
Coalition-based Task Assignment in Spatial
Crowdsourcing

Yan Zhao
Department of Computer Science

Aalborg University
Aalborg, Denmark

yanz@cs.aau.dk

Jiannan Guo
China Mobile Cloud Centre

Suzhou, China
guojiannan@cmss.chinamobile.com

Xuanhao Chen
University of Electronic Science

and Technology of China
Chengdu, China

xhc@std.uestc.edu.cn

Jianye Hao
Tianjin University

Tianjin, China
jianye.hao@tju.edu.cn

Xiaofang Zhou
University of Queensland

Brisbane, Australia
zxf@itee.uq.edu.au

Kai Zheng*

University of Electronic Science
and Technology of China

Chengdu, China
zhengkai@uestc.edu.cn

Abstract—With the fast-paced development of mobile networks
and the widespread usage of mobile devices, Spatial Crowdsourc-
ing (SC), which refers to assigning location-based tasks to moving
workers, has drawn increasing attention in recent years. One of
the critical issues in SC is task assignment that allocates tasks
to appropriate workers. In this paper, we propose a novel SC
problem, namely Coalition-based Task Assignment (CTA), where
the spatial tasks (e.g., house removals, furniture installation) may
require more than one workers (forming a coalition) to cooperate
in order to maximize the overall rewards of workers. To tackle the
CTA problem, we design both greedy method and equilibrium-
based method. In particular, the greedy method aims to form a
set of worker coalitions greedily to perform the tasks, in which
we introduce an acceptance possibility to find the high-value task
assignments. In the equilibrium-based algorithm, workers form
coalitions in sequence and update their strategy (i.e., selecting
a best-response task) at their turn, in order to maximize their
own utility (i.e., reward of the coalition they stay in) until Nash
equilibrium is reached. Since the equilibrium point obtained by
the best-response approach is not unique and optimal in terms of
total rewards, we further propose a simulated annealing scheme
to find a better Nash equilibrium. The extensive experiments
demonstrate the efficiency and effectiveness of the proposed
methods on both real and synthetic datasets.

Index Terms—coalition, task assignment, spatial crowdsourc-
ing

I. INTRODUCTION

Spatial Crowdsourcing (SC) is a new class of crowdsourcing
that has enabled people to move as multi-modal sensors
collecting and sharing various types of high-fidelity spatio-
temporal data instantaneously. Specifically, task requesters can
issue spatial tasks to the SC server, and then the server employs
smart device carriers as workers to physically travel to the
specified locations and accomplish these tasks, referred to as
task assignment.

A number of existing studies place their focus on single
task assignment, in which each task can only be assigned to a
single worker [1]–[5]. Inevitably, however, there exist some SC

* Corresponding author: Kai Zheng.

applications, in which an individual worker cannot efficiently
conduct the task by herself, e.g., house removals, major
furniture installations, monitoring traffic condition for an area,
and holding a barbecue party [6]–[8]. Therefore, workers have
to form a coalition to jointly complete these complex tasks that
exceed the capabilities of individual workers. Moreover, for
each worker, she may prefer to collaborate with other workers
for reputation or economic purpose.

In this paper, we investigate the task assignment of SC
under such a problem setting, namely Coalition-based Task
Assignment (CTA). To be more specific, given a set of
workers and a set of tasks, it aims at assigning a stable
worker coalition for each task to achieve the highest total
rewards. Some recent work has explored the multiple task
assignment approaches that allow each task to be assigned
to multiple workers [9]–[13]. But workers can conduct the
tasks independently without cooperating, which is different
from our problem. The most related work is [6] concerning
the collaboration-aware task assignment, where workers are
required to cooperate and accomplish the tasks jointly for
achieving high total cooperation quality scores. However, they
assume that workers always voluntarily conduct tasks, which
is deemed unrealistic in practice since workers may have no
motivation to perform the assigned tasks unless they receive
satisfactory rewards. Besides, [6] only aims to find a single
Nash equilibrium point without further exploration of more
optimal equilibrium points that may exist. In this paper, we
target a more realistic setting, in which workers will be given
incentives if they can cooperate with each other to complete
tasks, and aim to achieve a better Nash equilibrium with higher
total rewards.

We will first illustrate the CTA problem through a motiva-
tion example in Figure 1, which involves seven workers (indi-
cated as {w1, ..., w7}) and five tasks (indicated as {s0, ..., s4}).
Each worker is associated with her current location and
reachable distance (marked as w.r). Each task, published
and expired at different time instances, is labelled with its



s3

s1

s2

(7, 2)
w5.r = 3

w5

w1

w2

w3w4 (3, 3)
w1.r = 3.2

(6, 4)
w2.r = 2

(6, 3)
w3.r = 3

(1, 3), w4.r = 2.5

Basic greedy strategy
Optimal strategy
Equilibrium-based strategy

(9, 3)
w6.r = 2

w6

1

2

3

4

5

6

82 3 41 5 6 7 9

s4
(2, 5)

w7.r = 2

w7

s s.p s.e s.d s.wl s.pr maxR

s1

s2

0 1 2 1 0.5 3

0 1 7 3 1 7

s3 0 3 6 4 2 6

s4 0 2 3 1 1 1

s0

s0 0 3 4 1.5 1 2

Fig. 1. Running Example

workload (s.wl) and reward information (i.e., penalty rate s.pr
and maximum reward s.maxR). The reward of each task can
be obtained by a reward pricing model depicted in Section II.
The problem is to assign tasks to the suitable workers so
as to maximize the total reward. For the sake of simplicity,
we assume that all the workers share the same velocity, for
which the travel time between two locations can be estimated
with their Euclidean distance. In SC, it is an intuitive move
to greedily assign the nearby workers to tasks (in order to
obtain the maximal actual reward for each task) without
violating the spatio-temporal constraint (i.e., the assigned tasks
should be located in the reachable range of the corresponding
workers and workers can arrive in the locations of assigned
tasks before the deadline of tasks), referred to as basic
greedy algorithm. Therefore, we can obtain a task assignment,
{< s0, {w1, w4} >,< s1, {w2, w3, w5} >,< s4, {w7} >}
(shown in blue arrow lines in Figure 1), with the overall reward
of 5.76. Nevertheless, this assignment method leaves s2 and s3
(that have a high reward) unassigned, which may decrease the
overall reward. Applying the optimal task assignment strategy,
we can achieve the optimal task assignment, {< s1, {w5} >,
< s2, {w2, w3}, < s3, {w1, w4} >,< s4, {w7} >} (depicted
in yellow arrow lines in Figure 1), the total reward of which is
12.26. However, the existing optimal task assignment algorith-
m tends to apply the techniques (e.g., dynamic programming)
with huge computational cost [5], [14], which makes it unfit
for practical applications.

Under the context of this distributed task allocation, there is
a necessity for the workers to form coalitions with sufficient
cumulative time or capabilities across the coalition members
to accomplish the assigned tasks. In order to tackle this
problem, we propose two novel coalition-based task assign-
ment algorithms, i.e., greedy algorithm and equilibrium-based
algorithm, for the purpose of achieving high total rewards.
More specifically, the greedy algorithm is a non-reducing
reward allocation strategy that incentivises workers to enlarge
a coalition for more total rewards. By considering the time
utilization ratio (measured by workers’ workload and travel
time) of workers and rate of return (measured by tasks’
actual reward and maximal reward) of tasks, the greedy

algorithm adopts an acceptance possibility to find the high-
value task assignments (i.e., task assignments ensuring high
time utilization ratio for workers and high rate of return for
tasks). However, the greedy algorithm cannot guarantee the
stability of the formed worker coalitions. Therefore, we further
propose a task assignment method from a game-theoretic
perspective. In particular, converting the CTA problem into a
multi-player game, we develop an equilibrium-based algorithm
by applying the best-response method with sequential and
asynchronous updates of workers’ strategies, which reaches
the pure Nash equilibrium. The Nash equilibrium holds that
if workers are all in Nash equilibrium, they are closely inter-
connected and the formed worker coalitions are stable, i.e.,
no worker can improve their utility by a unilateral change to
their coalitions when other workers persist in their existing
coalitions. As the task assignment result generated by the
best-response method is locally optimal and there may exist
multiple Nash equilibriums, we further propose the simulated
annealing optimization strategy that can coordinate workers
to obtain a better Nash equilibrium. In Figure 1, the overall
reward generated by the equilibrium-based algorithm is 12.26,
which is the maximal reward. This is due to the fact that there
is only one equilibrium point (the optimal point) in such a
small-scale example.

The contributions can be summarized as follows:
1) We formulate a novel task assignment in SC, namely

Coalition-based Task Assignment (CTA), where workers need
to interact with others by forming worker coalitions to conduct
the corresponding tasks.

2) A greedy task allocation approach is developed to ef-
ficiently assign tasks, in which an acceptance possibility is
introduced to find the high-value task assignments.

3) We develop a game-theoretic solution, wherein the Nash
equilibrium is found based on the best-response approach.
We also introduce a simulated annealing strategy to further
improve the assignment when multiple Nash equilibriums
exist.

4) As demonstrated by the experiments, our proposed al-
gorithms can effectively and efficiently form stable worker
coalitions for tasks, which achieve nearly optimal total reward.
In particular, our equilibrium-based method with the simulated
annealing strategy can obtain up to 98% of the maximal reward
and its CPU cost is considerably lower than that of the optimal
task assignment approach, achieving an excellent trade-off
between effectiveness and efficiency.

II. PROBLEM STATEMENT

In this section, we briefly introduce a set of preliminary
concepts and formulate our problem. Table I lists the major
notations used throughout the paper.

Definition 1 (Spatial Task): A spatial task, denoted as s
= < s.l, s.p, s.e, s.d, s.wl, s.maxR, s.pr >, is a task to
be performed at location s.l, published at time s.p, expected
to be finished at time s.e and will expire at deadline s.d,
where s.l : (x, y) is a point in the 2D space. Each task is also
labelled with a required workload s.wl to finish task s by a



TABLE I
SUMMARY OF NOTATIONS

Notation Definition

s Spatial task
s.l Location of spatial task s
s.p Publish time of spatial task s
s.e Expected completion time of spatial task s
s.d Deadline of spatial task s
s.wl Workload of spatial task s
s.maxR Maximum reward of spatial task s
s.pr Penalty rate of spatial task s
w Worker
w.l Location of worker w
w.r Reachable radius of worker w
AW (s) Available worker set of task s
tnow The current time
t(a, b) Travel time from location a to location b
d(a, b) Travel distance from location a to location b
w.RS Reachable task set of worker w
WC(s) Worker coalition for task s
RWC(s) Reward of worker coalition WC(s) by finishing s
w.wl(WC(s)) Worker w’s workload when performing s in WC(s)
MWC(s) Minimal worker coalition for task s
A A spatial task assignment
A.R Total reward for task assignment A

normal worker (we simply use the time required to finish a task
to denote s.wl in our work). s.maxR denotes the maximum
reward the requester of task s can offer and s.pr is a penalty
rate, which establishes a correlation between the completion
time and reward.

Definition 2 (Worker): A worker, denoted as w = < w.l,
w.r >, is a person who is able to perform spatial tasks only
if she is paid. A worker can be in an either online or offline
mode. A worker is online when she is ready to accept tasks
and she is offline when she is unavailable to perform tasks. An
online worker is associated with her current location w.l and
her reachable circular range with w.l as the center and w.r as
the radius, in which w can accept assignments of tasks.

In our work, a worker is able to handle only one task (i.e.,
her capacity is 1) at a certain time instance, whether on her
own or as a part of a coalition that makes joint effort on the
completion of that task, which is reasonable in practice. A
worker can be assigned a task only when she is online and is
not performing any tasks. Once a task is assigned to a certain
worker, the worker is considered as being offline until she
completes the assigned task.

Due to the constraint of workers’ reachable range and tasks’
expiration time, each task can be completed only by a small
subset of workers, called available worker set.

Definition 3 (Available Worker Set): The available worker
set for a task s, denoted as AW (s), is a set of workers that
satisfy the following two conditions: ∀w ∈ AW (s),

1) tnow + t(w.l, s.l) < s.d, and
2) d(w.l, s.l) ≤ w.r,
where tnow is the current time, t(a, b) is the travel time from

location a to location b and d(a, b) is the travel distance from
location a to b. The above two conditions guarantee a worker
can travel from her origin to the location of her reachable task
s directly before it expires. If worker w is available for task
s, i.e., w ∈ AW (s), we say s is a reachable task of w and
denote the reachable task set of w as w.RS.

Definition 4 (Worker Coalition): Given a task s to be

assigned and its available worker set AW (s), the worker
coalition for task s, denoted as WC(s), is a subset of
AW (s) such that all the workers in WC(s) have enough
time to complete task s together before it expires, i.e.,∑
w∈WC(s)(s.d− (tnow + t(w.l, s.l))) ≥ s.wl.
Taking Figure 1 as a case, the available worker set of task

s1 is {w2, w3, w5, w6}, where all of the available workers can
arrive at s1.l before s1.d and s1 is reachable for them. {w3},
{w2, w3} and {w2, w3, w6} are worker coalitions for task s1
since all the workers in each coalition can cooperate together
to finish task s1 before s1.d.

As for task reward, taking longer time for completing a task
(including waiting time for its assignment and task duration,
i.e., from a task’s publish time to its finish time) increases the
probability of the task failure in the SC environment, and thus
reduces the rewards for workers. Considering the constraints
on the tasks’ expected completion time, deadline, required
workload and budget (i.e., the maximum reward the requester
can offer), we adopt the Reward Pricing Model (RPM) [7],
which can effectively quantify the temporal constraints of
tasks, and is an important incentive mechanism to motivate
workers to finish the assigned tasks on time. Specifically, RPM
takes a single task s and one of its worker coalition into
account, focusing on the task completion time and real reward
(i.e., the requester’s real payment for the task), as depicted in
Figure 2.

With the main time constraints of the task (i.e., task’s
publish time s.p, expected completion time s.e and deadline
s.d), penalty rate s.pr and maximum reward s.maxR, the
RPM can be expressed as a formula shown below:

RWC(s) =


s.maxR, s.p ≤ s.te ≤ s.e
s.maxR− s.pr∗
(s.te − s.e), s.e < s.te ≤ s.d
0, s.te > s.d,

(1)

where RWC(s) represents task s’s real reward that the task
requester offers for workers in WC(s) and s.te indicates
s’s completion time with its worker coalition WC(s). From
Equation 1 we can see, if a task can be completed before
its expected time, workers will obtain the maximum reward.
Without loss of generality, Equation 1 models the penalty rate
linearly when the task cannot be finished before its expected
completion time but can be finished before its deadline. For
example, in a house removal scenario, the task requester is
happy to pay the maximum rewards to workers if the job
can be finished before 17:00. After 17:00, she may be a little
bit disappointed but still would like to pay reduced reward
based on a penalty rate. However, she will be too unsatisfied
to pay any reward if the task cannot be completed by the hard
deadline, e.g., by midnight today.

In order to calculate s.te, we denote s.ts as the start time
(i.e., time of assignment) of s, TWC(s) as the task duration
of s (i.e., elapsed time from assignment to completion),
w.wl(WC(s)) > 0 as the workload contribution (measured
by time) of w when task s is performed by WC(s). From
Figure 3, which illustrates the workload allocation of worker
coalition {w2, w3} for task s1 (where workers and tasks are



real reward 

task completion time
s.e

s.maxR

s.p s.d

s.pr = tanθθ

Fig. 2. Task Reward Pricing Model

w2

w3

t ( w2.l, s1.l )

t ( w3.l, s1.l )

w2.wl(WC( s1 ))

w3.wl(WC( s1 ))

WC ( s1 ) = { w2 , w3 }

time
s1.ts s1.te s1.d

TWC( s1 )

Fig. 3. Workload Allocation of Worker Coalition {w2, w3} for Task s2

from the running example in Figure 1), it is easily understand-
able that, ∀w ∈WC(s), the task duration is equal to w’s travel
time plus her workload contribution, i.e.,

TWC(s) = t(w.l, s.l) + w.wl(WC(s)),

∀w ∈WC(s), w.wl(WC(s)) > 0.
(2)

By summing up the right side over all workers in coalition
WC(s), we have

TWC(s) =

∑
w∈WC(s) t(w.l, s.l) +

∑
w∈WC(s) w.wl(WC(s))

|WC(s)|
. (3)

Given the fact that s.wl =
∑
w∈WC(s) w.wl(WC(s)), it

comes to

TWC(s) =

∑
w∈WC(s) t(w.l, s.l) + s.wl

|WC(s)|
. (4)

Finally, s.te can be calculated as s.te = s.ts+TWC(s), and
each worker’s workload can be calculated as w.wl(WC(s)) =
TWC(s)−t(w.l, s.l). From the perspective of worker coalition,
we assume that the goal of a worker joining a coalition
is to increase the total reward of the coalition, which will
accordingly lead to a satisfying reward and reputational award
for this worker.

Since we require w.wl(WC(s)) > 0, if a worker’s travel
time exceeds the task duration, i.e., t(w.l, s.l) ≥ TWC(s),
then the worker w has no contribution to task s and should
be removed from WC(s). Additionally, in Figure 2, when a
worker coalition WC(s) can cooperate to finish a task s before
its expected completion time s.e, which means they obtain
the maximum reward (s.maxR) of this task, adding more
workers into WC(s) cannot lead to a higher reward. In other
words, more workers in WC(s) does not necessarily mean
earlier completion time, or more total reward. This observation
motivates the notion of minimal worker coalition.

Definition 5 (Minimal Worker Coalition): A worker coali-
tion WC(s) for task s is minimal (denoted by MWC(s)) if
none of its subsets can obtain a reward that is equal to RWC(s).

In Figure 1, although {w3}, {w2, w3} and {w2, w3, w6} are
all worker coalitions for task s1, {w2, w3, w6} is not a minimal
worker coalition since {w2, w3} can generate the same reward
with {w2, w3, w6}, i.e., R{w2,w3} = R{w2,w3,w6}. For task s4,
both {w7} and {w1, w7} are its worker coalitions, but only
{w7} is its minimal worker coalition. This is because w7 can
obtain the maximum reward of s4 when conducting s4 by
herself without the need of others’ collaboration.

Definition 6 (Task Completion): Given a task s and one of
its minimal worker coalitions MWC(s), task s is completed
once all the workers in coalition MWC(s) cooperate to finish
s’s workload, i.e.,

∑
w∈MWC(s) w.wl(MWC(s)) = s.wl.

Definition 7 (Spatial Task Assignment): Given a set
of workers W and a set of tasks S, a spatial task
assignment, denoted by A, consists of a set of <
task,MWC > pairs in the form of < s1,MWC(s1) >,
< s2,MWC(s2) >,...,< s|S|,MWC(s|S|) >, where
MWC(s1)

⋂
MWC(s2)

⋂
...
⋂
MWC(s|S|) = ∅.

Let A.R denote the total reward for task assignment A, i.e.,
A.R =

∑
s∈S,<s,MWC(s)>∈ARMWC(s) (where RMWC(s)

can be calculated by Equation 1), and A denote all the possible
ways of assignments.

Problem Statement: Given a set of online workers W and
a set of tasks S in a time instance, the CTA problem aims to
find the global optimal assignment Aopt, such that the total
reward can be maximized, i.e., ∀Ai ∈ A, Ai.R ≤ Aopt.R.

Lemma 1: The CTA problem is NP-hard.
Proof 1: The lemma is proved through a reduction from

the 0-1 knapsack problem. A 0-1 knapsack problem can be
described as follows: given a set C with n items, in which
each item ci ∈ C is labelled with a weight mi and a value vi,
the 0-1 knapsack problem is to identify a subset C ′ of C that
maximizes

∑
ci∈C′ vi subjected to

∑
ci∈C′ mi ≤ M , where

M indicates the maximum weight capacity.
For a given 0-1 knapsack problem, it can be transformed

into an instance of CTA problem in the following. We give a
task set S with n tasks, in which each task si is associated
with the publish time si.p = 0, the expected completion time
si.e = 1, the deadline si.d = 1, the workload si.wl = mi,
and the maximum reward si.maxR = vi. In addition, we
give a worker set W with M workers, where each worker
wi is allowed to complete 1 workload only. All of the tasks
and workers are situated at the same location. Under this
circumstance, in order to get the reward vi for each task si,
the system needs to assign mi workers to task si.

Given this mapping, we can show that the transformed CTA
problem can be solved, if and only if the 0-1 knapsack problem
can be solved. As 0-1 knapsack problem is known to be NP-
hard [15], CTA problem is also NP-hard.

III. GREEDY APPROACH

In this section, we design a greedy algorithm, which encour-
ages worker coalitions to obtain more rewards. This algorithm
is based on the consensus that the nearby workers selected
to perform a task can generate a higher reward since the
reward is non-increasing over time (i.e., it keeps stable with



the maximum payoff offered by the task requester at first and
then gets lower in the Reward Pricing Model in Section II) and
the nearby workers are capable to deal with more workloads to
obtain more rewards. Moveover, considering the time utiliza-
tion ratio (measured by workers’ workload and travel time) of
workers and rate of return (measured by tasks’ actual reward
and maximal reward) of tasks, we introduce an acceptance
possibility to find the high-value task assignments (i.e., task
assignments ensuring high time utilization ratio for workers
and high rate of return for tasks).

Algorithm 1: Greedy Approach
Input: Worker set W , task set S, acceptance threshold η
Output: Task assignment: A

1 A ← ∅;
2 for each s ∈ S do
3 Obtain the available worker set AW (s) from W ;
4 WC(s)← ∅; RWC(s) ← 0; R′ ← 0;
5 for the nearest worker w ∈ AW (s) do
6 R′ ← RWC(s)∪{w};
7 /*RWC(s)∪{w} is computed based on Equation 1.*/
8 AW (s)← AW (s)− {w};
9 if R′ = 0 and AW (s) = ∅ then

10 break;

11 if R′ = 0 and AW (s) 6= ∅ then
12 WC(s)←WC(s) ∪ {w};
13 if R′ > RWC(s) then
14 WC(s)←WC(s) ∪ {w};
15 RWC(s) ← R′;

16 else
17 MWC(s)←WC(s);
18 RMWC(s) ← RWC(s);
19 A ← A∪ < s,MWC(s) >;
20 break;

21 Calculate the acceptance possibility APMWC(s) based on
Equation 6;

22 if APMWC(s) < η then
23 A ← A− < s,MWC(s) >;
24 S = S − {s};
25 else
26 W = W −MWC(s);
27 S = S − {s};

28 return A.

Algorithm 1 outlines the major procedure of the greedy
approach, which takes the worker set W , task set S and an
acceptance threshold η as input and outputs a task assignment
result A. The algorithm starts with the calculation of the avail-
able worker set AW (s) for each task s (line 3). After initial-
ization of the current worker coalition (i.e., WC(s)← ∅), the
corresponding reward obtained by WC(s) (i.e., RWC(s) ← 0,
RWC(s) is also the total reward of s), and a temporary variable
(i.e., R′ ← 0, line 4), for each task s ∈ S, the algorithm
generates the minimal worker coalition MWC(s) by choosing
the nearest workers who can contribute a higher overall reward
for s and assigns the worker coalition MWC(s) to s (line 5–
20). Specifically, by adding the nearest worker w ∈ AW (s)
into the current worker coalition WC(s), we can compute
the reward obtained by coalition WC(s) ∪ {w} based on
Equation 1, i.e., RWC(s)∪{w} (line 6). Then we judge whether

adding worker w can increase the total actual reward of s by
performing the following actions:

1) if task s cannot be completed by workers in coalition
WC(s)∪{w} (i.e., R′ = 0) and there are no available workers
(i.e., AW (s) = ∅), task s cannot be assigned to a suitable
coalition (line 9–10);

2) if task s cannot be completed by workers in coalition
WC(s) ∪ {w} (i.e., R′ = 0) but there are enough available
workers (i.e., AW (s) 6= ∅), we add worker w into the current
worker coalition WC(s) (line 11–12);

3) if adding worker w into WC(s) can increase the reward
obtained by WC(s) (i.e., R′ > RWC(s)), worker w can be
added into WC(s) and the reward obtained by WC(s) can
be accordingly updated, i.e., RWC(s) ← R′ (line 13–15);

4) otherwise (i.e., when R′ 6= 0 and adding worker w
into WC(s) cannot increase the reward obtained by WC(s)),
we can obtain the minimal worker coalition MWC(s), the
corresponding reward RMWC(s) for s and the updated task
assignment, i.e., A ← A∪ < s,MWC(s) > (line 16–20).

After assigning a worker coalition MWC(s) to task s, we
calculate the acceptance possibility APMWC(s) (that means
the possibility that a task assignment < s,MWC(s) > is
accepted) in the following:

APMWC(s) =α

∑
w∈MWC(s) w.wl(MWC(s))∑

w∈MWC(s)

(
t(w.l, s.l) + w.wl(MWC(s))

)
+ (1− α)

RMWC(s)

s.maxR
, (5)

where α is a parameter controlling the contribution
of the time utilization ratio of workers (i.e.,∑

w∈MWC(s) w.wl(MWC(s))∑
w∈MWC(s)

(
t(w.l,s.l)+w.wl(MWC(s))

) ) and the rate of

return of tasks (i.e., RMWC(s)

s.maxR ), w.wl(MWC(s) denotes the
workload contribution (measured by time) of w when task
s is performed by MWC(s), t(w.l, s.l) denotes the travel
time from location w.l to location s.l. RMWC(s) is the actual
reward that MWC(s) can obtain by performing task s, and
s.maxR is the maximal reward of s. Combining Equation 3,
Equation 5 can be represented in the following:

APMWC(s) =α
s.wl

|MWC(s)|TMWC(s)

+ (1− α)
RMWC(s)

s.maxR
, (6)

where s.wl =
∑
w∈MWC(s) w.wl(MWC(s)) denotes the re-

quired workload of task s, |MWC(s)| denotes the number of
worker coalition MWC(s), and TMWC(s) is the task duration
of s (i.e., elapsed time from assignment to completion).

In case that the acceptance possibility of task assignment
< s,MWC(s) > is less than a given threshold η (0 ≤ η ≤ 1),
i.e., APMWC(s) < η, Algorithm 1 will quit performing task s,
which means task s fails to be assigned (line 23-24). η can be
specified by task requesters or SC platforms. Otherwise (i.e.,
APMWC(s) ≥ η), the task assignment < s,MWC(s) > is
regarded as high-value and workers in MWC(s) are assigned
to perform task s. As a result, workers in MWC(s) and task



s can be removed from the worker set W to be assigned and
task set S to be assigned (line 26-27). Finally, Algorithm 1
will obtain a suitable task assignment result (line 28).

It is easy to see the time complexity of Algorithm 1
is O(|S| · |W | · |maxAW |), where |S| is the number of
tasks, |W | is the number of workers, and |maxAW | is the
maximum number of available workers among all the tasks,
i.e., |maxAW | = maxs∈S |AW (s)|.

In Figure 1, the greedy algorithm with acceptance possi-
bility can obtain a task assignment, {< s1, {w2, w3, w5} >,
< s3, {w1, w4} >,< s4, {w7} >}, with the reward of 8.53,
in which we set α as 0.5 and η as 0.4 .

IV. EQUILIBRIUM-BASED APPROACH

Although the greedy algorithm can efficiently find a task
assignment result, it cannot guarantee the stability of the
formed worker coalitions. The fundamental nature of CTA
problem is that each worker needs to choose a task to conduct
by interacting with other workers during the process of task
assignment, suggesting that the task selection for a worker
depends on the decisions taken by the other workers. Such
interdependent decisions can be modeled by game theory,
where workers can be treated as independent players involved
in a game. On the basis of this, the CTA system can be
considered as a multi-player game.

To be more specific, our problem can be modeled as an
exact potential game, which has at least one Nash equilibrium
in pure strategy (a.k.a. pure Nash equilibrium) [16]. Then we
employ the best-response algorithm, one of the most basic
tools in exact potential games as it is efficient in addressing
the conflicts arising among the players [17]. With the best-
response dynamics, players are required to have their strategies
updated sequentially and asynchronously on the basis of their
best-response utility functions conditioned on the strategies of
the other players in a myopic manner, which finally achieves a
pure Nash equilibrium. A Nash equilibrium represents a state
of the game where any single worker is incapable to improve
their utility by making a unilateral shift from the assigned
coalition to other coalitions when other workers stay in their
assigned coalitions. This suggests that workers will voluntarily
select the assigned tasks when they have freedom to do so. In
such situation, the formed worker coalitions are regarded as
stable coalitions. Nevertheless, this Nash equilibrium achieved
by the best-response algorithm may be far from optimum as
there can be many equilibrium points. In order to resolve this
problem, we introduce a Simulated Annealing (SA) strategy
into the best-response dynamics, which finds a better Nash
equilibrium corresponding to the approximately optimal task
assignment. With the help of SA strategy, the updating process
has a better chance to realize a better Nash equilibrium with
higher total rewards. Finally, we analyze the feasibility of our
solutions.

A. Game Modeling and Nash Equilibrium

We first formulate our CTA problem as an n-player strategic
game, G =< W,ST,U >, which is comprised of players,

strategy spaces and utility functions. It is specified as follows:
1) W = {w1, ..., wn} (n ≥ 2) represents a finite set of

workers playing the role as the game players. In the rest of
the paper, we will use player and worker interchangeably when
the context is clear.

2) ST = {STi}ni=1 is the overall strategy set of all the
players, i.e., the strategy space of the game. STi is the finite
set of strategies available to worker wi, which contains wi’s
reachable task set and null task (that means wi does not choose
any tasks to conduct), denoted as STi = {wi.RS, null}
(where wi.RS indicates the reachable task set of worker wi
and null represents the null task).

3) U = {Ui}ni=1 denotes the utility functions of all the
players, and Ui : ST→ R is the utility function of player wi.
For every joint strategy ~st ∈ ST, Ui(~st) ∈ R represents the
utility of player wi, which can be calculated as follows:

Ui(~st) =RMWC(s)∪{wi} −RMWC(s)

− (RMWC(s0) −RMWC(s0)−{wi}),
(7)

where RMWC(s)∪{wi} is the total reward obtained by coalition
MWC(s) ∪ {wi}, MWC(s) ∪ {wi} is the new worker
coalition including MWC(s) and {wi}, MWC(s0) − {wi}
denotes the worker coalition (where wi is removed from
MWC(s0)), s0 denotes the task that is currently assigned to
worker wi, MWC(s) and MWC(s0) are worker coalitions
that wi is willing to join and currently staying in, respectively.
When the context of ~st is clear, we use Ui to denote Ui(~st).

In a strategic game, a policy profile π∗ = (π∗1 , ..., π
∗
n)

(where π∗i : STi → [0, 1] is a probability distribution over
STi) is called a Nash equilibrium with mixed strategies (a.k.a.
mixed Nash equilibrium) if and only if for any wi ∈ W , it
holds that:

Ui (π∗) ≥ max
π′i∈Σi

Ui
(
π∗1 , . . . , π

∗
i−1, π

′
i, π
∗
i+1, . . . , π

∗
n

)
, (8)

where Σi denotes the policy space of player wi. For any given
policy profile π = (π1, ..., πn), Ui(π) =

∑
~st∈ST πi(~st)Ui(~st).

The Nash equilibrium is a pure Nash equilibrium (i.e., Nash
equilibrium with pure strategy) only when players play deter-
ministic strategies, which means the probability of one strategy
worker wi can choose from STi is 1 while the rest strategies
from STi are 0.

As proved by [18], every game with a finite number of
players and a finite strategy set has a mixed Nash equilibri-
um, which only implies stable probability distributions over
profiles rather than the fixed play of a particular joint strategy
profile. This uncertainty is unacceptable in our scenario where
each worker needs to have a definite strategy, i.e., selecting a
task to conduct or doing nothing. Therefore, we next prove
that our CTA game has pure Nash equilibrium, wherein each
player can choose a strategy in a deterministic manner.

Given a joint strategy ~st = (st1, ..., stn) ∈ ST, sti
(i.e., s ∈ wi.RS or null) represents the strategy chosen
by player wi (0 < i ≤ n). As for player wi, a joint
strategy ~sti ∈ ST can also be denoted by (sti, ~st−i), where
~st−i = (st1, ..., sti−1, sti+1, ..., stn) ∈ ST−i is the joint
strategies of all the other players.



Lemma 2: The CTA game has pure Nash equilibrium.
Proof 2: To prove Lemma 2, there is a need to prove the

CTA game as an Exact Potential Game (EPG) that has a global
potential function onto which the incentive of all the players
can be mapped. For the EPG, the best-response framework
always converges to a pure Nash equilibrium for countable
strategies [16].

In the following part, we introduce the definition of EPG
and show that the CTA game is an EPG.

Definition 8 (Exact Potential Game): A strategic game,
G =< W, ST,U >, is an Exact Potential Game (EPG) if there
exists a function, Φ : ST → R, such that for all ~sti ∈ ST, it
holds that, ∀wi ∈W ,

Ui(st
′
i, ~st−i)− Ui(sti, ~st−i) = Φ(st′i, ~st−i)− Φ(sti, ~st−i), (9)

where st′i and sti are the strategies that can be selected by
worker wi, ~st−i is the joint strategy of the other workers
except for worker wi, and the function Φ is called an exact
potential function for game G.

Lemma 3: CTA is an Exact Potential Game (EPG).
Proof 3: We define a potential function as Φ(~st) =∑
s∈S RMWC(s), which represents the total rewards for all

the tasks in S. Then it can be obtained that,
Φ(st′i, ~st−i)− Φ(sti, ~st−i)

=
(
RMWC(sk)∪{wi} +RMWC(sg) +

∑
s∈S−sk−sg

RMWC(s)
)

−
(
RMWC(sk) +RMWC(sg)∪{wi} +

∑
s∈S−sk−sg

RMWC(s)
)

=
(
RMWC(sk)∪{wi} −RMWC(sk)

)
−
(
RMWC(sg)∪{wi} −RMWC(sg)

)
=
(
RMWC(sk)∪{wi} −RMWC(sk)

−
(
RMWC(s0) −RMWC(s0)−{wi}

))
−
(
RMWC(sg)∪{wi} −RMWC(sg)

−
(
RMWC(s0) −RMWC(s0)−{wi}

))
=Ui(st

′
i, ~st−i)− Ui(sti, ~st−i),

(10)

where the tasks selected in strategies st′i and sti are sk and
sg respectively. In accordance with Definition 9, the strategic
game of the CTA problem is an exact potential game, for
which the CTA game has a Nash equilibrium in pure strategy.

Let st∗i denote the best strategy that player wi can make
response to the strategy combination ~st−i of others. There-
fore, the utility Ui(st

∗
i , ~st−i) is maximized for a given ~st−i.

A pure Nash equilibrium is reached by the joint strategy
~st
∗

= (st∗1, ..., st
∗
n), as a result of which no player can have

any gain in their utility by making change to their strategy
unilaterally [19].

B. Best-response Approach

As our CTA game has pure Nash equilibrium, we adopt the
best-response approach to solve it, which generates a number
of stable worker coalitions to perform the tasks by reaching
the pure Nash equilibrium. Specifically, the designed best-
response algorithm consists of players taking turns to adapt

their strategies based on the most recent known strategies of
the others, which ends up reaching the Nash equilibrium that
is a locally optimal task assignment. A general framework of
the best-response approach is illustrated in Algorithm 2.

Algorithm 2: Best-response Approach
Input: Worker set W , task set S
Output: Task assignment: A

1 A = ∅;
2 for each task s ∈ S do
3 Obtain the available worker set AW (s) from W and randomly

assign an available worker, stored in MWC(s), to s, where⋂
MWC(s) = ∅;

4 for each worker wi ∈W do
5 if wi is assigned to a task s then
6 wi.st = s;

7 else
8 wi.st = null;

9 A = A∪ < s,MWC(s) >;

10 k = 1;
11 repeat
12 for each worker wi ∈W do
13 find the best-response task s∗ for wi;
14 /*s∗ can be obtained by Equation 11*/
15 if Ui(~st) ≤ 0 then
16 continue;

17 else if wi.st = null then
18 wi.st = s∗;
19 MWC(s∗) = MWC(s∗) ∪ {wi};
20 else
21 if workers in {MWC(wi.st)− {wi}} cannot

complete task wi.st before its deadline then
22 for each worker

wj ∈ {MWC(wi.st)− {wi}} do
23 wj .st = null;

24 MWC(wi.st) = ∅;
25 else
26 MWC(wi.st) = MWC(wi.st)− {wi};
27 wi.st = s∗;
28 MWC(s∗) = MWC(s∗) ∪ {wi};

29 k = k + 1;
30 until W.~stk = W.~st

k−1;
31 /*W.~stk denotes the strategies of all the workers in the kth iteration*/
32 update A;
33 return A.

Given a worker set W and a task set S to be assigned, the
task assignment A is initialized as ∅ (line 1). The algorithm
first randomly chooses an available worker for each task,
obtains the corresponding strategy (i.e., a reachable task or
doing nothing) for each worker, and updates the task assign-
ment A accordingly (line 2–9). Then the algorithm iteratively
adjusts each worker’s strategy to her best-response strategy
that maximizes the reward increase in her coalition (as defined
in Equation 11) based on the current joint strategies of others
until a Nash equilibrium (i.e., no one changes her strategy)
is found (line 11–30). At each iteration, only one worker is
allowed to select her best-response strategy and the game is
supposed to be played in sequence.

To be specific, for each worker wi ∈ W , we first find the
best-response task s∗ with the maximal reward increase, which



can be calculated in Equation 11.

s∗ =argmaxs∈wi.RSUi(
~st)

=argmaxs∈wi.RS

(
RMWC(s)∪{wi} −RMWC(s)

− (RMWC(s0) −RMWC(s0)−{wi})
)
.

(11)

When there is no best-response task for worker wi based
on the current task assignment, wi makes no change to her
strategy (line 15–16). For the worker selecting a best-response
task, we check her current strategy as follows:

1) in the event that her current strategy is doing nothing,
i.e., wi.st = null, we assign her the best-response task (i.e.,
wi.st = s∗) and update the minimal worker coalition for task
s∗ (line 17–19);

2) in case that her current strategy involves a task (marked
as wi.st), which means wi is assigned a task wi.st in coalition
MWC(wi.st), the strategies of the other workers in coalition
MWC(wi.st) are updated based on whether they are able
to complete task wi.st together on time (line 21–26). Subse-
quently, the strategy and worker coalition of wi are updated
(line 27–28).

Finally, we update the task assignment A according to the
Nash equilibrium (line 32). The time complexity of Algorith-
m 2 is O(|S| · |W |2 + |W | · |maxRS| ·K), where |S| is the
number of tasks, |W | is the number of workers, |maxRS|
is the maximum number of reachable tasks among all the
workers (i.e., |maxRS| = maxw∈W |w.RS|), and K is the
number of iterations to adjust each worker’s best-response
strategy until a Nash equilibrium is achieved.

C. Simulated Annealing based Optimization Strategy

Although the pure Nash equilibrium calculated by the best-
response algorithm can generate an acceptable task assignment
result with stable worker coalitions, it is a local optima of
the CTA problem and is not necessarily unique. Under the
situations where multiple pure Nash equilibriums exist (i.e.,
the structure of the problem space is not smooth), it is desirable
to obtain a better one than the one generated by the best-
response algorithm. Simulated Annealing (SA) is a stochastic
optimization procedure. It takes random walks through the
problem space at successively lower temperatures, looking for
points with better results (generated by the objective function)
than the current local optimal point. Inspired by the success
achieved by SA in solving discrete optimization problems [20],
we employ it to search for better approximation to the global
optimal task assignment.

In particular, when each worker updates her strategy sti
sequentially based on the given ~st−i to maximize the utility
function Ui(sti, ~st−i), the workers may reach a Nash equi-
librium that is a stable state. Considering that the search
space is discrete (i.e., the strategy sets ST = {STi}ni=1 are
discrete), the Simulated Annealing (SA) [21] can be applied
in the process of updating each worker’s strategy in order
for a better local optimum. SA is regarded as an efficient
probabilistic scheme for game updating to solve discrete
optimization problems, evolving a discrete-time inhomogenous
Markov chain, x(k) = (st1, ..., stn). In our work, the state

x(k) = (st1, ..., stn) is the strategy combination of the
workers at the kth iteration in Algorithm 2. For worker wi,
the strategy sti can keep the current task s0 or make change
to one of the other reachable tasks (i.e., wi.RS − {s0}). For
simulation of the heat (randomness), it is assumed that worker
wi is able to change her current strategy at random by using
one of the other reachable tasks with an identical probability
Psti,st′i = 1/|wi.RS|, where st′i = s (s ∈ wi.RS − {s0})
or st′i = null. Every single worker can update her strategy
sequentially in line with the following rules.

1) If Ui(st
′
i, ~st−i) ≥ Ui(sti, ~st−i), then x(k + 1) =

(st′i, ~st−i).
2) If Ui(st

′
i, ~st−i) < Ui(sti, ~st−i), then x(k + 1) =

(st′i, ~st−i) with probability

P = exp
{Ui(st′i, ~st−i)− Ui(sti, ~st−i)

Tem(k)

}
,

= exp
{Φi(st

′
i,
~st−i)− Φi(sti, ~st−i)

Tem(k)

}
,

(12)

where Tem(k)(> 0) denotes the temperature at the kth
iteration, which is in decline gradually throughout the updating
process; otherwise, x(k + 1) = x(k) = (sti, ~st−i).

By adhering to the above rules, we can update line 15–28 in
Algorithm 2. The detailed pseudo-code is omitted due to space
limit. Formally, the transition probability can be computed in
Equation 13.

P
[
x(k + 1) =

(
st′i, ~st−i

)
|x(k) =

(
s0, ~st−i

)]
= 1
|wi.RS|

exp

{
min(0,Ui(st′i,~st−i)−Ui(sti,~st−i))

Tem(k)

}
.

(13)

The function Tem(k) : N → (0,∞) is non-increasing,
called cooling schedule, where N is the set of positive integers.
From Equation 13 it can be seen that the strategy selection is
almost random when Tem(k) is large while a better strategy
with larger utility has a greater likelihood to be chosen
when Tem(k) approaches zero. Though the allowance of task
selection with a smaller utility contributes to a decline in
the total utility, such “irregular” strategy selections have a
potential to facilitate a better Nash equilibrium (i.e., a better
task assignment), which is validated by the experiments in
Section V.

D. Convergence Analysis

The question of convergence to a Nash equilibrium has
attracted a great deal of attention in the game theory field [22].
Therefore, we subsequently prove the convergence of our
solution to a pure Nash equilibrium point where no worker
is incentivised to unilaterally deviate.

Lemma 4: The best-response algorithm converges to a pure
Nash equilibrium.

Proof 4: As depicted in Equation 10, the utilities of all
the workers are mapped onto the potential function (i.e.,
Φ), suggesting that the individually-made adjustment to her
strategy by each worker will result in a change to her utility
and to the potential function with the same amount. For a
potential game, each worker has her strategy updated sequen-
tially for maximal utility by the best-response algorithm, and



the potential function will reach a local maximum (i.e., Nash
equilibrium) accordingly, wherein the best-response dynamic
is equivalent to a local search on the potential function of a
potential game. [23] has proven that in any finite potential
game, sequential updates with best-response dynamic always
converge to a Nash equilibrium.

In terms of convergence time, Fabrikant et al. [24] show
that identifying a pure Nash equilibrium in a potential game
is Polynomial Local Search (PLS)-complete when the best
response of each player can be found in polynomial time. In
our CTA game, each worker wi has only |wi.RS| strategies
corresponding to her reachable tasks wi.RS, where |wi.RS|
is not large in practical applications due to the spatio-temporal
constraints of workers and tasks. Each worker can pick up one
task out of her reachable tasks that maximizes the existing
utility in polynomial time. Therefore, the convergence to a
Nash equilibrium is fairly quick.

Lemma 5: The best-response algorithm with simulated an-
nealing optimization converges to a pure Nash equilibrium
when the cooling schedule is regulated.

Proof 5: With integration of the simulated annealing strategy
into the best-response algorithm, randomness is added into
the update process of workers’ strategies, i.e., worker wi can
change her current strategy on a random basis by using one
of the other reachable tasks with probabilities. Specifically,
the process is “heated” up before “cooling” down, helping
the potential function to avoid a local optimum (obtained by
the best-response algorithm) and converge to another better
Nash equilibrium, in which the cooling schedule ought to
be regulated such that the process will eventually “freeze”
(i.e., converge). [25] demonstrates that the convergence of
simulated annealing strategy can be guaranteed when the
cooling schedule is set as Tem(k) = β

log(k) (where β ≥ D∗

is a positive constant). If a joint strategy ~st has a path to
the optimal joint strategy ~st

∗
, D is defined as the depth such

that the smallest value of the potential Φ along the path is
Φ(~st)−D. D∗ denotes the maximum depth of the path starting
from any joint strategy ~st and ending at the final joint strategy
~st
∗

if ~st has a path to ~st
∗
.

The convergence of the best-response algorithm with sim-
ulated annealing is certain to proceed at a slower pace than
that of the best-response algorithm. In Section V, we provide
experimental evidence for this statement and demonstrate a
pure Nash equilibrium can effectively be calculated in finite
time, as stated in our Lemma 4 and Lemma 5.

V. EXPERIMENT

In this section, we evaluate the performance of the proposed
methods on both real and synthetic datasets. All the experi-
ments are implemented on an Intel (R) Xeon (R) CPU E5-2650
v2 @ 2.60 GHz with 128 GB RAM.

A. Experimental Setup

The experiments are carried out on two datasets, which
are gMission dataset (marked as GM) and synthetic dataset
(marked as SYN). To be specific, gMission is an open source

TABLE II
EXPERIMENT PARAMETERS

Parameter Value

Number of tasks |S| (GM) 100, 200, 300, 400, 500,
Number of tasks |S| (SYN) 1K, 2K, 3K, 4K, 5K
Number of workers |W | (GM) 100, 200, 300, 400, 500
Number of workers |W | (SYN) 1K, 2K, 3K, 4K, 5K
Reachable distance of workers r (SYN) 1km, 2km, 3km, 4km, 5km
Expected completion time of tasks e (SYN) 2h, 4h, 6h, 8h, 10h
Time between expected completion time and
deadline of tasks d− e (GM)

2h, 4h, 6h, 8h, 10h

SC platform [26], in which each task is associated with
its location, deadline and reward (regarded as its maximal
reward), and each worker is associated with her location and
reachable radius. The publish time of all the tasks is set to
0. As the gMission data is not associated with the workload,
expected completion time and penalty rate of tasks, we uni-
formly generate the attributes from the range of [ 25 ·s.d, 2·s.d],
[ 25 ·s.d,

3
5 ·s.d] and [0, s.maxRs.d−s.e ] (to guarantee the actual reward

obtained by workers to be non-negative), respectively, where
s.d is the deadline of s, and s.maxR is the reward of each
task s. It is a common practice in experimental settings of SC
platforms to generate the attributes in a uniform manner [2],
[27] since it can demonstrate the effects of those attributes on
more fair basis.

For synthetic dataset, based on the observation from real
dataset (i.e., gMission) that the location of workers/tasks is
uniformly distributed in space, we also generate the location of
workers/tasks following a uniform distribution. The maximal
reward of each task is set following a Gaussian distribution
since it is influenced by complex variables in real world. The
workload is uniformly generated from the range of [2,10].
Other settings (i.e., the publish time and penalty rate of each
task) in synthetic dataset are set in the same way with the
gMission dataset.

We study and compare the performance of the following
algorithms:

1) OTA: Optimal Task Assignment (OTA) algorithm based
on the tree-decomposition technique. OTA first finds all the
minimal worker coalitions for each task by utilizing the
dynamic programming technique, and then applies the tree-
decomposition-based algorithm [5] to identify the optimal task
assignment with maximal rewards.

2) GTA: Greedy Task Assignment (GTA) algorithm, where
α is set as 0.5, and the acceptance threshold η is set as 0.4.

3) BR: Best-Response (BR) approach.
4) BR+SA: our Best-Response approach with Simulated

Annealing optimization (BR+SA), where the cooling schedule
is set as Tem(k) = 1

log(k+1) and k denotes the kth iteration
of the algorithm.

Three main metrics are compared among the above al-
gorithms, i.e., Total reward, CPU time and the Number of
updates, for finding the final task assignments, where Number
of updates denotes the number of strategy updates made by
workers. Table II shows our experimental settings, where the
default values of all parameters are underlined.

B. Experimental Results



 2000

 4000

 6000

 8000

 10000

 1000  2000  3000  4000  5000

T
ot

al
 r

ew
ar

d

Number of tasks

OTA
GTA

BR
BR+SA

(a) Total Reward

 0

 500

 1000

 1500

 2000

 1000  2000  3000  4000  5000

C
P

U
 ti

m
e 

(m
s)

Number of tasks

GTA
BR
BR+SA

(b) CPU Time

 0

 5000

 10000

 1000  2000  3000  4000  5000

C
P

U
 ti

m
e 

(m
s)

Number of tasks

OTA
BR+SA

(c) CPU Time

 200

 400

 600

 800

 1000

 1200

 1400

 1000  2000  3000  4000  5000

N
um

be
r 

of
 u

pd
at

es

Number of tasks

BR
BR+SA

(d) Number of Updates
Fig. 4. Effect of |S| on Synthetic Dataset

 0

 1000

 2000

 3000

 100  200  300  400  500

T
ot

al
 r

ew
ar

d

Number of tasks

OTA
GTA

BR
BR+SA

(a) Total Reward

 0

 50

 100

 100  200  300  400  500

C
P

U
 ti

m
e 

(m
s)

Number of tasks

GTA
BR
BR+SA

(b) CPU Time

 0

 500

 1000

 1500

 100  200  300  400  500

C
P

U
 ti

m
e 

(m
s)

Number of tasks

OTA
BR+SA

(c) CPU Time

 0

 100

 200

 300

 100  200  300  400  500

N
um

be
r 

of
 u

pd
at

es

Number of tasks

BR
BR+SA

(d) Number of Updates
Fig. 5. Effect of |S| on gMission Dataset

a) Effect of |S|: To study the scalability of all the
algorithms, we generate 5 datasets containing 1000 to 5000
(100 to 500) tasks by random selection from the synthetic
dataset (gMission dataset). As shown in Figure 4(a) and
5(a), the total reward of all the methods exhibits a similar
increasing trend when |S| grows. Since OTA is the optimal
task assignment algorithm, it achieves the highest total reward,
followed by BR+SA, BR and GTA, in both synthetic dataset
and gMission dataset. BR+SA can obtain at most 96% of the
maximal reward, and its reward is consistently higher than that
of BR (by up to 8%), which demonstrates the superiority of
the simulated annealing optimization strategy. BR and GTA
can achieve up to 93% and 82% of the optimal reward,
respectively. In Figure 4(b), 4(c), 5(b) and 5(c), despite the
CPU cost of all methods being on the rise as |S| increases, our
proposed algorithms (including GTA, BR and BR+SA) deliver
a clearly superior performance to OTA. OTA deteriorates at a
significantly faster pace in respect of efficiency. As expected,
GTA is the fastest algorithm, which can improve efficiency
by 11% − 32% (23% − 39%) compared with BR (BR+SA),
while it generates smaller reward when compared to the other
algorithms. BR+SA can provide an excellent trade-off between
effectiveness (second to OTA) and efficiency (only 30%−64%
slower than GTA). In Figure 4(d) and 5(d), workers update
their strategies more frequently in BR+SA than in BR, which
is attributed to the fact that BR+SA allows a worker to
randomly change her current strategies whereas a worker in

 0

 1000

 2000

 3000

 4000

 5000

 1000  2000  3000  4000  5000

T
ot

al
 r

ew
ar

d

Number of workers

OTA
GTA

BR
BR+SA

(a) Total Reward

 0

 200

 400

 600

 800

 1000  2000  3000  4000  5000

C
P

U
 ti

m
e 

(m
s)

Number of workers

GTA
BR
BR+SA

(b) CPU Time

 0

 1000

 2000

 3000

 1000  2000  3000  4000  5000

C
P

U
 ti

m
e 

(m
s)

Number of workers

OTA
BR+SA

(c) CPU Time

 0

 100

 200

 300

 400

 500

 600

 700

 1000  2000  3000  4000  5000

N
um

be
r 

of
 u

pd
at

es

Number of workers

BR
BR+SA

(d) Number of Updates
Fig. 6. Effect of |W | on Synthetic Dataset

 0

 500

 1000

 1500

 100  200  300  400  500

T
ot

al
 r

ew
ar

d

Number of workers

OTA
GTA

BR
BR+SA

(a) Total Reward

 0

 10

 20

 30

 100  200  300  400  500

C
P

U
 ti

m
e 

(m
s)

Number of workers

GTA
BR
BR+SA

(b) CPU Time

 0

 100

 200

 300

 100  200  300  400  500

C
P

U
 ti

m
e 

(m
s)

Number of workers

OTA
BR+SA

(c) CPU Time

 0

 100

 200

 100  200  300  400  500

N
um

be
r 

of
 u

pd
at

es

Number of workers

BR
BR+SA

(d) Number of Updates
Fig. 7. Effect of |W | on gMission Dataset

BR can update her current strategies only when there exists
a best-response strategy. We also observe that both BR and
BR+SA have an increasing number of updates as |S| grows.
The reason behind it is self-evident, that is, with more tasks to
be assigned, each worker receives more reachable tasks (i.e.,
available strategies) such that she has more chance to update
her strategies.

b) Effect of |W |: Next we study the effect of |W |,
the number of workers to be assigned. As illustrated in
Figure 6(a), 6(b), 7(a) and 7(b), BR and BR+SA can achieve
a higher global reward than GTA while sacrificing some
efficiency. However, the computing efficiency of BR and
BR+SA is acceptable. Though the total reward of OTA is
undoubtedly the highest, it is time-consuming as shown in
Figure 6(c) and 7(c). More specifically, BR+SA can get up to
98% of the maximal reward and its CPU cost is significantly
less than that of OTA, i.e., the CPU cost of BR+SA is only
10% − 53% of OTA’s. By contrast, the reward obtained by
BR (GTA) is only 71%− 93% (67%− 86%) of the maximal
reward. From Figure 6(d) and 7(d) we can see that the number
of updates shows an upward trend with the varying |W | since
there are more workers needing to change their strategies
when the number of workers to be assigned gets larger. It
is noteworthy that the number of workers’ strategy updates
is much lower than the number of workers to be assigned.
This can be accounted for by various reasons. The first one
is that some of the workers stick to their initial assigned



 0

 2000

 4000

 6000

 1  2  3  4  5

T
ot

al
 r

ew
ar

d

Reachable radius of worker (km)

OTA
GTA
BR
BR+SA

(a) Total Reward

 400

 500

 600

 700

 800

 900

 1000

 1100

 1  2  3  4  5

C
P

U
 ti

m
e 

(m
s)

Reachable radius of worker (km)

GTA
BR
BR+SA

(b) CPU Time

 0

 400

 800

 1200

 1  2  3  4  5

N
um

be
r 

of
 u

pd
at

es

Reachable radius of worker (km)

BR
BR+SA

(c) Number of Updates
Fig. 8. Effect of r on Synthetic Dataset

 2000

 4000

 6000

 8000

 2  4  6  8  10

T
ot

al
 r

ew
ar

d

Expected completion time of task (h)

OTA
GTA
BR
BR+SA

(a) Total Reward

 500

 600

 700

 800

 900

 1000

 2  4  6  8  10

C
P

U
 ti

m
e 

(m
s)

Expected completion time of task (h)

GTA
BR
BR+SA

(b) CPU Time

 0

 200

 400

 600

 800

 1000

 2  4  6  8  10

N
um

be
r 

of
 u

pd
at

es

Expected completion time of task (h)

BR
BR+SA

(c) Number of Updates
Fig. 9. Effect of e on Synthetic Dataset

tasks (both BR and BR+SA algorithms give each worker an
initial strategy, i.e., one of her reachable tasks or a null task,
refer to Algorithm 2) without making any strategy updates.
The second reason is that there exist some workers having
no reachable tasks, which means their strategies are always
null tasks such that the number of their strategy updates is 0.
To save space, in the following experiments, we will neither
present the CPU cost of OTA that is really huge, nor report
the results of gMission dataset, which show similarity to those
of the synthetic dataset.

c) Effect of r: Figure 8 describes the effect of workers’
reachable radius, r, on the performance of all the algorithms
by changing it from 1 km to 5 km. With the increase of
workers’ reachable radius, workers have more reachable tasks,
as a result of which they have more chance to select the tasks
with higher rewards, which explains the rising trends of the
total rewards with growing r in Figure 8(a). Accordingly, the
CPU cost of all the approaches grows as r varies in Figure 8(b)
since workers have to search more reachable tasks to find the
suitable ones. Besides, as we can see from Figure 8(c), the
number of updates using BR+SA algorithm is always higher
than that using BR algorithm, regardless of r.

d) Effect of e: We next study how the expected time of
tasks affects the performance of all the methods. Obviously,
in Figure 9(a), the total rewards of all the methods gradually
increase with the increasing e since larger e implies that
more tasks can reach the maximal rewards. OTA still gets the
maximal rewards, and BR+SA outperforms BR and GTA. It
is noticeable, however, that all the methods tend to maintain
stability when e > 8h, which may be due to the fact that a ma-
jority of the tasks can be completed before 8h to achieve their
own maximal rewards. In terms of CPU time, the tendency

 2000

 4000

 6000

 2  4  6  8  10

T
ot

al
 r

ew
ar

d

Time between e and d (h)

OTA
GTA
BR
BR+SA

(a) Total Reward

 500

 600

 700

 800

 900

 1000

 1100

 1200

 2  4  6  8  10

C
P

U
 ti

m
e 

(m
s)

Time between e and d (h)

GTA
BR
BR+SA

(b) CPU Time

 300

 600

 900

 2  4  6  8  10

N
um

be
r 

of
 u

pd
at

es

Time between e and d (h)

BR
BR+SA

(c) Number of Updates
Fig. 10. Effect of d− e on Synthetic Dataset

of all the methods is ascending at first and stable afterwards.
This is because initially, with larger e, each worker tends to
have more reachable tasks and searching these tasks needs
more CPU time. Then, as the expected completion time of
tasks continues to be extended, the number of reachable tasks
for each worker will keep stable due to other spatio-temporal
constraints (e.g., workers’ reachable distance) such that the
CPU time maintains stability. In Figure 9(c), the number of
updates for BR and BA+SA decreases as e increases, since
workers are more likely to select their satisfied tasks to avoid
strategy updates with the larger e.

e) Effect of d − e: In the final set of experiments, we
study the effect of d − e. Not surprisingly, as can be seen in
Figure 10(a) and 10(b), all the approaches lead to the higher
rewards with more CPU time when the deadlines are more
relaxed. As expected, the larger d− e means on average each
worker has more reachable tasks, which can contribute to more
total rewards and cost more CPU time. Another observation is
that, the performance gap between BR-related approaches and
GTA algorithm in terms of total reward is also increasing. This
is due to the fact, when applying the BR-related algorithms,
the total reward is more sensitive to the average number of
available worker sets for each task that increases with d − e.
In such circumstances, the benefits of BR-related approaches
become more significant. In addition, the numbers of updates
of both BR and BR+SA show an upward trend as d−e grows,
depicted in Figure 10(c).

Summary: The take-away message of our empirical study
can be summarized as follows:

1) OTA achieves the maximum rewards but sacrifices a great
deal of efficiency.

2) BR+SA achieves good balance between efficiency and
effectiveness (second to OTA).

3) Although GTA is the most efficient algorithm, it performs
worse than other methods in effectiveness.

VI. RELATED WORK

Recent studies in Spatial Crowdsourcing (SC) make great
efforts to devise algorithms to solve the task assignment prob-
lems [3], [28]–[31]. Nevertheless, these aforementioned stud-
ies adopt task assignment methods in a centralized control way
without considering the coordination among workers, which
incur a substantial amount of computational cost especially
in large-scale SC scenarios. Therefore, they greatly increase
the system implementation difficulty and human efforts of
applying these methods in a practical situation.

Additionally, a majority of the SC researches have been fo-
cusing on assigning each task to a single nearby worker based
on various system optimization goals. However, in practice, it
is inevitable to encounter complex tasks (such as monitoring
traffic condition and cleaning rooms) that require a group of
workers to conduct, called multiple task assignment mode.
In this work we will go further in this direction to address
the coalition-based task assignment problem by considering
the reward and stability of worker coalitions. In our problem
setting, workers are required to form a coalition to perform a



task through collaboration. Establishing worker coalitions is an
important manner for workers’ coordination and cooperation in
SC, by which workers can enhance their capability to perform
tasks and obtain more utility.

The closest related research to ours is [6], which designs
a game theoretic approach to solve the cooperative task
assignment problem. However, it differs from our work in
terms of the objectives and problem setting. Firstly, [6] aims to
maximize the total cooperation quality scores of assignments,
while our goal is to maximize the overall rewards for workers.
Besides, an implicit assumption made in [6] is that workers
are willing to voluntarily perform the tasks assigned to them.
Nevertheless, in practice, workers are likely to be reluctant to
perform the assigned tasks without actual payments or credits
as they have various participation cost (e.g., mobile device
battery energy cost) [7], especially for the complex tasks that
need a group of workers to conduct together. In our problem,
we take workers’ rewards into consideration in order to arouse
workers’ enthusiasm about performing tasks. Moreover, [6]
only obtains a Nash equilibrium from the multiple Nash
equilibriums through the best-response method, while we aim
to achieve a better Nash equilibrium with higher total rewards
through a combination of the simulated annealing scheme and
the best-response method.

VII. CONCLUSION

In this paper, we study a novel problem, called Coalition-
based Task Assignment (CTA), in spatial crowdsourcing,
where an individual worker may not be able to accomplish
a task independently since completing the task alone exceeds
the capability of this worker. Therefore, workers are required
to form stable coalitions with sufficient cumulative capabilities
(or time) to finish the tasks. As the CTA problem is proved to
be NP-hard, we propose different algorithms (including greedy
algorithm and equilibrium-based algorithm) to efficiently and
effectively assign tasks to maximize the overall rewards. The
first algorithm assigns tasks to the nearby workers greedily
and adopts an acceptance possibility to find the high-value
task assignments. The equilibrium-based algorithm hybrids the
best-response strategy and simulated annealing strategy to find
a Nash equilibrium, which is an approximately optimal task
assignment. As demonstrated by the extensive empirical study,
our proposed solutions can significantly improve the efficiency
and effectiveness of task assignment.

ACKNOWLEDGMENT

This work is partially supported by Natural Science Foun-
dation of China (No. 61972069, 61836007 and 61832017),
and Sichuan Science and Technology Program under Grant
2020JDTD0007.

REFERENCES

[1] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng, “Preference-
aware task assignment in on-demand taxi dispatching: An online stable
matching approach,” in AAAI, 2019, pp. 2245–2252.

[2] Y. Tong, J. She, B. Ding, and L. Wang, “Online mobile micro-task
allocation in spatial crowdsourcing,” in ICDE, 2016, pp. 49–60.

[3] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu, “Flexible
online task assignment in real-time spatial data,” VLDB, vol. 10, no. 11,
pp. 1334–1345, 2017.

[4] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou, “Predictive
task assignment in spatial crowdsourcing: A data-driven approach,” in
ICDE, 2020, pp. 13–24.

[5] Y. Zhao, Y. Li, Y. Wang, H. Su, and K. Zheng, “Destination-aware task
assignment in spatial crowdsourcing,” in CIKM, 2017, pp. 297–306.

[6] P. Cheng, L. Chen, and J. Ye, “Cooperation-aware task assignment in
spatial crowdsourcing,” in ICDE, 2019, pp. 1442–1453.

[7] J. Xia, Y. Zhao, G. Liu, J. Xu, M. Zhang, and K. Zheng, “Profit-driven
task assignment in spatial crowdsourcing,” in IJCAI, 2019, pp. 1914–
1920.

[8] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao, “Task assignment on
multi-skill oriented spatial crowdsourcing,” TKDE, vol. 28, no. 8, pp.
2201–2215, 2015.

[9] X. Li, Y. Zhao, J. Guo, and K. Zheng, “Group task assignment with
social impact-based preference in spatial crowdsourcing,” in DASFAA,
2020, pp. 677–693.

[10] Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou, “Destination-aware
task assignment in spatial crowdsourcing: A worker decomposition
approach,” TKDE, 2019.

[11] Y. Zhao, K. Zheng, H. Yin, G. Liu, J. Fang, and X. Zhou, “Preference-
aware task assignment in spatial crowdsourcing: from individuals to
groups,” TKDE, 2020.

[12] X. Li, Y. Zhao, K. Zheng, and X. Zhou, “Consensus-based group task
assignment with social impact in spatial crowdsourcing,” Data Science
and Engineering, vol. 5, no. 4, pp. 375–390, 2020.

[13] Y. Zhao, J. Xia, G. Liu, H. Su, D. Lian, S. Shang, and K. Zheng,
“Preference-aware task assignment in spatial crowdsourcing,” in AAAI,
2019, pp. 2629–2636.

[14] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowd-
sourcing: A survey,” VLDBJ, 2019.

[15] V. V. Vazirani, Approximation algorithms. Springer Science and
Business Media, 2013.

[16] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic
Behavior, vol. 14, no. 1, pp. 124–143, 1996.

[17] F. D. and T. J., “Game theory,” MIT Press, 1991.
[18] J. F. Nash, “Equilibrium points in n-person games,” Proceedings of the

National Academy of Sciences of the United States of America36, pp.
48–49, 1950.

[19] R. B. Myerson, “Game theory: Analysis of conflict,” Harvard University
Press, 1997.

[20] D. E. Kaufman and R. L. Smith, “Fastest paths in time-dependent
networks for intelligent vehicle-highway systems application,” IVHSJ,
1993.

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, p. 671680, 1983.

[22] D. Fudenberg and D. K. Levine, The Theory of Learning in Games.
MIT Press, 1998.

[23] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, “Algorithmic
game theory,” MIT Press, 2007.

[24] A. Fabrikant, C. Papadimitriou, and K. Talwar, “The complexity of pure
nash equilibria,” STOC, pp. 604–612, 2004.

[25] Y. Liu, D. Liang, and R. J. Marks, “Common control channel assignment
in cognitive radio networks using potential game theory,” in WCNC,
2013.

[26] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, C. C. Cao,
Y. Tong, and C. J. Zhang, “gmission: A general spatial crowdsourcing
platform,” VLDB, vol. 7, no. 13, pp. 1629–1632, 2014.

[27] S. R. B. Gummidi, T. B. Pedersen, and X. Xie, “Transit-based task
assignment in spatial crowdsourcing,” in SSDBM, 2020.

[28] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, J. Han, and J. Zhao,
“Reliable diversity-based spatial crowdsourcing by moving workers,”
VLDBJ, vol. 8, no. 10, pp. 1022–1033, 2015.

[29] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic pricing
in spatial crowdsourcing: A matching-based approach,” in SIGMOD,
2018, pp. 773–788.

[30] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu,
“Trichromatic online matching in real-time spatial crowdsourcing,” in
ICDE, 2017, pp. 1009–1020.

[31] Y. Cui, L. Deng, Y. Zhao, B. Yao, V. W. Zheng, and K. Zheng, “Hidden
poi ranking with spatial crowdsourcing,” in SIGKDD, 2019, pp. 814–
824.


	Introduction
	Problem Statement
	Greedy Approach
	Equilibrium-based Approach
	Game Modeling and Nash Equilibrium
	Best-response Approach
	Simulated Annealing based Optimization Strategy
	Convergence Analysis

	Experiment
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion
	References

