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Abstract—A reliable autonomous driving system should take
safe and efficient actions in constantly changing traffic. This
requires the trajectory prediction model to continuously learn
from incoming data and adapt to new scenarios. In the context
of rapidly growing data volume, existing trajectory prediction
models must retrain on all datasets to avoid forgetting previously
learned knowledge when facing additional data from new envi-
ronments. In contrast, the paradigm of continual learning solely
necessitates training on new data, saving a significant amount of
training overhead. Therefore, it is crucial to equip the trajectory
prediction model with the ability of continual learning. In this
paper, inspired by rehearsal and pseudo-rehearsal methods in
continual learning, we propose a continual trajectory prediction
framework with uncertainty-aware generative memory replay,
CTP-UGR. Our framework effectively avoids excessive memory
space requirements while generating trajectory data that is au-
thentic, representative and discriminative for continual learning.
Extensive experiments on two real-world datasets demonstrate
our proposed CTP-UGR significantly outperforms other baselines
in terms of both accuracy and catastrophic forgetting. Besides,
our framework can be combined with other state-of-the-art
trajectory prediction models to achieve better performance.

Index Terms—Continual Trajectory Prediction, Uncertainty,
Generative Memory Replay

I. INTRODUCTION

Trajectory prediction(TP) is an essential technique in au-
tonomous driving. For a reliable TP system, it should be able
to operate safely and continuously in constantly changing new
traffic scenarios. Therefore, the ability of continual learning for
trajectory prediction systems becomes increasingly crucial in
the future. However, currently, there are few works researching
continual trajectory prediction (CTP) methods, and there is
also no detailed research on the performance of CTP settings.

Current deep trajectory prediction models are trained offline
on a complete dataset that includes all scenarios to achieve
good prediction performance, referred to as offline learning. In
this learning approach, if new data arrives, the model can only
undergo complete retraining on all datasets. A more efficient
strategy is to train TP models on a continuous data stream and
only needs to update the existing model on the new dataset.
This strategy is known as continual learning(CL). However,
naive CL methods are likely to suffer from ”catastrophic
forgetting” [1]. This is manifested by a significant drop in
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performance on the previously learned dataset when training
on a new dataset. We consider that in recent literature [2]–
[4], replay-based methods have shown good performance in
preserving old data information and mitigating catastrophic
forgetting. One potential replay method is called rehearsal
[5], which involves selecting appropriate samples for storage
and periodically revisiting them during the training of new
data streams. Another replay technique is called pseudo-
rehearsal [6], which generates pseudo-data that simulates
past experiences for replay. However, both these methods
have inherent limitations. Rehearsal methods require explicit
storage of old experiences, leading to a significant working
memory requirement [7]. Pseudo-rehearsal methods heavily
depend on the quality of the pseudo-data generated by the
generative model, which leads to poor performance in TP tasks
that involve intricate spatio-temporal data structures [8].

In our work, we integrate the advantages of rehearsal and
pseudo-rehearsal, following the general framework introduced
by [7], and propose an Uncertainty-Aware Generative Re-
play Model for continual learning trajectory prediction (CTP-
UGR). The model comprises a base model and an uncertainty-
aware dual-memory system. Initially, the model obtains repre-
sentative and distinctive scene data through uncertainty-aware
episodic memory. These data are subsequently utilized as the
initial condition to generate pseudo-data using an attention-
based Conditional Variational Autoencoder. The generated
pseudo-data is replayed in new tasks to mitigate catastrophic
forgetting. Our contributions can be summarized as follows:

1). To the best of our knowledge, our research is one
of the few studies that utilize continual learning for vehicle
trajectory prediction tasks, providing the potential to enhance
the robustness and reliability of autonomous driving trajectory
prediction systems.

2). We propose a novel framework called Continual Tra-
jectory Prediction with Uncertainty-aware Generative memory
Replay (CTP-UGR). This framework effectively addresses
extensive working memory requirements in rehearsal methods
and the challenge of pseudo-rehearsal generating unrealistic
and non-representative data with low discriminative capability.

3). We validated our approach on two real-world datasets
through effectiveness analysis, ablation study and robustness
analysis. We demonstrated the effectiveness of CTP-UGR and
its components for CL, and it can be integrated with other
state-of-the-art TP models to achieve better performance.



II. RELATED WORK

A. Trajectory Prediction

In recent years, deep learning-based TP methods have
gained popularity due to their effectiveness. These methods
largely utilize sequence and graph networks to extract scene
and trajectory features [9], [10]. However, most of these meth-
ods are trained offline using a complete dataset, but real-world
applications require models that can adapt to various traffic
scenes. In this paper, we propose a novel CTP framework,
which can be incorporated as a component of most TP models
to achieve CL effects.

B. Continual learning

Currently, most of the research on continual learning is
mainly focused on image classification tasks, and can be
roughly divided into (1) Replay-based methods [2]–[4]. (2)
Regularization-based methods [11]. (3) Architecture-based
methods [12]. However, there are limited investigations on
CTP problems. Recently, Wu et al. [13] proposed a contin-
ual pedestrian trajectory prediction method using scene-level
generative replay. Ma et al. [8] proposed a continual learning
framework for multi-agent trajectory prediction using a condi-
tional generative replay model with road scenes as conditional
inputs for generating trajectory data. However, their emphasis
was only on the authenticity of the generated trajectory data,
without considering the effectiveness of the generated trajec-
tory data in overcoming catastrophic forgetting. Knoedler et al.
[14] combined the rehearsal and regularization-based methods
for continual pedestrian trajectory learning. However, it leads
to significant working memory requirements. In contrast, our
proposed method addresses the limitations of rehearsal and
pseudo-rehearsal methods and leverages their benefits. Not
only avoids the need for large memory requirements but also
generates authentic, representative and discriminative trajec-
tory data that effectively alleviate catastrophic forgetting.

III. PROBLEM FORMULATION

Our goal is to train a trajectory predictor through the appli-
cation of continual learning. Initially, we introduce the domain
problem(i.e., TP). Then we outline the relevant formula for
continual learning problems in our application.

A. Trajectory Prediction

The trajectory prediction problem can be formally defined
as predicting the future state of traffic participants using their
past states in a given scenario. In this study, we assume that
observation of N agents in each scenario is represented as
o = {o1, o2, ..., oN}, where oipast = (pti, c

i) represents the
historical state observed by agent i. The coordinate of the
historical trajectory observed by agent i at observation time
Tobs is given by pit = (xt

i, y
t
i), where t = 1, ..., Tobs. ci

represents the path point associated with the trajectory of agent
i, which is extracted from the provided HD map. Our purpose
is to leverage a data-driven prediction model Pθ to predict the
future position yifut = (pti), t = Tobs+1, ..., Tpred, which is to
identify the maximum posterior probability argmax

θ

(
yi | oi

)
.

B. Continual Learning

In the problem setting of continual learning, task data
is trained sequentially, we assume that we cannot store all
previous data. Each experiment is conducted on multiple
datasets collected at different times and different locations. We
denote Di as the i-th dataset we received. The performance of
the model is evaluated based on a given sequence of datasets
{D1, ..., DM}, where M represents the number of datasets.
The ultimate objective of the prediction model is to accurately
forecast all M tasks after training on all task data.

IV. METHODOLOGY

Fig.1 shows an overview of CTP-UGR. It consists a base
model(see Fig.1(d)) responsible for trajectory prediction and
an uncertainty-aware dual memory module(see Fig.1(e)). Next,
we provide a description of the training phase(see Fig.1(b))
and the replay memory phase(see Fig.1(c)). Our contribution
mainly focuses on the overall design of the framework and the
uncertainty-aware dual memory module.

A. Base Model

The base model adopts an encoder-decoder architecture for
TP tasks(see Fig.1(d)). As our focus is on solving the issue
of catastrophic forgetting in continual learning, and not on
improving the TP model itself, we have selected a standard
LSTM-based TP model as the base model. Furthermore,
more advanced TP models can be employed to substitute this
architecture. In the subsequent experimental section V-F, we
tested deploying our approach on several state-of-the-art TP
models to further evaluate the robustness of our method.

B. Uncertainty-Aware Dual-Memory Module

As mentioned in section I, rehearsal and pseudo-rehearsal
have inherent limitations and perform poorly when deal-
ing with complex spatio-temporal data structures. Therefore,
we proposed an uncertainty-aware dual-memory module(see
Fig.1(e)) including Uncertainty-Aware Episodic Memory and
Conditional Generative Replay Memory.

1) Uncertainty-Aware Episodic Memory : In the context
of CL tasks, we propose that the historical task data stored
in the memory should be difficult to learn or more likely to
be forgotten, and should also have distinctiveness from other
task data. Currently, many studies [4], [15] have demonstrated
that uncertainty sampling has superior performance over other
updating memory methods. The uncertainty quantifies the lack
of confidence the model has in its prediction, and estimates the
relative position of each sample in the feature space [5]. Higher
uncertainty indicates that samples are closer to the boundaries
of the distribution, making them more distinctive. On the
other hand, samples with lower uncertainty are closer to the
center of the distribution, making them more representative.
To guarantee that the memory stores representative samples
from past task data as well as distinctive samples from other
tasks, we store both uncertain and certain samples.

We use Bayesian Networks (BNN) to calculate sample
uncertainty. The Monte Carlo Dropout method (MC Dropout)
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Fig. 1. The overview of our proposed CTP-UGR framework. (a) Continual Learning in CTP-UGR. The model undergoes continuous training according to
the order of tasks. (b) The schematics of the training phase. For each task, the model is trained using both the current task data and the replay data. (c)
The schematics of the replay memory phase. The pseudo-data generated from the previous task is incorporated into the data of the subsequent task to train
together. (d) The structure of the Base Model(BM). (e) The structure of Uncertainty-aware Generative memory Replay model(UGR).

[16] is adopted to transform our base model into a Bayesian
Network(see Fig.1(e)). Specifically, Dropout layers are added
to the model and without turning off during forward propaga-
tion when testing. As a result, the weights ŵi of the model can
be regarded as following a Bernoulli distributionŵi ∼ B(1, p),
which enables variational inference. By applying Monte Carlo
sampling, T forward propagations are performed for each sam-
ple xi in the current task data, resulting in T predicted values
f ŵi (xi). The variance of these T predicted values serves as
a measure of uncertainty, with a larger variance indicative
of heightened uncertainty. The formula for calculation is as
follows:

u (xi) =
1

T

T∑
i=1

(
f ŵi (xi)− E(y)

)2
(1)

In the equation, u (xi) represents the uncertainty of sample
x, while E(y) represents the mean of the outputs. We sort
all these samples based on their uncertainty. Higher values
of u (xi) indicate a region where the model exhibits lower
confidence, i.e., fragile samples, while lower values of u (xi)
indicate a region where the model is highly confident, i.e.,
robust samples. We set the data for memory slots as kc, and
select the first kc/2 samples and the last kc/2 samples from
the sorted list to fill the memory. This brings diversity to the
episodic memory based on uncertainty awareness. We define
these samples in the episodic memory, denoted ad Xinit,
where Xinit =

{
x1, . . . , xkc/2, xkc/2+1, . . . , xkc

}
.

2) Conditional Generative Replay Memory: To generate
both realistic, representative and discriminative pseudo data,
we designed a conditional generative-replay model (CGR).
The model is based on a conditional variational autoencoder
(CVAE), and the objective of CGR is to solve P (X | Xinit),

where X represents a complete trajectory prediction scenario
with trajectories of all agents in the scene. Through the
utilization of conditional variational inference, it becomes
feasible to generate authentic trajectories based on the pro-
vided initial episodic memory Xinit. The model adopts an
encoder-decoder architecture, and the overall framework is
illustrated(see Fig.1(e)). The modules included in the CGR
model are as follows:

CGR Encoder: To better capture the interaction between
vehicles and generate more realistic trajectory data, we intro-
duced a multi-head attention mechanism [17] in the encoder
part. The CGR encoder is composed of three constituents: a
trajectory encoder, a multi-head attention module, and a CVAE
encoder.

The trajectory encoder’s input comprises the trajectory data
X from the current task and the trajectory data Xinit from the
episodic memory, based on LSTM that can capture the time
dependence of each trajectory. The output is a set of hidden
features for X and Xinit, as shown in the formula.

X̃, X̃init = LSTM (Emb (X,Xinit) ;Wenc) (2)

Emb is an embedding function with a ReLU non-linearity
that embeds low-dimensional trajectory coordinates into a
high-dimensional vector space. Next, LSTM encodes the hid-
den feature X̃, X̃init =

{
h1
t , h

2
t , . . . , h

N
t

}
, where hi

t denotes
the kinematic feature of vehicle i at time t. All LSTM encoders
share the same weight Wenc.

The feature X̃ extracted from the current task data is
subsequently fed into a multi-head attention module, where
the features of each vehicle i are embedded into groups of
queries (Q), keys (K), and values (V ).



Qi,Ki, Vi = MLP
(
hi
T ;WQi ,WKi ,WVi

)
(3)

Next, each head h undergoes self-attention calculation to
expose the interrelationships among input vehicle features. The
calculation formula for head h is given below:

headh = At
(
Qh,Kh, V h

)
= softmax

(
Qh
(
Kh
)T

√
dk

)
V h

(4)
Multi-head attention performs the attention calculation in

parallel for H times and uses the WO linear transformation
to the same dimension of Q. The output X̃mh are as follows,
note that the dimension is the same as the input X̃

X̃mh = Norm (Concat (head1, . . . , headH)W o) (5)

Finally, the generated attention output X̃mh is mapped to the
latent space distribution through CVAE, known as the poste-
rior distribution Q

(
Z | X̃mh, X̃init

)
. Here, Z =

{
zi
}
i=1:N

,
where zi is a Gaussian random variable for the i-th agent,
allowing for a sampling of new latent scene points.

CGR Decoder: The CGR decoder P (X | Z,Xinit ) recon-
structs the trajectory scene X based on the sampled latent
scene points Z and the initial scene memory Xinit. Recon-
struction is achieved through two decoders: the CVAE decoder
decodes the latent scene points into appropriate feature points,
and the trajectory decoder decodes each consistent feature
point into a trajectory scene based on the given initial scene
memory Xinit. The structure of the decoder is similar to the
CGR encoder, the encoder and decoder are jointly trained. We
define the parameters of the CVAE encoder as φ, denoted as
Qφ (Z | X,Xinit), and the network parameters of the CVAE
decoder as θ, denoted as Pθ (X | Z,Xinit). The training loss
of the conditional variational autoencoder is:

−EQφ(Z|X,Xinit) [logPθ (X | Z,Xinit)]

+ βKL [Qφ (Z | X,Xinit) ∥P (Z)]
(6)

Where β is a hyperparameter that adjusts the importance
of regularization. The decoder ultimately outputs the replayed
trajectory sample, denoted as Xr.

C. Training Phase

During the training phase(see Fig.1(b)), for each task j, the
input of the base model consists of the observed trajectory
scene Xj and the replayed observed trajectory scene Xr

j for
the current task. The output is the predicted future trajectories
Ŷj and Ŷ r

j corresponding to the current task and the replayed
observed trajectory scenes. Based on the given ground truth
future trajectory scenes Yj and Y r

j , the model can be optimized
using the L2 loss function [2].

LB = γL2

(
Ŷj , Yj

)
+ (1− γ)L2

(
Ŷ r
j , Y

r
j

)
(7)

The input of the dual-memory model also consists of the
observed trajectory scene Xj and the replayed observed trajec-
tory scene Xr

j for the current task. The output is the generated

trajectory scenes X̂j and X̂r
j corresponding to the current task

and the replayed observed trajectory scenes. By treating the
input trajectory scenes Xj and Xr

j as ground truth values, the
model can be optimized using a similar loss function [2].

LDM = γLs

(
X̂j , Xj

)
+ (1− γ)Ls

(
X̂r

j , X
r
j

)
(8)

Where Ls represents the sum of the conditional variational
autoencoder and the reconstruction loss L2.

D. Replay Memory Phase

After training on task j, it enters the replay memory phase
to prepare memory data that needs to be replayed for the next
task j + 1(see Fig.1(c)). Generation of replay memory data
occurs within the uncertainty-aware dual-memory module.
Firstly, initial scenario memory data Xjinit

is obtained from
task j through the uncertainty-aware scenario memory. Then,
the conditional variational autoencoder model uses the initial
scenario memory data Xjinit and trajectory data Xj from task
j to generate pseudo data Xr

j as replay samples for training
with the data Xj+1 from the upcoming task j+1. The future
trajectory ground truth values Y r

j of the pseudo data Xr
j are

obtained from the base model trained on task j.

V. EXPERIMENT

A. Datasets and Setting

We evaluated our CTP-UGR in CL tasks on two real-
world datasets, NGSIM [18] and INTERACTIONA [19]. We
constructed multiple distinct tasks for CL, considering time
and different scenarios. For NGSIM we divided six task-scene
datasets from US-101 and I-80 based on time and scenarios.
As for INTERACTION, we also organized six task-scene
datasets based on the three types of road scenarios, with an
equal number of samples in each scenario dataset.

For each task-scene dataset, we divided them into separate
training sets (70%), validation sets (10%), and test sets (20%).
In the dataset, a complete trajectory comprises an 8-second
time span, which is further divided into a 3-second observation
period and a 5-second future period.

B. Metrics

We choose two evaluation metrics: root mean square error
(RMSE) and average displacement error (ADE), to assess the
prediction results on the NGSIM and INTERACTION datasets
respectively. Additionally, we define two evaluation metrics,
average prediction error (APE) and average forgetting rate
(AFR) following the concept mentioned in [20] to assess the
model’s efficacy of CL. The test error of the model trained
on task scenario i and tested on task scenario j is defined as
Ri,j . Here, M represents the total number of task scenarios.

The APE evaluates the average prediction error of the model
after training on all tasks.

APE =
1

M(M + 1)/2

M∑
j≤i

Ri,j (9)



The AFR evaluates the average performance decline of the
model on old task scenarios after learning new task scenarios
to assess the degree of catastrophic forgetting in CL.

AFR =
1

M(M − 1)/2

M∑
i=2

M∑
j<i

Ri,j −Rj,j (10)

C. Baselines

We refer to our proposed method as CTP-UGR. Due to the
scarcity of research on CTP, we refer to the research method
of [1] and design several models for comparison. To ensure
fairness, we use the base model introduced in Section IV-A as
the trajectory prediction model in all the methods.

1). Accumulate Learning(AL): This method is a form of
replay, but all the previous task samples are replayed during
each new task training. This method represents the optimal
performance of the model considered as a lower bound (LB).

2). Continual Learning with No Replay(CL-NR): This is
a continual learning trajectory prediction framework without
any replay mechanism. This method represents the worst
performance of the model considered as an upper bound (UB).

3). Elastic Weight Consolidation (EWC) [11]: This is a clas-
sic continual learning method based on regularization, which
alleviates catastrophic forgetting by adding a regularization
term to the objective function of the model to constrain the
model parameters between new and old tasks.

4). Continual Learning with Generative Replay(CL-GR) [6]:
This is a generative replay model that exclusively employs a
VAE without any conditional components.

5). Continual Learning with Experience Replay(CL-ER) [3]:
This is a continual learning trajectory prediction framework
based on experience replay. It explicitly stores sampled data
in a memory buffer for replay.

D. Effectiveness of CTP-UGR Model

We conducted a comparative analysis between our proposed
CTP-UGR and baseline methods. All models were trained on
6 task scenarios from two datasets. For training, we set the
batch size to 64 and employed the Adam optimizer with a
fixed learning rate of 0.001. For our model CTP-UGR, the
number of multi-heads is set to 4, the hyperparameter β in
the CVAE loss is set to 1.0, and the hyperparameter γ in the
model loss is set to 0.5. The generated memory size is set at
10% of all previously learned datasets.

Initially, we assessed the average performance of each
model on the testing data across all task scenarios. Fig. 2
illustrates this result, showing the performance of all baseline
models on each training task and the trend of performance
variations. The phenomenon of catastrophic forgetting is
clearly evident, particularly in the CL-NR and EWC models.
They also highlight a notable advantage of our CTP-UGR over
CL-GR. Likewise, our model outperforms CL-ER, as CTP-
UGR can generate representative and discriminative trajectory
scene data without relying on an extensive memory space to
store explicit memory data.
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Fig. 2. Evaluation of overall performance (tested with a mixed dataset of all
scenarios) in NGSIM and INTERACTION Dataset

TABLE I
EVALUATION RESULTS OF THE METHODS ON CONTINUAL TRAJECTORY

PREDICTION BASELINE IN TERMS OF PREDICTION ERROR

NGSIM(RMSE) INTERACTION(ADE)

Methods APE AFR APE AFR

AL(LB) 1.453 0.173 0.561 0.024
CL-NR(UB) 4.385 2.087 1.316 0.302

EWC 3.876 1.525 1.147 0.266
CL-GR 2.981 0.976 0.962 0.187
CL-ER 2.443 0.620 0.793 0.126
CTP-UGR(ours) 1.885 0.268 0.643 0.056

Secondly, we evaluated the CL performance metrics, APE
and AFR, as depicted in Table I. Notably, our CTP-UGR
surpasses several baseline models, exhibiting superior perfor-
mance and effectively mitigating catastrophic forgetting. The
performance of CTP-UGR is very close to the AL model.

E. Ablation Study on CTP-UGR Componets

We conducted an ablation study to examine the key com-
ponents of CTP-UGR. We devised two additional models:
1) CTP-UGR with no Uncertainty-Aware (CTP-UGR-NUA).
This simplified version of CTP-UGR excludes the Uncertainty-
Aware Episodic Memory. Its replay data is randomly sampled
from episodic memory. 2) CTP-UGR with Low-quality Gen-
erative Replay (CTP-UGR-LGR). This alternative version of
CTP-UGR disables the attention-based trajectory encoder in
the conditional generative replay model.

TABLE II
ABLATION STUDY ON THE KEP COMPONENTS OF THE CTP-UGR

NGSIM(RMSE) INTERACTION(ADE)

Methods APE AFR APE AFR

CTP-UGR-NUA 2.339 0.481 0.769 0.106
CTP-UGR-LGR 2.014 0.327 0.692 0.071
CTP-UGR(ours) 1.885 0.268 0.643 0.056

The results are reported in Table II, revealing the sub-
stantial contributions of the individual components of CTP-
UGR to the overall performance of the model. Specifically,
CTP-UGR-LGR exhibits superior performance compared to



TABLE III
ROBUSTNESS ANALYSIS RESULTS OF THE MODEL

NGSIM INTERACTION

Methods APE AFR Methods APE AFR

AL-RGNN(LB) 1.216 0.147 AL-TNT(LB) 0.442 0.019
CL-NR-RGNN(UB) 3.745 1.862 CL-NR-TNT(UB) 1.132 0.247

CTP-UGR(ours) 1.885 0.268 CTP-UGR(ours) 0.643 0.056
CTP-UGR-RGNN 1.449 0.193 CTP-UGR-TNT 0.529 0.041

CTP-UGR-NUA, highlighting the effectiveness of our pro-
posed uncertainty-aware conditional generative replay model.
Furthermore, in comparison to Table I, the performance of
CTP-UGR-NUA surpasses that of CL-GR, indicating that our
generative model can generate trajectory data that closely
resembles real-world scenarios.

F. Robustness Analysis of CTP-UGR

To further validate the robustness of CTP-UGR, we se-
lected two state-of-the-art TP models, Graph Recurrent Neural
Network (GRNN) [9] and Target-driven Trajectory prediction
(TNT) [10], as replacements for our base model. We desig-
nated the combined models as CTP-UGR-GRNN and CTP-
UGR-TNT, respectively. The results are presented in Table III.
Compared to Table I, it is apparent that employing more
advanced trajectory prediction models as baseline models leads
to significant performance improvements, as evident from the
APE and AFR metrics. Moreover, this approach effectively
enhances overall performance and mitigates the extent of
catastrophic forgetting. Intuitively, the utilization of more com-
plex trajectory prediction models enables better capturing of
complex interaction information between trajectories, enriches
the feature extraction from trajectory data, and results in more
refined prediction performance.

VI. CONCLUSION

This article addresses the problem of continual trajec-
tory prediction and proposes a novel approach CTP-UGR,
which combines the benefits of rehearsal and pseudo-rehearsal.
Through the effectiveness and ablation analysis, we demon-
strate that CTP-UGR is capable of generating realistic, repre-
sentative, and discriminative data, and avoiding high memory
requirements, thereby mitigating the catastrophic forgetting.
Lastly, we demonstrate the robustness of our method.
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