
Fairness-aware Task Assignment in Spatial
Crowdsourcing: Game-Theoretic Approaches

Yan Zhao
Department of Computer Science

Aalborg University
Aalborg, Denmark

yanz@cs.aau.dk

Kai Zheng*

University of Electronic Science
and Technology of China

Chengdu, China
zhengkai@uestc.edu.cn

Jiannan Guo
China Mobile Cloud Centre

Suzhou, China
guojiannan@cmss.chinamobile.com

Bin Yang
Department of Computer Science

Aalborg University
Aalborg, Denmark
byang@cs.aau.dk

Torben Bach Pedersen
Department of Computer Science

Aalborg University
Aalborg, Denmark

tbp@cs.aau.dk

Christian S. Jensen
Department of Computer Science

Aalborg University
Aalborg, Denmark

csj@cs.aau.dk

Abstract—The widespread diffusion of smartphones offers a
capable foundation for the deployment of Spatial Crowdsourcing
(SC), where mobile users, called workers, perform location-
dependent tasks assigned to them. A key issue in SC is how
best to assign tasks, e.g., the delivery of food and packages,
to appropriate workers. Specifically, we study the problem of
Fairness-aware Task Assignment (FTA) in SC, where tasks are
to be assigned in a manner that achieves some notion of fairness
across workers. In particular, we aim to minimize the payoff
difference among workers while maximizing the average worker
payoff. To solve the problem, we first generate so-called Valid
Delivery Point Sets (VDPSs) for each worker according to an
approach that exploits dynamic programming and distance-
constrained pruning. Next, we show that FTA is NP-hard and
proceed to propose two heuristic algorithms, a Fairness-aware
Game-Theoretic (FGT) algorithm and an Improved Evolution-
ary Game-Theoretic (IEGT) algorithm. More specifically, we
formulate FTA as a multi-player game. In this setting, the
FGT approach represents a best-response method with sequential
and asynchronous updates of workers’ strategies, given by the
VDPSs, that achieves a satisfying task assignment when a pure
Nash equilibrium is reached. Next, the IEGT approach considers
a setting with a large population of workers that repeatedly
engage in strategic interactions. The IEGT approach exploits
replicator dynamics that cause the whole population to evolve
and choose better resources, i.e., VDPSs. Using the property of
evolutionary equilibrium, a satisfying task assignment is obtained
that corresponds to a stable state with similar payoffs among
workers and good average worker payoff. Extensive experiments
offer insight into the effectiveness and efficiency of the proposed
solutions.

I. INTRODUCTION

The widespread diffusion of smartphones enables a new
class of crowdsourcing, called Spatial Crowdsourcing (SC),
where a server assigns location-dependent tasks to smartphone
users, called workers.

It is natural to view an SC system as a multi-player system
that is designed based on the principles of a standard game-
theoretic model. For example, a recent study [1] provides

* Corresponding author: Kai Zheng.

a game-theoretic approach, in which workers perform tasks
cooperatively to achieve high total cooperation quality scores.
However, the study does not address fairness during task
assignment, i.e., how to ensure that task assignment does
not discriminate against certain workers or worker groups.
The standard game-theoretic approaches typically assume that
players are rational, meaning that individual players maximize
their own utility selfishly, while disregarding the effects on
the population-wide utility. However, studies in behavioral e-
conomics reveal that humans often do not behave selfishly [2].
Instead, they consider the effects of their actions or strategies
on others and strive for fair solutions while expecting others
to do the same. Therefore, multi-player systems using only
standard game-theoretic principles risk being misaligned with
human expectations, which motivates the study of fairness in
SC task assignment.

Fairness is a critical aspect of an SC platform: the social
psychology literature shows that fairness is key to ensuring
continuous and high worker participation and satisfaction [3].
Put differently, to ensure long-term commitment and par-
ticipation by workers, fairness needs to be considered as a
first class citizen when designing SC applications. Borromeo
et al. [4] define the concept of unfairness as discrimination
against individuals, while Durward et al. [5] differentiate
among a variety of perspectives on fairness and ethics in
crowdsourcing. However, these studies consider traditional
crowdsourcing settings and do not take into account spatio-
temporal aspects. Recently, Chen et al. [6] study a Fair and
Effective Task Assignment (FETA) problem in SC and define
worker fairness based on the notion of Fagin-Williams share.
We will go further in this direction by providing an assignment
notion of fairness and by designing game-theoretic approaches
to achieving fair task assignment in SC.

Because delivery logistics, e.g., on-demand local delivery
and transportation, is an important use case for SC, we inves-
tigate task assignment, called Fairness-aware Task Assignment

dp |dp.S| e dp |dp.S| e

1 6 2.5 4 5 5

2 3 7 5 3 6

3 4 5

1

2

3

4

5

dp1
(1, 3)

1 2 3

1

2

3
dp2

(2, 3.5) dp3
(3, 3)

dp4
(3, 2)

dp5
(2, 1)

dc
(2, 2)

w1
(1, 2)

w2
(3, 1)

Delivery points: dp1 - dp5

Workers: w1 , w2

Distribution center: dc

Fair Task Assignment for w2

Fair Task Assignment for w1
Greedy Task Assignment for w2

Greedy Task Assignment for w1

Fig. 1. Running Example

(FTA), in such a setting. Specifically, given a distribution
center, a set of workers, delivery points, and tasks (deliveries
from the distribution center to delivery points), the goal is to
find a fair assignment of tasks to workers. We assume so-called
assignment fairness, which is usually related to the distribution
of goods and resources. We first illustrate the FTA problem
through the example in Figure 1, that shows a distribution
center (dc, located at (2, 2)), two workers (e.g., w1 located
at (1, 2) and w2 located at (3, 1)), and five delivery points
(i.e., dp1–dp5). Each delivery point dp is associated with a
set of tasks dp.S (the deliveries to the location of dp), and
the number of tasks is denoted by |dp.S| (e.g., dp1 has 6
tasks). Further, tasks expire after a certain time, and the earliest
expiration time e among the tasks in a task set is recorded (e.g.,
the earliest expiration time of dp.S is 2.5). The FTA problem
is to assign tasks to workers so as to minimize the unfairness
(i.e., payoff difference) among workers while maximizing the
average worker payoff. Here the payoff of a worker is the ratio
between the sum of the rewards of the assigned tasks and the
sum of the worker’s travel times needed to complete the tasks.
For simplicity, we assume that each task has the same reward
(1) and that each worker has the same speed (1). Next, each
worker has to move to the distribution center to receive a
task (e.g., a package to be delivered) and must then travel to
an assigned delivery point to complete the task (perform the
delivery). If worker wi successively visits dp1, dp2, and dp3 to
perform tasks, the payoff is 6+3+4

1+1.41+1.12+1.12 = 13
4.65 = 2.80,

where 13 is the sum of rewards and 4.65 is the sum of
the travel times. A simple greedy approach is to ask each
worker to move to the delivery points with the highest payoff
without violating the spatio-temporal constraints, referred to
as Greedy Task Assignment. This gives the task assignment
{(w1, {dp1, dp2, dp3}), (w2, {dp4, dp5})}, where the payoff
difference between the two workers is 0.71 and the average
worker payoff is 2.44. However, adopting a fair task assign-
ment approach, we can achieve a difference of only 0.26
and a comparable average payoff of 2.42 with the assignment
{(w1, {dp1, dp2}), (w2, {dp3, dp4, dp5})}.

We show that the FTA problem is NP-hard and thus design
two heuristic approaches, specifically a Fairness-aware Game-
Theoretic (FGT) approach and an Improved Evolutionary
Game-Theoretic (IEGT) approach. We first present an al-
gorithm based on dynamic programming that generates so-

called Valid Delivery Point Sets (VDPSs) for each worker.
These represent the strategies of workers in games. We then
improve the efficiency of the algorithm by means of a distance-
constrained pruning strategy. The FGT and IEGT approaches
are designed by converting the FTA problem into a multi-
player game. In the FGT approach, we adopt Inequity Aversion
based Utility (IAU), a common descriptive model for fairness,
as the utility function. A best-response mechanism is employed
to sequentially and asynchronously update workers’ strategies
(of selecting VDPSs) to reach a pure Nash equilibrium,
corresponding to a satisfying fair task assignment. A Nash
equilibrium holds that no worker can improve their utility
by means of unilateral changes to their strategies when other
workers persist in their existing strategies.

However, the assumption of rationality of workers implies
complete information of each worker to calculate the best-
response strategies given other workers’ strategies, which is
often not realistic. Therefore, we design an Improved Evo-
lutionary Game-Theoretic (IEGT) approach based on a repli-
cator dynamics mechanism. Using the property of improved
evolutionary equilibrium, the algorithm achieves an improved
stable state, where workers have similar payoffs and high
average payoff. Due to the rationality limitations of workers,
the improved evolutionary equilibrium can only be reached
through repeated games. In our case, such an approach has the
advantage that the rationality of workers can be improved by a
dynamic studying process. Through repeated games, workers
can adjust their strategies to arrive at a final evolutionary
equilibrium that leads to a fair allocation of tasks.

Our contributions can be summarized as follows:
i) We identify and study in depth a Fairness-aware Task

Assignment (FTA) problem in the context of SC.
ii) We formulate the FTA problem as a multi-player game

and propose a classical game-theoretic approach, where fair-
ness is considered and a Nash equilibrium is found based on
the best-response framework.

iii) We also design an Improved Evolutionary Game-
Theoretic task assignment approach that works by achieving
an improved evolutionary equilibrium and that solves the FTA
problem.

iv) We report experiments that offer insight into the impact
of key parameters and into the effectiveness of the proposed
techniques. The convergence of the game-theoretic approaches
is also studied and analyzed.

II. RELATED WORK

Research on Spatial Crowdsourcing (SC) [7]–[15] has at-
tracted substantial attention in recent years; consequently,
many task assignment techniques have been proposed for dif-
ferent application scenarios. As the task assignment problem
is NP-hard in its general form [16], [17], many heuristic
algorithms have been proposed that aim for near-optimal
solutions [18]. Since SC systems can be regarded naturally
as multi-player systems, some studies [1], [16] have proposed
game-theoretic methods to solve the optimization problem of
task allocation from the viewpoint of workers. However, the

above studies focus mainly on the spatio-temporal availability
of workers and tasks, thus leaving many problems regarding
effective and efficient task assignment largely unaddressed,
including how to consider fairness when assigning tasks.

An attractive SC platform offers means of promoting con-
tinuous participation of workers and avoiding worker turnover.
Naturally, a negative correlation is expected between job sat-
isfaction and worker turnover. Fairness is the most important
factor for job satisfaction [19]. Ye et al. [20] study the fair
assignment of tasks to heterogeneous workers with different
capacities and costs in relation to task execution. The main
idea to achieve fairness is to maximize the minimum utility
(i.e., number of allocations) for all workers. However, most
of these studies disregard the spatio-temporal information of
workers and tasks, and thus do not apply readily to an SC
application. Zhao et al. [21] propose a preference-aware task
assignment problem for on-demand taxi dispatching, which
considers the degree of dissatisfaction for both workers and
tasks (i.e., passengers). Their problem setting differs sub-
stantially from ours, and thus their algorithm does not solve
our problem. Basik et al. [22] propose a fair task allocation
framework for crowdsourced delivery, focusing on distributive
fairness. Specifically, distributive fairness is defined as the
proximity between a worker’s own input/output ratio and the
input/output ratio of a referent, where the input to a worker
is the total reward of the offers accepted and the output of a
worker is the amount of reward earned. This notion of fairness
differs from our definition of fairness. Further, Basik et al.
assign tasks to workers, they do not schedule task location
sequences. In addition, they assign tasks in ascending order
of the number of available workers and assign workers with
the lowest local assignment ratio. This arrangement does not
apply in our setting, where each task has the same number
of available workers and each worker has the same local
assignment ratio. Recently, Chen et al. [6] address the worker
fairness problem in SC by transforming it into an online
bi-objective matching problem. It differs from our work in
terms of the fairness definition, the problem settings, and the
objectives. First, they define the worker fairness by Fagin-
Williams share, which denotes the ideal credit each person
in a carpool should have to find the deserved amount of
task requests. In contrast, we employ the concept of Inequity
Aversion based Utility (IAU), which offers a common and
intuitive descriptive model for fairness. Further, we improve
the notion of an evolutionary stable strategy in an evolutionary
game to achieve a satisfied fair task assignment that affords
workers’ similar payoffs. Second, while Chen et al. [6] assign
each worker a suitable task in each assignment, we assign
tasks that are scheduled delivery point sequences to worker.
Third, Chen et al. [6] aim to maximize a linear combination
of the minimum individual worker fairness cost and the total
utility, while we aim to minimize the payoff difference among
workers to achieve more fair and equal task assignments.
In particular, we aim to find the best-response strategy (i.e.,
the delivery point set with the highest IAU) for each worker
in a classical game and pursue evolutionary stability in an

evolutionary game, which can also bring a satisfying average
payoff for each worker.

III. PROBLEM STATEMENT

We proceed to present necessary preliminaries and then
define the problem addressed.

Definition 1 (Distribution Center): A distribution center,
denoted by dc = (l, S,DP), has a location dc.l, a set of tasks
dc.S to be distributed, and a set of delivery points dc.DP (see
Definition 2), at which tasks in dc.S are to be delivered.

Definition 2 (Delivery Point): A delivery point, denoted by
dp = (l, S), consists of a location dp.l, and a set of tasks
dp.S that are deliveries to the delivery point, meaning that
dc.S = ∪dp∈dc.DPdp.S.

Definition 3 (Spatial Task): A spatial task, denoted by s =
(dp, e, r), encompasses a delivery point s.dp, a task expiration
deadline s.e, and a reward s.r that the worker who completes
s will obtain.

A spatial task s can be completed only if a worker is
physically located at its location (i.e., the location of s.dp).
Next, a task s can be assigned to a worker only if the worker
arrives at its location before the deadline s.e. With single-task
assignment mode, the server assigns each task to a worker
at a time. For simplicity and without loss of generality, we
assume that the processing time of a task is zero, which means
that a worker will proceed to the location of the next task
immediately upon finishing the current task.

Definition 4 (Worker): A worker, denoted as w =
(l,maxDP), is able to perform spatial tasks. A worker can be
in either online or offline mode. A worker is online when the
worker is ready to accept tasks and offline when unavailable to
perform tasks. An online worker w is associated with a current
location w.l and a maximum acceptable number of delivery
points w.maxDP that the worker is willing to deliver to.

We assume that a worker can only work for a single distri-
bution center, which is reasonable in practice. The server will
consider all the available tasks and workers at a particular time
instance, and it returns a sequence of delivery points (each with
a set of tasks) for each worker to visit in order to complete the
delivery tasks while observing the spatio-temporal constraints.
Once a delivery point sequence is assigned to a worker, the
worker is offline until the assigned tasks are completed.

Definition 5 (Delivery Point Sequence): Given an online
worker w and a set of assigned delivery points DPw, a delivery
point sequence on DPw, denoted as R(DPw), represents the
order in which w visits the delivery points in DPw. The arrival
time of w at delivery point dpi ∈ DPw (the time of completing
tasks related to dpi) is computed as follows:

tw,R(dpi) =
{

c(w.l, dc.l) + c(dc.l, dpi.l) if i = 1
tw,R(dpi−1) + c(dpi−1.l, dpi.l) if i > 1,

where c(a, b) is the travel time from location a to location b.
When w and R are clear from the context, we use t(dpi) to
denote tw,R(dpi).

Definition 6 (Valid Delivery Point Set): A delivery point
set DPw is called a Valid Delivery Point Set (VDPS) for a
worker w, denoted as VDPS (w), if a delivery point sequence

R(DPw) exists, such that all the tasks located in dp (∈ DPw)
can be completed before their expiration times, i.e., ∀si ∈
dp.S, ∀dp ∈ DPw (t(dp) ≤ si.e).

Definition 7 (Worker Payoff): The payoff of a worker w is
denoted by P(w ,VDPS (w)), which is the ratio between the
rewards for the tasks in VDPS (w).S and worker w’s travel
time. It is calculated as follows:

P(w ,VDPS(w)) =

∑
s∈VDPS(w).S s.r

t(dp|VDPS(w)|)
, (1)

where VDPS (w).S denotes the tasks located in all the deliv-
ery points in VDPS (w),

∑
s∈VDPS(w).S s.r is the sum of the

rewards of tasks in VDPS (w).S , and t(dp|VDPS(w)|) denotes
the arrival time of w at the final delivery point dp|VDPS(w)|,
which represents w’s travel time from the current location to
dp|VDPS(w)|. The payoff difference is used to balance fairness
and travel time. When VDPS (w) is clear from the context,
we use simply P (w) instead of P(w ,VDPS (w)).

Note that more than one delivery point sequences may exist
for a given VDPS. Among these, we consider only the one
with the minimal travel time (which brings workers the highest
payoffs) for each VDPS. In Figure 1, {dp1, dp2, dp3} is a
VDPS for worker w1, and (dp1, dp2, dp3) and (dp1, dp3, dp2)
are delivery point sequences. However, we only consider
(dp1, dp2, dp3) and compute the payoff of wi based on it
because it has the lowest travel time among the two.

Definition 8 (Spatial Task Assignment): Assume a set
of distribution centers, a set of delivery points, each with
a set of tasks, and a set of workers. Then a spatial task
assignment, denoted by A, consists of a set of pairs of a
worker and a VDPS for the worker: (w1 ,VDPS (w1)),
(w2 ,VDPS (w2)),...,(w|W |,VDPS (w|W |)), where
VDPS (wi)∩VDPS (wj) = ∅, 1 ≤ i 6= j ≤ |W |, and W
denotes the worker set.

Each (worker ,VDPS) pair has a payoff, P(w ,VDPS (w)).
We use the payoff difference (denoted as Pdif) between
workers to denote the assignment unfairness among them,
which is calculated in Equation 2.

Pdif =

∑
wi∈W,wj∈W,wi 6=wj

|P (wi)− P (wj)|

|W |(|W | − 1)
, (2)

where P (w) denotes the payoff of worker w. We use A.Pdif

to denote the payoff difference among all workers in task
assignment A.

FTA Problem Statement. Given a set of distribution cen-
ters, a set of delivery points, each with a set of tasks, and a
set of workers at the current time instance on an SC platform,
our problem is to find a task assignment Aopt that achieves
the following goals:

1) primary optimization goal: minimize the payoff differ-
ence among workers (i.e., ∀ Ai ∈ A (Ai .Pdif≥Aopt .Pdif)),
where A denotes all possible assignments; and

2) secondary optimization goal: maximize the average work-
er payoff.

Lemma 1: The FTA problem is NP-hard.
Proof 1: The lemma can be proved through a reduction

from the 0-1 knapsack problem that can be described as

follows: given a set C with n items, in which each item
ci ∈ C is labeled with a weight mi and a value vi, the
0-1 knapsack problem is to identify a subset C ′ of C that
maximizes

∑
ci∈C′ vi subjected to

∑
ci∈C′ mi ≤ M , where

M is a maximum weight capacity.
Consider the following instance of the FTA problem. We are

given a worker set W with n workers, in which each worker
wi ∈ W is associated with the maximum acceptable number
of delivery points wi.maxDP = mi (corresponding to the
weight mi of the 0-1 knapsack problem). Here, the number of
delivery points is sufficiently large, and each worker can move
to wi.maxDP delivery points to perform tasks. The value vi
of each worker wi, which is a function, is at least as hard as
the vi (that is a constant) in the 0-1 knapsack problem, so that
this difference does not make our problem easier. Additionally,
we give M delivery points. Therefore, the FTA problem is to
identify a worker subset W ′ of W that maximizes

∑
wi∈W ′ vi

subjected to
∑
wi∈W ′ mi ≤M .

If we can solve the FTA problem instance efficiently (i.e.,
in polynominal time), we can solve a 0-1 knapsack problem
by transforming it to the corresponding FTA problem instance
and then solve it efficiently. This contradicts the fact that the
0-1 knapsack problem is NP-hard [23], and so there cannot be
an efficient solution to the FTA problem instance that is then
NP-hard. Since the FTA problem instance is NP-hard, the FTA
problem is also NP-hard.

IV. VALID DELIVERY POINT SET (VDPS) GENERATION

We proceed to detail how to generate VDPS sets for
workers, which will be used throughout the task assignment
process. We devise a dynamic programming algorithm that
finds the set of valid delivery point sequences for each worker.
It can be shown that the global optimal result is the union of
a possible valid delivery point sequence for each worker.

Each worker has to move to the distribution center first
and then go to assigned delivery points to complete tasks.
Therefore, we only need to calculate the VDPS set starting
from the distribution center, called Center-origin VDPS (C-
VDPS), after which we check if the C-VDPSs are valid for
each worker according to the travel time between the worker
and the distribution center, and the task expiration times.

We proceed to detail the C-VDPS generation based on a
dynamic programming algorithm that iteratively expands the
sets of delivery points in ascending order of set size and finds
all VDPSs in each iteration. Specifically, given a distribution
center dc and a set of delivery points Q that is a subset of
all delivery points associated with dc, we define opt(Q, dpj)
as the maximum number of delivery points by scheduling all
the delivery points in Q with constraints starting from dc.l
and ending at dpj .l, and R as the corresponding delivery
point sequence on Q to achieve this optimum value. We also
use dpi to denote the second-last delivery point in R before
arriving at dpj , and we use R′ to denote the corresponding
task sequence for opt(Q − {dpj}, dpi). The calculation of
opt(Q , dpj) depends on |Q|, the number of delivery points
in Q:

i) when |Q| = 1,

opt(Q, dpj) =

{
1 if t′dc,R(dpj) ≤ dpj .e
0 otherwise

(3)

t′dc,R(dpj) =
{

c(dc.l, dpj .l), if j = 1
t′dc,R(dpj−1) + c(dpj−1.l, dpj .l) if j > 1,

where t′dc,R(dpj) denotes the arrival time of a worker (who
starts from distribution center dc and follows delivery point
sequence R) at delivery point dpj ∈ dc.DP . Next, dpj .e
denotes the earliest expiration time among the tasks located
in dpj , and c(a, b) is the travel time from location a to b.

ii) when |Q| > 1,
opt(Q, dpj) = max

dpi ∈Q,dpi 6=dpj
{opt(Q− {dpj}, dpi) + δij} (4)

δij =
{

1 if t′dc,R(dpj) ≤ dpj .e
0 otherwise

Here, δij = 1 means that dpj can be finished after
appending dpj to R′.

When Q contains only one delivery point dpj , the problem
is trivial. When |Q| > 1, we need to search through Q to ex-
amine all possibilities of valid delivery point sets and find the
particular dpi that achieves the optimum value of opt(Q, dpj).
Algorithm 1 outlines the structure of this procedure. Note that
we use pre(Q, dpj) to record the second-last delivery point dpi
before achieving opt(Q, dpj) to facilitate the reconstruction of
the valid task sequence R∗. After initialization, the algorithm
generates and processes sets in the increasing order of their
size from 2 to n (lines 6–7). For each delivery point dpj ∈ Q,
it computes opt(Q, dpj) and pre(Q, dpj) according to Equa-
tion 4 (lines 9–10). If δij = 1, Q is added to Qdc (lines 11–
12). Then we construct R∗ from tables opt and pre (line 13).
Algorithm 1 has time complexity O(2|dc.DP| · |dc.DP |3),
where |dc.DP | is the number of delivery points for delivery
center dc.

Algorithm 1: C-VDPS
Input: dc, dc.DP
Output: Qdc

1 Qdc ← null;
2 for each task dpi in dc.DP = {dp1, dp2, ..., dpn} do
3 opt({dpi}, dpi)← 1;
4 Qdc ← Qdc ∪ {{dpi}};
5 pre({dpi}, dpi)← null ;

6 for len = 2 to n do
7 for each subset Q ⊆ dc.DP of size len do
8 for each dpj ∈ Q do
9 opt(Q, dpj)←

max
dpi∈Q,dpi 6=dpj

opt(Q− {dpj}, dpi) + δij ;

10 pre(Q, dpj)←
arg max

dpi∈Q,dpi 6=dpj
opt(Q− {dpj}, dpi) + δij ;

11 if δij = 1 then
12 Qdc ← Qdc ∪ {Q};

13 compute R∗ based on opt and pre;
14 return Qdc

During the process of C-VDPS generation, for each C-
VDPS, we only record the delivery point sequence with the
minimal travel time (which means the tasks on this delivery
point sequence can bring workers the highest payoffs based on

Definition 7). After obtaining the C-VDPSs, we check whether
a C-VDPS is valid for each worker by considering the travel
time between the worker and the distribution center, as well
as the tasks’ expiration times.

Distance-constrained Pruning Strategy. We observe that
a C-VDPS in which adjacent delivery points are far away
from each other tends yield a low worker payoff, which
means that workers are unwilling to move to the delivery
points in this C-VDPS. Based on this observation, we design
a distance-constrained pruning strategy that prunes the long-
distance delivery points when generating a delivery point
sequence, thus improving the efficiency of the algorithm.
Specifically, when performing Equation 4, we only search
for a delivery point set (denoted as D(dpj)) with less than
ε travel distance to the current delivery point (dpj), i.e.,
D(dpj) =

{
dpg
∣∣d(dpj .l, dpg.l) ≤ ε

}
, where d(a, b) is the

travel distance between location a and b. Here, ε is a threshold
that can be set by observation from a real application or
specified by the SC platform. We study the effect of ε in our
experimental part in Section VII-B. The studies show that the
pruning strategy with a suitable ε can result in the same task
assignment result as does VDPS generation without pruning,
and it can improve the efficiency of the VDPS generation. We
take travel time into account when computing the VDPS sets
for workers, and we provide a distance-constrained pruning
strategy to improve the calculation efficiency of VDPS. A
worker who is far from the distribution center often needs
longer travel time and is less likely to be assigned suitable
tasks. Moreover, a worker with longer travel distance tends to
obtain a lower payoff, meaning that the worker is more likely
to be disregarded in the task assignment due to the goal of the
assignment.

V. FAIRNESS-AWARE GAME-THEORETIC APPROACH

The fundamental nature of the FTA problem is that each
worker needs to choose a set of delivery points to perform
tasks to obtain the payoffs while interacting with other workers
during the task assignment process, which implies that the
choice of delivery points for a worker depends on the choices
made by other workers. Game theory is widely used for
modeling such interdependent decisions, where workers can be
treated as independent players. Thus, the FTA system can be
suitably formalized as a multi-player game. Game theory [24]
studies problems in which players maximize their utilities
and where the payoffs depend in part on the strategies of
other players. Consequently, game theory seems to be an
adequate tool to study task assignment in SC. Here we design
a Fairness-aware Game-Theoretic (FGT) approach to solving
the FTA problem while taking fairness and worker average
payoff into account.

A. Inequity Aversion based Utility

When quantifying fairness, we use assignment fairness,
which is related to the task assignment. Inequity Aversion is
a common descriptive model for fairness, according to which
people resist inequitable outcomes, i.e., they are willing to

give up payoffs to move in the direction of more equitable
outcomes [25]. Inspired by this, we define an Inequity Aver-
sion based Utility (IAU) [26] that we will use in the game.
Specifically, the IAU function is defined as follows.

IAU (wi,VDPS(wi)) = P (wi)−
(α

|W | − 1
MP(wi)+

β

|W | − 1
LP(wi)

)
(5)

MP(wi) =
∑

P (wj)>P (wi),wj∈W
(P (wj)− P (wi)) (6)

LP(wi) =
∑

P (wi)>P (wj),wj∈W
(P (wi)− P (wj)) , (7)

where IAU (wi,VDPS (wi)) denotes the inequity aversion-
based utility of worker wi achieved by finishing the tasks
in VDPS (wi). Next, P(wi) = P(wi ,VDPS (wi)) denotes wi’
payoff (see Definition 7), MP is the total extra payoffs that
other workers (whose payoffs are higher than that of wi)
can obtain, and LP is the total extra payoffs wi can gain
compared with those of others (whose payoffs are lower than
that of wi). Further, α and β are parameters that control the
contributions of MP and LP . Overall, IAU (wi,VDPS (wi))
consists of two parts: the first part quantifies wi’s payoff
by selecting VDPS (wi), while the second part quantifies
the penalty on wi due to the unfair task assignment. When
VDPS (wi) is clear from the context, we use IAU (wi) to
denote IAU (wi,VDPS (wi)).

B. Game Formulation and Pure Nash Equilibrium

Our FTA problem can be formulated as an n-player strategic
game, G = (W, ST,U), which consists of players, strategy
spaces, and utility functions as follows:

i) W = {w1, ..., wn} (n ≥ 2) is a finite set of workers that
serve as game players. In the rest of the paper, we will use
the terms player and worker interchangeably.

ii) ST = ∪ni=1STi is the overall strategy set for the players,
i.e., the strategy space of the game. STi is a finite set of
strategies available to worker wi, which contains wi’s VDPS
set and that null delivery point set null (that captures the
case where wi does not choose any delivery tasks), denoted
as STi = {VDPS(wi),null} (where VDPS(wi) indicates
the VDPS set of worker wi). A joint strategy is denoted as
~st = (st1, st2, ..., stn) ∈ ST, where sti ∈ STi is the strategy
chosen by player wi (0 < i ≤ n).

iii) U = ∪ni=1Ui denotes the utility functions of the players,
and Ui: ST→R is the utility function of player wi. For every
joint strategy ~st ∈ ST, Ui(~st) = IAU (wi,VDPS (wi)) ∈ R
represents the utility of player wi, where tasks in VDPS (wi)
are assigned to worker wi under the joint strategy ~st. When
~st is clear from the context, we use Ui to denote Ui(~st).

Taking the example in Figure 1, workers w1 and w2 are
the players. For worker w1, {dp1}, {dp2}, {dp1, dp2}, and
{dp1, dp2, dp3} are four of the worker’s VDPSs, each of
which represents a strategy. For workers w1 and w2, ~st =
({dp1, dp2}, {dp3, dp4, dp5}) represents one of their joint s-
trategies, based on which we can calculate w1’s utility, i.e.,
U1(~st) = IAU (w1, {dp1, dp2}) = 2.42, based on Equation 5
(where α and β are set to 0.5).

In our problem, since each worker needs to have a deter-
ministic strategy, i.e., selecting a VDPS with delivery tasks
or doing nothing, we only consider pure strategies (i.e.,
deterministic strategies), which means that the probability of
a strategy that worker wi can choose from STi is 1, while the
probabilities of the remaining strategies from STi are 0. Next
we prove that the FTA game has a pure Nash Equilibrium
(NE), where each player performs a deterministic strategy.
A pure NE is a state of the game (that is a satisfying task
assignment), where no single worker is able to improve their
utility by changing their strategy when other workers do not
change their strategies. We first introduce the concept of Exact
Potential Game (EPG) that has at least one pure NE [27].

Definition 9 (Exact Potential Game): A strategic game, G =
(W, ST,U), is an EPG if a function Φ : ST→ R exists, such
that for all ~sti ∈ ST, it holds that for all wi ∈W that

Ui(st
′
i, ~st−i)− Ui(sti, ~st−i) = Φ(st′i, ~st−i)− Φ(sti, ~st−i), (8)

where st′i and sti are the strategies that can be selected by
worker wi, ~st−i is the joint strategy of the other workers
except for worker wi, and the function Φ is an exact potential
function for game G.

Lemma 2: The FTA game is an EPG that has at least one
pure NE.

Proof 2: In the FTA problem, we define the
potential function as Φ(~st) =

∑
wi∈W Ui(~st) =∑

wi∈W IAU (wi,VDPS (wi)), which represents the sum of
utilities of all workers in W . Then it can be obtained that,

Φ(st′i, ~st−i)− Φ(sti, ~st−i)

=
(
IAU

(
wi,VDPS ′(wi)

)
+

∑
w∈W−wi

IAU
(
w,VDPS(w)

))
−
(
IAU

(
wi,VDPS(wi)

)
+

∑
w∈W−wi

IAU
(
w,VDPS(w)

))
=IAU

(
wi,VDPS ′(wi)

)
− IAU

(
wi,VDPS(wi)

)
=Ui

(
st′i, ~st−i

)
− Ui

(
sti, ~st−i

)
,

(9)

where the VDPSs selected in strategies st′i and sti are
VDPS ′(wi) and VDPS (wi), respectively. From Equation 9,
we can see that the strategic game of the FTA problem is an
EPG; thus, the FTA game has at least one pure NE.

C. Best-response Mechanism

Next, we employ a best-response mechanism, a basic tool
in EPGs to address conflicts that occur among players, which
finally achieves a pure NE [24]. Specifically, the best-response
mechanism consists of players taking turns to find their best-
response strategies (with maximal utilities) based on the most
recent strategies chosen by the others, which ends up reaching
the pure NE, corresponding to a satisfying task assignment. We
detail the best-response mechanism in Algorithm 2.

Given a distribution center set DC , a worker set W , a
delivery point set DP , and a task set S to be assigned, the
task assignment A is initialized as ∅ (line 1). For each worker
wi ∈ W , the worker’s VDPS set VDPS(wi) is first obtained
from DP as described in Section IV (line 4). Then the algorith-
m randomly assigns each worker wi a VDPS (wi) (with only

Algorithm 2: Fairness-aware Game-Theoretic (FGT) Ap-
proach

Input: Distribution center set DC , worker set W , delivery point set DP , task
set S

Output: Task assignment: A
1 A← ∅;
2 W ′ ← W ;
3 for each worker wi ∈ W do
4 Obtain the VDPS set, VDPS(wi), from DP (according to Section IV);
5 VDPS′(wi)← VDPS(wi);

6 for each worker wi ∈ W ′ do
7 if wi has VDPSs then
8 Randomly assign a VDPS(wi) ∈ VDPS′(wi) (where

|VDPS(wi)| = 1) to wi;
9 wi.st← VDPS(wi);

10 Compute wi’s utility based on IAU (Equation 5);
11 W ′ ← W ′ − wi;
12 for each worker wj ∈ W ′ do
13 VDPS′(wj)← VDPS′(wj)− VDPS(wi);

14 else
15 wi.st← null ;
16 W ′ ← W ′ − wi;

17 t← 1;
18 repeat
19 for each worker wi ∈ W do
20 Find the best-response VDPS, VDPS∗(wi), for wi;
21 /*VDPS∗(wi) can be calculated by Equation 10; */
22 wi.st← VDPS∗(wi);

23 t← t+ 1;
24 until W.~stt = W.~st

t−1;
25 /*W.~stt denotes the strategies of all the workers in the tth iteration*/
26 update A;
27 return A;

one valid delivery point) as the worker’s strategy and computes
the utility accordingly (lines 6–16). After that, Algorithm 2
iteratively adjusts each worker’s strategy according to the
worker’s best-response strategy that maximizes the worker’s
utility based on the current joint strategies of the others until a
NE (i.e., no one changes their strategy) is found (lines 18–24).
The best-response VDPS with the maximal utility, denoted
by VDPS∗(wi), for a worker wi ∈ W can be calculated by
Equation 10.

VDPS∗(wi) =argmaxVDPS(wi)∈VDPS(wi)
Ui(~st)

=argmaxVDPS(wi)∈VDPS(wi)

(
IAU

(
wi,VDPS(wi)

))
(10)

In each iteration, only one worker is allowed to adapt
their strategy (i.e., selecting their best-response strategy) to
maximize their utility, and the game is supposed to be played
in sequence. Finally, an NE is achieved (line 24), and we
update the task assignment A according to the NE (line 26).
The time complexity of Algorithm 2 is O(2|dc.DP|·|dc.DP |3+
|W |2 + T · |W | · |maxVDPS |), where the first term is
the complexity of Algorithm 1, |dc.DP | is the number of
delivery points for delivery center dc, |W | is the number
of workers, T is the number of iterations needed to adjust
each worker’s best-response strategy until a Nash equilibrium
is reached, and |maxVDPS | is the maximum number of
valid delivery points among all workers (i.e., |maxVDPS | =
maxw∈W,VDPS(w)∈VDPS(w) |VDPS (w)|).

VI. IMPROVED EVOLUTIONARY GAME-THEORETIC
APPROACH

A. Motivation and Overview

The classical game-theoretic approach assumes that players
are rational, meaning that the players always aim to maximize
their own utilities (i.e., IAUs) and have the ability of making
correct decisions. However, in real SC scenarios, the workers
(i.e., players) are better described as being bounded ratio-
nal [28], meaning that they cannot always optimize their own
utilities. Motivated by these concerns, we design a task assign-
ment algorithm based on evolutionary game theory that offers
means of contending with bounded rationality by learning
during strategic interactions. The existing evolutionary game-
theoretic algorithms generally concentrate on two or several
strategies for workers, in which multiple players are allowed
to choose the same strategy and obtain identical payoffs [28].
However, in our FTA problem, the strategy of each worker is
different, which often leads to a different payoff. Therefore,
we design an Improved Evolutionary Game-Theoretic (IEGT)
approach that fits our problem. More specifically, we first
model the task assignment game and then define an Improved
Evolutionary Stable Strategy (IESS), which leads to an evo-
lutionary equilibrium. Next, a replicated dynamic mechanism
is used to produce the evolutionary equilibrium that leads to
a satisfied fair task assignment, where workers can obtain
similar payoffs. The experimental results (in Section VII) show
that the IEGT algorithm converges and generates better task
assignments (in terms of workers’ payoff differences) than the
classical game-theoretic algorithm.

B. Evolutionary Game Formulation and Improved Evolution-
ary Stable Strategy

The FTA problem can be formulated as an evolutionary
game, G = (W, ST,U,G), which is comprised of players,
strategy spaces, utility functions, and populations. The settings
of players and strategy spaces are same as those in the classical
game described in Section V-B. In this evolutionary game, the
utility functions are represented by workers’ payoffs, i.e., given
a player wi and a joint strategy ~st ∈ ST, the worker’s utility is
defined as follows: Ui(~st) = P (wi,VDPS (wi)). In the FTA
problem, workers who work for a certain distribution center
compete for tasks. Therefore, these workers can be regarded
as a population, and they co-evolve (towards an evolutionary
equilibrium) in a repeated game framework. There exist K
populations (G = {G1, G2, ..., GK}, that work for the distri-
bution centers {dc1, dc2, ..., dcK}.

The notion of evolutionary stable strategy is adopted widely
in evolutionary game theory. To design an Improved Evolu-
tionary Stable Strategy (IESS), we use Ui(sti, ~st−i) to denote
the utility of player wi using strategy sti to play against the
other players that use strategy ~st−i. The following is a formal
definition of an IESS.

Definition 10 (Improved Evolutionary Stable Strategy): A
strategy ~st

∗
={st∗i , ~st

∗
−i} is an IESS if and only if for all

sti 6=st∗i , it satisfies the following two conditions:

i) equilibrium condition: Ui(sti, ~st
∗
−i) ≤ Ui(st∗i , ~st

∗
−i)

ii) weak stability condition: if Ui(sti, ~st
∗
−i) = Ui(st

∗
i , ~st

∗
−i)

then Ui(sti, ~st−i) ≤ Ui(st∗i , ~st−i)
Condition i) guarantees that st∗i is the best-response strategy
to player wi and can achieve an NE. Condition ii) is a weak
stability condition. If all members of a population adopt the
IESS, no mutant strategy (leading to a different payoff for
a worker) can invade the population under the influence of
natural selection, called evolutionary equilibrium. In other
words, if a strategy is evolutionarily stable, it must have the
property that the utility of a player following an IESS must
exceed the utility of a player following a mutant strategy;
otherwise, players following a mutant strategy would be able
to invade the population.

C. Replicator Dynamics Mechanism

The key concept of evolutionary games is replicator dy-
namics, which describes the evolution of strategies over time.
During the evolution process, the percentage of players (called
population share) using a certain pure strategy may change,
and each player will adapt their strategy according to the utility
achieved. This adaptation process can be modeled by a set of
replicator dynamics equations:

σ̇km(t) = σkm(t)
(
Ukm
i (t)− Ūk(t)

)
(11)

σkm(t) =
N(VDPSm)

|Gk|
(12)

N(VDPSm) =

{
1 if a worker in group Gk choose VDPSm

0 otherwise (13)

Ūk(t) =

|VDPS(Gk)|∑
m=1

σkm(t) · Ukm
i (t), (14)

where σ̇km(t) denotes the replicator dynamics for players
in population Gk under strategy VDPSm at time t. Fur-
ther, σkm(t) is the population share of strategy VDPSm in
population Gk at time t (i.e., the fraction of population Gk
that uses strategy VDPSm at time t), which is calculated by
Equations 12 and 13. We have σkm(t) ≥ 0. Next, Ukmi (t) =
Pwi∈Gk,VDPSm∈VDPS(wi)(wi,VDPSm) denotes the utility for
worker wi (who selects strategy VDPSm in population Gk at
time t), and VDPS(wi) and VDPS(Gk) denote the VDPS sets
of worker wi and population Gk, respectively. Finally, Ūk(t)
is the average utility for players in population Gk at time t,
which is calculated by Equation 14.

An evolutionary equilibrium is defined as a stable fixed
point of the replicator dynamics. When a population of play-
ers evolves over time following the replicator dynamics, it
will converge to the evolutionary equilibrium, which can be
obtained only if the payoffs for all players in a population are
equal. In our solution, we improve the original evolutionary
equilibrium considering the fact workers are assigned different
delivery point sets with different payoffs. In the improved
evolutionary equilibrium, the payoffs for all players in a
population are similar, and the state of each workers is stable.

Based on the improved evolutionary equilibrium and repli-
cator dynamics mechanism, we propose a dynamic algorithm
(see Algorithm 3) for the evolutionary game. The evolutionary

Algorithm 3: Improved Evolutionary Game-Theoretic
(IEGT) Approach

Input: A population Gk , delivery point set DP , task set S
Output: Task assignment: A

1 A← ∅;
2 G′k ← Gk;
3 for each worker w ∈ Gk do
4 Obtain the VDPS set, VDPS(w), from DP (according to Section IV);
5 VDPS′(w)← VDPS(w);

6 for each worker wi ∈ G′k do
7 if wi has VDPSs then
8 Randomly assign a VDPS(wi) ∈ VDPS′(wi) (where

|VDPS(wi)| = 1) to wi;
9 wi.st← VDPS(wi);

10 Compute wi’s utility based on the payoff (Equation 1);
11 G′k ← G′k − wi;
12 for each worker wj ∈ G′k do
13 VDPS′(wj)← VDPS′(wj)− VDPS(wi);

14 else
15 wi.st← null ;
16 G′k ← G′k − wi;

17 t← 1;
18 p← 0;
19 repeat
20 for each worker wi ∈ Gk do
21 Compute the replicator dynamics σ̇km(t) according to Equation 11;
22 if σ̇km(t) < 0 then
23 if wi has another VDPSs that can bring a higher payoff then
24 Randomly assign VDPS ′(wi) with a higher payoff to wi;
25 wi.st← VDPS ′(wi);

26 t← t+ 1;
27 until σ̇k(t) = 0 or Gk.~st

t
= Gk.~st

t−1;
28 /*σ̇k(t) denotes the replicator dynamics of all the workers in the tth iteration,

and Gk.~st
t denotes the strategies of all the workers in the tth iteration*/

29 update A;
30 return A;

equilibrium is achieved through strategy adaptation. In each
iteration, all players in a population compare their utilities
with the average utility of the whole population. Once their
utilities are lower than the average utility, they must select
another strategy with a higher payoff to avoid being eliminat-
ed. Specifically, Algorithm 3 takes a population Gk, delivery
point set DP , and the corresponding task set S as input.
Like Algorithm 2, this algorithm starts by calculating valid
delivery point sets for each worker (lines 3–4) and randomly
assigning a strategy to each worker (lines 6–16). Then we
take a random assignment scheme to attain the evolutionary
equilibrium (lines 17–27). Specifically, in each iteration, we
adjust the strategy for each worker wi ∈ Gk based on the
current replicator dynamics σ̇km(t), i.e., we randomly assign
wi another valid delivery point set (VDPS ′(wi)) that can
bring the worker a higher payoff when σ̇km(t) < 0 (lines 22–
25). This process follows Darwin’s On the Origin of Species,
which posits that most individuals in a population tend to
evolve to higher levels due to natural selection. This means
that workers whose payoffs are lower than the average have
only two choices: to evolve or to be eliminated. The VDPSs
that bring lower payoffs to workers are likely to be abandoned
by workers.

As we can see from Algorithm 3, the task assignment
game is played repeatedly and evolves over iterations until the

utilities for all the workers in the population are equal (i.e.,
σ̇k(t) = 0). However, in our problem, the strategies adopted by
workers differ, which may lead to different payoffs. Therefore,
we improve the iteration termination by adding the condition
that no one changes their strategy (i.e., Gk.~st

t
= Gk.~st

t−1
)

(line 27). It is easy to see that once either condition is met, an
IESS (see Definition 10) is achieved. The time complexity of
Algorithm 3 is O(2|dc.DP| · |dc.DP |3 + |W |2 · |maxVDPS |+
T · |W | · |maxVDPS |), where the first term is the complexity
of Algorithm 1, |W | is the number of workers, |maxVDPS |
is the maximum number of valid delivery points among all
workers, and T is the number of iterations.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

Datasets. The experiments are carried out on two datasets:
gMission (GM) and synthetic (SYN). gMission is an open
source SC dataset [29]. Each task is associated with a location,
an expiration time, and a reward, and each worker is associated
with a location. As the data has no associated distribution cen-
ter (that distributes tasks), we compute the centroid of all the
tasks as the center, i.e., dc.l = (x̄, ȳ) = (

∑|S|
i=1

xi

|S| ,
∑|S|
i=1

yi
|S|),

where |S| is the number of tasks and (xi, yi) is the location of
task si ∈ S. We adopt k-Means clustering to obtain x clusters
(x = 20, 40, 60, 80, 100), whose centroids are regarded as
delivery points, and tasks in each cluster are then to be
delivered to the corresponding delivery point.

To obtain synthetic datasets, we generate locations of
workers and delivery points following a uniform distribution
within the 2D space [0, 100]2 based on observations from
real datasets (e.g., gMission). It is common practice in ex-
perimental studies of SC platforms to use uniformly (and
randomly) distributed attribute values [7], the argument being
that this captures the effects of the attributes on a more fair
basis. We randomly generate 50 distribution centers in this
space. Each worker and delivery point are associated with
a distribution center at random, which means that a worker
works for a particular distribution center and a distribution
center distributes tasks to a particular set of delivery points.
Delivery tasks are associated at random with a delivery point.
The reward of each task is set to 1, and the speed of workers
in both datasets is set to 5 km/h. Since task assignment
across distribution centers is independent, we can perform task
assignment for different distribution centers in parallel.

Evaluation Methods. Among the few existing studies of
fair task assignment, no study considers the same problem
(with the goal of minimizing the payoff difference among
workers) or gives a method that can solve the proposed
problem, and thus we were unable to identify a baseline.
Instead, we use two typical task assignment algorithms that
do not take fairness into consideration as baselines. We study
the following algorithms.

i) MPTA: The Maximal Payoff based Task Assignment
(MPTA) algorithm uses a tree-decomposition technique [30],
[31]. After finding VDPSs for each worker, MPTA applies

TABLE I
EXPERIMENT PARAMETERS

Parameter Value

Distance threshold ε (km) (GM) 0.2, 0.4, 0.6, 0.8, 1
Distance threshold ε (km) (SYN) 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4
Number of tasks |S| (GM) 100, 200, 300, 400, 500,
Number of tasks |S| (SYN) 25K, 50K, 75K, 100K, 125K
Number of workers |W | (GM) 20, 40, 60, 80, 100
Number of workers |W | (SYN) 1K, 2K, 3K, 4K, 5K
Number of delivery points |DP| (GM) 20, 40, 60, 80, 100
Number of delivery points |DP| (SYN) 3K, 3.5K, 4K, 4.5K, 5K
Expiration time of tasks e (SYN) 0.5h, 1h, 1.5h, 2h, 2.5h
Maximum acceptable delivery point number
maxDP (SYN)

1, 2, 3, 4

a tree-decomposition-based algorithm to identify the task
assignment with maximal total payoffs.

ii) GTA: The Greedy Task Assignment (GTA) algorithm
assigns each worker the VDPS with the maximal payoff from
the unassigned tasks. This proceeds until all tasks are assigned
or all workers are exhausted.

iii) FGT: Our Fairness-aware Game-Theoretic (FGT) ap-
proach. We set α and β to 0.5 (when computing the IAU) so
that the effects of MP (the total extra payoffs a worker can
gain compared with those of the other workers) and LP (the
total extra payoffs other workers can gain compared with that
of the current worker) are weighted equally. We have tried
other settings for α and β and have found that FGT works
well when they are set to 0.5.

iv) IEGT: Our Improved Evolutionary Game-Theoretic
(IEGT) approach.

Metrics. Three main metrics are compared for the above
algorithms, i.e., Payoff Difference (see Equation 2), Average
Payoff, and CPU Time, for finding task assignments. A small
Payoff Difference value implies that the task assignment is
fair, and a large Average Payoff value means that the task
assignment offers high total utility.

Table I shows our experimental settings, where the default
values of all parameters are underlined. All experiments are
run on a 2*Intel Xeon Gold 6148 @ 2.40 GHz, 192 GB RAM.

B. Experimental Results

a) Effect of ε: We first study the effect of distance
threshold ε, which is used to prune distant delivery points
when finding delivery point sets (see Section IV). In this
set of experiments, we also evaluate the performance of the
dynamic programming algorithm without pruning by applying
it into the task assignment algorithms, i.e., MPTA, GTA,
FGT, and IEGT, denoted as MPTA-W, GTA-W, FGT-W, and
IEGT-W, respectively. As shown in Figures 2 and 3, the
task assignment methods (i.e., MPTA, GTA, FGT, and IEGT)
with ε-constrained pruning can achieve the same effectiveness
(including payoff difference and average payoff) as those (i.e.,
MPTA-W, GTA-W, FGT-W, and IEGT-W) without pruning
when ε ≥ 0.6 (ε ≥ 2) in the GM (SYN) dataset, while
improving the CPU time substantially. This demonstrates
the superiority of the pruning strategy for solving the FTA
problem. In Figures 2(a) and 3(a), the payoff differences for
all approaches (with pruning) naturally increase as ε gets
larger. However, we also notice that the increase becomes

 0

 0.1

 0.2

 0.3

 0.4

 0.2 0.4 0.6 0.8 1

P
ay

of
f D

iff
er

en
ce

Distance Threshold (km)

MPTA
GTA
FGT
IEGT

MPTA-W
GTA-W
FGT-W
IEGT-W

(a) Payoff Difference

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 P
ay

of
f

Distance Threshold (km)

MPTA
GTA
FGT
IEGT

MPTA-W
GTA-W
FGT-W
IEGT-W

(b) Average Payoff

 0

 20

 40

 60

 0.2 0.4 0.6 0.8 1

C
P

U
 T

im
e

(s
)

Distance Threshold (km)

GTA
FGT
IEGT

GTA-W
FGT-W
IEGT-W

(c) CPU Time

 0

 100

 200

 300

 0.2 0.4 0.6 0.8 1

C
P

U
 T

im
e

(s
)

Distance Threshold (km)

MPTA
IEGT

MPTA-W
IEGT-W

(d) CPU Time
Fig. 2. Effect of ε on GM

 0

 4

 8

 12

 16

 0.5 1 1.5 2 2.5 3 3.5 4

P
ay

of
f D

iff
er

en
ce

Distance Threshold (km)

MPTA
GTA
FGT
IEGT

MPTA-W
GTA-W
FGT-W
IEGT-W

(a) Payoff Difference

 0

 4

 8

 12

 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 P
ay

of
f

Distance Threshold (km)

MPTA
GTA
FGT
IEGT

MPTA-W
GTA-W
FGT-W
IEGT-W

(b) Average Payoff

 0

 20

 40

 60

 80

 0.5 1 1.5 2 2.5 3 3.5 4

C
P

U
 T

im
e

(s
)

Distance Threshold (km)

GTA
FGT
IEGT

GTA-W
FGT-W
IEGT-W

(c) CPU Time

 0

 100

 200

 300

 400

 0.5 1 1.5 2 2.5 3 3.5 4

C
P

U
 T

im
e

(s
)

Distance Threshold (km)

MPTA
IEGT

MPTA-W
IEGT-W

(d) CPU Time
Fig. 3. Effect of ε on SYN

less pronounced when ε ≥ 0.6 in the GM dataset and when
ε ≥ 2 in the SYN dataset. This is due to the fact that with
larger ε, the distances between adjacent delivery points in
generated delivery point sequences increase, which means that
the sequences bring a lower payoff to the workers and will be
abandoned by the approaches. In other words, the different
approaches focus on delivery point sequences with inter-point
distances that are less than ε (ε ≥ 0.6 in GM and ε ≥ 2
in SYN). In Figures 2(b) and 3(b), the average payoff is
not affected substantially when varying ε ≥ 0.6 in GM and
ε ≥ 2 in SYN. Although IEGT generates a smaller average
payoff than the others, it is able to achieve the most fair task
assignment, as shown in Figures 2(a) and 3(a). In Figures 2(c),
2(d), 3(c), and 3(d), although the CPU time of all algorithms
with pruning increases as ε increases, our proposed algorithms
clearly outperform MPTA.

b) Effect of |S|: Next we study the effect of |S|. From
Figures 4(a), 4(b), 5(a), and 5(b), we can see that the payoff
differences and average payoffs of all methods exhibit a
similar increasing trend when |S| grows. The reason is that
a larger |S| means that workers can obtain higher payoffs,
which also results in more unfair assignments. We see that
MPTA generates the highest average payoff, followed by GTA,
FGT, and IEGT. However, the payoff difference of IEGT is
consistently lower than those of the others, which demonstrates
the superiority of the evolutionary game strategy. In particular,
the payoff difference of IEGT is only 18.0%–27.3% of that of
MPTA, 19.0%–29.2% of that of GTA, and 20.8%–34.6% of

 0

 0.2

 0.4

 0.6

 100 200 300 400 500

P
ay

of
f D

iff
er

en
ce

Number of Tasks

MPTA
GTA

FGT
IEGT

(a) Payoff Difference

 0

 0.5

 1

 1.5

 2

 100 200 300 400 500

A
ve

ra
ge

 P
ay

of
f

Number of Tasks

MPTA
GTA

FGT
IEGT

(b) Average Payoff

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500

C
P

U
 T

im
e

(s
)

Number of Tasks

GTA
FGT
IEGT

(c) CPU Time

 0

 1

 2

 3

 4

 100 200 300 400 500

C
P

U
 T

im
e

(s
)

Number of Tasks

MPTA
IEGT

(d) CPU Time
Fig. 4. Effect of |S| on GM

 0

 5

 10

 15

 20

 25 50 75 100 125

P
ay

of
f D

iff
er

en
ce

Number of Tasks (K)

MPTA
GTA

FGT
IEGT

(a) Payoff Difference

 0

 5

 10

 25 50 75 100 125

A
ve

ra
ge

 P
ay

of
f

Number of Tasks (K)

MPTA
GTA

FGT
IEGT

(b) Average Payoff

 0

 0.5

 1

 25 50 75 100 125

C
P

U
 T

im
e

(s
)

Number of Tasks (K)

GTA
FGT
IEGT

(c) CPU Time

 0

 5

 10

 25 50 75 100 125

C
P

U
 T

im
e

(s
)

Number of Tasks (K)

MPTA
IEGT

(d) CPU Time
Fig. 5. Effect of |S| on SYN

that of FGT. Considering CPU time, Figures 4(c), 4(d), 5(c),
and 5(d) show that the methods are almost unaffected by
variations in |S|. The reason is that we only assign a suitable
delivery point sequence to each worker so that the worker can
perform all the tasks associated with each delivery point; we
ignore the order and time of processing tasks.

c) Effect of |W |: Next, we study the effect of |W |.
As can be seen in Figures 6 and 7, IEGT and FGT can
achieve a more fair task assignment than GTA while sacrificing
some efficiency. However, the computational efficiency of
IEGT and FGT are acceptable. The payoff differences of all
methods except IEGT decrease with growing |W | on GM
(when |W | ≥ 60) and SYN, which means that workers tend
to be treated fairly when more workers are involved. IEGT
is relatively stable when varying |W |, which highlights the
evolutionary stability in the game, i.e., once an evolutionary
equilibrium is achieved, it will be stable even when more
workers are involved. Although MPTA generates the highest
average payoff, it assigns tasks more unfairly than the game-
theoretic approaches, and it is the most time-consuming.

d) Effect of |DP |: As expected, the payoff differences
of all the algorithms decline gradually as |DP | grows (see
Figures 8(a) and 9(a)). This is due to the fact that with
more delivery points, workers tend to have more strategies
to choose among to reduce the payoff difference among them.
Figures 8(b) and 9(b) show that the average payoffs of all
methods also exhibit a downward trend when increasing |DP |
because this has the effect that fewer tasks are located at

 0

 0.1

 0.2

 0.3

 0.4

 20 40 60 80 100

P
ay

of
f D

iff
er

en
ce

Number of Workers

MPTA
GTA

FGT
IEGT

(a) Payoff Difference

 0

 0.5

 1

 20 40 60 80 100

A
ve

ra
ge

 P
ay

of
f

Number of Workers

MPTA
GTA

FGT
IEGT

(b) Average Payoff

 0

 0.2

 0.4

 0.6

 20 40 60 80 100

C
P

U
 T

im
e

(s
)

Number of Workers

GTA
FGT
IEGT

(c) CPU Time

 0

 2

 4

 6

 8

 20 40 60 80 100

C
P

U
 T

im
e

(s
)

Number of Workers

MPTA
IEGT

(d) CPU Time
Fig. 6. Effect of |W | on GM

 0

 5

 10

 15

 1 2 3 4 5

P
ay

of
f D

iff
er

en
ce

Number of Workers (K)

MPTA
GTA

FGT
IEGT

(a) Payoff Difference

 0

 5

 10

 1 2 3 4 5

A
ve

ra
ge

 P
ay

of
f

Number of Workers (K)

MPTA
GTA

FGT
IEGT

(b) Average Payoff

 0

 0.5

 1

 1.5

 1 2 3 4 5

C
P

U
 T

im
e

(s
)

Number of Workers (K)

GTA
FGT
IEGT

(c) CPU Time

 0

 10

 20

 30

 40

 50

 1 2 3 4 5

C
P

U
 T

im
e

(s
)

Number of Workers (K)

MPTA
IEGT

(d) CPU Time
Fig. 7. Effect of |W | on SYN

each delivery point, which yields lower payoffs. Although the
average payoff of MPTA is the highest, it is the most time-
consuming, as shown in Figures 8(d) and 9(d). The CPU costs
of the other methods are almost negligible compared to that
of MPTA. To save space, in the following experiments, we
disregard the uncompetitive CPU time of MPTA, and we do
not report results for the GM dataset, as these are similar to
those obtained for the SYN dataset.

e) Effect of e: As illustrated in Figure 10(a), the payoff
differences of the methods first increase and then remain
stable. This may be due to the fact that when e is first
increased, there will be more reachable delivery points for
each worker. Workers then have more strategy choices, which
may lead to the increasing payoff differences. After e reaches a

 0

 0.2

 0.4

 0.6

 0.8

 20 40 60 80 100

P
ay

of
f D

iff
er

en
ce

Number of Delivery Points

MPTA
GTA

FGT
IEGT

(a) Payoff Difference

 0

 0.5

 1

 20 40 60 80 100

A
ve

ra
ge

 P
ay

of
f

Number of Delivery Points

MPTA
GTA

FGT
IEGT

(b) Average Payoff

 0

 0.1

 0.2

 0.3

 20 40 60 80 100

C
P

U
 T

im
e

(s
)

Number of Delivery Points

GTA
FGT
IEGT

(c) CPU Time

 0

 1

 2

 3

 20 40 60 80 100

C
P

U
 T

im
e

(s
)

Number of Delivery Points

MPTA
IEGT

(d) CPU Time
Fig. 8. Effect of |DP | on GM

 0

 10

 20

 3 3.5 4 4.5 5

P
ay

of
f D

iff
er

en
ce

Number of Delivery Points (K)

MPTA
GTA

FGT
IEGT

(a) Payoff Difference

 0

 5

 10

 3 3.5 4 4.5 5

A
ve

ra
ge

 P
ay

of
f

Number of Delivery Points (K)

MPTA
GTA

FGT
IEGT

(b) Average Payoff

 0

 0.5

 3 3.5 4 4.5 5

C
P

U
 T

im
e

(s
)

Number of Delivery Points (K)

GTA
FGT
IEGT

(c) CPU Time

 0

 5

 10

 3 3.5 4 4.5 5

C
P

U
 T

im
e

(s
)

Number of Delivery Points (K)

MPTA
IEGT

(d) CPU Time
Fig. 9. Effect of |DP | on SYN

 0

 5

 10

 15

 0.5 1 1.5 2 2.5

P
ay

of
f D

iff
er

en
ce

Task Expiration Time (h)

MPTA
GTA
FGT
IEGT

(a) Payoff Difference

 0

 5

 10

 0.5 1 1.5 2 2.5

A
ve

ra
ge

 P
ay

of
f

Task Expiration Time (h)

MPTA
GTA
FGT
IEGT

(b) Average Payoff

 0

 0.2

 0.4

 0.6

 0.8

 0.5 1 1.5 2 2.5

C
P

U
 T

im
e

(s
)

Task Expiration Time (h)

GTA
FGT
IEGT

(c) CPU Time
Fig. 10. Effect of e on SYN

certain level (i.e., e ≥ 1.5), the reachable delivery point set of
each worker remains unchanged, thus the payoff differences
keep stable. Not surprisingly, Figures 10(b) and 10(c) show
that all the approaches can initially achieve higher average
payoffs with more CPU time when the deadlines are relaxed. A
larger e means that each worker on average has more reachable
delivery points, which contributes to achieving higher average
payoffs and incurs more CPU time. When e ≥ 1.5, the average
payoffs and CPU times of the methods remain stable for the
same reason that the changes in payoff differences, i.e., the
reachable delivery point set for each worker is unchanged,
remain stable when e ≥ 1.5.

f) Effect of maxDP : We proceed to consider the effect
of maxDP , the maximum acceptable number of delivery
points for workers. In Figure 11(a), the payoff differences
of MPTA, GTA, and FGT increase with maxDP . We also
see that the payoff difference gap between IEGT and other
approaches increases. This is due to the fact that when
applying IEGT, the evolutionary point is relatively stable,
leading to a satisfied fair task assignment, in which workers
obtain similar payoffs regardless of maxDP . It is noteworthy
that the payoff difference generated by IEGT is only 13.3%–
59.3% of those achieved by the other algorithms. With the
increase of maxDP , workers have more reachable delivery
points and tasks, which offers more opportunities to select
tasks with higher rewards, explaining the rising average payoff
in Figure 11(b). Considering CPU time in Figure 11(c), IEGT
and FGT are more time-consuming than GTA, as they select
strategies for workers iteratively, while GTA performs strategy
selection only once.

g) Convergence of Game-Theoretic Approaches: The
question of convergence to an equilibrium has received sig-
nificant attention in the game theory field. Therefore, we
illustrate the convergence of our algorithms to an equilibrium
in Figure 12, enabling us to conclude that the algorithms are

 0

 5

 10

 15

 1 2 3 4

P
ay

of
f D

iff
er

en
ce

MaxDP

MPTA
GTA
FGT
IEGT

(a) Payoff Difference

 3

 6

 1 2 3 4

A
ve

ra
ge

 P
ay

of
f

MaxDP

MPTA
GTA
FGT
IEGT

(b) Average Payoff

 0

 2

 4

 6

 1 2 3 4

C
P

U
 T

im
e

(s
)

MaxDP

GTA
FGT
IEGT

(c) CPU Time
Fig. 11. Effect of maxDP on SYN

 0

 0.1

 0.2

 0 0.1 0.2 0.3 0.4 0.5

P
ay

of
f D

iff
er

en
ce

Time (s)

FGT IEGT

(a) Convergence on GM

 0

 5

 10

 0 0.2 0.4 0.6 0.8 1

P
ay

of
f D

iff
er

en
ce

Time (s)

FGT IEGT

(b) Convergence on SYN
Fig. 12. Convergence of FGT and IEGT

convergent.

VIII. CONCLUSION

We propose and offer solutions to a problem termed
Fairness-aware Task Assignment, that aims to achieve as-
signment fairness among workers. In order to achieve high
fairness, high average worker payoff, and high running time ef-
ficiency, we propose a dynamic programming algorithm along
with a pruning strategy that generates valid delivery point sets
for workers, and we design two game-theoretic task assign-
ment methods, i.e., a Fairness-aware Game-Theoretic method
and an Improved Evolutionary Game-Theoretic method, that
target fair task assignments with good average worker payoff.
To the best of our knowledge, this is the first study in spatial
crowdsourcing that considers fairness by building on concepts
from game theory. An empirical study with real and synthetic
datasets offers evidence that the paper’s proposals improve
on the state of the art in terms of fairness and computational
efficiency while offering acceptable average worker payoffs.
One interesting research direction is to introduce additional
descriptive models of fairness, e.g., priority-aware fairness,
into spatial crowdsourcing task assignment. Other directions
include to improve the game-theoretic algorithm’s efficiency
by enabling early termination of iterations, and to explore
task assignment that redefines worker payoff by considering
workers with different contributions to tasks.

ACKNOWLEDGMENT

This work is partially supported by Natural Science Foun-
dation of China (No. 61972069, 61836007 and 61832017).

REFERENCES

[1] P. Cheng, L. Chen, and J. Ye, “Cooperation-aware task assignment in
spatial crowdsourcing,” in ICDE, 2019, pp. 1442–1453.

[2] H. Gintis, Game theory evolving: a problem-centered introduction to
modeling strategic interaction. Princeton University Press, 2001.

[3] S. P. Schappe, “Understanding employee job satisfaction: the impor-
tance of procedural and distributive justice,” Journal of Business and
Psychology, vol. 12, no. 4, pp. 493–503, 1998.

[4] R. Borromeo, T. Laurent, M. Toyama, and S. Amer-Yahia, “Fairness and
transparency in crowdsourcing,” in EDBT, 2017, pp. 466–469.

[5] D. Durward, I. Blohm, and J. M. Leimeister, “Is there papa in crowd
work?: a literature review on ethical dimensions in crowdsourcing,” in
UIC, 2016, pp. 823–832.

[6] Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi, “Fair task
assignment in spatial crowdsourcing,” PVLDB, vol. 13, no. 12, pp. 2479–
2492, 2020.

[7] Y. Tong, J. She, B. Ding, and L. Wang, “Online mobile micro-task
allocation in spatial crowdsourcing,” in ICDE, 2016, pp. 49–60.

[8] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic pricing
in spatial crowdsourcing: a matching-based approach,” in SIGMOD,
2018, pp. 773–788.

[9] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu, “Flexible
online task assignment in real-time spatial data,” PVLDB, vol. 10, no. 11,
pp. 1334–1345, 2017.

[10] Y. Zhao, J. Xia, G. Liu, H. Su, D. Lian, S. Shang, and K. Zheng,
“Preference-aware task assignment in spatial crowdsourcing,” in AAAI,
2019, pp. 2629–2636.

[11] Y. Zhao, K. Zheng, H. Yin, G. Liu, J. Fang, and X. Zhou, “Preference-
aware task assignment in spatial crowdsourcing: from individuals to
groups,” TKDE, 2020.

[12] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou, “Predictive task
assignment in spatial crowdsourcing: a data-driven approach,” in ICDE,
2020, pp. 13–24.

[13] X. Li, Y. Zhao, J. Guo, and K. Zheng, “Group task assignment with
social impact-based preference in spatial crowdsourcing,” in DASFAA,
2020, pp. 677–693.

[14] X. Li, Y. Zhao, X. Zhou, and K. Zheng, “Consensus-based group task
assignment with social impact in spatial crowdsourcing,” DSE, vol. 5,
no. 4, pp. 375–390, 2020.

[15] Y. Cui, L. Deng, Y. Zhao, B. Yao, V. W. Zheng, and K. Zheng, “Hidden
poi ranking with spatial crowdsourcing,” in SIGKDD, 2019, pp. 814–
824.

[16] Y. Zhao, J. Guo, X. Chen, J. Hao, X. Zhou, and K. Zheng, “Coalition-
based task assignment in spatial crowdsourcing,” in ICDE, 2021, pp.
1–12.

[17] J. Xia, Y. Zhao, G. Liu, J. Xu, M. Zhang, and K. Zheng, “Profit-driven
task assignment in spatial crowdsourcing,” in IJCAI, 2019, pp. 1914–
1920.

[18] J. She, Y. Tong, L. Chen, and C. C. Cao, “Conflict-aware event-
participant arrangement and its variant for online setting,” TKDE,
vol. 28, no. 9, pp. 2281–2295, 2016.

[19] S. P. Schappe, “Understanding employee job satisfaction: the impor-
tance of procedural and distributive justice,” Journal of Business and
Psychology, vol. 12, no. 4, pp. 439–503, 1998.

[20] Q. C. Ye, Y. Zhang, and R. Dekker, “Fair task allocation in transporta-
tion,” OMEGA, vol. 68, pp. 1–16, 2017.

[21] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng, “Preference-
aware task assignment in on-demand taxi dispatching: An online stable
matching approach,” in AAAI, vol. 33, no. 01, 2019, pp. 2245–2252.

[22] B. Fuat, G. Bugra, F. Hakan, and W. Kun-Lung, “Fair task allocation in
crowdsourced delivery,” TSC, vol. PP, pp. 1–14, 2018.

[23] V. V. Vazirani, Approximation algorithms. Springer Science and
Business Media, 2013.

[24] D. Fudenberg and J. Tirole, Game theory. MIT Press, 1991.
[25] E. Fehr and K. M. Schmidt, “A theory of fairness, competition, and

cooperation,” The Quarterly Journal of Economics, vol. 114, no. 3, pp.
817–868, 1999.

[26] S. De Jong, K. Tuyls, K. Verbeeck, and N. Roos, “Priority awareness:
towards a computational model of human fairness for multi-agent
systems,” in AAMAS, 2005, pp. 117–128.

[27] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic
Behavior, vol. 14, no. 1, pp. 124–143, 1996.

[28] Z. J. Li and C.-T. Cheng, “An evolutionary game algorithm for grid
resource allocation under bounded rationality,” Concurrency and Com-
putation: Practice and Experience, vol. 21, no. 9, pp. 1205–1223, 2009.

[29] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, C. C. Cao,
Y. Tong, and C. J. Zhang, “Gmission: a general spatial crowdsourcing
platform,” PVLDB, vol. 7, no. 13, pp. 1629–1632, 2014.

[30] Y. Zhao, Y. Li, Y. Wang, H. Su, and K. Zheng, “Destination-aware task
assignment in spatial crowdsourcing,” in CIKM, 2017, pp. 297–306.

[31] Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou, “Destination-aware
task assignment in spatial crowdsourcing: A worker decomposition
approach,” TKDE, vol. 32, no. 12, pp. 2336–2350, 2020.

	Introduction
	Related Work
	Problem Statement
	Valid Delivery Point Set (VDPS) Generation
	Fairness-aware Game-Theoretic Approach
	Inequity Aversion based Utility
	Game Formulation and Pure Nash Equilibrium
	Best-response Mechanism

	Improved Evolutionary Game-Theoretic Approach
	Motivation and Overview
	Evolutionary Game Formulation and Improved Evolutionary Stable Strategy
	Replicator Dynamics Mechanism

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusion
	References

