worker continuously sends inquiries to the server,
including the up-to-date location w.l at w.t. A worker only
accepts the task τ whose destination τ.l is no further than
w.ρ from w.l. Using this information, the server assigns tasks
and makes delivery plans for the workers. We assume unified
settings for task radius τ.ρ and worker radius w.ρ for all
delivery tasks and workers. However, the proposed algorithms
can be generalized easily to task-specific and worker-specific
constraints.

Definition 3 (Pickup Point-of-Interest). A pickup Point-of-
Interest (PoI) p = (l,Φ, r) is a place that provides items for
customers, where p.l is the location of the PoI, p.Φ is a set of
keywords describing the item types provided by p, and p.r ∈
[0, 1] is a score of p, which can be either rating or price.

B. Trichromatic Matching Utility

Existing delivery services often offer the customers only
one choice that aims to minimize the delivery time. However,
the customer experience is usually affected by many factors,
such as the quality or price of the item and the service quality
of the worker involved in a delivery. For example, customers
may prefer to order food from restaurants with higher ratings
and have it delivered by a reliable worker. In addition, a higher
extra reward may attract more workers to bid for a task.

Definition 4 (Trichromatic Match). Given a worker w, a
pickup PoI p, and a task τ , if w can pickup an item from
p to successfully complete τ , the triple (w, p, τ) forms a
valid trichromatic (worker-item-task) match. The trichromatic
matching utility is defined as follows:

µ(w, p, τ) = α× w.r + β × p.r + (1− α− β)× τ.r, (1)

where α, β ∈ [0, 1], α + β ≤ 1, are balancing parameters
that can be specified by customers or by the system. Intu-
itively, a higher α indicates that customers prefer a worker
with a higher reliability. Likewise, a higher β indicates that
customers want to order items from PoIs with high quality or
low price. A higher (1− α− β) means that customers prefer
to pay more to attract workers such that the task is accepted.
This may be especially important during peak hours.

Two existing studies [12], [22] also evaluate the matching
quality with trichromatic utilities. One of these studies [22]
argues that any function derived from profiles and spatial-
temporal information related to worker-item-task is supported.
Therefore, our definition can be considered as a specialization
that uses a weighted average of the three factors (worker-item-
task). The other study [12] focuses on ridesharing and also
adopts the weighted average approach, but the three factors
are computed differently from how we compute them. In
particular, their vehicle-related utility is similar to our worker
reliability; their rider-related utility captures the similarity
between riders on the same vehicle, while we do not consider
the connection between items of the same worker, but compute
an independent score for each item; and their trajectory-
related utility captures the detour of each rider due to the
ridesharing. However, no matter how utility is computed, given
a trichromatic worker-item-task match, the utility must be
readily available to scheduling algorithm.

C. Task Schedule

1) Valid Schedule Constraints: Assume a worker w is
assigned a set of m tasks T and a corresponding set of m
pickup PoIs P . We denote this assignment as A(w,P, T ) =
{(w, pi, τi) | pi ∈ P, τi ∈ T}, which contains m matches.
A static pickup and delivery schedule of A(w,P, T ) is a
sequence of 3m events, denoted as DS(w) = 〈x1, . . . , x3m〉,
where each xi ∈ DS(w) is either an acceptance event (the
worker accepts a task), a pickup event (the worker pickups an
item), or a delivery event (the worker completes the task). For
simplicity, we assume that the travel speeds of all workers are
set to the same constant so that travel distance dist(DS(w))
and travel cost cost(DS(w)) can be used interchangeably.
In addition, the travel distance can be either the Euclidean
distance or the road-network distance. For simplicity, we
use Euclidean distances, but road-network distance can be
accommodated easily. The cost of DS(w) is computed as
follows:

cost(DS(w)) =
∑3m

i=2
cost(xi−1.l, xi.l), (2)



where xi.l is the location of event xi. The utility of DS(w)
is computed as follows:

U(DS(w)) =
∑

pi∈P,τi∈T
µ(w, pi, τi) (3)

Valid Schedule. A static pickup and delivery schedule DS(w)
is valid if it satisfies all the following constraints:

(i) Task acceptance constraint. For a new task τ , a
trichromatic match (w, p, τ) is valid iff τ ’s destination
is in the circular region with radius w.ρ centered at w.l,
according to Definition 2. If xi is the acceptance event
w.r.t. w and xk is the delivery event w.r.t. τ , we have
dist(xi.l, xk.l) ≤ w.ρ.

(ii) Pickup selection constraint. For a new task τ , a worker-
item-task match (w, p, τ) is valid iff p is in the circular
regions with radius τ.ρ centered at τ.l, and p offers the
item type specified by τ , according to Definition 1. If xj
is the pickup event w.r.t. p and xk is the delivery event
w.r.t. τ , we have dist(xj .l, xk.l) ≤ τ.ρ, and τ.φ ⊆ p.Φ.

(iii) Travel order constraint. For any task τ in DS(w), let
xj be the pickup event and xk be the delivery event of
τ . Then, we have j < k, i.e., the pickup must happen
before the delivery.

(iv) Task capacity constraint. The number of active tasks
(the item has already been picked up, but not yet deliv-
ered) of the worker w at any time does not exceed the
capacity w.c.

(v) Expiration time constraint. The item of any task τ must
be delivered to its destination τ.l before the time τ.e.

2) Dynamic Pickup and Delivery Schedule: A static sched-
ule DS(w) is a time-ordered event sequence for a worker
w. However, an online pickup and delivery system needs to
respond to each customer/task immediately such that when a
task is submitted to the system, the task is quickly assigned
to a worker. Therefore, we maintain a dynamic schedule
DS(w) = 〈x0, x1, . . . , xn〉, to capture the up-to-date status
of each worker w. Assume that a new task τ is submitted to
the system and worker w accepts τ . Then, x0 is the acceptance
event of w w.r.t. τ , and each xi, i ∈ [1, n], is either a pickup
event or a delivery event since all previous acceptance events
are obsolete. Specifically, we denote the pickup and delivery
events of a task τ as x.τ and x/τ , respectively. In order to
insert a new task into the current schedule, we provide an
appropriate structure for DS(w). Unlike the related transfer
event structure [12] that uses a segment-based representation,
we use a point-based representation for DS(w) that we believe
is more intuitive and easy to understand. Specifically, for each
event xi, we store the following information:

a) the location xi.l;
b) the earliest arrival time xi.t−;
c) the latest leaving time xi.t+;
d) the task load xi.R after the completion of xi.
The slack time for each event xi is ti = xi.t

+−xi.t−, and
the worker w is allowed to spend some time between 0 and ti
to conduct the pickup or delivery. Fig. 2 shows the information

x0 x1 x2 x3

𝑥𝜏4
⊳𝑥𝜏1

⊲ 𝑥𝜏4
⊲
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{}
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{𝝉4}
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8.00
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2.00
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xi.t
+

xi.R

Fig. 2. Delivery Schedule DS(w2)

of DS(w2) from the previous example where, at time 2, w2

accepts τ4.
If we assume that the worker does not waste any time on

previous pickup and delivery events, i.e., no slack time is used,
the earliest arrival time xi.t− of each event xi is computed as
follows:

xi.t
− = x0.t

− +
∑i−1

j=0
cost(xj .l, xj+1.l) (4)

Let xi.dl be the deadline of an event xi. The deadline of a
delivery event x/τ w.r.t. a task τ is simply the expiration time,
i.e., x/τ .dl = τ.e. For a pickup event x.τ with a corresponding
delivery event x/τ , the deadline of x.τ is computed as follows:

x.τ .dl = x/τ .dl − cost(x.τ .l, x
/
τ .l) (5)

If we assume that the worker uses up all the previous slack
time, the latest leaving time t+xi

of each event xi is computed
as follows:

xi.t
+ = min

{
xi.dl

xi+1.t
+ − cost(xi.l, xi+1.l),

(6)

which is used to guarantee that it is possible to complete all
the events after xi. Specifically, for x0, we have t0 = x0.t

− =
x0.t

+ = x0.dl; and for xn, we have xn.t+ = xn.dl. Note that
if we insert new events into DS(w) or if worker w spends any
slack time for any event xi, the earliest arrival time and the
latest leaving time of all the relevant events must be updated.

D. Problem Definition

Given a set of pickup PoIs P , a set of pickup and delivery
tasks T that arrive in real-time, and a set of crowd workers
W , the Online Trichromatic Pickup and Delivery Scheduling
(OTPD) problem is to find an assignment A(wi, Pi, Ti) and
build a delivery schedule DS(wi) for each wi with small cost,
where wi ∈ W, Ti ⊆ T , Pi ⊆ P , and ∀i 6= j, Ti ∩ Tj = φ,
such that the overall utility, i.e.,∑

wi∈W
U(DS(wi)) (7)

is maximized, subject to all DS(wi) being valid.
Ridesharing, which enables drivers to share empty seats in

their vehicles with riders, can be considered as a special case
of the OTPD problem, where there is only one pickup location
w.r.t. a task. However, unlike the goal of maximizing the
utility, ridesharing studies [16], [17], [20], [21], [23] mainly
focus on matching drivers and riders on a real-time basis to
minimize the overall travel cost. One study [11] considers
both the travel cost and price of ridesharing and identifies the
resulting skyline of options. While one study [22] considers the



similar problem of maximizing the utility, our problem differs
in two main aspects: (1) we consider not only the matching,
but also the scheduling for each worker; (2) we enable pickup
options, i.e., an item has a set of possible pickup PoIs.

Theorem 1. The OTPD problem is NP-hard.

Proof. We consider a special instance of the OTPD problem
where each worker w’s schedule is empty and the task capacity
w.c is 1 so that w can only service one task at a time. Given
a set of n tasks T , the OTPD problem can be obtained as a
reduction from the TOM problem [22], which has been shown
to be NP-hard. The OTPD problem is more complex than the
instance considered above.

In a rigid real-time context, such as a food ordering and de-
livery service, the system needs to respond the each customer
quickly. In addition, the system only maintains information on
currently unfinished tasks, which does not enable optimized
schedules based on a global scope, i.e., over a long time
span. Therefore, when multiple tasks are submitted at the same
time, OTPD processes them one by one. On the other hand,
OTPD can be easily extended to provide the user with multiple
options of schedule for the submitted task such that a higher
flexibility is achieved. That is to say, OTPD provides top-k
schedules with the highest utilities, and the user can choose
the most satisfactory one and have it executed. Due to the
space limit, we, however, restrict our discussion only on the
single option case.

III. FRAMEWORK

A. Index Structure
To efficiently solve the OTPD problem, we build indexes

on both pickup PoIs and all workers’ up-to-date locations.
IR2-tree index. We build an IR2-tree [10] on pickup PoIs.
Once a new task τ is submitted, we search the IR2-tree with
a location τ.l, a set of keywords τ.φ, and a radius τ.r. A
Boolean Range Query [10] is executed which returns the
candidate pickup PoIs w.r.t. τ that satisfy the pickup selection
constraint.
Grid index. We maintain a grid index to store the up-to-date
location of each worker, which is simple and yet efficient for
handling updates compared with other indexes (e.g., R-tree
and Quadtree). The grid index divides the entire spatial region
into equal-sized quad cells and forms a hierarchy of cells. To
facilitate identifying candidate workers, we build an inverted
list to keep the locations of workers in each leaf cell. When
a worker moves, we can easily find the cell the worker is
located in, and we can update the corresponding inverted list
if necessary without modifying the hierarchical structure of the
grid index. Once a new task τ is submitted, we search the grid
index with a location τ.l and a range radius w.r, thus finding
all candidate workers w.r.t. τ that satisfy the task acceptance
constraint.

B. System Overview
Fig. 3 shows an overview of the proposed system. The

IR2-tree and the grid index are built on the pickup PoIs and

Point-of-Interest Data Road Network DataUser Submit Task Worker Task Schedule

IR2-tree 
index

Grid 
index

Pickup and Delivery Scheduling

Commnication Interface

Fig. 3. An Overview of System

the workers’ up-to-date locations, respectively. Each worker’s
location is continuously sent to the server, and the grid index
is updated accordingly in real-time. Once a task is submitted
by a user through the communication interface, the system
processes it as follows:

1) Candidate workers and pickup PoIs w.r.t. the task are
identified by accessing the IR2-tree and the grid index.

2) The next step involves different scheduling algorithms.
For example, SKT (introduced in Section V) accesses
the SK-tree that stores selected and skyline schedules of
each candidate worker while trying to insert the task into
the current schedule.

3) Finally, if a task is successfully inserted into a worker’s
current schedule, the communication interface sends the
schedule information to both the user and the worker.
Otherwise, the task is rejected, and the user gets instant
feedback. The user can then decide to resubmit the task,
possibly with relaxed constraints.

IV. GREEDY ASSIGNMENT ALGORITHM

We proceed to introduce a greedy assignment algorithm
(GA) to handle new tasks online. In GA, we process the
upcoming tasks in a greedy manner and assign each new task
to the currently best matched worker.

Given a new task τ , we obtain a set of m candidate workers
Wτ and a set of n candidate pickup PoIs Pτ by searching
two index structures, thus obtaining m × n worker-item-task
matches {(wi, pj , τ)}, wi ∈Wτ , pj ∈ Pτ . Therefore, we have
to enumerate all the permutations. That is, for each wi, we
attempt to insert n pickup delivery event pairs (x.τ , x

/
τ ) into

DS(wi). For each event pair (x.τ , x
/
τ ), we find the valid in-

sertion positions with the minimum incremental cost. Finally,
we assign the task τ to the worker wi with the maximum
utility-cost ratio, which is computed as follows.

∆uri,j = µ(wi, pj , τ)/∆cost, (8)

where ∆cost is the incremental cost of successfully inserting
(x.τ , x

/
τ ) into DS(wi). If ˆDS(wi) is the new schedule, we

have ∆cost = cost( ˆDS(wi))− cost(DS(wi)).

A. Inserting a Pickup Delivery Event Pair

To insert an event pair (x.τ , x
/
τ ) into DS(wi), we first need

to find valid positions for x.τ and update the information of



all the events after the insertion. Then, we continue to find
valid positions for x/τ . Finally, we obtain a new task schedule

ˆDS(wi) with the minimum incremental cost.
1) Valid Event Insertion: In order to insert an event xτ

between two consecutive events xi and xi+1, we use a function
ValidCheck that considers the following conditions:

(i) Event Reachability Condition. The event location xτ .l
must be reachable from xi.l before deadline xτ .dl. If we
assume no slack time is used for the event xi, we have:
xi.t
− + cost(xi.l, xτ .l) ≤ xτ .dl.

(ii) Maximum Detour Condition. The cost of the detour
from xi.l through xτ .l to xi+1.l should not exceed the
latest leaving time of xi+1 such that the reachability of
all the subsequent events can be secured. Thus, we have:
cost(xi.l, xτ .l) + cost(xτ .l, xi+1.l) ≤ xi+1.t

+ − xi.t−.
(iii) Capacity Constraint Condition. Based on the task

capacity constraint, the task load after a pickup event
should not exceed w’s capacity, i.e., |xi.R|+ 1 ≤ w.c.

Instead of traversing all the events to find valid positions,
we use the Lemma 1 to prune invalid positions with the event
deadline such that the traversal can stop early:

Lemma 1 (Pruning by Event Deadline). To insert a new
event xτ into DS(w), if the deadline of xτ is earlier than the
earliest arrival time of an event xi ∈ DS(w) i.e., xτ .dl <
xi.t
−, then the event xτ cannot be inserted after the event

xi. Since if xτ .dl < xi.t
−, w cannot arrive at xτ .l before

deadline xτ .dl.

2) Schedule Update: After inserting an event xτ into
DS(w), we employ a function UpdateSchedule to update the
information of all the events. Assume that xτ is inserted after
xi, it is obvious that the task loads of all the subsequent
events x′i must be updated. For the earliest arrival time, we
observe that only the subsequent events of xτ are affected;
these are thus updated accordingly. For the latest leaving time,
in contrast, only the preceding events of xτ can be affected.

Definition 5 (Pivot Event). For an event xi, if its latest
leaving time equals its deadline, i.e., xi.t+ = xi.dl, xi is
a pivot event.

For two events xi and xj , if xj is the first pivot event after
xi, the latest leaving time of xi is controlled either by its own
deadline xi.dl or by xj .t+.

Lemma 2. Given a new schedule DS(w)′ of inserting xτ
into DS(w) after xi, if xj (0 ≤ j ≤ i) is a pivot event in
both DS(w) and DS(w)′, the latest leaving time of an event
xk (k ≤ j) in DS(w)′ remains unchanged.

Proof. We know that xk.t+ is controlled by either xk.dl or
xj .t

+ in DS(w). As xj is also a pivot event in DS(w)′, xk.t+

remains controlled by either xk.dl or xj .t+ without a change,
which completes the proof.

Therefore, the update of the latest leaving time of preceding
events may stop early due to Lemma 2.

Algorithm 1: Greedy Assignment Algorithm (GA)
Input: τ , Wτ = {w1, . . . , wm}, Pτ = {p1, . . . , pn}
Output: An updated ˆDS(w) with LB∆ur

1 LB∆ur ← 0; ˆDS(w)← φ;
2 foreach wi ∈Wτ do
3 foreach pj ∈ Pτ do
4 Compute UB∆cost and construct (x.τ , x/τ );
5 ˆDS(w),UB∆cost ←

InsertEventPair(DS(wi),(x.τ , x/τ ),UB∆cost);
6 if ˆDS(w) 6= ∅ then
7 Update LB∆ur with UB∆cost and µ(wi, pj , τ);
8 end
9 end

10 end
11 return ˆDS(w) with LB∆ur;

3) Procedure InsertEventPair: Initially, we take an upper
bound incremental cost UB∆cost as input to pruning unnec-
essary insertions, and we maintain a temporary DS(w)′ and

ˆDS(w) to store intermediate results. For each inserted position
of x.τ , procedure InsertEventPair checks if the traversal
can stop early based on Lemma 1. If not, we employ the
ValidCheck function to determine if inserting x.τ is valid. If
so, we check if the incurred cost exceeds the current UB∆cost

such that the insertion can be skipped. Otherwise, we insert
x.τ and update DS(w)′ with the UpdateSchedule function.
Likewise, we check if the traversal can stop early for each
inserted position of x/τ , and repeat the same operations for
x/τ . If a new schedule with a smaller incremental cost can be
found after inserting (x.τ , x

/
τ ) into DS(w)′, we update ˆDS(w).

Finally, the ˆDS(w) with minimum ∆cost is returned.

B. Finding Maximum ∆ur

The GA aims to assign τ to the worker wi with maximum
utility-cost ratio. As previously mentioned, each wi has n
worker-item-task matches {(wi, pj , τ)}. We denote the lower
bound utility-cost ratio by LB∆ur. Therefore, for each match
(wi, pj , τ), we can immediately obtain the upper bound in-
cremental cost UB∆cost using Eq. 8. For a match (wi, pj , τ),
we attempt to insert the event pair (x.τ , x/τ ) w.r.t. pj and τ
into DS(wi). If the incremental cost of this insertion exceeds
UB∆cost, the match can be discarded.

Algorithm 1 introduces the details of GA. In order to
prune the unnecessary workers and matches, we first sort
the workers in descending order based on their ratings, and
then we sort the pickup PoIs in descending order of their
ratings. Therefore, the workers and matches with lower utilities
may have a tighter upper bound incremental cost and can
be pruned quickly. Lines 2 – 10 insert each event pair into
each worker’s dynamic schedule one by one using procedure
InsertEventPair. Finally, the ˆDS(w) with maximum ∆ur is
returned.
Complexity Analysis. Given a DS(w) with an average of
h events, the cost for permutation is O(h

2
). Therefore, the

overall cost of procedure InsertEventPair is O(h
2
). Assuming



nw candidate workers and np candidate pickup PoIs, the cost
of sorting PoIs is O(np log np), and the cost of sorting workers
is O(nw log nw). The GA calls procedure InsertEventPair
nw×np times, so the overall cost is O(np log np+nw log nw+

nw · np · h
2
). In practice, the GA runs fast due to the pruning

power under small nw, np, and h.

V. SK-TREE BASED ALGORITHM

We proceed to introduce a Skyline Kinetic Tree (SK-
tree) based algorithm (SKT). For each worker, GA only
maintains the currently best schedule and abandons all the
other valid schedules, which means that the result quality
cannot be guaranteed. For instance, assume that a new task
τ is assigned to w with two candidate pickup PoIs p1 and p2.
As ∆urp1 > ∆urp2 , so DS(wi) = (x0, xp1 , xτ ) is arranged by
GA where (xp1 , xτ ) corresponds to p1 and τ . When another
task τ ′ arrives with two candidate pickup PoIs p3 and p4, GA
updates DS(wi) = (x0, xp1 , xp3 , xτ , xτ ′) as ∆urp3 > ∆urp4 .
However, if p2 is kept in the schedule in the first round, p4

would be a better choice than p3 if p4 is closer to p2 with
a smaller incremental cost, and µ(wi, p2, τ) + µ(wi, p4, τ

′) is
greater than µ(wi, p1, τ) + µ(wi, p3, τ

′).
Therefore, we propose to keep intermediate computation

results to enable a tradeoff between space and result quality. It
is impractical to store all valid schedules due to the exponential
space consumption. Assume that w has a set of unfinished
tasks T , the same T may correspond to different pickup
PoI sets P . For each assignment A(w,P, T ), we only store
the schedule with the current minimum cost, as all valid
schedules of A(w,P, T ) have the same utility. For all the
schedules of different assignments, we select the one with
the maximum overall utility to be executed by the server,
denoted as DS(w)0, and we keep its skyline schedules on
the dimensions of utility and cost in the SK-tree. Therefore,
an SK-tree is built for each worker w on DS(w)0 and its
skylines.

Given a new task, we perform a two-level best-first-search
(L2BFS) on the SK-tree of each candidate worker to find the
valid schedules. It is worth noting that only the SK-tree of
best matched worker stores the newly selected schedule and
its skylines from the intermediate computation results. We do
not consider a globally optimal scope due to the a practical
concern that once a task is assigned, both the customer and the
worker would not like to accept a deletion or switch operation
on a scheduled task.

A. Skyline Kinetic Tree

Specifically, an SK-tree captures a selected schedule and its
skylines, i.e., SK(w) = {DS(w)0,DS(w)1, . . . ,DS(w)k}.
When the worker moves on DS(w)0, some skyline schedules
that do not share common events with the selected schedule
may become obsolete. The root of the SK-tree always tracks
the up-to-date location of the worker, and it becomes an
acceptance event x0 when a new task is assigned. In a dynamic
schedule DS(w), an array is maintained to keep an average
number of h events. In an SK-tree, each root-to-leaf path

represents a valid dynamic schedule of w, and each node xi
stores the information of an event. In addition, each node xi
keeps the information xi.sid, which is the ID of the schedule
DS(w)xi.sid that has the maximum utility among all schedules
covering xi. The space cost of SK(w) is O(k · h).

B. Inserting a New Task
Once a new task τ arrives, our approach traverses the

SK-tree of each candidate worker by performing an L2BFS
with different event pairs. Assume τ corresponds to a set of
n candidate pickup PoIs Pτ for each candidate worker wi.
Therefore, for each wi, we attempt to insert n event pairs into
wi’s SK-tree. For each (x.τ , x

/
τ ), we aim to find an assignment

with maximum utility and a corresponding schedule with
minimum cost. Then we compare these new schedules of all n
event pairs and select one and its skylines. Finally, we assign
τ to the worker whose selected schedule has maximum utility.

To employ an L2BFS on the SK-tree of a candidate worker
w, we utilize two priority queues PQ. and PQ/ to hold valid
inserted positions for x.τ and x/τ , respectively. To prune the
unnecessary positions, we initialize a lower bound utility LBµ

and an upper bound cost UB cost of a potential valid schedule.
As the incremental utility is the same for all schedules, LBµ

is used to keep the original schedule utility.
Upper bound utility at level one. To insert x.τ at an edge
e(i, j) between the adjacent nodes xi and xj , we insert e(i, j)
into PQ. based on the utility of the schedule DS(w)xj .sid,
denoted as U(e(i, j)). If node xi is a leaf node, we insert a
dummy edge e(i,∞) based on the utility of DS(w)xi.sid.

Lemma 3. The upper bound utility of a potential schedule
with x.τ being inserted at e(i, j) is U(e(i, j)).

Proof. As x.τ is inserted at e(i, j), DS(w)xj .sid is the schedule
with the maximum utility that covers e(i, j). If x/τ is inserted
at an edge that is also covered by DS(w)xj .sid, the utility is
U(e(i, j)). Otherwise, if x/τ is inserted in other branches, the
utility is smaller than U(e(i, j)).

Let e(i, j) be the top of PQ.. From Lemma 3, if U(e(i, j))
is smaller than LBµ, we are unable to find a schedule with a
higher utility, so the traversal on SK(w) stops. Otherwise, we
insert x.τ at e(i, j) and attempt to insert x/τ at the new subtree
rooted at x.τ .
Upper bound utility at level two. We insert the candidate
edges into PQ/ based on the utilities. If we insert x.τ and
x/τ into w’s SK-tree at e(i, j) and e(i′, j′) respectively, the
maximum utility of the schedule that covers e(i, j) and e(i′, j′)
is U(e(i′, j′)). This holds because the utility of the schedule
where (x.τ , x

/
τ ) are inserted is determined by e(i′, j′), and

U(e(i′, j′)) is the maximum utility of the schedules covering
e(i′, j′).

Therefore, once we insert x.τ and x/τ at e(i, j) and e(i′, j′),
respectively, to compare with the current LBµ, we have:

Lemma 4. A candidate schedule is found iff LBµ ≤
U(e(i′, j′)), and we can update LBµ and UB cost accordingly.

Proof. To compare LBµ and U(e(i′, j′)), we have:



• If LBµ < U(e(i′, j′)), we update LBµ, which means that
we have found a schedule with higher utility. Then we
set UB cost to cost(DS(w)x′

j .sid
) + ∆cost.

• If LBµ = U(e(i′, j′)), we know that we are exam-
ining the same schedule, and we just need to check
whether we can find a position with smaller cost. If
cost(DS(w)x′

j .sid
)+∆cost ≤ UB cost, we update UB cost;

otherwise, we continue to examine the next edge for x/τ
in PQ/.

• If LBµ > U(e(i′, j′)), we know that we cannot find a
better position for x/τ when inserting x.τ at e(i, j), so we
continue to examine the next edge for x.τ in PQ..

C. Algorithm SKT

Algorithm 2 shows the details of SKT. To initialize, we
maintain a competitor set C to hold skyline schedules for a
candidate worker. Then we enumerate the workers and PoIs as
discussed in the context of GA. Line 3 initializes a set Ctmp
to temporarily keep skylines for each wi.

1) Pruning at Level One: For x.τ , we insert the edges
starting at the root of SK(wi) into PQ.. While PQ. is not
empty, we pop the top edge e(i, j) and insert its sub-edges
into PQ.. We first check the validity of inserting x.τ at e(i, j).
Then we compare U(e(i, j)) with the current LBµ to see if
we are able to find a schedule with a higher utility.

2) Pruning at Level Two: After we insert x.τ at e(i, j),
we continue to extract the subtree rooted at x.τ from SK(wi)
and update the information. Likewise, PQ/ is maintained to
keep the candidate edges for x/τ during the traversal of the
subtree. We initialize PQ/ by inserting the edges starting at
the root of the new subtree. While PQ/ is not empty, we
employ a similar way of checking the validity for inserting
x/τ at e(i′, j′). Then, we obtain the maximum utility of the
schedule covering e(i, j) and e(i′, j′). Finally, we compare it
with LBµ based on Lemma 4.

If we obtain a new schedule with the maximum utility and
minimum cost after traversing SK(wi) w.r.t. pj , we compare
it with the existing new schedules w.r.t. Pτ−{pj} in Ctmp and
update the selected schedule DS(wi)0 and its skylines. Finally,
we assign τ to the best matched worker whose DS(w)0 has
the highest utility.
Complexity Analysis. Assume that SK(w) is built by
k DS(w) with h levels. In the worst case, the cost is O(k ·h2

)
to insert an event pair. Therefore, the SKT has time complexity
O(np log np + nw log nw + nw · np · k · h

2
).

VI. PROCESSING TASKS IN BATCH

The main problem of GA and SKT is that they have
to enumerate all candidate workers and pickup PoIs, which
has high computational costs even if they can achieve high
overall utility. Therefore, we proceed to develop a density-
based grouping algorithm (DG) that processes the tasks from
a short timespan in batch. Specifically, we partition the tasks
into groups based on the density of the task destinations in a
region, and we select a pickup PoI for each task in a group

Algorithm 2: SK-tree Based Algorithm (SKT)
Input: τ , Wτ = {w1, . . . , wm}, Pτ = {p1, . . . , pn}
Output: An updated ˆSK(w)

1 Initialize a competitor set C;
2 foreach wi ∈Wτ do
3 Initialize a competitor set Ctmp;
4 foreach pj ∈ Pτ do
5 Initialize and PQ.;
6 while PQ. is not empty do
7 Find a valid e(i, j) from PQ.;
8 initialize PQ/ with root edges of subtree of x.τ ;
9 while PQ/ is not empty do

10 Find a valid e(i′, j′) from PQ/;
11 end
12 end
13 Compare and insert the new schedule into Ctmp;
14 end
15 Update C with Ctmp if necessary;
16 end
17 Merge the schedules in C and form ˆSK(w);
18 return ˆSK(w);

such that the maximum distance between any two pickup PoIs
is minimized. Intuitively, two tasks in a same group are likely
to have both close pickup and delivery locations such that it is
more likely that they can be assigned to the same worker with
low incremental cost. In addition, the pre-selection of pickup
PoIs avoids enumeration all potential PoIs for each candidate
worker, which reduces the computational costs.

A. Grouping Tasks

To divide the tasks into groups, we first partition the space
based on the tasks’ destinations using a quadtree. Once the
number of tasks in a bucket reaches a capacity limit, a task
group is obtained. For each group, as a task may correspond
to multiple pickup PoIs, we select a pickup PoI for each task
with the goal of minimizing the maximum distance between
any two pickup PoIs in a group. Thus if two tasks of a group,
i.e., τ1, τ2, are assigned to the same worker w, the transfer
distance that w must travel between τ1 and τ2 is bounded by
the maximum distance such that more tasks can be served and
the overall utility can be improved.

1) Partitioning Tasks by Quadtree: Given a batch T with
n tasks, we partition the tasks into groups {G1, . . . , Gk} by
constructing a quadtree. Afterwards, we take the tasks in each
leaf node as a group Gi. Specifically, we initialize a bucket
that covers the whole space. Then, we sequentially insert
the destination of each task into the bucket. The maximum
capacity of each bucket is set to a constant N , which is the
group density. Once N is reached in a bucket, it splits into four
sub-buckets. The procedure continues until all the tasks have
been processed. The tree directory follows the hierarchical
decomposition of the quadree. If the tasks’ destinations are
distributed evenly, each insertion takes O(log n) time. There-
fore, the task grouping takes O(n log n) time.

2) Selecting Pickup PoIs: In a group Gi, as τj ∈ Gi is
possibly associated with multiple candidate pickup PoIs, we



Algorithm 3: Procedure SelectPickup()
Input: G, the candidate set Pτi for each τi ∈ G
Output: P̂ with minimum ϕ(P̂ )

1 τm ← τi ∈ G with least candidate pickup PoIs;
2 initialize a map minD with G− 1 key-value pairs, P̂ ← φ;
3 foreach τ ′ ∈ G− τm do
4 minD[τ ′] = +∞
5 end
6 foreach pτmj ∈ Pτm do
7 P ← pτmj ;
8 foreach pτ

′
k ∈ ∪τ ′∈G−τmPτ ′ do

9 compute dist(pτmj .l, pτ
′
k .l);

10 if dist(pτmj .l, pτ
′
k .l) < minD[τ ′] then

11 minD[τ ′] = dist(pτmj .l, pτ
′
k .l)

12 end
13 end
14 P ← all PoIs have the values in minD;
15 compute ϕ(P );
16 if P̂ is empty or ϕ(P ) < ϕ(P̂ ) then
17 P̂ ← P ;
18 end
19 end
20 return P̂ ;

employ a pre-selection to assign a single PoI to each τj .
By doing so, we skip the PoI enumeration in the schedul-
ing process. Assume that in group Gi, we select a set of
pickup PoIs P , where each τj has a corresponding pickup
PoI pj ∈ P , the pickup diameter of P is defined as the
maximum distance between any two pickup PoIs, i.e., ϕ(P ) =
maxp1,p2∈P dist(p1.l, p2.l). The pickup PoI selection aims to
find a P such that ϕ(P ) is minimized.

Theorem 2. Finding the P with minimum ϕ(P ) is NP-hard.

Proof. We prove the theorem by a reduction from the 3-
SAT problem. An instance of the 3-SAT problem consists of
φ = C1 ∧ · · · ∧ Cn, where each clause Ci = {xi ∨ yi ∨
zi}(i = 1, . . . , n), and {xi, yi, zi} ⊂ {u1, u1, . . . , um, um}.
The decision problem is to determine whether we can assign
a Boolean value to each variable ui such that φ is true. We
transform an instance of the 3-SAT problem to an instance
of finding an optimal P as follows. We consider a circle
of diameter d′. Two PoIs ui and ui are placed diametrically
on the circle, and the distance between ui and ui is d′. We
set d′ = d + ε, where ε is a sufficiently small and positive
value, such that the distance between any two pickup PoIs
corresponding to different variables is at most d. We create
a task τi(i ∈ [1,m]) and associate it with the PoIs w.r.t. ui
and ui. For each Ci, we create a task τm+i(i ∈ [1, n]) and
associate it with the pickup PoIs of the three variables in Ci. If
the instance of finding an optimal P can be solved then 3-SAT
instance can also be solved. This completes the proof.

B. Algorithm DG

Theorem 2 implies that it is impractical to find an optimal
P . Therefore, we instead propose a procedure SelectPickup()

to select the pickup PoIs in a greedy manner, as shown in
Algorithm 3. The basic idea is as follows: we first find a task
τm ∈ G with the least number of candidate PoIs. Then, around
each pickup PoI pτmj of τm, for each task τ ′ ∈ G − τm, we
find the closest pickup PoI of each τ ′ in Lines 3–12. After all
pickup PoIs of τm are processed, we select the set P that has
the smallest ϕ(P ) for the tasks in G in Lines 13–14. We know
that each group has fewer than N tasks, and we assume that
the average number of pickup PoIs for each task is np. For
each pτmj , it then takes O(N · np) time to find a candidate P .
Therefore, the procedure SelectPickup() takes O(n2

p) time, as
N is a constant. Having partitioned the tasks into groups, we
process the groups in descending order of their overall utilities.
For each group, we apply the same task inserting method as
in GA and SKT to assign the tasks.
Complexity Analysis. The task grouping costs O(n log n),
and procedure SelectPickup() costs O(n2

p) for each Gi, and
we employ an insertion for each task. In DG, each task has
only one candidate pickup PoI; thus, the task insertion cost is
f = O(nw log nw+nw ·h

2
). Therefore, DG takes O(n log n+

n · n2
p + n · f) time.

VII. EXPERIMENTS

A. Experimental Settings

All algorithms were implemented in Java on Linux and run
on an Intel(R) CPU i7-4770@3.4GHz and 32G RAM.
Datasets and Parameter settings. We use two datasets, a
real dataset called gMission [22] that is generously provided
to us, and a synthetic dataset. Dataset gMission contains 532
tasks, 713 workers, and 532 pickup PoIs. Each task has a
description, a destination, a submission time, a set of keywords
describing the desired items, an expiration time, and an extra
reward. Each worker also has a location, a release time, and a
rating. Each pickup PoI has a location, a set of keywords,
and a rating. As the original dataset does not contain PoI
information, we generate a set of PoIs whose cardinality is the
same as that of the task set such that each task corresponds to
one PoI on average. All tasks share a unified task radius, and
all workers have a unified radius and capacity. The synthetic
dataset is generated by using an existing tool [18]. We generate
the scores and locations to have Normal and Exponential
distribution respectively. We set the default task cardinality to
5K to investigate the scalability of the proposed algorithms.
The parameter settings are shown in Table II.
Algorithms. We evaluate the performance of four algorithms:
the adaptive threshold algorithm (AT) [22], the greedy as-
signment algorithm (GA), the skyline kinetic tree-based al-
gorithm (SKT), and the density-based grouping algorithm
(DG) according to two metrics: response time (ms) and
utility. Specifically, to fairly compare with the AT algorithm
[22], we first adapt AT to assign the task and then call the
procedure InsertEventPair to find the schedule with smallest
incremental cost.
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Fig. 4. Effect of task, worker, pickup PoI cardinality on synthetic data
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Fig. 5. Effect of task, worker, pickup PoI cardinality on real data
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Fig. 6. Effect of radius, expiration time, and capacity on response time (ms) and utility on synthetic data
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Fig. 7. Effect of radius, expiration time, and capacity on response time (ms) and utility on real data

TABLE II
PARAMETER SETTINGS

Parameters Values
Task cardinality (synthetic dataset) 1K, 3K, 5K, 8K, 10K

Worker cardinality (synthetic dataset) 200, 400, 600, 800, 1000
Pickup PoI cardinality (synthetic dataset) 1K, 3K, 5K, 8K, 10K

Task cardinality (real dataset) 100, 200, 300, 400, 500
Worker cardinality (real dataset) 300, 400, 500, 600, 700

Pickup PoI cardinality (real dataset) 100, 200, 300, 400, 500
Task worker radius (km) 3, 4, 5, 6, 7

Expiration (waiting) time (min) 10, 15, 20, 25, 30
Capacity 2, 3, 4, 5, 6
α, β (0.1,0.1),(0.2,0.2),(0.3,0.3),(0.4,0.4)

Group density N 10, 20, 30, 40, 50
Batch length 10s, 30s, 60s, 90s, 120s

B. Efficiency and Effectiveness Evaluation

Effect of task cardinality. We study the effect of task
cardinality on the performance. In the synthetic dataset, we
enlarge |T | from 1K to 10K and use 5K as the default task
cardinality to show the scalability of proposed algorithms.

Likewise, in the real dataset, we enlarge |T | from 100 to 500
and use 500 as the default task cardinality. These sub-datasets
are all randomly sampled. As shown in Figs. 4(a), 4(b), 5(a),
and 5(b), both the response time and utility increase when we
enlarge the task cardinality. It is easy to understand that when
more tasks are submitted, the proposed algorithms can achieve
higher utility and take more time to perform the scheduling.
For the response time, DG is the most efficient one among
them. For the utility, SKT is most effective with the highest
utility.

Effect of worker cardinality. In the synthetic dataset, we
enlarge the worker cardinality |W | from 200 to 1000, and
use 600 as the default value in the remaining experiments.
Likewise, in the real dataset, we enlarge |W | from 300 to 700,
and use 700 as the default value. As shown in Figs. 4(c), 5(c),
4(d), and 5(d), the response time and utility exhibit increasing
trends similarly to what was observed in the task cardinality
experiment. This is because more workers are available to
accept tasks. In terms of response time, DG outperforms GA,



AT, and SKT. Next, SKT has a higher utility than GA and
AT, and all outperform DG.
Effect of pickup PoI cardinality. In the synthetic dataset,
we enlarge |P | from 1K to 10K and use 5K as the default
value in the remaining experiments. In the real dataset, we
enlarge |P | from 100 to 500 and use 500 as the default value.
As shown in Figs. 4(e), 4(f), 5(e), and 5(f), SKT achieves the
highest utilities, which is not surprising. DG is less effective
than SKT, AT, and GA, and it takes much less time than SKT,
AT, and GA.
Effect of radius. To study the effect of the task and worker
radii on the performance, we vary it from 3 km to 7 km. As
shown in Figs. 6(a), 6(b), 7(a), and 7(b), the response times
of the algorithms increase with larger radius, and the overall
utilities of the algorithms on both datasets also increase. The
reason is that when we have larger radii, more workers will
locate in the feasible areas of the tasks, and the tasks also
have more pickup PoIs for items. Therefore, the algorithms
can assign the tasks to workers and pickup PoIs with higher
ratings. SKT achieves the highest utilities on both the synthetic
and real datasets. In terms of response time, DG is better than
GA, AT, and SKT. When the radii are set to a small value,
the difference in response time between the algorithms is not
obvious. However, it becomes substantial when we use large
radii. We choose 5 km as the default setting.
Effect of expiration time. To study the effect of expiration
(waiting) time on the performance, we vary the duration from
10 mins to 30 mins. As shown in Figs. 6(c), 6(d), 7(c), and
7(d), the overall utilities of the algorithms on both datasets
increase when we enlarge the waiting time. This is because
when the waiting time gets longer, the workers have more
options of which tasks to select. Therefore, our algorithms
can assign the tasks to workers with higher overall utilities.
Not surprisingly, SKT achieves the highest utilities on both
the synthetic and the real datasets. AT even achieves lower
utilities than GA. The response time increases as we enlarge
the time duration. DG is the fastest and takes less than half
of the time that AT, GA, and SKT take. We use 20 minutes
as the default setting in all other experiments.
Effect of capacity. To study the effect of the worker capacity
on the performance, we vary w.c from 2 to 6. As shown in
Figs. 6(e), 6(f), 7(e), and 7(f), the utilities of the algorithms
increase slightly on both the synthetic and the real datasets,
and the response times of the algorithms also increase. The
reason is that a higher capacity allows the workers to accept
more tasks, thus increasing the number of tasks assigned and
the computation costs. SKT achieves the highest utilities on
both the synthetic and the real datasets. GA performs better
than AT: their time costs are almost the same, but the utility
of GA exceeds that of AT. We choose 3 as the default setting.
Effect of utility parameters. We proceed to study the effect
of utility parameters α, β, and 1−α−β on the performance.
Due to the space limitation, we consider only 4 sets of values:
(0.1,0.1,0.8), (0.2,0.2,0.6), (0.3,0.3,0.4), and (0.4,0.4,0.2). As
can be seen in Fig. 8, in both the synthetic and the real datasets,
the response times of our proposed algorithms do not change

substantially across the different settings. When we enlarge the
values of α, β, the utility values increase in both the synthetic
and the real datasets. This is because the rewards of submitted
tasks are the same for all the algorithms, while α and β are
related to the workers and pickup PoIs that are selected by
our algorithms. Therefore, for the default setting, we choose
(0.3,0.3,0.4) as the utility parameters. Considering response
time, SKT is better than AT and GA on the synthetic dataset,
but is slightly worse on the real dataset. DG unsurprisingly is
overall fastest.

C. Performance Study on DG Algorithm

We evaluate the performance of DG on synthetic dataset by
varying two parameters: group density N , and batch length.
Effect of N . As shown in Fig. 9(a), we vary N from 10 to 50.
When N is 30, the lowest cost is achieved. A smaller N costs
more due to task partitioning, and a larger N costs more due
to pickup PoI selection. The utility values for all the settings
of N are close, so we choose 30 as the default setting for DG.
Effect of batch length. As shown in Fig. 9(b), we vary the
batch length from 10s to 120s. The results show that a batch
length of 30s has the least response time and that the utility
is insensitive to the batch length. In addition, batches that are
too long are less acceptable to customers that do not want to
wait for long to get their tasks assigned. Therefore, we use
30s as the default batch length.

VIII. RELATED WORK

A. Ridesharing

As an instance of the Pickup and Delivery Problem, the
ridesharing has gained increasing attention in recent years.
Multiple ridesharing systems are developed [15], [21]. In
one study [16], in order to provide real-time responses, trip
requests with waiting and service time constraints are served
in a sequential style, such that for each driver, the total travel
time of the ride-sharing schedule is bounded by a set range
versus the travel time without sharing. Another study [12]
investigates ridesharing with social affinity concerns. The goal
is to let riders with high social affinity take the same vehicle,
to improve their experience. We study the similar problem
of maximizing the utility of task assignment. However, our
problem differs as it considers a trichromatic matching utility.

B. Spatial Crowdsourcing

The Pickup and Delivery Problem can be considered as a
spatial crowdsourcing application [9], [19], [24], where spatial
task assignment is a closely related topic. For static scenarios,
the assignment problem can be regarded as the classical
maximum weighted bipartite graph matching problem [14],
[18]. However, this is not suitable for dynamic scenarios where
tasks and workers appear dynamically and the full bigraph is
not known in advance. One study [25] considers the online
minimum bipartite matching problem in real time spatial data
(OMBM), where workers are predefined and tasks arrive on a
real-time basis. Finally, another study [22] proposes methods
for online trichromatic matching with quality guarantees. A
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Fig. 8. Effect of α, β, and 1− α− β on response time (ms) and utility
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Fig. 9. Effect of N and batch length of DG on response time (ms) and utility
on synthetic dataset

trichromatic matching between worker, workplace, and task
is developed. This relates to our matching between worker,
pickup PoI, and task. However, our work differs from this
approach because each task is associated with multiple pickup
PoIs and we consider not only the matching, but also the
scheduling for each worker.

IX. CONCLUSION AND FUTURE WORK

We study the OTPD problem, where, given a set of crowd
workers, pickup PoIs, and pickup and delivery tasks, the goal
is to find a delivery schedule formed by trichromatic matches
for each worker such that the overall utility is maximized,
subject to spatial, temporal, keyword, and capacity constraints.
Several algorithms are proposed to solve the OTPD problem
efficiently. The empirical studies show that SKT outperforms
both GA and AT in terms of utility, but only takes slightly more
time than GA and AT. DG processes tasks in batches such
that the efficiency is improved substantially when compared
to GA, AT, and SKT. Several directions for future research
are promising. First, the customer may prefer an interactive
query model for OTPD, which may enable understanding
the customer’s preferences better. Second, it is of interest to
conduct a user study involving real customers to demonstrate
the satisfaction of the proposed approach.
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