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Abstract—Hazardous chemicals transportation (HCT) brings
significant financial, environmental, and health-related risks. It is
imperative that a robust regulatory system is in place to reduce
the risk of accidents occurring while such hazardous chemicals
are being transported. Governments around the world use GPS
sensors to monitor the raw trajectories of HCT trucks, but
they have difficulty detecting the loaded trajectories, which is
of utmost importance for the management of HCT processes.
The loaded trajectory refers to the subtrajectory generated by
tracking an HCT truck when it is loaded with hazardous chemical
in an HCT process. The stay points in the raw trajectory provide
some feasibility to detect the loaded trajectory as they reflect
the potential loading and unloading actions of the HCT truck.
However, directly using the stay points to detect the loaded
trajectory usually leads to unsatisfactory results due to two chal-
lenges: (1) complex staying scenarios, and (2) numerous loading
and unloading locations. To tackle the challenges, we propose a
LoadEd trAjectory Detection framework, called LEAD, to detect
the loaded trajectory from the raw HCT trajectory accurately
and efficiently. LEAD processes a raw trajectory into a set of
candidate trajectories, encodes each candidate trajectory into a
latent representation, and detects the loaded trajectory using
the latent representations of candidate trajectories. Extensive
experiments based on a real-world dataset from Nantong, China
confirm the effectiveness of our framework. The results show that
the detection accuracy of LEAD exceeds 83% which outperforms
competing baselines by over 42%.

Index Terms—Hazardous chemicals transportation, Loaded
trajectories detection

I. INTRODUCTION

Hazardous chemicals are chemical materials that may do

harm to human health and/or environment, or are capable of

damaging properties, such as flammable petroleum, corrosive

acids, toxic carbon monoxide, etc. Hazardous chemicals are

widely used in the workplace as raw materials, solvents,

catalysts, and for a number of other functions; however,

the improper operation of hazardous chemicals could cause

severe accidents. For example, on June 13th, 2020, a speeding

fuel truck crashed and exploded in Wenling, China, causing

20 deaths, 175 injuries, and $14.5 million loss in property

damage [1]. As a result, the production, transportation, and

storage processes of hazardous chemicals are strictly regulated

by governments around the world [2]. Among them, Haz-

ardous Chemicals Transportation (HCT) is the most uncon-
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Fig. 1. Example of HCT process

trollable process. According to the statistics of the Ministry

of Emergency Management of China, 77% of the accidents

related to hazardous chemicals have occurred during the HCT

processes [3]. Due to the chemical instability, hazardous

chemicals are allowed to be transported using only the HCT

trucks. An HCT process has three ordered phases (shown in

Figure 1): (I) the HCT truck goes to the loading location; (II)
the HCT truck transports hazardous chemical from the loading

location to the unloading location; and (III) the HCT truck

leaves the unloading location. Generally, most of the HCT

process can finish within a day [4], so each HCT process can

be represented by a trajectory of the HCT truck within one

day (namely raw trajectory), where each spatiotemporal point

indicates a physical presence of the HCT truck in a location

at a certain time. Due to the uncontrollability of the HCT

process, governments install GPS sensors on all HCT trucks

to monitor the raw trajectories.

In the raw trajectory, there is an especially important sub-

trajectory called loaded trajectory that indicates when an HCT

truck is loaded with hazardous chemical (corresponding to the

phase (II)). We find that the loaded trajectory is of utmost

importance for the HCT process due to the following reasons:

(1) The origin and destination of the loaded trajectory are

important, as they represent the loading location and unloading

location, respectively. The loading and unloading locations

correspond to specific types of POIs (points of interests) such

as chemical factories or fueling stations. Governments can

utilize these information to promptly identify illegal loading

and unloading locations [4]. (2) The complete loaded trajectory

is important, as it can determine whether the driver has

complied with the regulations during the HCT process. For

example, the HCT truck loaded with hazardous chemical is

prohibited from entering the main urban areas or moving on

roads from 2:00 am to 5:00 am [5]. Once an HCT truck
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is found to violate the regulations, further actions can be

taken immediately. (3) The governments may improve the

urban planning schemes by analyzing the loaded trajectories.

For example, the driver often chooses detour routes to avoid

entering the main urban areas, but these detour behaviors will

affect the efficiency of the HCT process. Better understanding

the route preferences of HCT trucks can improve the road

network planning and urban planning of the city.

In practice, to obtain the loaded trajectory from the raw

trajectory, governments require the driver to fill in the waybill

which contains the time and location information of loading

and unloading. Using the waybill to select a subtrajectory of

the raw trajectory that matches the time and location informa-

tion, the loaded trajectory could be determined. Unfortunately,

the waybill is filled and submitted manually by the driver

in the online system after the whole HCT process finishes.

As a result, the collected waybills are usually of low quality

in terms of both time information and location information:

1) the driver frequently uses the default time preset by the

system for convenience (e.g., the loading time is 8:00 am

and unloading time is 5:00 pm). This leads to inaccuracy

in time information; 2) the loading and unloading addresses

manually filled in by the driver are either coarse-grained or

even incorrect. For example, the correct address is ‘Zhongtian’

chemical factory in Nantong, China, but the driver only fills in

Nantong, or mistypes ‘Zhongzhi’ chemical factory. This leads

to deviations in location information. Therefore, simply relying

on manually filled waybills cannot get the accurate loaded

trajectories, making it difficult for governments to assure the

safety and legality of the HCT process.

In this work, our objective is to accurately detect the loaded
trajectory from the raw trajectory of the HCT truck. With the

loaded trajectories accurately detected, the governments can

better prevent chemical accidents, regulate the drivers, and

improve urban planning. In addition, high-quality waybill can

be automatically generated from the loaded trajectory, which

not only obtains reliable loading and unloading information,

but also greatly eases the burden on drivers. Therefore, loaded

trajectory detection is crucial for managing the HCT process.

In fact, the loaded trajectory has two important character-

istics that can guide the detection. Firstly, when the HCT

truck is loading/unloading hazardous chemical, it must stay

somewhere for a sufficient period of time [4]. In other words,

there are staying behaviors at the origin and destination of

the loaded trajectory (defined as loading and unloading stay

points). Secondly, there are specific types of POIs near the

loading and unloading stay points, such as chemical factories,

hospitals, etc. Therefore, analyzing the stay points in the raw

trajectory is beneficial for detecting the loaded trajectory.

Intuitively, we can detect the loaded trajectory by estimating

whether each stay point in the raw trajectory is a loading

stay point or an unloading stay point. For instance, a model

can be built to classify each stay point by recognizing the

loading and unloading actions; or we can collect a white

list with real loading and unloading locations utilizing the

historical loaded trajectories, which can be used to search for

the loading and unloading stay points. However, they cannot

effectively detect the loaded trajectory due to the following

reasons: (1) The scenarios where an HCT truck stays are

complex. An HCT truck stays at a fuel station either because

it is loading/unloading fuel, or simply because the driver

is having a break while refueling the truck. These different

scenarios share the same staying behavior, which are hard to

be distinguished solely based on the stay points. (2) There are

many locations for loading and unloading stay points, as they

may appear in different chemical factories, hospitals, and even

construction sites. It is difficult to collect all real loading and

unloading locations for the white list that covers all potential

loading and unloading stay points.

To tackle the challenges, we propose to detect the loaded

trajectory by generating and identifying the candidate trajec-

tories (i.e., a subtrajectory that starts with one stay point and

ends with another stay point), based on the following insight.

A stay point indicates a staying behavior, and a trajectory
that connects two consecutive stay points represents a moving
behavior. It is necessary to consider both of them to detect

the loaded trajectory. The basic idea is to firstly extract all the

stay points, and treat each ordered pair of stay points and all

locations in-between as a candidate trajectory. Then we detect

the loaded trajectory by identifying all candidate trajectories of

the raw trajectory. In this way, the above two challenges could

be remedied because: (1) Candidate trajectories contain not

only the staying behaviors, but also the moving behaviors. The

moving behaviors contain enriched information (e.g., speeds

and routes), which can be leveraged to better classify complex

staying scenarios. For example, after loading the fuel, the

speed of HCT truck is lower than that of having a break in

the fueling station. (2) We can build a deep learning-based

framework to capture the general knowledge from historical

loaded trajectories, and detect the loaded trajectory from

an unseen raw trajectory instead of relying on pre-collected

loading and unloading locations in the white list.

In this work, we propose a LoadEd trAjectory Detection

framework, called LEAD, to accurately detect the loaded

trajectory from the raw HCT trajectory. LEAD consists of three

components: 1) raw trajectory processing, which transforms

a raw trajectory into a series of the candidate trajectories; 2)
candidate trajectory encoding, which encodes each candidate

trajectory into a latent representation; and 3) loaded trajectory
detection, which detects the loaded trajectory using the latent

representations of candidate trajectories. Our main contribu-

tions can be summarized as follows:

•To the best of our knowledge, it is the first work to propose

and address the loaded trajectory detection problem, which

can help better manage and monitor the HCT process.

•We propose LEAD, which can model both staying and

moving behaviors of the HCT truck, and accurately detect the

loaded trajectory from candidate trajectories.

•We conduct extensive experiments using a real-world dataset

from Nantong, China, to evaluate the effectiveness of LEAD.

The results show that the detection accuracy of LEAD exceeds

83% which outperforms competing baselines by at least 42%.
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Fig. 2. LEAD Framework Overview

II. OVERVIEW

A. Preliminary Concepts

Definition 1 (Raw Trajectory): A raw trajectory is a se-

quence of GPS points, denoted as tr r = 〈p1 , p2 , . . . , pn〉,
where each GPS point p consists of a location in latitude lat
and longitude lng , and a timestamp t, i.e., p = (lat , lng , t).
GPS points in a raw trajectory are organized chronologically,

i.e., pi.t < pi+1.t(∀i ∈ [1, n)). In this work, a raw trajectory

is generated by an HCT truck within one day, which indicates

three ordered phases: going to a loading location → transport-
ing hazardous chemical → leaving an unloading location.

Definition 2 (Stay Point): A stay point sp is a subtrajectory

of trr which semantically means that an HCT truck stays in

a geographic region for a while. Formally, given a distance

threshold Dmax and a time threshold Tmin, 〈pi, pi+1, . . . , pj〉
is a stay point sp if distance(pi, pk) ≤ Dmax(∀k ∈ [i+ 1, j]),
distance(pi, pj+1) ≥ Dmax(j < n), and |pj .t−pi.t| ≥ Tmin.

Definition 3 (Loaded Trajectory): A loaded trajectory trl

is a subtrajectory of trr indicating that an HCT truck loaded

with hazardous chemical during the transporting phase. We

note that an HCT truck still loaded with hazardous chem-

ical and stays in a region for a while when loading and

unloading hazardous chemical. Therefore, a loaded trajectory

trl starts with the loading stay point spl and ends with

the unloading stay point spu. Formally, given a loaded tra-

jectory 〈pi, pi+1, . . . , pj〉, the loading stay point spl refers

to 〈pi, pi+1, . . . , pa〉, and the unloading stay point spu is

〈pb, . . . , pj−1, pj〉 (i < a < b < j ). Thus, a loaded trajectory

〈pi, pi+1, . . . , pj〉 can be simplified as the ordered pair of

loading and unloading stay points 〈spl ��� spu〉.
Definition 4 (Candidate Trajectory): A candidate trajectory

trc is a subtrajectory of trr that starts with one stay point

and ends with another stay point. Given a candidate trajectory

〈pi, pi+1, . . . , pj〉 that starts with spi′ and ends with spj′ , it

can be simplified as an ordered pair of stay points trc =
〈spi′ ��� spj′〉. We denote Trc as the set of all candidate

trajectories. Given a raw trajectory trr, the loaded trajectory

is one of the candidate trajectories, i.e., trl ∈ Trc .

Problem Statement. Given an unseen raw trajectory trr, our
objective is to detect the loaded trajectory trl from trr.

B. Framework Overview

Figure 2 shows the architecture of our framework LEAD,

which consists of three components: raw trajectory processing,

candidate trajectory encoding, and loaded trajectory detec-
tion. LEAD is a two-stage framework, including the offline

stage and the online stage. In the offline stage, LEAD learns

the knowledge utilizing the historical raw trajectories with

corresponding loaded trajectories. In the online phase, LEAD
detects the loaded trajectory from the unseen raw trajectory.

Next, we will briefly introduce each component.

Raw Trajectory Processing. This component takes the raw

trajectory and performs three main tasks. The first task is noise

filtering, which removes the outlier GPS points. The second

task is the stay points extraction, which captures all stay points

in the raw trajectory. The third task is the candidate trajectory

generation, which produces a series of candidate trajectories

by enumerating all the stay point pairs (detailed in Section III).

Candidate Trajectory Encoding. This component encodes

candidate trajectories into compressed vectors, which is de-

signed to obtain the latent representations of candidate trajec-

tories. The component firstly extracts features from candidate

trajectories and converts them to feature sequences. Then a

hierarchical autoencoder learns to refine and restore the feature

sequences equipped with a compressor and a decompressor.

After training the hierarchical autoencoder, the compressor

can be used to acquire the compressed vectors of candidate

trajectories (detailed in Section IV).

Loaded Trajectory Detection. This component utilizes the

compressed vectors to detect the loaded trajectory, which

is designed to capture the potential relationships between

different candidate trajectories, thus making detection more

accurate. The component firstly organizes the compressed

vectors in two ways to generate a forward group and a
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backward group respectively. Both groups consist of multiple

subgroups, and each subgroup contains the compressed vectors

of candidate trajectories with potential relationships. Secondly,

the two groups are fed into forward and backward detectors,

respectively. The two detectors output two discrete probability

distributions, and each distribution represents probabilities of

the candidate trajectories. Thirdly, the real labels derived from

archived loaded trajectories are processed, and the processed

labels are used to train the two detectors. After training, the

outputs of two detectors are combined into one probability

distribution, and the candidate trajectory which has the highest

probability is the detection result (detailed in Section V).

III. RAW TRAJECTORY PROCESSING

This component takes a raw trajectory as input, cleans the

raw trajectory and extracts the stay points from it. Finally,

the candidate trajectories are generated by enumerating all the

ordered pairs of stay points. Figure 3 shows an example of

raw trajectory processing.

Noise Filtering. The raw trajectory generated by an HCT

truck usually contains a few noise GPS points due to the

shifts introduced by the GPS sensor. As shown in Figure 3(a),

the error of p19 and p22 might be several hundred meters

away from their true locations. Such noise GPS points would

affect the performance of the subsequent tasks, e.g., stay point

extraction. Thus, we utilize a heuristic approach [6] to filter

noise GPS points. The approach sequentially calculates the

traveling speed for each GPS point based on its precursor and

itself. If the speed is larger than a speed threshold Vmax,

the current examined GPS point is removed from the raw

trajectory. In Figure 3(a), p19 and p22 will be removed.

Stay Point Extraction. Acquiring all stay points in the raw

trajectory can help construct candidate trajectories. We employ

a rule-based algorithm [7] to extract the stay points in the

cleaned raw trajectory. The algorithm firstly checks if the

distance between an anchor point and its successors in a raw

trajectory is larger than a distance threshold Dmax. As shown

in Figure 3(b), p11 is the current anchor point, and p12 to

p14 are its successors within Dmax. It then calculates the time

interval between the anchor point and the last successor within

Dmax (p11 and p14). If the duration is larger than a temporal

threshold Tmin, a stay point is extracted (from p11 to p14), and

the anchor point moves to the next GPS point after the current

stay point (p15). Otherwise, the anchor point moves forward

by one (p12). This process is repeated until the anchor point

moves to the end of the raw trajectory. The algorithm can

generate stay points that are temporally consecutive, which is

convenient for stay points numbering.

Candidate Trajectory Generation. Based on the stay points

of the raw trajectory, we can further generate a series of can-

didate trajectories. The candidate trajectories cover the search

space of loaded trajectory detection, since each candidate

trajectory starts with a stay point and ends with another stay

point. To generate the candidate trajectories, we enumerate all

the ordered pairs of stay points. As shown in Figure 3(c), 10

candidate trajectories are generated by traversing 5 stay points.

Current 
Anchor

(a) Noise 
Filtering

(b) Stay Point 
Extraction

(c) Candidate Trajectory 
Generation

Fig. 3. Example of Raw Trajectory Processing

Generally, given n stay points, we can generate n(n − 1)/2
candidate trajectories. According to the statistics, the number

of stay points extracted from a raw trajectory within one day

ranges from 3 ∼ 14, so the number of generated candidate

trajectories is moderate (3 ∼ 91).

IV. CANDIDATE TRAJECTORY ENCODING

This component firstly converts candidate trajectories into

high-dimensional feature sequences. Then a hierarchical au-

toencoder is proposed to compress them and acquire latent

representations for each candidate trajectory.

A. Feature Extraction

A candidate trajectory is composed of GPS points, we

need to extract the features of each GPS point. In addition

to the acquired spatiotemporal features i.e., (lat, lon, t), the

POI (point of interest) features reflect the spatial semantics

that are beneficial for the detection. For example, if there are

many factories near a GPS point, it means that the HCT truck

has entered the industrial zone and might be loading/unloading

hazardous chemical. Therefore, we extract both spatiotemporal

and POI features for each GPS point in a candidate trajectory.

Specifically, given a candidate trajectory 〈pi, pi+1, . . . , pj〉,
we vectorize each GPS point p as a feature vector f =
[p.lat, p.lng, p.t, poi], where (p.lat, p.lng, p.t) is the spa-

tiotemporal features and poi is the POI feature. For the spa-

tiotemporal features, p.lat and p.lng form a spatial location,

and p.t is a timestamp. For the POI feature, we count the

nearby POI categories of a GPS point within a radius of

100m, forming a vector poi where each value refers to the

number of a POI category existence. In this work, we select 29

typical POI categories, so f is a 32-dimensional feature vector.

Moreover, to avoid the outlier issue, we normalize the above

features using the Z-score strategy [8]. Finally, a candidate

trajectory 〈pi, pi+1, . . . , pj〉 is converted to a sequence of

feature vectors 〈fi, fi+1, . . . , fj〉, namely, a feature sequence.

B. Hierarchical Autoencoder

After extracting the features of all candidate trajectories, we

get a series of feature sequences. The most straightforward

approach is to use a recurrent neural network to learn the

latent representation of each feature sequence and then make

the detection. However, the high-dimensional feature sequence

will suffer from the curse of dimensionality especially for

the long-range trajectory. Moreover, the vectors in the feature

sequence are sparse due to the usage of the POI feature.

The sparse inputs will affect the convergence performance of

the model, and even reduce the accuracy of the detection. In
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TABLE I
SUMMARY OF ABBREVIATIONS IN HIERARCHICAL AUTOENCODER
Abbreviation Explanation

f-seq feature sequence
sp(mp)-f-seq feature sequence of a stay point (move point)

SPs(MPs)-f-seq feature sequence of stay points (move points)
sp(mp)-c-vec compressed vector of a stay point (move point)

SPs(MPs)-c-vec-seq sequence of compressed vectors of stay points (move points)
SPs(MPs)-c-vec compressed vector of stay points(move points)

c-vec compressed vector

Stay
Point

Move
Point

Sequence of
Stay Points

Sequence of
Move Points

f-seq

sp-f-seq
SPs-f-seq

MPs-f-seq
mp-f-seq

(a) Candidate Trajectory (b) Feature Sequence

Fig. 4. Example of Candidate Trajectory and Feature Sequence

summary, a representation model that can compress the feature

sequence into a low-dimensional dense vector is desired.

Table I lists the abbreviations used throughout this subsection.

We introduce an autoencoder equipped with a compressor

and a decompressor, to solve the aforementioned issues and

learn the representation of each f-seq. The compressor can

reduce the dimension of the f-seq. In contrast, the decompres-

sor recovers the compressed vector to the f-seq. Furthermore,

we analyze two potential characteristics of the candidate

trajectories that inspire our autoencoder construction:

(1) Spatiotemporal difference between stay points and move
points. A stay points indicates a staying behavior of an HCT

truck, while the GPS points (called move point) that connect

two consecutive stay points indicate a moving behavior of an

HCT truck, as shown in Figure 4(a). Formally, a move point

is defined as follows:

Definition 5 (Move Point): A move point mpi′ is a subtra-

jectory of trr that connects two consecutive stay points1, i.e.,

spi′ and spi′+1.

Accordingly, a candidate trajectory can be further regarded as

a sequence that stay points and move points appear by turns,

e.g., trc = 〈spi′ ,mpi′ , spi′+1, . . . ,mpj′−1, spj′〉. Apparently,

the spatiotemporal patterns of stay points and move points are

different due to the different driving behaviors. Therefore, as

shown in Figure 4(b), a feature sequence of a stay point (sp-
f-seq) and a feature sequence of a move point (mp-f-seq) need

to be compressed and decompressed separately, avoiding the

wrong parameters sharing in the autoencoder.

(2) Spatiotemporal difference between sequence hierarchies.
As shown in Figure 4(a), all stay points in a candidate

trajectory can be regarded as a sequence of stay points, and

each stay point is a sequence of GPS points. Apparently,

different sequence hierarchies have different spatiotemporal

patterns, e.g., the spatial/temporal spans between stay points

are larger than the spatial/temporal spans between GPS points.

Therefore, as in Figure 4(b), a f-seq can be split into a feature

sequence of stay points (SPs-f-seq) and a feature sequence

of move points (MPs-f-seq), where SPs-f-seq is a sequence

of sp-f-seq(s) and MPs-f-seq is a sequence of mp-f-seq(s).

1We note two special move points: mp0 is a move point before the first
stay point sp1, and mpn is a move point after the last stay point spn.

SPs-f-seq

SPs-c-vec-seq

sp-f-seq sp-f-seq mp-f-seq mp-f-seq

sp-c-vec sp-c-vec mp-c-vec mp-c-vec

MPs-f-seq

MPs-c-vec-seq

MPs-c-vecSPs-c-vec

c-vec
Compression Operator
LSTM Self-attention

f-seq

SPs-f-seq

SPs-c-vec-seq

sp-f-seq sp-f-seq mp-f-seq mp-f-seq

sp-c-vec sp-c-vec mp-c-vec mp-c-vec

MPs-f-seq

MPs-c-vec-seq

MPs-c-vecSPs-c-vec

f-seq

Decompression Operator
LSTM

Compression Operator Compression Operator

Compression OperatorCompression Operator

Decompression Operator Decompression Operator

Decompression OperatorDecompression Operator

Compressor Decompressor

( )

( )

( )

( )

Fig. 5. Hierarchical Autoencoder

Each sp-f-seq or mp-f-seq consists of feature vectors of GPS

points. The compressor should capture the hierarchical features

from the f-seq, while the decompressor needs to recognize the

hierarchical features from the compressed result.

To this end, we propose a hierarchical autoencoder, where

the compressor and decompressor can separately process the

stay points and move points in a hierarchical manner. Next, we

introduce the compressor and decompressor, and then present

the workflow in detail.

Compressor. As shown on the left side in Figure 5, our

compressor has two phases. In the first phase, a compression

operator compress each sp-f-seq (in SPs-f-seq) into a vector

called sp-c-vec, and another operator compress each mp-f-seq
(in MPs-f-seq) into a vector called a mp-c-vec. In the second

phase, all sp-c-vec(s) and mp-c-vec(s) are compressed into a

final compressed vector (c-vec) using two compression opera-

tors. A compression operator consists of an LSTM and a self-

attention mechanism. The LSTM learns the latent representa-

tion of a sequence [9] and the self-attention mechanism [10],

[11] aggregates a sequence into a vector.

We take a f-seq as an example to introduce the

process of the compressor. The compressor firstly

takes the f-seq 〈fi, fi+1, . . . , fj〉 of a candidate

trajectory trc = 〈pi, pi+1, . . . , pj〉 (i.e., 〈spi′ ��� spj′〉,
〈spi′ ,mpi′ , spi′+1, . . . ,mpj′−1, spj′〉) as an input, and

divides it into SP-f-seq and MP-f-seq as follows:

fSP = 〈fspi′
,fspi′+1

, . . . ,fspj′
〉,

fMP = 〈fmpi′
,fmpi′+1

, . . . ,fmpj′−1
〉, (1)

where fspi′ and fmpi′ denote a sp-f-seq and mp-f-seq, respec-

tively.

(I) In the first phase, two compression operators work for

compressing each sp-f-seq and mp-f-seq, respectively. A sp-f-
seq, fspi′ = 〈fi, fi+1, . . . , fi+a〉 (with a+1 steps), is fed into

an LSTM which outputs the hidden state vector at each step

as follows:
hτ = LSTM(fτ , hτ−1;Wl1) (2)

where τ ∈ [i, i+a], hτ−1 is the hidden state vector at the last

step, and Wl1 denotes the learnable parameters. Then a self-

attention mechanism is used to aggregate hidden states along

with the steps while different steps have different importance

scores. Unlike the simple usage of the LSTM’s hidden state

vectors, we introduce a self-attention mechanism [10], [11]

to enhance the memory ability of the operator, which can

better deal with the long-range sequence. The last hidden state
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vector hi+a of LSTM that contains the information of all the

historical steps is used to calculate the importance score of

each step. For example, to get the importance score of a step

in the sequence, we calculate how much hi+a pays attention

to it. This attention indicates the weight assigned to this step

during the aggregation. Following the standard procedure [10],

we can obtain a query vector q of the last hidden state, and a

key matrix K of all the hidden states, as follows:

q = hi+a ×Wq + bq,K = H ×WK + bK (3)

where H refers to all hidden state vectors of the LSTM, i.e.,

H = [hi, hi+1, . . . , hi+a], and Wq and WK are the weights of

the fully connected layers for hi+a and H , respectively, bq and

bK denote biases of Wq and WK , respectively. It should be

noted that we want to aggregate all the hidden state vectors, so

the value matrix includes the hidden states output by LSTM.

With q and K, we can calculate the importance scores s of

all steps using Softmax ( q×K√
dk

), where dk is dimension of the

key vector in K. Thereafter, we can aggregate the hidden state

vectors H into a vector h =
∑i+a

τ=i si · hi, where si (si ∈ s)

represents the importance score at each step. Finally, a sp-c-
vec (i.e., vcspi′ ) can be obtained by using non-linear activation

as follows:

vcspi′ = Tanh((h×Wc1 + bc1)×Wc2 + bc2) (4)

where Wc1 and Wc2 are the weights of two fully connected

layers, and bc1 and bc2 denote biases of Wc1 and Wc2,

respectively.

Following the aforementioned process, every sp-f-seq in SP-
f-seq is compressed into a sp-c-vec, thus forming a sequence

as vc
SP = 〈vcspi′ , vcspi′+1

, . . . , vcspj′ 〉 (called SP-c-vec-seq), and

every mp-f-seq in MP-f-seq is compressed into a mp-c-vec,

forming a sequence as vc
MP = 〈vcmpi′ , v

c
mpi′+1

, . . . , vcmpj′ 〉 (i.e.,

MP-c-vec-seq).

(II) Then in the second phase, the other two compression

operators work for compressing SP-c-vec-seq and MP-c-vec-
seq, respectively. The architecture of compression operators

in the second phase is the same as those in the first phase.

Therefore, vc
SP is compressed into a vector vcSP (SP-c-vec),

and vc
MP is compressed into a vector vcMP (MP-c-vec).

Finally, the c-vec of candidate trajectory 〈spi′ ��� spj′〉
(denoted as vc(i′,j′)) can be obtained by concatenating SP-c-vec
and MP-c-vec, i.e., vc(i′,j′) = [vcSP , v

c
MP ].

Decompressor. As shown on the right side in Figure 5, our

decompressor is roughly symmetrical to the compressor that

has two phases. In the first phase, the SP-c-vec and MP-c-vec
in the c-vec are decompressed to SP-c-vec-seq and MP-c-vec-
seq, respectively. In the second phase, each sp-c-vec in SP-
c-vec-seq is decompressed to a sp-f-seq, and each mp-c-vec
in MP-c-vec-seq is decompressed to a mp-f-seq. Thereafter,

all sp-f-seq(s) form a SP-f-seq, and all mp-f-seq(s) form a

MP-f-seq. The decompressed result f-seq will be obtained

by assembling the SP-f-seq and MP-f-seq. Similar to the

compressor, there are 4 decompression operators inside the

decompressor. A decompression operator is an LSTM that can

utilize an input vector to recover a sequence with variable

steps.

To be specific, the decompressor firstly takes vc(i′,j′) as

input, and divides it into vcSP and vcMP .

(I) In the first phase, two decompression operators work for

decompressing vcSP and vcMP , respectively. For the SP-c-vec
decompression, vcSP is fed into an LSTM, which outputs the

hidden state vector at each step as follows:

h′τ = LSTM(vcSP , h
′
τ−1;Wl2) (5)

where τ ∈ [i, i+a], hde
τ−1 is the hidden state vector at last step,

and Wl2 denotes the parameters of LSTM. This calculation

repeats a+1 times to get a matrix H ′ = [h′i, h
′
i+1, . . . , h

′
i+a].

Finally, the SP-c-vec-seq is generated as follows:

vdec
SP = Tanh((H ′ ×Wd1 + bd1)×Wd2 + bd2) (6)

where vdec
SP denotes the decompressed result of SP-c-vec-seq,

Wd1 and Wd2 are the weights of two fully connected layers,

and bd1 and bd2 denote biases of Wd1 and Wd2, respectively.

This non-linear activation can map the H ′ to between -1 to

1, matching the range of f-seq. Similarly, for decompressing

the MP-c-vec, vcMP is decompressed to vdec
MP that is the the

decompressed result of MP-c-vec-seq.

(II) Then in the second phase, the other two operators work

for decompressing each sp-c-vec in SP-c-vec-seq, and each

mp-c-vec in MP-c-vec-seq, respectively. The decompression

operators in the second phase are the same as those in the

first phase. As a result, each vdecsp ∈ vdec
SP is decompressed to

a sp-f-seq (i.e., fdec
sp ), and each vdecmp ∈ vdec

MP is decompressed

to a mp-f-seq (i.e., fdec
mp). Arranging all sp-f-seq(s) and mp-

f-seq(s) can form the decompressed results of SP-f-seq and

MP-f-seq, respectively, as follows:

f dec
SP = 〈fdec

spi′
,fdec

spi′+1
, . . . ,fdec

spj′
〉,

f dec
MP = 〈fdec

mpi′
,fdec

mpi′+1
, . . . ,fdec

mpj′−1
〉, (7)

Finally, the decompressed f-seq i.e., 〈fdec
i , fdec

i+1, . . . , f
dec
j 〉,

can be obtained by assembling the SP-f-seq and MP-f-seq.

Workflow. In the offline stage, given an archive of historical

raw trajectories, the hierarchical autoencoder utilizes the f-
seq(s) of all the candidate trajectories generated from the raw

trajectories to train the compressor and decompressor in a

self-supervised manner. In particular, all f-seq(s) derived from

historical raw trajectories are shuffled for training the hierar-

chical autoencoder. For each f-seq e.g., 〈fi, fi+1, . . . , fj〉, the

hierarchical autoencoder needs to minimize the MSE loss as

follows:

LMSE =
1

j − i+ 1

j∑
τ=i

(fτ − fdec
τ )2 (8)

where fdec
τ denotes τ -th feature vector in the decompressed

f-seq.

After training the hierarchical autoencoder, the decompres-

sor is put aside, and the trained compressor is used to compress

any f-seq of candidate trajectory into a c-vec. Furthermore, we

note that the trained compressor can be used in both offline

and online stages. For the offline stage, the c-vec(s) of a
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historical raw trajectory are fed into the detection component,

thus training the detector. For the online stage, the c-vec(s) of

an unseen raw trajectory are the inputs of the trained detection

component, thus detecting the loaded trajectory.

V. LOADED TRAJECTORY DETECTION

This component firstly organizes the compressed vectors in

forward and backward ways and generates two groups. Then

the two groups are input to two detectors, respectively. The

two detectors output two discrete probability distributions in

terms of forward and backward perspectives. Each distribution

represents the probability that a candidate trajectory is the

loaded trajectory. Furthermore, to effectively train the detec-

tors, a label processing method is used to generate the training

labels from real labels.

A. Group Generation

After encoding the candidate trajectories of a raw trajectory,

we obtain a set of compressed vectors. Specifically, each

trr ∈ Trc (trc = 〈spi′ ��� spj′〉), is represented as a com-

pressed vector vc(i′,j′), via the candidate trajectory encoding.

Intuitively, we can detect the loaded trajectory using a binary

classifier, as a detector. The classifier utilizes all compressed

vectors with corresponding labels (i.e., is loaded trajectory or

not) to learn how to distinguish a loaded trajectory. Regardless

of the offline or online stage, the classifier treats each candi-

date trajectory as an independent sample and calculates the

probability using the compressed vector. However, this naive

approach ignores the relationships between candidate trajec-
tories, which will suffer from sub-optimal solutions. Next,

we analyse three relationships between candidate trajectories,

based on which we present our group generation method.

Include Include

Exclude Exclude

(a) Inclusion and Exclusion Relationships (b) Analogy Relationships

Fig. 6. Example of Relationships Between Candidate Trajectories

The candidate trajectories of a raw trajectory have visible in-
clusion and exclusion relationships. As show in Figure 6(a), a

candidate trajectory 〈sp1 ��� sp3〉 (〈sp1,mp1, sp2,mp2, sp3〉)
includes another candidate trajectory 〈sp1 ��� sp2〉. Mean-

while, 〈sp1 ��� sp3〉 is a result of 〈sp1 ��� sp4〉 excluding

mp3 and sp4. Therefore, when judging 〈sp1 ��� sp3〉, both

〈sp1 ��� sp2〉 and 〈sp1 ��� sp4〉 as a context information

can guide the judgment. If the probabilities of 〈sp1 ��� sp2〉
and 〈sp1 ��� sp4〉 are very low, 〈sp1 ��� sp3〉 is almost

impossible to be the loaded trajectory. In contrast, individually

judging 〈sp1 ��� sp3〉 could easily make a wrong decision

since it cannot be corrected by any context information.

In addition, it is necessary to consider the analogy relation-

ships between candidate trajectories. Specifically, analogous

candidate trajectories that share the same starting or ending

stay points indicate the consistency of origin and destination.

As shown in Figure 6(b), the candidate trajectories on the

TABLE II
EXAMPLE OF GROUP GENERATION

Compressed Vectors of Candidate Trajectories
vc
(1,2)

, vc
(1,3)

, vc
(1,4)

, vc
(1,5)

, vc
(2,3)

, vc
(2,4)

, vc
(2,5)

, vc
(3,4)

, vc
(3,5)

, vc
(4,5)

Forward Group
g1 g2 g3 g4

〈vc
(1,2)

, vc
(1,3)

, vc
(1,4)

, vc
(1,5)

〉 〈vc
(2,3)

, vc
(2,4)

, vc
(2,5)

〉 〈vc
(3,4)

, vc
(3,5)

〉 〈vc
(4,5)

〉
Backward Group

g2 g3 g4 g5
〈vc

(1,2)
〉 〈vc

(2,3)
, vc

(1,3)
〉 〈vc

(3,4)
, vc

(2,4)
, vc

(1,4)
〉 〈vc

(4,5)
, vc

(3,5)
, vc

(2,5)
, vc

(1,5)
〉

top are started with sp1, and the candidate trajectories on the

bottom are ended with sp5. If sp1 is not the loading stay

point, each of the probability in the left group should be low.

Similarly, if sp5 is not the unloading stay point, each of the

probability in the right group should be low. Therefore, the

analogy relationships can help determine the loaded trajectory

that starts with the loading stay point and ends with the

unloading stay point.

Based on the analysis, it is necessary for a detector to

capture the inclusion, exclusion and analogy relationships be-

tween candidate trajectories. However, the compressed vectors

of candidate trajectories are disordered, which are impossible

for a detector to directly capture the relationships. To raise

awareness about the relationships between candidate trajecto-

ries, we propose a group generation method, which can wisely

organize the compressed vectors using two grouping strategies,

i.e., forward grouping and backward grouping.

Forward grouping is a strategy that groups the compressed

vectors by the starting indexes of compressed vectors, and

generates a forward group. The forward group consists of

subgroups, and each subgroup contains compressed vectors

with the same starting indexes. Specifically, compressed vec-

tors with the same starting index i′ form a subgroup gi′ where

compressed vectors are sorted in ascending order by ending

indexes, i.e., gi′ = 〈vc(i′,i′+1), v
c
(i′,i′+2), . . . , v

c
(i′,n)〉, where n

is the number of stay points and 1 ≤ i′ < n.

Backward grouping is a strategy that groups the compressed

vectors by the ending indexes, and generates a backward

group. The backward group consists of subgroups, and each

subgroup contains compressed vectors with the same ending

indexes. Specifically, compressed vectors with the same ending

index j′ is a subgroup gj′ where compressed vectors are

sorted in descending order by starting indexes, i.e., gi′ =
〈vc(j′−1,j′), v

c
(j′−2,j′), . . . , v

c
(1,j′)〉 (1 < j′ ≤ n).

For example, Table II gives 10 compressed vectors of candi-

date trajectories, and all compressed vectors are organized as

a forward group and a backward group. There is an inclusion

relationship between a compressed vector and its previous one,

and there is an exclusion relationship between a compressed

vector and its next one. Furthermore, in the forward group,

each subgroup represents analogous candidate trajectories with

the same starting stay point. And in the backward group, each

subgroup indicates analogous candidate trajectories with the

same ending stay point. Accordingly, the group generation

method can organize the disordered compressed vectors into

two groups with valuable relationships.
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B. Forward and Backward Detectors

Based on the forward and backward groups, we need to

construct a detector that not only captures the inclusion,

exclusion and analogy relationships, but also calculates the

probabilities of compressed vectors of candidate trajectories.

Benefiting from the group generation, we can leverage two

Bidirectional LSTM-based detectors to capture the relation-

ships while calculating the probabilities. For the inclusion and

exclusion relationships, if we regard each subgroup as a hor-

izontal sequence (in Table II), the inclusion relationships are

converted to the left-to-right relationships, and the exclusion

relationships are converted to the right-to-left relationships.

This interesting property inspires us to use a Bidirectional

LSTM (BiLSTM) [12] to model the inclusion and exclusion

relationships. For the analogy relationships, the forward and

backward groups are input to two detectors sharing the same

structure, and each subgroup will be separately calculated. In

this way, each detector will focus on one type of analogy

relationship (forward or backward), and different subgroups

with different starting or ending indexes are independent. After

that, two detectors output two discrete probability distributions

w.r.t. forward and backward groups, and each probability

corresponds to a compressed vector of candidate trajectory. In

addition, we use a stacked BiLSTM network as a detector [13],

which can better extract the sequential features at different

timescale [14]. Next, we introduce two detectors, and then

present the workflow in detail.

Forward Detector. As shown on the left side in Figure 7,

the forward detector is a stacked BiLSTM network with

L BiLSTM layers. It takes a forward group as input, and

calculates the compressed vectors of each subgroup in a

sequential manner. To be specifically, a subgroup gi′ =
〈vc(i′,i′+1), v

c
(i′,i′+2), . . . , v

c
(i′,n)〉 (i′ ∈ [1, n)) is fed into the

first BiLSTM layer equipped with a forward LSTM and a

backward LSTM. The forward LSTM output sequence
→
h i′ ,

is iteratively calculated using inputs of gi′ from left to right,

while the backward LSTM output sequence,
←
h i′ , is obtained

using the reversed inputs of gi′ from right to left. Both the

forward and backward LSTM outputs are calculated based on

the standard LSTM equation, i.e., Equation 2. Then a hidden

sequence hi′ is calculated by concatenating
→
h i′ and

←
h i′ as

follows:

hi′ = [
→
h i′ ,

←
h i′ ]×Wf1 + bf1 (9)

where Wf1 is the weights of fully connected layer, and bf1
denotes the biases of Wf1. To facilitate the calculation of sub-

sequent BiLSTM layers, the length of hi′ is equals to those of→
h i′ and

←
h i′ . Formally, hi′ = 〈h(i′,i′+1), h(i′,i′+2), . . . , h(i′,n)〉,

where h(i′,i′+1) is the hidden vector corresponding to

vc(i′,i′+1), and n is the number of stay points.

After obtaining the all the hidden sequences of subgroups

from the first BiLSTM layer, the hidden sequences are re-

cursively computed from the second BiLSTM layer to L-

th BiLSTM layer. Once the top-layer hidden sequences are

LSTMLSTM LSTM
BiLSTM (Layer 1)

BiLSTM (Layer   )

LSTM LSTM
LSTMLSTM

LSTM
LSTM

BiLSTM (Layer 1)

BiLSTM (Layer   )
Forward Detector Backward Detector

LSTM LSTM LSTMLSTM LSTM LSTM

Fig. 7. Forward and Backward Detectors

computed, the probability vector of each subgroup can be

obtained as follows:

p̂f
i′ = Softmax(hLi′ ×Wf2 + bf2) (10)

where p̂f
i′ is a probability vector of gi′ subgroup (p̂f

i′ =

[p̂f(i′,i′+1), p̂
f
(i′,i′+2), . . . , p̂

f
(i′,n)]), hLi′ is the hidden sequence

of gi′ in L-th layer, and Wf2 is the weights of a fully

connected layer and bf2 denotes biases of Wf2. Finally, the

output of the forward detector is obtained by concatenating

all the probability vector (from p̂f
1 to p̂f

n−1) as P̂f
=

[p̂f(1,2), p̂
f
(1,3), . . . , p̂

f
(n−1,n)].

Backward Detector. As shown on the right side in Figure 7,

the backward detector is a stacked BiLSTM network with

L BiLSTM layers, which is the same as the forward de-

tector. It takes the backward group as input, and calculates

the probabilities of compressed vectors in each subgroup.

Following the calculations of the forward detector, we can

obtain the probability vector of each subgroup in the backward

group, as p̂b
j′ = [p̂b(j′−1,j′), p̂

b
(j′−2,j′), . . . , p̂

b
(1,j′)] (j′ ∈ (1, n]).

And the output of the backward detector is obtained by

flattening all the probability vector (from p̂b
2 to p̂b

n) as P̂b
=

[p̂b(1,2), p̂
b
(2,3), . . . , p̂

b
(1,n)].

Workflow. In the offline stage, the forward and backward

detectors are trained separately. The inputs are the forward

and backward groups derived from the group generation. The

labels are two discrete probability distributions derived from

the label processing (detailed in the next subsection). For each

forward group as input, the forward detector needs to minimize

the Kullback-Leibler Divergence (KLD) loss as follows:

Lf
KLD =

∑
p
f

(i′,j′)∈Pf ,p̂
f

(i′,j′)∈P̂
f

pf(i′,j′)log

(
pf(i′,j′)

p̂f(i′,j′)

)
(11)

where Pf is the label probability distribution from the label

processing, and P̂f
is the probability distributions output from

the forward detector. For each backward group as input, the

backward detector needs to minimize the KLD loss as follows:

Lb
KLD =

∑
pb
(i′,j′)∈Pb,p̂b

(i′,j′)∈P̂
b

pb(i′,j′)log

(
pb(i′,j′)

p̂b(i′,j′)

)
(12)

where Pb is the label probability distribution and P̂b
is the

probability distributions output from the backward detector.

Thereafter, in the online stage, the trained forward and

backward detectors can be used to detect the loaded trajectory

by merging the output probability distributions. Specifically,

the output distributions of two detectors, i.e., P̂f
and P̂b

,
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are firstly merged into one intermediate vector, where each

element is obtained by adding the probabilities with the same

index in both distributions. Then the intermediate vector is

normalized by rescaling the range of all elements to [0, 1],
thus obtaining the merged probability distribution P̂ , and each

probability indicates the likelihood that a candidate trajectory

of being a loaded trajectory. Finally, the index of the maximum

probability in P̂ determines the detected loaded trajectory.

For example, if p̂(i′,j′) is the maximum probability in P̂ ,

the detected loaded trajectory is 〈spi′ ��� spj′〉. Formally,

given a merged probability distribution P̂ , the detected loaded

trajectory t̂r
l

can be determined as follows:

t̂r
l
= 〈spi′ ��� spj′〉, (i′, j′) = argmax

(i′,j′)
P̂, (13)

where (i′, j′) denotes the index of a probability p̂(i′,j′) ∈ P̂ .

According to (i′, j′), we can select the candidate trajectory

〈spi′ ��� spj′〉 as the detected loaded trajectory t̂r
l
.

C. Label Processing

To separately train the forward and backward detectors, we

need to prepare two labels for each pair of forward and back-

ward groups. Intuitively, we can acquire two discrete proba-

bility distributions (called real labels), based on the archived

loaded trajectory. Each real label is like a one-hot vector where

only one probability equals 1 while others are 0. Specifically, a

real label of forward group is Pf = [pf(1,2), p
f
(1,3), . . . , p

f
(n−1,n)].

There is one probability pf(i′,j′)=1 indicating that the candidate

trajectory 〈spi′ ��� spj′〉 is the loaded trajectory, and other

probabilities are 0. Similarly, a real label of backward group

is Pb = [pb(1,2), p
b
(2,3), . . . , p

b
(1,n)], where pf(i′,j′)=1, and other

probabilities are 0. However, the zero probabilities in real

labels will cause undefined log(0) in Equation (11) and (12),

leading to invalid KLD losses. Therefore, we introduce a small

constant ε, e.g., ε = 10−5, and process the real labels as

follows:

Pf = [pf(1,2) = ε, pf(1,3) = ε, ..., pf(i′,j′) = 1− kε, ..., pf(n−1,n) = ε]

Pb = [pb(1,2) = ε, pb(2,3) = ε, ..., pb(i′,j′) = 1− kε, ..., pb(1,n) = ε]

where n is the number of stay points and k is the number

of probabilities with ε in a real label. Thus, Pf and Pb as

two discrete probability distributions can be effectively used

to train the detectors.

VI. EXPERIMENT

A. Experimental Settings

Dataset. The dataset used in our experiments is collected from

the city of Nantong, China. Nantong is heavily dependent

on the chemicals industry, which contributes a proportion of

41.9% in the secondary industry GDP of Nantong in 2020.

The dataset contains the historical raw trajectories and loaded

trajectories. The raw trajectories are generated by HCT trucks

within one day, and the loaded trajectories are extracted from

the raw trajectories by government employees. It is easy to

collect a large number of raw trajectories through GPS sensors,

but it is costly to obtain the real loaded trajectory as ground

truth, since employees are required to carefully determine the

loaded trajectory from each raw trajectory one by one.

To the best of our ability, we collect 5,968 raw trajectories

with loaded trajectories generated by 2,734 HCT trucks which

are operated in Nantong, over a period of 2 months (from

September 1th to October 31th, 2020). The GPS points of

trajectories are based on WGS84 coordinate system [15], and

the average sampling interval is around 2 minutes2. We split

the dataset into training set, validation set and test set with

a splitting ratio of 8:1:1. In addition, the HCT trucks of

the validation set and test set do not overlap with the HCT

trucks of the training set, thus making the evaluation more

convincing.

Baselines. We compare our LEAD with several representative

baselines. To the best of our knowledge, there is no existing

solution that can detect the loaded trajectory for hazardous

chemicals transportation. Therefore, we design the following

stay point-based methods for comparison:

(1) SP-R: It detects the loaded trajectory via a rule-based

classifier. Specifically, after the noise filtering and stay point

extraction, a rule-based classifier can find all the potential load-

ing/unloading (l/u) stay points, by matching each stay point

with locations in the white list. The white list is generated

from the training set, both ends of each loaded trajectory as

two locations (i.e., loading and unloading locations) are stored

in the white list. If a stay point nears a location in the white list,

it is an l/u stay point. Otherwise, the stay point is an ordinary

stay point (i.e., stay point neither loading nor unloading). For

each stay point, we set the searching radius to 500m. Next,

we can determine a loading stay point and an unloading stay

point from all l/u stay points. Based on our domain-specific

knowledge, a loaded trajectory always starts with a loading

stay point and ends with a unloading stay point. Thus, we

consider a greedy strategy, which sets the first (earliest) l/u
stay point as the loading stay point, and sets the last (latest)

l/u stay point as the unloading stay point.

(2) SP-GRU: It detects the loaded trajectory via a GRU-based

classifier. Specifically, after the noise filtering and stay point

extraction, we introduce a GRU [16] with 128 hidden units

as a binary classifier to classify each stay point into l/u stay

point or ordinary stay point, where the input is the feature

sequence of a stay point. Thereafter, the greedy strategy is

used to determine a loading stay point and an unloading stay

point from all l/u stay points.

(3) SP-LSTM: It detects the loaded trajectory via a LSTM-

based classifier. The SP-LSTM is similar to SP-GRU except

for the classifier. We use a LSTM with 128 hidden units as a

binary classifier to classify each stay point into l/u stay point

or ordinary stay point. Similarly, the greedy strategy is used

to determine a loading stay point and an unloading stay point

based on all l/u stay points.

2The detailed statistics of the dataset are not disclosed, due to our data
confidential agreement.
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We note that the three baselines will suffer from invalid

detection results, when finding insufficient l/u stay points (e.g.,

0 or 1 l/u stay point). In this case, we will set the first extracted

stay point as the loading stay point and set the last one as the

unloading stay point, as a default loaded trajectory.

Variants. To evaluate each component of our framework, we

perform ablation studies with the following variants of LEAD:

(1) LEAD-NoPoi: We remove the POI feature in the feature

extraction, and we use zero padding as the pseudo POI feature,

keeping the dimension of the feature vector constant.

(2) LEAD-NoSel: We remove the self-attention mechanism in

the hierarchical autoencoder. Instead, we directly use the last

hidden state vector of each LSTM in the compressor.

(3) LEAD-NoHie: We remove the hierarchy and separation

structures in the hierarchical autoencoder. There is only one

compression operator and one decompression operator in the

compressor and decompressor, respectively.

(4) LEAD-NoGro: We remove the group generation in the

loaded trajectory detection. After deleting it, the forward and

backward detectors are unavailable. We substitute the forward

and backward detectors with 4 fully connected layers with

Sigmoid activator to calculate the probability of each candidate

trajectory. Specifically, the number of units from the first layer

to the fourth layer is set to 64, 32, 32, and 1, respectively, and

the Sigmoid activator is set in the fourth layer to output the

probability.

(5) LEAD-NoFor: We remove the forward detector in the

loaded trajectory detection, and only use the probability dis-

tribution of backward detector to detect the loaded trajectory.

(6) LEAD-NoBac: We remove the backward detector in the

loaded trajectory detection, and only use the probability dis-

tribution of forward detector to detect the loaded trajectory.

Evaluation Metric. The purpose of our defined problem is to

detect the loaded trajectory from a raw trajectory. Thus, we

define the detection accuracy to show the performance of our

framework and baselines as follows:

Acc =

∑Nte
i=1 hiti

Nte
× 100%, hiti =

{
1, if t̂r

l
i = trli,

0, otherwise,
(14)

where Nte is number of test samples, hiti indicates that if

i-th detected loaded trajectory hits the ground truth loaded

trajectory, t̂r
l

i denotes i-th detected loaded trajectory, and trli
denotes i-th ground truth loaded trajectory. The larger value

of Acc indicates that the method detect the loaded trajectory

more accurately.

Implementation Details. We set the hyperparameters in

LEAD throughout the experiments as follows:

(1) Raw Trajectory Processing: Firstly, in noise filtering, the

speed threshold Vmax is set to 130km/h since the moving

speed of an HCT truck rarely exceeds this threshold. Secondly,

in stay point extraction, We test different parameter combi-

nations and find that most staying behaviors (e.g., loading,

unloading, resting, etc.) can be included in stay points when

we set Dmax = 500m and Tmin = 15min. Based on

the dataset, the number of stay points extracted from a raw

trajectory ranges from 3 ∼ 14, which is reasonable for

the staying times of an HCT truck within one day. Finally,

in candidate trajectory generation, the number of generated

candidate trajectories ranges from 3 ∼ 91, deriving from the

number of stay points.

(2) Candidate Trajectory Encoding: For the feature extraction,

we collect 415,639 POIs in Nantong and categorize them into

29 typical categories, e.g., company, hospital, chemical factory,

etc. The collected POIs are used to extract the POI feature of

a GPS point, and the dimension of a feature vector is 32. For

the hierarchical autoencoder, all compression operators in the

compressor share the same architecture, and all decompression

operators in the decompressor share the same architecture. To

keep the hierarchical autoencoder within a tractable size, the

number of hidden units in each LSTM and fully connected

layer are the same, and we set the number of hidden units

in the hierarchical autoencoder as 32. Thus, the compressed

vector of any feature sequence has a fixed dimension of 64.

(3) Loaded Trajectory Detection: For the forward and back-

ward detectors, all LSTMs have 64 hidden units, and the fully

connected layers for calculating the probabilities have 1 unit.

In addition, we tune the number of BiLSTM layers L from 1

to 10 and find the highest detection accuracy when L = 4 on

the validation set, thus we set L = 4 as the default. For the

label processing, we set the small constant ε to 10−5.

Finally, for the offline phase of the hierarchical autoencoder,

and the forward and backward detectors, we use the Adam

optimizer [17] for updating the parameters with a scheduled

learning rate of 0.0001. The training bath size is set to 1,

because the dimension of the inputs (i.e., feature sequences

and forward/backward groups) are not fixed. Nevertheless,

we backpropagate the average loss of B consecutive training

samples to simulate an iteration of batch training, and we

set B as 64, thus improving the training efficiency to a

certain extent. The above hyperparameters are tuned on the

validation set by using the grid search. In addition, we use

Early Stopping [18] to avoid the overfitting of the neural

networks. Our experimental results are reported based on the

above settings, unless expressly specified.

Environment. We implement all algorithms in Python 3.7.10,

and run the experiments on an Ubuntu Server with an Intel(R)

CPU i7-4770@3.4GHz, and NVIDIA Tesla V100 GPU.

B. End-to-End Evaluation of LEAD

In this subsection, we study the end-to-end performance of

LEAD by comparing it against several baselines in terms of

accuracy and efficiency.

Detection Accuracy. We adopt Acc defined by Equation (14)

to evaluate the detection accuracy of LEAD. To make the

evaluation more clearly, we separately report Acc under the

different numbers of stay points on the test set, in Table III.

As depicted, our LEAD outperforms all the other detection

methods for all the test cases, and the accuracy of all the meth-

ods can be ranked as: LEAD>>SP-LSTM>SP-GRU>SP-R.

We can see that as the number of stay points increases, the

accuracy of all the methods decreases, due to the increased

difficulty of detection. The details are as follows:
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TABLE III
ACCURACY OF BASELINES AND OURS (LEAD) ON THE TEST SET

Acc(%) #Stay Points (Percentage%)

Method 3∼5
(22%)

6∼8
(34%)

9∼11
(25%)

12∼14
(19%)

3∼14
(100%)

SP-R 60.2 54.2 46.8 33.3 49.7
SP-GRU 66.4 63.5 54.7 49.2 59.2

SP-LSTM 67.2 63.9 56.2 51.6 60.4
LEAD 95.6 92.4 87.5 83.8 90.2

(1) 3∼5 Stay Points: There are 22% of raw trajectories that

have 3∼5 stay points in the test set, thus the number of

candidate trajectories ranges from 3∼10. In this case, LEAD
outperforms SP-R by 59%, SP-GRU by 44%, SP-LSTM by

42% on Acc.
(2) 6∼8 Stay Points: There are 34% of raw trajectories that

have 6∼8 stay points in the test set, thus the number of

candidate trajectories ranges from 15∼28. In this case, LEAD
outperforms SP-R by 70%, SP-GRU by 46%, SP-LSTM by

45% on Acc.
(3) 9∼11 Stay Points: There are 25% of raw trajectories that

have 9∼11 stay points in the test set, and the number of

candidate trajectories ranges from 36∼55. In this case, LEAD
outperforms SP-R by 87%, SP-GRU by 60%, SP-LSTM by

56% on Acc.
(4) 12∼14 stay points: There are 19% of raw trajectories that

have 12∼14 stay points in the test set, and the number of

candidate trajectories ranges from 66∼91. In this case, LEAD
outperforms SP-R by 1.5×, SP-GRU by 70%, SP-LSTM by

62% on Acc.
(5) 3∼14 stay points: In the test set, all raw trajectories have

3∼14 stay points, and the number of candidate trajectories

ranges from 3∼91. In this case, LEAD outperforms SP-R by

81%, SP-GRU by 52%, SP-LSTM by 49% on Acc.
It is expected that SP-R performs the worst among all

the methods since the defective rule-based classifier cannot

cover all the locations in the white list, and returns the

default loaded trajectory frequently. For the poor performance

of SP-GRU and SP-LSTM, the main reasons are three-fold.

Firstly, LEAD generates all candidate trajectories of a raw

trajectory, and detects the loaded trajectory based on their

probabilities. While SP-GRU and SP-LSTM, similar to SP-R,

cannot specify the loaded trajectory when classifiers return 0

or 1 l/u stay point, obtaining the inaccurate default loaded

trajectory. Secondly, LEAD captures not only the features

of stay points but also the features of move points, while

SP-GRU and SP-LSTM only consider the features of stay

points, lacking the moving information between stay points.

Thirdly, LEAD captures the inclusion, exclusion and analogy

relationships between candidate trajectories, which is benefit to

detect the accurate loaded trajectory. SP-GRU and SP-LSTM

treat each stay point as an independent sample and detect the

loaded trajectory based on their probabilities.

Efficiency. We record the mean inference time of all the

methods to detect the loaded trajectory on the test set, and

separately report them under the different numbers of stay

points in Figure 8. As we can see, LEAD requires around

12 ∼ 25s in all the test cases, which is much faster than

Fig. 8. Inference Time of Baselines and Ours (LEAD) on the Test Set

TABLE IV
ACCURACY OF LEAD AND LEAD-VARIANTS ON THE TEST SET

Acc(%) #Stay Points (Percentage%)

Method 3∼5
(22%)

6∼8
(34%)

9∼11
(25%)

12∼14
(19%)

3∼14
(100%)

LEAD-NoPoi 85.7 83.1 77.6 72.4 80.3
LEAD-NoSel 93.6 89.4 82.7 78.3 86.5
LEAD-NoHie 90.4 86.7 81.3 76.4 84.2
LEAD-NoGro 88.6 85.2 80.9 77.2 83.4
LEAD-NoFor 94.0 91.3 85.8 82.7 88.9
LEAD-NoBac 93.5 90.6 86.3 82.2 88.6

LEAD 95.6 92.4 87.5 83.8 90.2

other methods. Specifcally, LEAD outperforms SP-R by 64

∼ 71%, SP-GRU by 11 ∼ 20%, and SP-LSTM by 14 ∼ 25%

in all the test cases. SP-R performs the worst since it needs to

traverse all the locations of white list when classifying a stay

point. For SP-GRU and SP-LSTM, they need to classify all

stay points before they return the loaded trajectory. In contrast,

LEAD can return the loaded trajectory by making once forward

computation of each component efficiently.

C. Evaluation of Candidate Trajectory Encoding

Effectiveness of Feature Extraction. In our feature extrac-

tion, we consider the spatiotemporal features and POI features

of a GPS point. To evaluate the effectiveness of the additional

POI features, we compare LEAD against LEAD-NoPoi, and

report the Acc in Table IV. As shown, the accuracy of LEAD
is noticeably better than LEAD-NoPoi. To be specific, LEAD
outperforms LEAD-NoPoi by 11 ∼ 16% in all the test cases,

since it considers the informative POI features, while LEAD-

NoPoi lacks the POI features, leading to lower accuracy.

Effectiveness of Hierarchical Autoencoder. To study the ef-

fectiveness of the hierarchical autoencoder, we compare LEAD
against two variants, including LEAD-NoSel and LEAD-

NoHie, and we report their detection accuracy in Table IV. We

can see that LEAD-NoSel has decent detection accuracy when

the number of stay points is small, but it performs poorly when

the number of stay points is large. Specifically, in the test cases

of 3∼5 and 6∼8 stay points, the accuracy of LEAD-NoSel is

around 90%, while in the test cases of 9∼11 and 12∼14 stay

points, the accuracy of LEAD-NoSel decreases to 82.7% and

78.3%, respectively. This clearly shows that the self-attention

mechanism is helpful for long-range features memorization.

LEAD-NoHie performs noticeably worse than LEAD, specifi-

cally, LEAD-NoHie reduces the accuracy by 5∼ 9% compared

to LEAD, in all the test cases. This is because LEAD-NoHie

ignores not only the difference between stay points and move

points, but also the difference between sequence hierarchies.

We further record the curves of MSE loss (cf. Equation (8)) for
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Fig. 9. Curves of MSE Loss for Several Hierarchical Autoencoders

training the Hierarchical Autoencoder (HA) inside the LEAD,

LEAD-NoSel and LEAD-NoHie on the training set. As shown

in Figure 9, the MSE loss of the HA in LEAD is minimized at

around 7 epoch with 0.038, the MSE loss of the HA in LEAD-

NoSel is minimized at around 9 epochs with 0.042, and the

MSE loss of the HA in LEAD-NoHie is minimized at around

13 epochs with 0.053. For the HA in LEAD-NoSel, the com-

pression operators cannot effectively aggregate the historical

features, thus increasing the training convergence epochs and

the MSE loss. For the HA in LEAD-NoHie, the compressor

cannot capture the representative information in the feature

sequence, and the decompressor lacks the ability to restore

the informative feature sequence, thus greatly increasing the

training convergence time and the MSE loss.

D. Evaluation of Loaded Trajectory Detection

Effectiveness of Group Generation. The group generation

is proposed to organize the disordered compressed vectors

into forward and backward groups with inclusion, exclusion

and analogy relationships. To evaluate the effectiveness of

the group generation, we compare LEAD against LEAD-

NoGro, and report the Acc in Table IV. As depicted, the

accuracy of LEAD is noticeably better than LEAD-NoGro.

Specifically, LEAD outperforms LEAD-NoGro by 8 ∼ 9× in

all the test cases, this is because LEAD-NoGro treats each

candidate trajectory as an independent sample and calculates

the probability using the compressed vector, and ignores the

relationships between candidate trajectories.

Effectiveness of Forward and Backward Detectors. The

forward and backward detectors are designed to capture

the relationships inside the forward and backward groups,

respectively, while calculating the probability distributions.

To evaluate the effectiveness of the group generation, we

compare LEAD against two variants, including LEAD-NoFor

and LEAD-NoBac, and report their detection accuracy in

Table IV. We can see that both LEAD-NoFor and LEAD-

NoBac have decent detection accuracy, but still worse than

LEAD. Specifically, LEAD outperforms LEAD-NoFor by

1 ∼ 2%, LEAD-NoBac by 1 ∼ 2% in all the test cases.

The reason is that LEAD can fully capture the informative

relationships in both forward and backward groups, and then

consider the probability distributions from the forward and

backward detectors, thus detecting the loading trajectory

more accurately. LEAD-NoFor and LEAD-NoBac could

easily obtain the sub-optimal solution due to the one-sided

consideration. To further study the training effectiveness of

the forward and backward detectors, we record the curves of

KLD loss (cf. Equation (11)–(12)) for training the forward

Fig. 10. Curves of KLD Loss for Forward and Backward Detectors

and backward detectors on the training set. As shown in

Figure 10, the KLD loss of the forward detector is minimized

at around 12 epochs with 0.296, and the KLD loss of the

backward detector is minimized at around 11 epochs with

0.289. This proves that both forward and backward detectors

can effectively approximate the label probability distributions

and converge.

VII. RELATED WORK

Hazardous Chemicals Transportation Problem. The prob-

lem of HCT attracts great attention in urban management

since it is ubiquitous and dangerous. In academia, tremendous

efforts have been devoted to dealing with HCT problem [4],

[19]–[27]. Zhu et al. [4] propose an approach to find out

unregistered and unqualified hazardous chemical facilities by

mining HCT trajectories. Fabiano et al. [19] present a site-

oriented framework for hazardous chemical facilities risk

assessment. Planas et al. [21] provide a monitoring system to

monitor HCT trucks based on regional responsibilities. Wang

et al. [25] build a system for risky zones identification based

on HCT trajectories. In this work, we propose and address the

problem of loaded trajectory detection, which can help better

manage and monitor the HCT process.
Urban Computing. Urban computing [28] aims to solve the

issues caused by human’s rapid progress in urbanization, such

as bike lane planning recommendation [29], [30], crime rate

inference [31], air quality prediction [32], fire risk predic-

tion [33], crowd flow alert [34], [35], and resource rebal-

ancing [36]. In this work, we focus on detecting the loaded

trajectory from raw trajectory of the HCT truck, which is

benefit for better supervising the HCT process in a city.

VIII. CONCLUSION

In this work, we propose a deep learning-based framework

LEAD, to detect the loaded trajectory from the raw HCT

trajectory accurately. LEAD firstly processes a raw trajectory

into a set of candidate trajectories, and then encodes each

candidate trajectory into a compressed vector. Finally, LEAD
detects the loaded trajectory using the compressed vectors of

candidate trajectories. Experiments show that the detection

accuracy of LEAD exceeds 83% which outperforms competing

baselines by at least 42%.
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