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Abstract—Hazardous chemicals transportation (HCT) brings
significant financial, environmental, and health-related risks. It is
imperative that a robust regulatory system is in place to reduce
the risk of accidents occurring while such hazardous chemicals
are being transported. Governments around the world use GPS
sensors to monitor the raw trajectories of HCT trucks, but
they have difficulty detecting the loaded trajectories, which is
of utmost importance for the management of HCT processes.
The loaded trajectory refers to the subtrajectory generated by
tracking an HCT truck when it is loaded with hazardous chemical
in an HCT process. The stay points in the raw trajectory provide
some feasibility to detect the loaded trajectory as they reflect
the potential loading and unloading actions of the HCT truck.
However, directly using the stay points to detect the loaded
trajectory usually leads to unsatisfactory results due to two chal-
lenges: (1) complex staying scenarios, and (2) numerous loading
and unloading locations. To tackle the challenges, we propose a
LoadEd trAjectory Detection framework, called LEAD, to detect
the loaded trajectory from the raw HCT trajectory accurately
and efficiently. LEAD processes a raw trajectory into a set of
candidate trajectories, encodes each candidate trajectory into a
latent representation, and detects the loaded trajectory using
the latent representations of candidate trajectories. Extensive
experiments based on a real-world dataset from Nantong, China
confirm the effectiveness of our framework. The results show that
the detection accuracy of LEAD exceeds 83% which outperforms
competing baselines by over 42%.

Index Terms—Hazardous chemicals transportation, Loaded
trajectories detection

I. INTRODUCTION

Hazardous chemicals are chemical materials that may do
harm to human health and/or environment, or are capable of
damaging properties, such as flammable petroleum, corrosive
acids, toxic carbon monoxide, etc. Hazardous chemicals are
widely used in the workplace as raw materials, solvents,
catalysts, and for a number of other functions; however,
the improper operation of hazardous chemicals could cause
severe accidents. For example, on June 13", 2020, a speeding
fuel truck crashed and exploded in Wenling, China, causing
20 deaths, 175 injuries, and $14.5 million loss in property
damage [1]. As a result, the production, transportation, and
storage processes of hazardous chemicals are strictly regulated
by governments around the world [2]. Among them, Haz-
ardous Chemicals Transportation (HCT) is the most uncon-
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Fig. 1. Example of HCT process

trollable process. According to the statistics of the Ministry
of Emergency Management of China, 77% of the accidents
related to hazardous chemicals have occurred during the HCT
processes [3]. Due to the chemical instability, hazardous
chemicals are allowed to be transported using only the HCT
trucks. An HCT process has three ordered phases (shown in
Figure : (I) the HCT truck goes to the loading location; (II)
the HCT truck transports hazardous chemical from the loading
location to the unloading location; and (III) the HCT truck
leaves the unloading location. Generally, most of the HCT
process can finish within a day [4]], so each HCT process can
be represented by a trajectory of the HCT truck within one
day (namely raw trajectory), where each spatiotemporal point
indicates a physical presence of the HCT truck in a location
at a certain time. Due to the uncontrollability of the HCT
process, governments install GPS sensors on all HCT trucks
to monitor the raw trajectories.

In the raw trajectory, there is an especially important sub-
trajectory called loaded trajectory that indicates when an HCT
truck is loaded with hazardous chemical (corresponding to the
phase (II)). We find that the loaded trajectory is of utmost
importance for the HCT process due to the following reasons:
(1) The origin and destination of the loaded trajectory are
important, as they represent the loading location and unloading
location, respectively. The loading and unloading locations
correspond to specific types of POIs (points of interests) such
as chemical factories or fueling stations. Governments can
utilize these information to promptly identify illegal loading
and unloading locations [4]]. (2) The complete loaded trajectory
is important, as it can determine whether the driver has
complied with the regulations during the HCT process. For
example, the HCT truck loaded with hazardous chemical is
prohibited from entering the main urban areas or moving on
roads from 2:00 am to 5:00 am [5]. Once an HCT truck



is found to violate the regulations, further actions can be
taken immediately. (3) The governments may improve the
urban planning schemes by analyzing the loaded trajectories.
For example, the driver often chooses detour routes to avoid
entering the main urban areas, but these detour behaviors will
affect the efficiency of the HCT process. Better understanding
the route preferences of HCT trucks can improve the road
network planning and urban planning of the city.

In practice, to obtain the loaded trajectory from the raw
trajectory, governments require the driver to fill in the waybill
which contains the time and location information of loading
and unloading. Using the waybill to select a subtrajectory of
the raw trajectory that matches the time and location informa-
tion, the loaded trajectory could be determined. Unfortunately,
the waybill is filled and submitted manually by the driver
in the online system after the whole HCT process finishes.
As a result, the collected waybills are usually of low quality
in terms of both time information and location information:
1) the driver frequently uses the default time preset by the
system for convenience (e.g., the loading time is 8:00 am
and unloading time is 5:00 pm). This leads to inaccuracy
in time information; 2) the loading and unloading addresses
manually filled in by the driver are either coarse-grained or
even incorrect. For example, the correct address is “Zhongtian’
chemical factory in Nantong, China, but the driver only fills in
Nantong, or mistypes ‘Zhongzhi’ chemical factory. This leads
to deviations in location information. Therefore, simply relying
on manually filled waybills cannot get the accurate loaded
trajectories, making it difficult for governments to assure the
safety and legality of the HCT process.

In this work, our objective is to accurately detect the loaded
trajectory from the raw trajectory of the HCT truck. With the
loaded trajectories accurately detected, the governments can
better prevent chemical accidents, regulate the drivers, and
improve urban planning. In addition, high-quality waybill can
be automatically generated from the loaded trajectory, which
not only obtains reliable loading and unloading information,
but also greatly eases the burden on drivers. Therefore, loaded
trajectory detection is crucial for managing the HCT process.

In fact, the loaded trajectory has two important character-
istics that can guide the detection. Firstly, when the HCT
truck is loading/unloading hazardous chemical, it must stay
somewhere for a sufficient period of time [4]. In other words,
there are staying behaviors at the origin and destination of
the loaded trajectory (defined as loading and unloading stay
points). Secondly, there are specific types of POIs near the
loading and unloading stay points, such as chemical factories,
hospitals, etc. Therefore, analyzing the stay points in the raw
trajectory is beneficial for detecting the loaded trajectory.

Intuitively, we can detect the loaded trajectory by estimating
whether each stay point in the raw trajectory is a loading
stay point or an unloading stay point. For instance, a model
can be built to classify each stay point by recognizing the
loading and unloading actions; or we can collect a white
list with real loading and unloading locations utilizing the
historical loaded trajectories, which can be used to search for

the loading and unloading stay points. However, they cannot
effectively detect the loaded trajectory due to the following
reasons: (1) The scenarios where an HCT truck stays are
complex. An HCT truck stays at a fuel station either because
it is loading/unloading fuel, or simply because the driver
is having a break while refueling the truck. These different
scenarios share the same staying behavior, which are hard to
be distinguished solely based on the stay points. (2) There are
many locations for loading and unloading stay points, as they
may appear in different chemical factories, hospitals, and even
construction sites. It is difficult to collect all real loading and
unloading locations for the white list that covers all potential
loading and unloading stay points.

To tackle the challenges, we propose to detect the loaded
trajectory by generating and identifying the candidate trajec-
tories (i.e., a subtrajectory that starts with one stay point and
ends with another stay point), based on the following insight.
A stay point indicates a staying behavior, and a trajectory
that connects two consecutive stay points represents a moving
behavior. It is necessary to consider both of them to detect
the loaded trajectory. The basic idea is to firstly extract all the
stay points, and treat each ordered pair of stay points and all
locations in-between as a candidate trajectory. Then we detect
the loaded trajectory by identifying all candidate trajectories of
the raw trajectory. In this way, the above two challenges could
be remedied because: (1) Candidate trajectories contain not
only the staying behaviors, but also the moving behaviors. The
moving behaviors contain enriched information (e.g., speeds
and routes), which can be leveraged to better classify complex
staying scenarios. For example, after loading the fuel, the
speed of HCT truck is lower than that of having a break in
the fueling station. (2) We can build a deep learning-based
framework to capture the general knowledge from historical
loaded trajectories, and detect the loaded trajectory from
an unseen raw trajectory instead of relying on pre-collected
loading and unloading locations in the white list.

In this work, we propose a LoadEd trAjectory Detection
framework, called LEAD, to accurately detect the loaded
trajectory from the raw HCT trajectory. LEAD consists of three
components: 1) raw trajectory processing, which transforms
a raw trajectory into a series of the candidate trajectories; 2)
candidate trajectory encoding, which encodes each candidate
trajectory into a latent representation; and 3) loaded trajectory
detection, which detects the loaded trajectory using the latent
representations of candidate trajectories. Our main contribu-
tions can be summarized as follows:
oTo the best of our knowledge, it is the first work to propose
and address the loaded trajectory detection problem, which
can help better manage and monitor the HCT process.
eWe propose LEAD, which can model both staying and
moving behaviors of the HCT truck, and accurately detect the
loaded trajectory from candidate trajectories.
eWe conduct extensive experiments using a real-world dataset
from Nantong, China, to evaluate the effectiveness of LEAD.
The results show that the detection accuracy of LEAD exceeds
83% which outperforms competing baselines by at least 42%.
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Fig. 2. LEAD Framework Overview

II. OVERVIEW

A. Preliminary Concepts

Definition I (Raw Trajectory): A raw trajectory is a se-
quence of GPS points, denoted as tr'
where each GPS point p consists of a location in latitude lat
and longitude Ing, and a timestamp t, i.e., p = (lat;Ing;t).
GPS points in a raw trajectory are organized chronologically,
i.e., piit < pi+1:t(Vi € [1;n)). In this work, a raw trajectory
is generated by an HCT truck within one day, which indicates
three ordered phases: going to a loading location — transport-
ing hazardous chemical — leaving an unloading location.

Definition 2 (Stay Point): A stay point Sp is a subtrajectory
of tr” which semantically means that an HCT truck stays in
a geographic region for a while. Formally, given a distance

is a stay point sp if distance (p;; px) < Dpmaz (VK € [i + 1;]]),
distance (p;; Pj+1) > Dmaz(J <N), and |pjit—p;it] > T

Definition 3 (Loaded Trajectory): A loaded trajectory tr!
is a subtrajectory of tr” indicating that an HCT truck loaded
with hazardous chemical during the transporting phase. We
note that an HCT truck still loaded with hazardous chem-
ical and stays in a region for a while when loading and
unloading hazardous chemical. Therefore, a loaded trajectory
tr! starts with the loading stay point sp; and ends with
the unloading stay point Sp,. Formally, given a loaded tra-

loading and unloading stay points (Sp; 99K sp,,).

Definition 4 (Candidate Trajectory): A candidate trajectory
tre is a subtrajectory of tr” that starts with one stay point
and ends with another stay point. Given a candidate trajectory

can be simplified as an ordered pair of stay points tr¢ =
(Spi 99K spjo). We denote Tr€ as the set of all candidate

trajectories. Given a raw trajectory tr”, the loaded trajectory
is one of the candidate trajectories, i.e., trl e Tre.

Problem Statement. Given an unseen raw trajectory tr”, our
objective is to detect the loaded trajectory trt from tr".

B. Framework Overview

Figure 2] shows the architecture of our framework LEAD,
which consists of three components: raw trajectory processing,
candidate trajectory encoding, and loaded trajectory detec-
tion. LEAD is a two-stage framework, including the offline
stage and the online stage. In the offline stage, LEAD learns
the knowledge utilizing the historical raw trajectories with
corresponding loaded trajectories. In the online phase, LEAD
detects the loaded trajectory from the unseen raw trajectory.
Next, we will briefly introduce each component.

Raw Trajectory Processing. This component takes the raw
trajectory and performs three main tasks. The first task is noise
filtering, which removes the outlier GPS points. The second
task is the stay points extraction, which captures all stay points
in the raw trajectory. The third task is the candidate trajectory
generation, which produces a series of candidate trajectories
by enumerating all the stay point pairs (detailed in Section [[TI).
Candidate Trajectory Encoding. This component encodes
candidate trajectories into compressed vectors, which is de-
signed to obtain the latent representations of candidate trajec-
tories. The component firstly extracts features from candidate
trajectories and converts them to feature sequences. Then a
hierarchical autoencoder learns to refine and restore the feature
sequences equipped with a compressor and a decompressor.
After training the hierarchical autoencoder, the compressor
can be used to acquire the compressed vectors of candidate
trajectories (detailed in Section [[V).

Loaded Trajectory Detection. This component utilizes the
compressed vectors to detect the loaded trajectory, which
is designed to capture the potential relationships between
different candidate trajectories, thus making detection more
accurate. The component firstly organizes the compressed
vectors in two ways to generate a forward group and a




backward group respectively. Both groups consist of multiple

subgroups, and each subgroup contains the compressed vectors

of candidate trajectories with potential relationships. Secondly,

the two groups are fed into forward and backward detectors,

respectively. The two detectors output two discrete probability

distributions, and each distribution represents probabilities of

the candidate trajectories. Thirdly, the real labels derived from

archived loaded trajectories are processed, and the processed Fig. 3. Example of Raw Trajectory Processing

labels are used to train the two detectors. After training, ﬂa?enerally givemn stay points, we can generatén  1)=2

oytpgts .Of two detectors. are cor_nbmed m;o one pmb"’,‘b'l'g’andidate trajectories. According to the statistics, the number

dlStI’Ibu-tI.OH,. and the can.d|date trajectory Wh.'Ch has. the high %tstay points extracted from a raw trajectory within one day

probability is the detection result (detailed in Section V). ranges from3 14, so the number of generated candidate
IIl. RAW TRAJECTORYPROCESSING trajectories is moderate( 91).

This component takes a raw trajectory as input, cleans the IV. CANDIDATE TRAJECTORYENCODING

raw trajectory and extracts the stay points from it. Finally, his component rstly converts candidate trajectories into
the candidate trajectories are generated by enumerating a"r‘(i'gh—dimensional feature sequences. Then a hierarchical au-
ordered pairs of stay points. Figure 3 shows an example @Encoder is proposed to compress them and acquire latent

raw trajectory processing. representations for each candidate trajectory.
Noise Filtering. The raw trajectory generated by an HCT

truck usually contains a few noise GPS points due to tife Feature Extraction

shifts introduced by the GPS sensor. As shown in Figure 3(a),A candidate trajectory is composed of GPS points, we
the error ofpyg and p2; might be several hundred metersyeed to extract the features of each GPS point. In addition
away from their true locations. Such noise GPS points would the acquired spatiotemporal features i(éaf; lon;t), the
affect the performance of the subsequent tasks, e.g., stay peigli (point of interest) features re ect the spatial semantics
extraction. Thus, we utilize a heuristic approach [6] to Itethat are bene cial for the detection. For example, if there are
noise GPS points. The approach sequentially calculates Hgny factories near a GPS point, it means that the HCT truck
traveling speed for each GPS point based on its precursor 3@ entered the industrial zone and might be loading/unloading
itself. If the speed is larger than a speed threshdidds , hazardous chemical. Therefore, we extract both spatiotemporal
the current examined GPS point is removed from the raynd POI features for each GPS point in a candidate trajectory.
trajectory. In Figure 3(a)pio and pz2 will be removed. Speci cally, given a candidate trajectoty;; pi+1;:::;pji,
Stay Point Extraction. Acquiring all stay points in the raw we vectorize each GPS poimt as a feature vectof =
trajectory can help construct candidate trajectories. We emplgylat; p:Ing; p:t; poi], where (p:lat; p:Ing; p:t) is the spa-

a rule-based algorithm [7] to extract the stay points in thgstemporal features angoi is the POI feature. For the spa-
cleaned raw trajectory. The algorithm rstly checks if th&iotemporal featuresp:lat and p:Ing form a spatial location,
distance between an anchor point and its successors in a g p:t is a timestamp. For the POI feature, we count the
trajectory is larger than a distance threshDiglax . As shown nearby POI categories of a GPS point within a radius of
in Figure 3(b),p11 is the current anchor point, angi> to  100m, forming a vectorpoi where each value refers to the
P14 are its successors withDmay . It then calculates the time number of a POI category existence. In this work, we select 29
interval between the anchor point and the last successor wit@jical POI categories, Sois a 32-dimensional feature vector.
Dmax (P11 andpus). If the duration is larger than a temporalMoreover, to avoid the outlier issue, we normalize the above
thresholdTmin , @ stay point is extracted (from; to p14), and features using the Z-score strategy [8]. Finally, a candidate
the anchor point moves to the next GPS point after the curremijectory hp;;pis1;:::; pji is converted to a sequence of

stay point fus). Otherwise, the anchor point moves forwardeature vectorsf;;fi.;:::;f;i, namely, a feature sequence.

by one 12). This process is repeated until the anchor point .

moves to the end of the raw trajectory. The algorithm cdf Hierarchical Autoencoder

generate stay points that are temporally consecutive, which isAfter extracting the features of all candidate trajectories, we
convenient for stay points humbering. get a series of feature sequences. The most straightforward
Candidate Trajectory Generation. Based on the stay pointsapproach is to use a recurrent neural network to learn the
of the raw trajectory, we can further generate a series of cdatent representation of each feature sequence and then make
didate trajectories. The candidate trajectories cover the seativh detection. However, the high-dimensional feature sequence
space of loaded trajectory detection, since each candidei#l suffer from the curse of dimensionality especially for
trajectory starts with a stay point and ends with another stiye long-range trajectory. Moreover, the vectors in the feature
point. To generate the candidate trajectories, we enumeratesaljuence are sparse due to the usage of the POI feature.
the ordered pairs of stay points. As shown in Figure 3(c), Ithe sparse inputs will affect the convergence performance of
candidate trajectories are generated by traversing 5 stay poittie. model, and even reduce the accuracy of the detection. In




TABLE |
SUMMARY OF ABBREVIATIONS IN HIERARCHICAL AUTOENCODER

[ Abbreviation [ Explanation |

f-seq feature sequence

sp(mp)-f-seq feature sequence of a stay point (move point)

SPs(MPs)-f-seq feature sequence of stay points (move points)

sp(mp)-c-vec compressed vector of a stay point (move point)

SPs(MPs)-c-vec-se@| sequence of compressed vectors of stay points (move pojnts)

SPs(MPs)-c-vec compressed vector of stay points(move points)

c-vec compressed vector

Fig. 5. Hierarchical Autoencoder

Eachsp-f-seqor mp-f-seqconsists of feature vectors of GPS
points. The compressor should capture the hierarchical features
from thef-seq while the decompressor needs to recognize the
hierarchical features from the compressed result.
summary, a representation model that can compress the featurto this end, we propose a hierarchical autoencoder, where
sequence into a low-dimensional dense vector is desiréde compressor and decompressor can separately process the
Table | lists the abbreviations used throughout this subsecti@ty points and move points in a hierarchical manner. Next, we

We introduce an autoencoder equipped with a compres#@ifoduce the compressor and decompressor, and then present
and a decompressor, to solve the aforementioned issues #@work ow in detail.
learn the representation of eaéiseq The compressor can Compressor. As shown on the left side in Figure 5, our
reduce the dimension of tHeseq In contrast, the decompres-compressor has two phases. In the rst phase, a compression
sor recovers the compressed vector toftseq Furthermore, Operator compress eaap-f-seq(in SPs-f-sejjinto a vector
we analyze two potential characteristics of the candidag@lledsp-c-ve¢cand another operator compress eagft-seq
trajectories that inspire our autoencoder construction: (in MPs-f-seg into a vector called anp-c-vec In the second
(1) Spatiotemporal difference between stay points and maddaase, allsp-c-ve¢s) andmp-c-ve¢s) are compressed into a
points. A stay points indicates a staying behavior of an HCTnal compressed vectorcfveq using two compression opera-
truck, while the GPS points (called move point) that connet@rs. A compression operator consists of an LSTM and a self-
two consecutive Stay points indicate a moving behavior of aﬁtention mechanism. The LSTM learns the latent representa-
HCT truck, as shown in Figure 4(a). Formally, a move poirton of a sequence [9] and the self-attention mechanism [10],
is de ned as follows: [11] aggregates a sequence into a vector.

De nition 5 (Move Point): A move pointmpjo is a subtra- We take a f-seq as an example to introduce the
jectory oftr, that connects two consecutive stay poinie., Process of the compressor. The compressor rstly

Fig. 4. Example of Candidate Trajectory and Feature Sequence

spio andspioss . takes the f-seq W;;fiw;:::;f;i of a candidate
Accordingly, a candidate trajectory can be further regarded &aiectory tre = pi;piva;::iipi (i.e., hspo 99K spoi,
a sequence that stay points and move points appear by tuffBjo; MPic; SPios1 ;211 MPjo 1;SPei) as an input, and
e.g.,trc = hspio; mpjo; SPioa 21, Mpjo 1;Spjoi . Apparently, divides it into SP-f-segand MP-f-segas follows:

the spatiotemporal patterns of stay points and move points are fsp = Mgy oif g0 000 T gp i

different due to the different driving behaviors. Therefore, as o= i ' ¢ e fJ . (1)
shown in Figure 4(b), a feature sequence of a stay pajpt ( MP MP o7 T MP0,y 7t M0 g

f-seq and a feature sequence of a move pomp{f-sedjneed wheref
to be compressed and decompressed separately, avoidingtitly.
wrong parameters sharing in the autoencoder. () In the rst phase, two compression operators work for
(2) Spatiotemporal difference between sequence hierarchieesmpressing eactp-f-seqand mp-f-seg respectively. Asp-f-

As shown in Figure 4(a), all stay points in a candidatseq f spo = Misfiva iz fival (with a+1 steps), is fed into
trajectory can be regarded as a sequence of stay points, and_STM which outputs the hidden state vector at each step
each stay point is a sequence of GPS points. Apparenthyg follows:

different sequence hierarchies have different spatiotemporal h =LSTM (f ;h ;W) 2
patterns, e.g., the spatialtemporal spans between stay poi

are larger than the spatial/temporal spans between GPS points.
9 P P P P step, andW,; denotes the learnable parameters. Then a self-

Therefore, as in Figure 4(b),feseqcan be split into a feature ttenti hanism i dt te hidd tat |
sequence of stay pointsSPs-f-sejjand a feature sequencea ention mechanism 1S used to aggregate hidden stales along

of move points KIPs-f-sed, where SPs-f-seds a sequence with the steps while different steps have different importance

" P Py scores. Unlike the simple usage of the LSTM's hidden state
of sp-f-ses) and MPs-f-seqis a sequence ofp-f-ses). vectors, we introduce a self-attention mechanism [10], [11]

1We note two special move pointmpo is a move point before the rst to enhance Fhe memory ab'“ty of the operator, Wh'Ch can
stay pointspy, andmpp is a move point after the last stay poBn . better deal with the long-range sequence. The last hidden state

sp,o @ndf o, denote asp-f-secandmp-f-seqrespec-

ts - . .
rhere 2 [i;i +a], h ;isthe hidden state vector at the last



vectorhj. , of LSTM that contains the information of all theutilize an input vector to recover a sequence with variable
historical steps is used to calculate the importance scorestéps.

each step. For example, to get the importance score of a stefpo be specic, the decompressor rstly takalfio;j o as

in the sequence, we calculate how mugh, pays attention input, and divides it intovgp, andvy,p .

to it. This attention indicates the weight assigned to this step(l) In the rst phase, two decompression operators work for
during the aggregation. Following the standard procedure [10gcompressings, and vy, , respectively. For th&P-c-vec
we can obtain a query vectorof the last hidden state, and adecompressionvg, is fed into an LSTM, which outputs the
key matrixK of all the hidden states, as follows: hidden state vector at each step as follows:

9= hisa Wg+ biK = H Wi + b 3) h® = LSTM (vép ;h° 1;Wi2) (5)

. . _where 2 [i;i +a], h% | is the hidden state vector at last step,
whereH refers to all hidden state vectors of the LSTM, €. nd Wi, denotes the parameters of LSTM. This calculation
repeatsa+1 times to get a matrixd °=[h% h?,, ;:::;h?, 1.

the fully connected layers fdr;+ , andH , respectivelyh, and Finally, the SP-c-vec-seds generated as follows:

bk denote biases dVy and Wk , respectively. It should be
noted that we want to aggregate all the hidden state vectors, so Ve = Tanh((H® Wi+ bu1) Wz + by2) (6)
the value matrix includes the hidden states output by LST
With g and K, we can calculate the importance scosesf

all steps usinQSoftmax(%de), wheredy is dimension of the

key vector inK . Thereafterf pe can aggregate the hidden st
1+ a

M/herevg‘ﬁf denotes the decompressed resul&éfc-vec-sgq
Wy and Wy, are the weights of two fully connected layers,
andhy; andhy, denote biases dVg; andWy,, respectively.
#Ris non-linear activation can map the° to between -1 to

vectorsH into a vectorh == "_j s hi, wheres; (s 2's) 4 matching the range dtseq Similarly, for decompressing
represents the importance score at each step. Finafig-& the MP-c-veg V¢, is decompressed m&eﬁ that is the the

vec(i.e., vg, ,) can be obtained by using non-linear activatioraecompressed result MP-c-vec-seq

as follows: (I Then in the second phase, the other two operators work
Vo= Tanh((h Wi+ 1) Wez + biz) 4 for decompressing ead;p—c—vecin. SP-c-vec-sggand each
mp-c-vecin MP-c-vec-seqrespectively. The decompression
whereW.; andW,., are the weights of two fully connectedoperators in the second phase are the same as those in the
layers, andhy; and b, denote biases ofVy; and W, rst phase. As a result, eacVfs® 2 v3¥ is decompressed to

respectively. a sp-f-seq(i.e., f SSC), and eachvges 2 v is decompressed
Following the aforementioned process, evepyf-segn SP- to a mp-f-seq(i.e., f Enerf). Arranging all sp-f-se@s) andmp-
f-seqis compressed into ap-c-ve¢ thus forming a sequencef-seqs) can form the decompressed resultsS#t-f-seqand
asvép = IV 4iVep o, 1111i Ve, ol (Called SP-c-vec-sggand  MP-f-seq respectively, as follows:
every mp-f-seqin MP-f-seqis compressed into ap-c-ve¢ fdec _ 1 dec .pdec ...  dec ;.
forming a sequence agp = hap o: Vinp 0, ;:::;vﬁnpjoi (i.e., SP sp,07 1 spioyy 1ot i T spold R
dec _ dec .gdec  ..... dec i
MP-c-vec-sejj fup = g oif om0,y 20015 fp,o o 00
(I) Then in the second phase, the other two compress“c_):'}]a”y, the decompressefiseq i.e., Hf dec;f dec: . ;fjdeci,

operators work for compressirgP-c-vec-segnd MP-c-vec-
seq respectively. The architecture of compression operat
in the second phase is the same as those in the rst ph
Therefore,vg, is compressed into a vectef, (SP-c-vey,
and vy, is compressed into a vectory, (MP-c-veg.
Finally, the c-vec of candidate trajectoryspo 99K spjoi

can be obtained by assembling t88-f-segand MP-f-seq

Work ow. In the of ine stage, given an archive of historical
raw trajectories, the hierarchical autoencoder utilizes fthe
seqs) of all the candidate trajectories generated from the raw
trajectories to train the compressor and decompressor in a
: ) self-supervised manner. In particular, leds) derived from
(denoted asfi; o)) can be obtained by concatenatig-c-vec historicgl raw trajectories arpe shuf ed forct{ra)ining the hierar-

andMP-c-veg i.e., Viojo = [VSpivip I~ chical autoencoder. For eaélseqe.g.,tfi;fis1;::::f;i, the
—Decompressor.As shown on the ”.ght side in Figure 5, OUhierarchical autoencoder needs to minimize the MSE loss as
decompressor is roughly symmetrical to the compressor tl?gﬁows:

has two phases. In the rst phase, t8-c-vecand MP-c-vec 1 X deern

in the c-vecare decompressed 8P-c-vec-seand MP-c-vec- Luse = el _(f ) (8)

seq respectively. In the second phase, eaphc-vecin SP- =

c-vec-segis decompressed to sp-f-seq and eachmp-c-vec wheref 9¢ denotes -th feature vector in the decompressed

in MP-c-vec-segs decompressed to mp-f-seq Thereafter, f-seq

all sp-f-se¢s) form a SP-f-seq and all mp-f-se¢s) form a After training the hierarchical autoencoder, the decompres-
MP-f-seq The decompressed resulseq will be obtained soris put aside, and the trained compressor is used to compress
by assembling theSP-f-seqand MP-f-seq Similar to the anyf-seqof candidate trajectory into evec Furthermore, we
compressor, there are 4 decompression operators inside rthie that the trained compressor can be used in both of ine

decompressor. A decompression operator is an LSTM that aard online stages. For the of ine stage, theveds) of a



historical raw trajectory are fed into the detection component, TABLE I

ni i EXAMPLE OF GROUP GENERATION
thus training the detector. For the online stage,dheds) of | CompraSEen verore of Candiias TrAj6ttones ‘

an unseen raw trajectory are the inputs of_the trained detection Vi, Vi, Va iy Vi Ve Vau Vs Ve Ve Vas \
component, thus detecting the loaded trajectory. ‘ Forward Group ‘ ‘
91 92 93 94
V. LOADED TRAJECTORYDETECTION Mo Ve Va Vs ' [ M Vew Vs | Ve Ves' [ Mas)
Backward Group
This component rstly organizes the compressed vectors [n_% ] O ] A ] Os ,
e T T IV v o0 | VG, ovE Ve T | IV Ve Ve v
forward and backward ways and generates two groups. Thep®2 [ Moo Vg | Mo Vo Maa! | Man Voim Vom Vi

the two groups are input to two detectors, respectively. The

two detectors output two discrete probability distributions ifPp are started witlsp;, and the candidate trajectories on the
terms of forward and backward perspectives. Each distributibattom are ended wittsps. If sp, is not the loading stay
represents the probability that a candidate trajectory is tReint, each of the probability in the left group should be low.
loaded trajectory. Furthermore, to effectively train the dete&imilarly, if sps is not the unloading stay point, each of the
tors, a label processing method is used to generate the trairigbability in the right group should be low. Therefore, the

labels from real labels. analogy relationships can help determine the loaded trajectory
_ that starts with the loading stay point and ends with the
A. Group Generation unloading stay point.

After encoding the candidate trajectories of a raw trajectory, Based on the analysis, it is necessary for a detector to
we obtain a set of compressed vectors. Speci cally, eagapture the inclusion, exclusion and analogy relationships be-
trr 2 Tre (trc = hspio 99Kspoi), is represented as a com+tween candidate trajectories. However, the compressed vectors
pressed vectov(.;, via the candidate trajectory encodingof candidate trajectories are disordered, which are impossible
Intuitively, we can detect the loaded trajectory using a binafgr a detector to directly capture the relationships. To raise
classier, as a detector. The classi er utilizes all compresseflvareness about the relationships between candidate trajecto-
vectors with corresponding labels (i.e., is loaded trajectory ges, we propose a group generation method, which can wisely

not) to learn how to distinguish a loaded trajectory. Regardleggyanize the compressed vectors using two grouping strategies,
of the of ine or online stage, the classi er treats each candi-e., forward groupingand backward grouping

date trajectory as an independent sample and calculates thﬁorward groupingis a strategy that groups the compressed

probability using the compressed vector. However, this naiV%ctors by the starting indexes of compressed vectors, and

approachignores the relationships between candidate traje(g'enerates a forward group. The forward group consists of
tories which will suffer from sub-optimal solutions. Next,

. . . ) subgroups, and each subgroup contains compressed vectors
we analyse three relationships between candidate trajector|gs, " <2 me starting indexes. Speci cally, compressed vec-

based on which we present our group generation method. tors with the same starting indéXform a subgroum;o where

compressed vectors are sorted in ascending order by ending
?ndexes, i.e.gjo = h’(cio;i0+;) ;V(Cio;iw). ;:::;vao;n)i, wheren
is the number of stay points aridd i°<n.
Backward groupingis a strategy that groups the compressed
vectors by the ending indexes, and generates a backward
Fig. 6. Example of Relationships Between Candidate Trajectories group. The backward group consists of subgroups, and each
The candidate trajectories of a raw trajectory have visiple Subgroup contains compressed vectors with the same ending
clusion and exclusionelationships. As show in Figure 6(a), dndexes. Speci cally, compressed vectors with the same ending
candidate trajectorisp;, 99Kspsi (Fspy; mps; Spy; mp; spsi)  INdex j%is a subgroupg;o where compressed vectors are
includes another candidate trajectdmp, 99K sp,i. Mean- Sorted in descending order by starting indexes, gg.,=
while, hsp; 99K spsi is a result oftsp; 99K spsi excluding WVGo 1505 VG0 250515V ol (1<] ° n).
mpsz and sp;. Therefore, when judgingsp; 99K spsi, both For example, Table Il gives 10 compressed vectors of candi-
hsp; 99K sppi and hsp; 99K spyi as a context information date trajectories, and all compressed vectors are organized as
can guide the judgment. If the probabilities l&fp; 99Ksp,i  a forward group and a backward group. There is an inclusion
and rsp; 99K spsi are very low,hsp; 99K spsi is almost relationship between a compressed vector and its previous one,
impossible to be the loaded trajectory. In contrast, individualgnd there is an exclusion relationship between a compressed
judging rsp; 99K spgi could easily make a wrong decisionvector and its next one. Furthermore, in the forward group,
since it cannot be corrected by any context information.  each subgroup represents analogous candidate trajectories with
In addition, it is necessary to consider taealogyrelation- the same starting stay point. And in the backward group, each
ships between candidate trajectories. Speci cally, analogosisbgroup indicates analogous candidate trajectories with the
candidate trajectories that share the same starting or endsagne ending stay point. Accordingly, the group generation
stay points indicate the consistency of origin and destinatiomethod can organize the disordered compressed vectors into
As shown in Figure 6(b), the candidate trajectories on th@o groups with valuable relationships.



B. Forward and Backward Detectors

Based on the forward and backward groups, we need to
construct a detector that not only captures the inclusion,
exclusion and analogy relationships, but also calculates the
probabilities of compressed vectors of candidate trajectories.
Bene ting from the group generation, we can leverage two
Bidirectional LSTM-based detectors to capture the relation-
ships while calculating the probabilities. For the inclusion and
exclusion relationships, if we regard each subgroup as a hegmputed, the probability vector of each subgroup can be
izontal sequence (in Table Il), the inclusion relationships agdtained as follows:
converted to the left-to-right relationships, and the exclusion p-fo = Softmax (h% Wi+ by 2) (10)
relationships are converted to the right-to-left relationships.

This interesting property inspires us to use a Bidirectionalhere plo is a probab|I|ty vector ofgio subgroup g/,

LSTM (BIiLSTM) [12] to model the inclusion and exclusmn[p(loloﬂ) Bliojorz 300 Blogy])s io is the hidden sequence
relationships. For the analogy relationships, the forward anfl g in L-th layer, andWs, is the weights of a fully
backward groups are input to two detectors sharing the saamnected layer antk > denotes biases diVs ,. Finally, the
structure, and each subgroup will be separately calculated.owtput of the forward detector is obtamed by concatenatlng
this way, each detector will focus on one type of analogyil the probablllty vector (frompl to pn 1) as ph =
relationship (forward or backward), and different subgrouﬁe(l 2),[5(1 3);::--p(n 1l

with different starting or ending indexes are independent. AftBackward Detector. As shown on the right side in Figure 7,
that, two detectors output two discrete probability distributioribe backward detector is a stacked BILSTM network with
w.r.t. forward and backward groups, and each probability BILSTM layers, which is the same as the forward de-
corresponds to a compressed vector of candidate trajectorytdator. It takes the backward group as input, and calculates
addition, we use a stacked BiLSTM network as a detector [13fle probabilities of compressed vectors in each subgroup.
which can better extract the sequential features at differdfllowing the calculations of the forward detector, we can
timescale [14]. Next, we introduce two detectors, and thebtain the probability vector of each subgroup in the backward
present the work ow in detail. group, aspjo = [’p(Jo 110),[3(]0 21o);::--rf)(ljo)] (G°2 (a;n)).
Forward Detector. As shown on the left side in Figure 7,And the output of the backward detector IS obtamed by
the forward detector is a stacked BILSTM network W|thattenlng all the probability vector (fronp5 to p2) asP” =

L BILSTM layers. It takes a forward group as input, and .2 B3 5 Punl-

calculates the compressed vectors of each subgroup inVarkow. In the ofine stage, the forward and backward
sequential manner. To be speci cally, a subgrogp = detectors are trained separately. The inputs are the forward
h’(.olm) VEoioz) 1111 Vo (i° 2 [1;n)) is fed into the and backward groups derived from the group generation. The
rst BILSTM layer equlpped with a forward LSTM and alabels are two discrete probability distributions derived from
backward LSTM. The forward LSTM output sequenheo the label processing (detailed in the next subsection). For each
is iteratively calculated using inputs gfo from left to right, forward group as input, the forward detector needs to minimize
while the backward LSTM output sequende,s, is obtained M€ Kullback-Leibler Divergence (KLD) loss as IfOHOWS

using the reversed inputs @fe from right to left. Both the . X . p(io, '

forward and backward LSTM outputs are calculated based on Lko = P(ioj 9109 o (11)

the standard LSTM equation, i.e., Equation 2. Then a hidden Plioj 2P 8l 0, 02P (%59

sequencehjo is calculated by concatenatinigio and ho as
follows:

Fig. 7. Forward and Backward Detectors

whereP " is the Iabel probability distribution from the label

| processing, ané is the probability distributions output from
hio=[hio;hjo] Wiy + by (9) the forward detector. For each backward group as input, the

backward detector needs to minimize the KLD loss as follows:
whereW; ; is the weights of fully connected layer, ard; X o !
(195 9)

denotes the biases W ;. To facilitate the calculation of sub- Lo = Plio; o log

sequent BiLSTM layers, the length bf. is equals to those of b 0. 2P Dip®, o, 2P BRio; o)
hio and hjo. Formally, hjo = hhgojo.y jhgioiony ;i honi,

Where h(ojory is the hidden vector corresponding tovhere P ° is the label probability distribution ané is the
V{iojo+1) » @ndn is the number of stay points. probability distributions output from the backward detector.
After obtaining the all the hidden sequences of subgroupsThereafter, in the online stage, the trained forward and

from the rst BIiLSTM layer, the hidden sequences are redackward detectors can be used to detect the loaded trajectory

cursively computed from the second BIiLSTM layer to by merging the output probability dISt“bUtlonS Speci Cally,

th BILSTM layer. Once the top-layer hidden sequences attge output distributions of two detectors, |¢5 and l5

(12)



are rstly merged into one intermediate vector, where eadfut it is costly to obtain the real loaded trajectory as ground
element is obtained by adding the probabilities with the sanreith, since employees are required to carefully determine the
index in both distributions. Then the intermediate vector Isaded trajectory from each raw trajectory one by one.

normalized by rescaling the range of all elementd@nl],  To the best of our ability, we collect 5,968 raw trajectories
thus obtaining the merged probability distributiBn and each with loaded trajectories generated by 2,734 HCT trucks which
probability indicates the likelihood that a candidate trajectoate operated in Nantong, over a period of 2 months (from
of being a loaded trajectory. Finally, the index of the maximurBeptemberl™ to October31", 2020). The GPS points of
probability in P determines the detected loaded trajectorytajectories are based on WGS84 coordinate system [15], and
For example, iffyjojo is the maximum probability inP, the average sampling interval is around 2 mintitatle split
the detected loaded trajectory spo 99K spoi. Formally, the dataset into training set, validation set and test set with
given amerlged probability distributid, the detected loaded a splitting ratio of 8:1:1. In addition, the HCT trucks of
trajectoryt? can be determined as follows: the validation set and test set do not overlap with the HCT
#' = hspio 99Kspyoi; (i%] ) = ar%g;?%x B (13) g:g\l;srlc?;;he training set, thus making the evaluation more
0 i . B Baselines.We compare out EAD with several representative
where(i®%}?) d_ean_otes the index of a probabilifjiojo) 2 P paqglines. To the best of our knowledge, there is no existing
According to (i%] ), we can select the candidate trajectoryy|ion that can detect the loaded trajectory for hazardous
hspio 99Kspyei as the detected loaded trajectdfy. chemicals transportation. Therefore, we design the following
stay point-based methods for comparison:

. 1) SP-R: It detects the loaded trajectory via a rule-based
To separately train the forward and backward detectors, . . . ! .

: assi er. Speci cally, after the noise Itering and stay point
need to prepare two labels for each pair of forward and back- ; . .

. . . extraction, a rule-based classi er can nd all the potential load-
ward groups. Intuitively, we can acquire two discrete prob?— junloading §u) stay points, by matching each stay point
bility distributions (called real labels), based on the archived? ing ¥ y points, by Ing eac y P
. o with locations in the white list. The white list is generated
loaded trajectory. Each real label is like a one-hot vector Whefre

only one probability equals 1 while others are 0. Speci cally, F{om the training set, both ends of each loaded trajectory as

real label of forward group I8 = [pl. . pl..::: t ] wo locations (i.e., loading and unloading locations) are stored
) g f P B p_<1?2>,’ Pay - Pa tn) in the white list. If a stay point nears a location in the white list,
There is one probabllltp(io;j =1 indicating that the candidate

; (i - it is anl/u stay point. Otherwise, the stay point is an ordinary
trajectory hspio 99K spoi is the loaded trajectory, and othergiay point (i.e., stay point neither loading nor unloading). For

probabilities are 0. Similarly, a real Iabfel of backward grougsch stay point, we set the searching radiu§@6m. Next
..... b ! ’ !

IS PP = [P{0)iPlig)iiits Pan)], Wherepo;0 =1, and other \ye can determine a loading stay point and an unloading stay
probablllltles are 0. However, the zero .probabllltles in re"ﬁ‘a‘oint from all l/u stay points. Based on our domain-speci c

Iabe!s will cause unde nedibg(0) in Equatlon_(ll) and (12), knowledge, a loaded trajectory always starts with a loading
leading to invalid KLD losses. Therefore, we introduce asm%kay point and ends with a unloading stay point. Thus, we

C. Label Processing

- 5 . . .
constant , e.g., = 10 °, and process the real labels agonsider a greedy strategy, which sets the rst (earligst)
follows: stay point as the loading stay point, and sets the last (latest)
pf = [le;z) = ?le;s) = ?:”?Pzio;j 0 =1 k;;;;;p;n iy =] I/u stay point as the unloading stay pomt. _

b b b s (2) SP-GRU: It detects the loaded trajectory via a GRU-based
PT=[Pa2 = iPew = 5uPaog =1 Kiwipan) = | classi er. Speci cally, after the noise ltering and stay point

of probabilities with in a real label. ThusP’ andP® as @s a binary classi er to classify each stay point ifho stay
two discrete probability distributions can be effectively use@int or ordinary stay point, where the input is the feature

to train the detectors. sequence of a stay point. Thereafter, the greedy strategy is
used to determine a loading stay point and an unloading stay
VI. EXPERIMENT point from alll/u stay points.
A. Experimental Settings (3) SP-LSTM: It detects the loaded trajectory via a LSTM-

Dataset. The dataset used in our experiments is collected frof@sed classi er. The SP-LSTM is similar to SP-GRU except
the city of Nantong, China. Nantong is heavily dependefﬁr the classi er. We use a LSTM with 128 hidden units as a
on the chemicals industry, which contributes a proportion &fnary classier to classify each stay point int stay point
41.9% in the secondary industry GDP of Nantong in 202@r ordinary stay point. Similarly, the greedy strategy is used
The dataset contains the historical raw trajectories and load@cfetermine a loading stay point and an unloading stay point
trajectories. The raw trajectories are generated by HCT trudk@sed on all/u stay points.

within one day, and the loaded trajectories are extracted from

the raw trajectories by govemment ?mployees' It is easy tQThe detailed statistics of the dataset are not disclosed, due to our data
collect a large number of raw trajectories through GPS sensars, dential agreement.



We note that the three baselines will suffer from invalithe staying times of an HCT truck within one day. Finally,
detection results, when nding insuf cierfu stay points (e.g., in candidate trajectory generation, the number of generated
0 or 1l/u stay point). In this case, we will set the rst extracteccandidate trajectories ranges frén 91, deriving from the
stay point as the loading stay point and set the last one as thwenber of stay points.
unloading stay point, as a default loaded trajectory. (2) Candidate Trajectory Encoding: For the feature extraction,
Variants. To evaluate each component of our framework, wee collect 415,639 POls in Nantong and categorize them into
perform ablation studies with the following variantsldtAD: 29 typical categories, e.g., company, hospital, chemical factory,
(1) LEAD-NoPoi: We remove the POI feature in the featuretc. The collected POls are used to extract the POI feature of
extraction, and we use zero padding as the pseudo POI featar&PS point, and the dimension of a feature vector is 32. For
keeping the dimension of the feature vector constant. the hierarchical autoencoder, all compression operators in the
(2) LEAD-NoSel: We remove the self-attention mechanism icompressor share the same architecture, and all decompression
the hierarchical autoencoder. Instead, we directly use the lagerators in the decompressor share the same architecture. To
hidden state vector of each LSTM in the compressor. keep the hierarchical autoencoder within a tractable size, the
(3) LEAD-NoHie: We remove the hierarchy and separationumber of hidden units in each LSTM and fully connected
structures in the hierarchical autoencoder. There is only olager are the same, and we set the number of hidden units
compression operator and one decompression operator inith¢he hierarchical autoencoder as 32. Thus, the compressed
compressor and decompressor, respectively. vector of any feature sequence has a xed dimension of 64.
(4) LEAD-NoGro: We remove the group generation in th€3) Loaded Trajectory Detection: For the forward and back-
loaded trajectory detection. After deleting it, the forward andlard detectors, all LSTMs have 64 hidden units, and the fully
backward detectors are unavailable. We substitute the forwawhnected layers for calculating the probabilities have 1 unit.
and backward detectors with 4 fully connected layers witlm addition, we tune the number of BiLSTM layelsfrom 1
Sigmoid activator to calculate the probability of each candidate 10 and nd the highest detection accuracy wher 4 on
trajectory. Speci cally, the number of units from the rst layerthe validation set, thus we sét = 4 as the default. For the
to the fourth layer is set to 64, 32, 32, and 1, respectively, atabel processing, we set the small constaid 10 5.
the Sigmoid activator is set in the fourth layer to output the Finally, for the of ine phase of the hierarchical autoencoder,
probability. and the forward and backward detectors, we use the Adam
(5) LEAD-NoFor: We remove the forward detector in thevptimizer [17] for updating the parameters with a scheduled
loaded trajectory detection, and only use the probability dikarning rate of 0.0001. The training bath size is set to 1,
tribution of backward detector to detect the loaded trajectottyecause the dimension of the inputs (i.e., feature sequences
(6) LEAD-NoBac: We remove the backward detector in thand forward/backward groups) are not xed. Nevertheless,
loaded trajectory detection, and only use the probability digse backpropagate the average lossBofonsecutive training
tribution of forward detector to detect the loaded trajectory.samples to simulate an iteration of batch training, and we
Evaluation Metric. The purpose of our de ned problem is toset B as 64, thus improving the training efciency to a
detect the loaded trajectory from a raw trajectory. Thus, wrtain extent. The above hyperparameters are tuned on the
de ne the detection accuracy to show the performance of owulidation set by using the grid search. In addition, we use

framework and baselines as foIIov(vs: Early Stopping [18] to avoid the over tting of the neural
PN e N networks. Our experimental results are reported based on the
2 hit; o e — L df Bi=try; ) )
Acc= ——— 100% hitj = " (14)  above settings, unless expressly speci ed.
Nte 0; otherwise;

Environment. We implement all algorithms in Python 3.7.10,
where Ne is number of test samplesijt; indicates that if and run the experiments on an Ubuntu Server with an Intel(R)
i-th detected loaded trajectory hits the ground truth loadegpu i7-4770@3.4GHz, and NVIDIA Tesla V100 GPU.
trajectory,l’?! denotesi-th detected loaded trajectory, atrg ,

denotesi-th ground truth loaded trajectory. The larger valu8: End-to-End Evaluation oLEAD

of Acc indicates that the method detect the loaded trajectoryln this subsection, we study the end-to-end performance of

more accurately. LEAD by comparing it against several baselines in terms of
Implementation Details. We set the hyperparameters imaccuracy and ef ciency.
LEAD throughout the experiments as follows: Detection Accuracy.We adoptAcc de ned by Equation (14)

(1) Raw Trajectory Processing: Firstly, in noise ltering, thedo evaluate the detection accuracy IOEAD. To make the
speed threshold/nax is set to 13&@m=h since the moving evaluation more clearly, we separately repadc under the
speed of an HCT truck rarely exceeds this threshold. Secondifferent numbers of stay points on the test set, in Table IlI.
in stay point extraction, We test different parameter combhs depicted, ourlLEAD outperforms all the other detection
nations and nd that most staying behaviors (e.g., loadingiethods for all the test cases, and the accuracy of all the meth-
unloading, resting, etc.) can be included in stay points whexds can be ranked akEAD>> SP-LSTM> SP-GRUW SP-R.

we setDmax = 500m and T, = 15min. Based on We can see that as the number of stay points increases, the
the dataset, the number of stay points extracted from a raecuracy of all the methods decreases, due to the increased
trajectory ranges from3 14, which is reasonable for dif culty of detection. The details are as follows:



TABLE Il
ACCURACY OF BASELINES AND OURS (LEAD) ON THE TEST SET
Acc (%) #Stay Points (Percentage%)
Method 35 6 8 9 11 12 14 3 14
(22%) | (34%) | (25%) | (19%) | (100%)
SP-R 60.2 54.2 46.8 333 49.7
SP-GRU 66.4 63.5 54.7 49.2 59.2
SP-LSTM | 67.2 63.9 56.2 51.6 60.4
LEAD 95.6 92.4 87.5 83.8 90.2

(]_) 3 5 Stay Points: There are 22% of raw trajectories that Fig. 8. Inference Time of Baselines and Out&EAD) on the Test Set

have 3 5 stay points in the test set, thus the number of TABLE IV

candidate trajectories ranges from B0. In this caseLEAD ACCURACY OFLEAD AND LEAD-VARIANTS ON THE TEST SET
outperforms SP-R by 59%, SP-GRU by 44%, SP-LSTM by | A6 __| _ #3tay Poinis (Percentaget)
42% onAcc. Method | 2506) | (34%) | (25%) | (19%) | (100%)

(2) 6 8 Stay Points: There are 34% of raw trajectories that| LEAD-NoPoi | 85.7 83.1 77.6 72.4 80.3

; ; LEAD-NoSel | 936 | 89.4 | 827 78.3 86.5
have 6 8 stay points in the test set, thus the number of LEAD-NoHie | 904 | 867 813 264 842

candidate trajectories ranges from 128B. In this casel. EAD LEAD-NoGro | 886 | 852 80.9 77.2 83.4
outperforms SP-R by 70%, SP-GRU by 46%, SP-LSTM by | LEAD-NoFor | 940 | 913 | 858 82.7 88.9
45% onAcc LEAD-NoBac | 93.5 | 90.6 | 86.3 82.2 88.6

: LEAD 956 | 924 | 875 83.8 90.2

(3) 9 11 Stay Points: There are 25% of raw trajectories that

have 9 11 stay points in the test set, and the number @fner methods. Specifcall,EAD outperforms SP-R by 64
candidate trajectories ranges from 3b. In this casel EAD 71%, SP-GRU by 11 20%, and SP-LSTM by 14 25%
outperforms SP-R by 87%, SP-GRU by 60%, SP-LSTM by, | the test cases. SP-R performs the worst since it needs to
56% onAcc. traverse all the locations of white list when classifying a stay
(4) 12 14 stay points: There are 19% of raw trajectories thﬁbint. For SP-GRU and SP-LSTM, they need to classify all
have 12 14 stay points in the test set, and the number @fay points before they return the loaded trajectory. In contrast,

candidate trajectories ranges from @&lL. In this casel.EAD | EAD can return the loaded trajectory by making once forward
outperforms SP-R by 1.5 SP-GRU by 70%, SP-LSTM by computation of each component ef ciently.

62% onAcc.
(5) 3 14 stay points: In the test set, all raw trajectories hae- Evaluation of Candidate Trajectory Encoding
3 14 stay points, and the number of candidate trajectorie$fectiveness of Feature Extraction.In our feature extrac-
ranges from 3 91. In this casel EAD outperforms SP-R by tion, we consider the spatiotemporal features and POI features
81%, SP-GRU by 52%, SP-LSTM by 49% dxcc. of a GPS point. To evaluate the effectiveness of the additional
It is expected that SP-R performs the worst among @Ol features, we compareEAD againstLEAD-NoPoi, and
the methods since the defective rule-based classi er canmeport theAcc in Table IV. As shown, the accuracy @EAD
cover all the locations in the white list, and returns this noticeably better thahEAD-NoPoi. To be speci c,LEAD
default loaded trajectory frequently. For the poor performancaitperformsLEAD-NoPoi by 11  16% in all the test cases,
of SP-GRU and SP-LSTM, the main reasons are three-fokince it considers the informative POI features, whileAD-
Firstly, LEAD generates all candidate trajectories of a raMoPoi lacks the POI features, leading to lower accuracy.
trajectory, and detects the loaded trajectory based on theéffectiveness of Hierarchical AutoencoderTo study the ef-
probabilities. While SP-GRU and SP-LSTM, similar to SP-Rectiveness of the hierarchical autoencoder, we comipasD
cannot specify the loaded trajectory when classi ers returndyainst two variants, includind.EAD-NoSel and LEAD-
or 1 |=u stay point, obtaining the inaccurate default loadedoHie, and we report their detection accuracy in Table IV. We
trajectory. SecondlyLEAD captures not only the featurescan see thatEAD-NoSel has decent detection accuracy when
of stay points but also the features of move points, whithe number of stay points is small, but it performs poorly when
SP-GRU and SP-LSTM only consider the features of stalye number of stay points is large. Speci cally, in the test cases
points, lacking the moving information between stay pointef 3 5 and 6 8 stay points, the accuracy tEAD-NoSel is
Thirdly, LEAD captures the inclusion, exclusion and analogground 90%, while in the test cases of P1 and 12 14 stay
relationships between candidate trajectories, which is bene tpoints, the accuracy dfEAD-NoSel decreases to 82.7% and
detect the accurate loaded trajectory. SP-GRU and SP-LST8.3%, respectively. This clearly shows that the self-attention
treat each stay point as an independent sample and detectntieehanism is helpful for long-range features memorization.
loaded trajectory based on their probabilities. LEAD-NoHie performs noticeably worse th&fEAD, speci -
Ef ciency. We record the mean inference time of all theally, LEAD-NoHie reduces the accuracy by ®% compared
methods to detect the loaded trajectory on the test set, aod_EAD, in all the test cases. This is becaludeAD-NoHie
separately report them under the different numbers of stayores not only the difference between stay points and move
points in Figure 8. As we can seeEAD requires around points, but also the difference between sequence hierarchies.
12 25s in all the test cases, which is much faster thaie further record the curves of MSE loss (cf. Equation (8)) for
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