Efficient Cardinality and Cost Estimation with
Bidirectional Compressor-based Ensemble Learning

Zibo Liang', Xu Chen', Yan Zhao?, Jiandong Xie3, Kai Zeng3 , Kai Zhengl’*’T
'University of Electronic Science and Technology of China, China 2Aalborg University, Denmark
3SHuawei Technologies Co., Ltd., China
{zbliang, xuchen} @std.uestc.edu.cn, yanz@cs.aau.dk,

{xiejiandong, kai.zeng}@huawei.com, zhengkai@uestc.edu.cn

Abstract—Query optimization is of great importance for the
performance of a database, in which cardinality and cost estima-
tion have a pivotal role. To enable accurate cardinality and cost
estimation, we propose a novel framework based on bidirectional
compressor and ensemble networks called BICE. In particular,
we design a feature extractor composed of four sub-encoders,
which can extract various types of information in a query plan
tree and hybrid learning strategies for encoding. We encode
joins based on a graph embedding method and design parallel
networks for filters to improve the encoding efficiency. Then we
propose a bidirectional LSTM-based compressor to learn the
encoding and obtain fixed-length vectors, reducing the learning
difficulty of the estimation model. Finally, we propose different
data sampling strategies based on Bayesian neural networks and
active learning, and an ensemble model is established based
on transfer learning, which enables accurate estimation and
adaptation to large-scale data queries. Extensive experiments
offer insight into the effectiveness and efficiency of the proposed
framework.

Index Terms—Cardinality estimation, Cost estimation, Query
optimization

I. INTRODUCTION

Cardinality and cost estimation are crucial in query opti-
mization, a feature of many database management systems
and determined by a query optimizer [1]. Incorrect estimates
may lead to sub-optimal plans or even produce poor plans
that have catastrophic effects on database performance [2].
Many traditional estimation methods, e.g., histogram-based
cardinality estimators, are based generally on the assumptions
that the data follow a certain statistical distribution and all
attributes are independent of each other [3]. However, in
practice, a dataset is often highly random [2], [4], [S] without
following any distributions, which limits the feasibility of
traditional cardinality and cost estimation methods.

Recent years have witnessed the development of learn-
ing models as advanced cardinality and cost estimation
tools [6]-[14]. Although data-driven cardinality estimation
techniques [6], [15], [16] yield more precise estimates, query-
driven methods [7], [8], [10] offer advantages in terms of com-

*Corresponding author: Kai Zheng.

TKai Zheng is with Yangtze Delta Region Institute (Quzhou), School of
Computer Science and Engineering, and Shenzhen Institute for Advanced
Study, University of Electronic Science and Technology of China.

putational efficiency and storage space requirements. Besides,
their seamless integration into query optimizers also fosters
extensive application across various contexts. In particular, the
query-driven method can predict the execution cost of a query
plan as the basis for query optimization. So it is difficult for
the data-driven to replace the query-driven with the existing
advantages completely [17]-[19]. In this work, we will go
further in this direction and focus on query-driven models.

Existing query-driven models can be classified into two
categories: query-statement-based models [8], [11], [12] and
query-plan-tree-based models [7], [10], [20]. The former takes
a query statement as input and calculates the cardinality of the
query result without relying on any other information. Taking
the same input, i.e., a query statement, the latter uses the
query plan tree [21] generated by the optimizer of a DBMS
to estimate the query cardinality. It is worth noting that this
method does not require the execution of query statements
in the database and is efficient, as DBMS uses traditional
estimation methods to obtain plans [22]. Although these plans
may be suboptimal, we can use the information embedded in
them for cardinality estimation. Therefore, the learning models
based on the query plan tree can utilize more helpful informa-
tion and generate a more accurate cardinality estimation with
little extra computational cost. Although query-based learning
models have many advantages, some limitations prevent them
from becoming silver bullets for query optimization.

Limitation I: paucity of extracted information. Extracting
information from query statements is a crucial step in query-
driven methods, which directly affects the accuracy of the
estimation. For example, the multi-set convolutional network
(MSCN) [8] directly adopts the one-hot encoding for joins,
leading to a serious sparsity problem and increasing the
model’s learning difficulty. TPool [7], an end-to-end learning-
based cost estimator, extracts the information in the query plan
tree, but the one-hot encoding method it adopts is still simple,
which cannot make good use of the rich information contained
in the query plan tree.

Limitation II: high computational cost. The training and the
testing efficiencies of the cardinality and cost estimation model
are two main factors limiting the feasibility of query-driven
models [4], [5], [23]. For example, MSCN [8] uses the idea

Data Preparation Feature Extractor

Q\w

Training workload

L —

Query plan trees Testing workload

Join Encoder
.

Ozg node2ve 0000

Q000

Column Column l:mbeddmg ; B
Relationshi ” z
lonsup [e]e)e)e)
Join Encoder Embedding

Traverser Type Encoder Feature Sequence

[Filter Encoder Encoder

Information Encoder

Node Sequence

Training
Compressor
IS

O X Data
00 Sampling
Sampling Stratcgics

j;-} e *é:";l

S aS a5 [aS as

13
@r\q
M)

‘v‘

Fig. 1: BICE Framework Overview

of Deep Set to compute tables, joins, and filters. QPPNet [10]

designs a neural network based on a tree structure, where the

upper layer’s network takes the lower layer’s output as input.

The encoding method of TPool generates a lot of redundant

information, and the representation layer also contains many

parameters, resulting in high computational complexity. The
above models require high training or inference costs, which
hinders them from applying to more real-world scenarios.

Limitation III: poor data adaptability. Although neural
networks have been used successfully in many fields [24],
they apply simply in cardinality and estimation. For instance,
MSCN [8] only uses a four-layer linear neural network as the
output model, and QPPNet [10] equip with a simple five-layer
linear neural network for each node. However, a single model
cannot fit all kinds of queries.

To tackle these limitations, we propose a cardinality and
cost estimation framework based on Bidirectional Compressor-
based Ensemble Learning (BICE). Specifically, we design
four sub-encoders to encode various information in the query
plan tree efficiently. Then we use a compressor to reduce
the learning difficulty of the estimation model and build an
ensemble model based on Bayesian neural networks and active
learning to enhance the data adaptation of the estimation
model. Moreover, we employ transfer learning to efficiently
obtain the cost estimation model to estimate both the cardi-
nality and the cost.

Our contributions can be summarized as follows:

e We propose a novel framework, namely Bidirectional
Compressor-based Ensemble Learning (BICE), which can
estimate cardinality and cost simultaneously and efficiently.

« We propose a query plan tree-based feature extractor con-
sisting of four sub-encoders and use graph embedding and
parallel networks to encode joins and filters efficiently. Then
we design a compressor based on a bidirectional network
that can learn the feature extractor’s encoding output and
reduce the estimation model’s learning difficulty, which
solves Limitations I and II.

« We establish an ensemble model based on Bayesian neural
networks and active learning, where estimating cardinality
and cost estimations combine through transfer learning. This
model can estimate the cardinality and cost accurately and
improve the efficiency, which solves Limitation III.

« We report on experiments using the public JOB and TPC-
H datasets, offering evidence of the effectiveness and effi-
ciency of the proposed framework.

The remainder of the paper organizes as follows. Section II
covers preliminaries. The BICE framework is detailed in

Section III, followed by coverage of experimental results in
Section IV. Section V surveys related work, and Section VI
concludes the paper.

II. PROBLEM STATEMENT

Definition 1 (Query Statement): () represents a set of query
statements, and ¢ is a query statement in (). ¢ consists of
several elements in a join set J = {Jy,Ja,...,J;n} and a
filter set F' = {F1,Fy,...,F,} (e.g., SELECT COUNT(*)
FROM Relationy, Relationo, WHERE J; AND J; AND F}
AND F5;), m and n denote the numbers of joins and filters,
respectively. J; (¢ € [1,m]) is a join condition for two columns
(e.g., t.id = mec.movie_id) and F;(i € [1,n]) is a filter
condition for a single column (e.g., t.id > 4).

Definition 2 (Query Plan Tree): The query plan tree is
an execution plan estimated by the DBMS using traditional
algorithms. It consists of several nodes, each with a unique
type (e.g., HashJoin, NestedLoopJoin, etc.), and may
contain the join or filter conditions.

Problem Statement. Given an unseen query statement g,
our problem estimates its cardinality C'(¢) and cost T'(q) by
trained f, where f(q) = (C(q),T(q)), C-(q) denotes the real
cardinality, and T, (¢) denotes the real execution time, and
make C'(q) and T(q) close to the real cardinality C,.(q) and
the real execution time T'.(q).

III. FRAMEWORK AND METHODOLOGY

We propose a framework, namely BICE, to estimate car-
dinality and cost. We first overview the framework and then
provide specifics on each component.

A. Framework Overview

Fig. 1 shows the framework of BICE, which consists
of five components, i.e., data preparation, feature extractor,
compressor, and training.

Data Preparation. The data preparation component sets up
a DBMS environment and imports a dataset. This component
generates the query statements based on the dataset and obtains
the corresponding query plan trees (e.g., EXPLAIN command
in PostgreSQL) through the DBMS.

Feature Extractor. We design a join encoder in the fea-
ture extractor, which can embed all columns based on their
relationships. Then a feature encoder is given, including four
sub-encoders, i.e., a trained-to-join encoder, a type encoder, a
filter encoder, and an information encoder. The feature encoder
encodes a sequence of nodes obtained by a traverser into a
node embedding sequence.

Compressor. The node embedding sequence feeds into the
compressor component composed of two LSTMs, where one
LSTM enhances its learning ability for different historical
information (of the nodes) by inverting the sequence. As a
result, we generate a series of compressed node embeddings.

Training. In the training phase, we obtain the trained
Bayesian neural networks and then use different active learn-
ing strategies to sample the data. For different sampling results,
we use transfer learning to get multiple models with additional
capabilities, based on which ensemble learning is employed to
learn the cardinality and cost.

B. Data Preparation

BICE needs to obtain the prior knowledge from DBMS, i.e.,
using the underlying query optimizer of DBMS to produce
query execution plans for query statements [21]. Getting the
query plan trees according to the above method has the
following advantages:

High Computational Efficiency. The query optimizer uses
a coarse-grained sampling method (e.g., histogram) to estimate
statistics to generate a query plan tree, which achieves high
computational efficiency.

Prior Knowledge Acquisition of DBMS. The query op-
timizer has been studied for decades [25], which contains
many basic rules for statistics computation [26]. For example,
PostgreSQL calculates the cost according to the weighted sum
of CPU cycles and IO usages [25]. Although they are not
closely related to the actual cardinality and cost, BICE can
leverage those estimations made by the query optimizer to
make accurate predictions. We will analyze this advantage
further in Section III-C.

C. Feature Extractor

The proposed feature extractor aims to encode the query
plan tree obtained in Section III-B into a corresponding vector
sequence. Specifically, we get the node sequence of the query
plan tree by a traverser, and then each node is input into the
feature encoder that consists of four sub encoders, as shown
in Fig. 1. Finally, we splice the obtained vector of each node
to get a vector sequence.

1) Traverser: The first job that feature extractor does after
accepting the query plan tree is to obtain its corresponding
node sequence through traversing. We choose Depth First
Search (DFS) [27] as the traversal method for BICE. The se-
quence we obtain with different traversal methods will impact
the final result because some tree nodes may have complex
relationships with their child nodes and parent nodes [21].
Using a universal traversal method to represent a plan tree by
a vector takes a lot of work. Instead, we use a bidirectional
method to solve that in Section III-D.

2) Join encoder: Section II decomposes a query statement
into several joins J with filters F. The role of join encoder
is to encode join keys (e.g., t.id = mc.movie_id). TPool [7],
QPPNet [10] and MSCN [8] use one-hot encoding for join
types and columns, but they fail to represent columns with

underlying relationship (e.g., the foreign key constraint). Fur-
thermore, the above encoding methods lead to sparse problems
in complex joins, increasing the learning difficulty.

The success of graph embedding algorithms in many
fields [28] inspires us that if all relationships between columns
in the database are extracted and considered as undirected
graphs for embedding, it not only solves the sparsity problem
but also makes the encoding contain more rich information.

Based on the above observations, we can use an undirected
graph to represent the relation model for a database. Specifi-
cally, we leverage a node2vec algorithm [29], [30] to embed
all columns, defined as follows: e; = node2vec(c;), where ¢;
and e; denote the ¢th column and its corresponding embedding
in the database, ¢ (1 < ¢ < n.) is an integer, and n. is the
number of columns.

After obtaining the embedding corresponding to each col-
umn by node2vec, as shown in Fig. 2, next, we use column
embeddings to represent their join keys.

We use the prior knowledge of DBMS to decompose several
joins in a complex query statement into several nodes [21],
[25], [31], where the join condition of each node is only
composed of two columns, so we can directly connect the
embeddings of the columns to obtain fixed-length FE;(J)
corresponding to the joins J. It is worth noting that the order
of the columns in the join condition does not affect F;(.J),
e.g., t.id = mc.movie_id and mc.movie_id = t.id, where
t.id and mc.movie_td are the same join condition in the join
encoder. When some nodes do not contain join conditions, we
use an all-zero vector to represent this situation.

3) Type Encoder: The type encoder encodes the types of
nodes (e.g., HashJoin, Nested LoopJoin, etc.), and the node
types in query plan trees have the following properties:

Limited Number of Types. We consider nine node types,
including ‘Sequential Scan’, ‘Index Scan’, ‘Bitmap Index
Scan ’, ‘Bitmap Heap Scan’, ‘Index Only Scan’, ‘Hash Join’,
‘Merge Join’, ‘Nested Loop Join’ and ‘Hash’. In addition, we
can easily add other node types to BICE.

No Obvious Relationship Between Different Types. The
operators in DBMSs are independent of each other. Therefore,
it is feasible to presuppose that all node types do not have any
relationship with each other and then to inscribe their possible
relationships by models.

Based on the above observations, we use one-hot to rep-
resent the node types, i.e., obtaining Ep(T") corresponding
to node types 7. As shown in Fig. 2, a node type (e.g., Seq
Scan) is input into the type encoder to obtain its corresponding
encoding, which has nine bits since we consider a total of nine
node types. Note that we can easily extend the type encoder
with more classes based on different execution engines.

4) Filter Encoder: Filters (e.g., t.kind_id < 4) are one
of the most complex conditions in nodes, which encode three
data types: columns, operators (i.e., >,<, and =), and values.
Previous one-hot encoding studies [7], [10] are not expressive
enough to represent such complex information, hindering
learning progress. Fauce [12] uses ranges to represent the
information in filters and achieve more accurate experimental

Join encoder Execution Plan

column embedding

tid [0.46,0.53,...,0.28

"Join Condit

Type and Filter Encoder

NG

Type Encoder

[000100000]

“Node Type": Hash Join
pan

[0.74,0.39,...,0.51 "Join Condition": me.comy

1y_type_id= ct.id

Seq Secan
Node Type
Hash Join

000001000;
"Filter": title.id < 4 ! !

| | "Node Type" Seq Scan |

[0.48.0.41,....0.78,

Nested Loop [000010000]

1
1
1
1

1046053, 048.0.41...) ci.movie_id

“Node Type": Hash Join
"Join Condition": mc.movie_id= mi_idx.movie_id

[0.21,0.33,....0.57

"Node Type": Hash Join
“Join Condition": mi_idx.info_type_id= it.id

‘ tkind_id<4 }—v{ Filter encoder }—v{ [0.14,057....]

join embedding

Fig. 2: An Example of Encoding

results in the application scenario based on query statements.
However, directly using range encodings for all nodes in the
query plan tree will lead to difficulties in model learning
because the model needs to simultaneously learn the range
representations of many nodes in a query plan tree. Based on
the above considerations, we design a filter encoder based
on range representations and parallel networks, which can
represent the information in the filter well and reduce the
learning difficulty of the model.

DNNs exhibit success across various fields but need help
with multi-categorical information. Parallel DNNs tackle this
issue by independently processing distinct information cate-
gories in separate networks. This approach excels in multi-
categorical data scenarios [32]. With its maximum and min-
imum column values, range representation exemplifies such
classification. The procedure unfolds as follows:

First, ~we extract the range representations
[Vl'ma;c7 27naw’ . VT'ZL@J,] and [V'l'min7 V'Qmin7 e Vgrcwn] of
all columns from the dataset, where V;"%* and V;™" are the
maximum and minimum values of the ith column, i € [1,n.],
and n,. is the number of columns. We use two vectors
Vmaz and V™in to store maximum and minimum values,
respectively. For three different operators in the filter, we
design the corresponding encoding rules as follows:

a) ¢; > value: Let V™" in the V™™ vector be value.

b) ¢; < value: Let V%" in the V%" vector be value.

¢) ¢; = value: Let V™™ in the V™" vector be value,
and V%% in the V'™%* vector be value.

The encoding of the filter is obtained by reading all the op-
erators in the node and modifying V"% and V""" according
to the above rules. After that, the two parts (i.e., maximum and
minimum) of the encoding are input into two parallel networks
to get the final encoding of the filter:

R™*(F) = ReLU(R™(F) % Winaz + bpaz) (1)

R™™(F) = ReLU(R™"(F) x)

where R™%(F) and R™"(F) are the vectors obtained by
modifying V™% and V™" respectively. Wiae and Wi
denote the weights of neural networks for the maximum and
minimum values, respectively, and b,,4, and b,,;, denote
the bias of neural networks for the maximum and minimum
values, respectively. R™%*(F') and R™"(F) are the encodings
of maximum and minimum values in the range representation,
respectively. The method to get the final encoding is defined
as follows:

Ep(F) = [R"*(F), R"" (F)] 3)

Ep(F) = ReLU((Ep(F) * Wg + bp)) “4)

where Wy and br denote the weights and bias of the neural
network for the encoding, respectively, and Er(F) is the
final encoding corresponding to the filter F'. Same as the
join encoder in Section III-C2, we use a full range vector
to represent the case where no filter exists in the node.

5) Information Encoder: We proceed to detail the informa-
tion encoder.

The query plan tree contains the prior knowledge generated
by the DBMS using traditional estimation methods [21]. We
fully utilize it to make the model stand on the shoulders of the
DBMS for estimation. Therefore, we designed an information
encoder to encode the prior knowledge generated by DBMS
(e.g., PostgreSQL) as follows: E;(I) = [C'(p), T’ (p)], where
I is the statistic information in the nodes of the query plan
tree, C’'(p) and T'(p) represent the estimated cardinality and
cost of the query plan p (including sub-plans) by the DBMS,
respectively, and F;(I) denotes the encoding corresponding
to the statistic information I.

The feature encoder splices the encodings output by four
subencoders, i.c., Eq(q) = [Es(J), Er(T), Er(F), Er(I)].
To make the encoding more beneficial for the calculation of
subsequent models, we design a layer of neural network in the
feature encoder to learn EQ(Q), which is defined as follows:
Eqo(q) = ReLU(Eqg(q) * Wg + bg), where Wg and bg
represent the weight and bias of the neural network, and Eg(q)
is the encoding corresponding to the query statement g. The
feature extractor extracts rich information from the query plan
tree and represents information into a learnable dense feature
vector, which lays a foundation for the subsequent model.

D. Compressor

We acquire ¢’s encoding Eg(q) using the feature extractor.
However, directly inputting it into networks (e.g., DNN) for
estimation poses issues.

Rich Information. E(q) consists of complex vector se-
quences, leading neural networks to local optima or overfit-
ting [24].

Temporal Relationship. The node sequence, discussed
in Section III-C1, contains temporal information, which is
challenging for traditional neural networks to learn [33].

TPool [7] uses LSTM for node sequences but faces for-
getfulness and learning issues [34]. QPPNet [10] employs a
tree-structured convolutional neural network, accurately rep-
resenting execution order but losing information with added
layers [21], [31] (Section III-C4).

Taking advantage of bidirectional RNNs [35], [36], we
implement a two-layer bidirectional LSTM model to capture

the encoding sequence within our approach effectively. The
reversed LSTM is represented as h = LSTM(s; W), and
the second LSTM is defined as h = LSTM(3; Wr). The
LSTMs operate independently, enabling parallel computation
and minimal time overhead. The final compressed encoding
is Ec(s) = [h,h], compensating for potential information
loss in longer sequences. The compressor outputs a fixed-
length compressed vector Ec(Eqg(q)), denoted as E, when
the context is clear.

E. Ensemble Learning

Section III-D tackles two estimation challenges, but accurate
actual cardinality C..(q) and execution time T;.(q) estimation
remains complex. Existing models disregard data distribution
characteristics, including diverse data types/ranges and skewed
distribution.

Ensemble learning models excel by integrating multiple
models’ results [37], [38], addressing two primary issues:

Problem 1. Data classification based on characteristics.

Problem 2. Developing models with varying capabilities.

We propose an ensemble learning component using a
Bayesian model to train the compressor, applying diverse,
active learning strategies and designing an ensemble model
for cardinality and cost estimation.

1) Bayesian Model: The data often possess strong random-
ness, and traditional neural networks presuppose that the data
will obey a specific mathematical distribution, which usually
does not correspond to the actual situation. In recent years,
Bayesian neural networks (BNN) have achieved success in
many fields [39]. It is a stochastic neural network with a prob-
ability distribution over the weights and is to find the posterior
distribution of parameters, which can measure uncertainty in
the neural network. We use the MC_Dropout [40] method
to build a BNN as follows: fp(¢|Wg) = C(q), where Wp
represents weights of neural networks. We use a 3-layer fully
connected neural network with the MC_Dropout method to
build a BNN and use C(Q) to estimate the cardinality of the
BNN output. We will introduce the process of estimating cost
T(Q) in Section II-E4. fp accepts the fixed-length vectors
output by taking compressor as input and outputs the estimated
cardinality. The parameters in fp and compressor can be
updated by calculating the loss and backpropagation. We use
the g-error metric [8] for training and testing. Based on the
g-error function, we define the loss function as follows:

1 &
Loss = g-error(Cr(q), po Z fB(q|Wg)) ©)
i=1

where np represents the number of computations of the
Bayesian neural networks fp for the same sample. Since solv-
ing the posterior distribution is a time-consuming task [39],
we use ﬁ "2 fB(q|Wg) to approximate the mathematical
expectation of fp(q|Wg), and then update the parameters in
fB and compressor through backpropagation based on the
Loss function.

Finally, we finish training fp and compressor, which en-
ables the compressor to adapt to more data types by introduc-
ing uncertainty into neural networks and lays the foundation
for data sampling in Section III-E2.

2) Data Sampling: This section proposes a solution to
Problem 1. Active learning aims to explore how to learn
models with less training data, i.e., finding which data is
more meaningful for training and obtaining data samples with
specific characteristics by designing different strategies. We
design a total of four strategies for data sampling as follows:

Strategy 1: Uncertainty of BNN. We can obtain the
uncertainty of the data based on the characteristics of BNN,
i.e., finding data samples that generate an output with consid-
erable fluctuation. We use variance to describe this uncertainty,
defined as follows:

1 np
Var(q) = s > (f8(alWs) - fs(aWs))* (6

i=1

where fp(q|Wpg) is % SorP f(g|Wg). After that, we select
the top k% of the data with greater variance to obtain a data
sampling set.

Strategy 2: Upper Confidence Bounds with Uncertainty.
We obtain data samples with uncertainty by Strategy 1 but do
not take into account the bias (i.e., g-error) in the estimation.
The Upper Confidence Bounds (UCB) is one of the classical
algorithms in reinforcement learning. In our problem, the
reward value is the opposite or multiplicative inverse of
g-error (i.e., minimizing g-error), defined as follows:

Ueb(q) = Var(q) + Max(q1,q1, -y qny) @)

where ¢;(i € [l,np]) is the g-error corresponding to
fB(Q|Wg). We select the data with larger g-error for retrain-
ing to maximize the reward value. Since some query retrain-
ing brings only a small improvement, we retain uncertainty
to comprehensively judge which data is more valuable for
training [41]. As in Strategy 1, we select the top k% of the
data with the larger value in Ucb(Q).

Strategy 3: Diversity Sampling Combined with Strategy
1. Diversity sampling aims to obtain a more affluent sample
of data, which is a more exploratory strategy than Strategy
1 and Strategy 2, and can effectively avoid the problem of a
single sample type based on indicators alone. Therefore, we
design Strategy 3 by combining the existing diversity sampling
methods [42], [43], i.e., first clustering the fixed-length vectors
outputted by compressor using a k-means algorithm, and then
selecting the top k% of data in each category with greater
uncertainty (obtained by Var function).

Strategy 4: Diversity Sampling Combined with Strategy
2. Similar to Strategy 3, in Strategy 4, the top k% of data
with larger value (obtained by Ucb function) in each cluster
obtained by k-means are selected.

We denote the set of data samples obtained through Strate-
gies 1 to 4 as D = {D, D2, D3, D4}. Besides, we use min-
max normalization to eliminate the effect of different data
ranges of variance and g-error on Ucb(q).

3) Ensemble Model: Problem 2 can be solved well by
ensemble learning. We use the Bagging method in ensemble
learning [38] to obtain different models by training on diverse
data sample sets D, and fuse these models for different data

types to form an ensemble model for cardinality estimation,
defined as follows: C(q) = = > fc,(q|[We,), where m is
the number of models in ensemble learning. We have extracted
four data sample sets, i.e., m = 4, and W, represents the
weight of the i-th cardinality estimation model.

4) Transfer Learning: Since the cardinality and cost often
strongly connect with each other [26], [44] and the ensemble
cardinality estimation model is established, we can utilize
transfer learning to build a cost estimation model. Therefore,
we adopt a full-parameter update strategy of inductive learning
in transfer learning [45], [46] to obtain the cost estimation
model. fo,(1 < i < m) has the ability to estimate the
cardinality. We use the relationship between the cardinality and
cost to update the parameters of f¢, using the transfer learning
strategy based on the data samples obtained in Section III-E2,
i.e., fci — fT1

Finally we can define f as follows:

F= G D fe a3 naW) ®

where Wr, represents the weight of the ith estimation model.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

1) Datasets: We select four commonly-used query state-
ment sets based on IMDB [2] and TPC-H [47] datasets.
IMDB includes 22 tables with a total of 3.6GB of data. We
set the scale of TPC-H to 10, i.e., including eight tables
with a total of 10GB of data. The query workloads are
as follows: a) JOB-light: JOB-light [8] based on the IMDB
dataset has 70 queries, including 1-4 joins. b) Scale: Scale [8]
based on the IMDB dataset, which has 500 queries, including
0-4 joins. c¢) Synthesis: Synthesis [8] based on the IMDB
dataset, which has a total of 5000 queries, including 0-2 joins.
d) TPC-H (test): TPC-H (test) has 2200 queries generated by
qgen [47] and based on 22 templates provided by TPC-H,
including 1-8 joins.

The above four datasets are our workloads for testing.
For IMDB, the training data is 100,000 queries provided by
MSCN [8], which includes 0-2 joins. For TPC-H, we generate
22,000 queries for training based on the same templates.

2) Evaluation Methods: We compare BICE with various
representative cardinality and cost estimators.

PostgreSQL [31]: PostgreSQL uses histogram and heuristic
search to estimate the cardinality and cost. Since the unit of
cost estimated by PostgreSQL has no practical significance,
we only use it for cardinality estimation. MSCN [8]: MSCN
is a cardinality estimation model based on query statements. It
uses the idea of Deep Set to process tables, joins, and filters.
QPPNet [10]: QPPNet is a cost estimation model based on
the query plan tree, which designs different neural networks
for computing the information of different types of nodes.
TPool [10]: TPool designs a feature extraction algorithm
based on the binary tree, encodes information such as filters,
joins, and node types, and adds Sample bitmap encoding to

improve the accuracy of the estimation. QueryFormer [20]:
QueryFormer uses a tree-structured model combined with the
attention mechanism, which applies to multiple estimation
problems in database optimization.

3) Metrics: We use g-error [8] to evaluate the accuracy of
cardinality and cost estimation. We also evaluate the efficiency
of the models, including the training and testing time.

4) Implementaion Details: The implementation details of
our experiments are as follows:

Parameters Setting. The length of the embedding vector
obtained by node2vec is 32, i.e., |e;| = 32. The number of
neurons for Wi, Winaz, and Wp in the filter encoder is 32,
32, 64, respectively. We process the range representation with
min-max normalization before input into the neural network.
In the compressor, the numbers of neurons in the hidden layers
of LSTM and LSTM are 139 (determined by the output
of the feature extractor), and set ng to 20 (which we will
cover in Batch Training), so the length of the vector output
by the compressor is 278. The numbers of neurons in all
layers of the Bayesian neural networks (i.e., Wg) and the
ensemble model (i.e., Wz and Wyp) are [278, 128, 64]. The
last layer is processed using a Sigmoid nonlinear activation
function. The proportion %k of data sampling by active learning
in Section III-E2 is 25 (i.e., we sample 25% of the data each
time). Finally, we use 10% of the training data as the validation
data, update the parameters by the Adam algorithm [48], and
set the learning rate to 0.0001.

Batch training. Training efficiency is one of the essential
metrics to measure the model QPPNet [10] and TPool [7]
can only encode binary trees. In contrast, QPPNet has to
use different networks for computation when facing different
shapes of trees. Our BICE can accept arbitrarily shaped trees
as input (based on the nature of the traverser in Section III-C1),
but the lengths of sequences obtained by the traverser are not
fixed. Thus we propose two batch training methods.

The first training method is sequence-based batch training.
Considering that QPPNet classifies trees of different shapes
and performs batch training in each category, we classify
sequences according to their lengths, perform batch training
on sequences of the same length, and use fewer data categories
compared to QPPNet (because trees of different shapes may
have the same numbers of nodes).

The second training method is padding-based batch training.
This method is widely used in many fields to obtain fixed-
length sequences by padding unequal sequences. We use this
method for batch training, where the batch size is 128.

Hardware and Platform. The hardware devices and plat-
forms used in our experiments are as follows: the CPU is
Intel(R) Xeon(R) CPU ES5-2650 v4@2.20GHz, the GPU is
GeForce GTX 1080 Ti, the DBMS selected is PostgreSQL
10.17, the algorithms are implemented based on Python 3.7.10,
and the deep learning framework is Pytorch 1.8.1.

B. Experimental Results

1) Overall Accuracy: Tab. I shows the g-error of BICE
and other models in terms of cardinality and cost estimation,

TABLE I: Cardinality and Cost Errors

Cardinality Errors
Datasets JOB-light Synthetic Scale TPC-H (test)
50th | 90th 95th 99th max mean | 50th | 90th 95th | 99th max mean | 50th | 90th | 95th | 99th | max mean | 50th | 90th 95th 99th | max | mean
PostgreSQL 7.93 164 1104 2912 3477 174 1.69 9.57 239 465 373901 154 259 200 540 1816 | 233863 568 2.35 422 257 478 1542 20.3
MSCN 3.82 78.4 362 927 1110 579 1.18 332 6.84 30.5 1332 2.89 142 | 374 140 793 3666 35.1 2.52 14.4 26.1 57.2 102 18.7
QPPNet 3.52 44.6 1345 | 205.3 247 28.4 1.25 4.23 7.59 28.4 294 248 1.47 | 425 137 453 1243 26.4 2.13 7.46 18.5 30.4 87.3 8.46
TPool 3.73 50.8 157 256 289 249 1.20 3.21 6.12 252 357 2.87 143 | 388 139 469 1892 28.1 225 332 42.6 84.9 108 13.5
QueryFormer | 2.31 258 42 81 109 233 114 3.31 6.83 29.5 451 2.65 142 | 458 153 409 952 257 227 8.53 16.2 35.8 93 8.41
BICE 2.62 | 10.78 | 11.29 | 20.89 | 33.56 5.10 1.23 2.54 6.05 235 236 2.30 1.37 | 40.8 148 320 549 194 2.22 6.84 17.5 226 | 64.2 6.54
Cost Errors
Datasets JOB-light Synthetic Scale TPC-H (test)
50th | 90th 95th 99th max mean | 50th | 90th 95th | 99th max mean | 50th | 90th | 95th | 99th | max mean | 50th | 90th 95th 99th | max | mean
MSCN 3.03 54.5 184 397 549 17.3 2.01 1773 | 334 108.4 823 8.34 1.72 10.8 | 325 245 593 7.31 4.12 | 1453 | 3847 | 495 169 6.74
QPPNet 1.67 12,5 21.4 83 113 521 1.44 4.49 8.18 48.1 516 3.77 1.31 | 6.38 14.7 59.4 274 4.57 1.29 4.83 8.36 164 | 419 3.51
TPool 1.85 132 229 95 123 5.81 1.49 4.33 10.2 55.8 624 4.16 1.56 | 5.56 122 | 68.6 254 4.41 1.94 9.23 22.1 34.1 94.7 4.57
QueryFormer | 1.54 16.3 29 126 237 115 1.16 4.03 10.5 458 294 15 1.47 | 593 13.8 53.1 219 4.52 1.50 5.81 9.64 15.8 37.5 4.01
BICE 1.74 115 173 52 73 3.78 1.39 358 124 371 385 3.25 1.58 | 584 | 9.57 | 43.7 187 3.86 1.54 4.23 6.38 13.7 | 328 3.18
) = w0 oy for joins and filters, which makes the encoding sparse and
increases the learning difficulty of the model for many queries.
“ BICE encodes different types of information through four sub-
£ encoders and applies compressor to obtain fixed-length vectors
10

(a) Average training time (b) Average testing time

Fig. 3: Average Training and Testing Time

from which we draw some conclusions as follows:

The cardinality estimation accuracy of the learning model is
significantly higher than PostgreSQL, and BICE outperforms
PostgreSQL in terms of mean metrics by 33 times, 66 times,
28 times, and two times on the four workloads, respectively.
The models based on query plan trees (i.e., QPPNet, TPool,
QueryFormer, and BICE) outperform those based on query
statements (i.e., MSCN).

In the cardinality estimation, BICE outperforms the optimal
model (i.e., QueryFormer) on the four workloads by 3.5 times,
15%, 32%, and 28% for the mean metric, and by 2.3 times,
91%, 73%, and 45% for the max metric, respectively. In the
cost estimation, BICE outperforms QueryFormer on JOB-light,
Scale, and TPC-H (test) by two times, 17%, and 26% for the
mean metric and by 2.2 times, 17%, and 14% for the max
metric, respectively.

The main reason for the better performance of the query
plan tree-based estimation model is its ability to exploit richer
information and prior knowledge of the DBMS, as analyzed
in Section III-C, and thus perform better on many queries,
incredibly complex queries. Almost all models (including
PostgreSQL) perform better on TPC-H workloads because
TPC-H is based on algorithmically generated datasets [47],
while IMDB is actual data collected from life with more vital
uncertainty, so the estimation of workloads based on the IMDB
dataset is more difficult [2].

QueryFormer uses linear networks to learn the encoding of
the query but does not learn the information contained in the
database. QPPNet and TPool are close in estimation accuracy
for many workloads. Still, they use a one-hot encoding method

to reduce the difficulty of model learning further, and finally
builds an ensemble model that can adapt to a broader range
of data types, so BICE is better at estimating many queries
including complex ones.

TABLE II: End-to-End Performance

End-to-End Time Exec. + Plan Time Improvement

PostgreSQL 4.93h 4.93h + 5s 0.0%
TrueCard 4.27h 4.27h + 5s 13.4%
MSCN 4.67h 4.67h + 24s 5.3%
QPPNet 4.62h 4.62h + 41s 6.2%
TPool 4.65h 4.65h + 46s 5.6%
QueryFormer 4.57h 4.57h + 28s 7.3%
BICE 4.51h 4.51h + 19s 8.4%

We use the CEB framework to replace cardinality estimates
obtained from PostgreSQL and carry out end-to-end evalu-
ations. Tab. II displays the aggregated results. As the data
reveals, apart from TrueCard, BICE showcases the most pro-
nounced improvement and the shortest plan time. In contrast,
QPPNet and TPool also use query plan trees, which generate
215% and 242% of BICE’s time, respectively.

2) Efficiency: Fig. 3 shows BICE’s average training time
and testing time with other models for all queries. In the
testing phase, IMDB includes three workloads, i.e., JOB-
light, Synthetic, and Scale, and TPC-H has one workload, i.e.,
TPC-H (test). We use the ANALYZE command to represent
PostgreSQL’s learning of IMDB and TPC-H, and use the
EXPLAIN command to obtain testing results. We record the
training and testing times for the rest of the models. We
can see that the model’s efficiency based on query state-
ments is significantly higher than those found on query plan
trees. MSCN is the most time-consuming model based on
query statements because its Deep Set application and bitmap
calculation consume extra time. The upper layer neurons of
QPPNet need to wait for the output results of the lower layer
to run, and the tree convolution network’s parameter scale is
large, significantly impacting its efficiency. The tree-structured

Cardinality Errors on Workloads

=
2
d

oo
XX
2

77
%
s2etetold

0
<
oot

Ye%e%%%

1%

XX
XKL
RIS,
—
XXX
KL
%%

0o
%5
R

Zs

Cardinality mean g-errors
Cardinality mean g-errors
%

'.
X
o

%
25
Pevetets

SR,
X KK
SEBREE
—
X2

e

R

]2

A s

» PR XL © o@ KOCE
At s 0N o
¥ \d,ee %X e\@ AT oC

A

P
&

» & R N IR o

o G DT S AT

o 9 @50 GG o o
A

(a) JOB-light (b) Synthetic

Cost Errors on

%%
XXXXX
eI

%2
%
oot

T,

0% %%
KRR
batetetetetots

JO0RRAAXA
0202626205 % % |
oFetotototetetetes

77
%
o2e!

%
%

Cost mean g-errors
77
o
SR
Cost mean qg-errors
—
S

&

<7
&

&

2
%

—
XK

XX

%

<
%S
X%
KR
CHRRK:
RRKK
ROBEES

o
X

0%
%
620!

0

\
N Vmﬂ 5 “0\&%\0‘
AN S

<

N PR PR P I N
~ PSRN RO AR (o e
P o o V)\cﬁ’\é;\c‘c’ o ot

®

ol
'a\"% o

(e) JOB-light (f) Synthetic

IR
o %%
oSetetotels

o]
X
5
XX
XXX
B

—
%
28%%

<2

o%
%

oo

%S
202!

&
s
K
B

o
R

25
X

X
020!

557
oo

R
XX
XXX
XX KX
foatete!

!

7
5
=

0%

<
o%
o oo
%9t

Cardinality mean g-errors

ZHRL
et
[
2R
SRR

&S
s

%2
X
XX
X
%

2
%
282

KX

o owe",\n‘%\cﬁ SR e AP S LR Ne 2

A & N N
PSR) IS ™
A2 SO P CS IS
R Sttt s \a@:\c@sa“%\c“ A e o ™
(c) Scale
Workloads

g4 00
g 1% %5558
i oo KX
& [o3ece! 03050
c? 1% 1%
© KXX] KKK
o 9006 [95%%
o2e%l o2 %l
£ [03%] XX
2 14 1554
g o358 o905
8 KXY e

Xz
%
o2e3eS
RIS
X KK
ofefete?

KL
3K
RRRRS:
e
25
%
R

==

» S GO 0@ (0E ® S WG @ Ok
D S T o BRI
87 (@50 ¥ oC oF o 9 T oo oF o
? ?

(g) Scale (h) TPC-H (test)

Fig. 4: Ablation Study of BICE

model in QueryFormer contains many parameters, resulting in
a high calculation cost. TPool extracts information from the
plan based on a one-hot encoding method and adds bitmap,
which results in ample space occupied by its encoding.

In BICE, the encoding is made as simple and efficient as
possible by the feature extractor, the compressor reduces the
learning difficulty of the estimation model, and the bidirec-
tional LSTMs (i.e., LSTM and LSTM) can compute in
parallel. Although we build an ensemble model composed of
multiple models based on active learning and transfer learning,
it only requires one additional training (because we extract
4 x 25% = 100% of the data). Furthermore, only lightweight
networks (i.e., three-layer fully connected neural networks)
need to be updated when building the ensemble model. Thus
the computational efficiency of BICE is comparable to some
query statement-based models, with lower training and testing
time than MSCN, QPPNet, TPool, and QueryFormer.

C. Ablation Study

In this section, we analyze the impact of critical components
of BICE on the estimation accuracy, including the feature
extractor, compressor, and an ensemble model.

Feature Extractor. As shown in Fig. 4, BICE-NoJoin,
BICE-NoPre, and BICE-Nolnfo represent our ablation studies
on feature extractor. BICE-Nolnfo that is BICE without the
information encoder. BICE-NoJoin uses the join encoding
method in MSCN (based on one-hot encoding) and without
the join encoder. BICE-NoPre uses the filter encoding method
in TPool without the filter encoder.

From the figures, we can see that BICE is significantly better
than the other three models, BICE-NoJoin and BICE-NoPre
performing worse because BICE-NoJoin does not consider
the relationships between columns, and BICE-NoPre’s encod-
ing has the sparsity problem, which increases the learning
difficulty. Therefore, the join encoder, filter encoder, and

information encoder in BICE have a positive impact on the
estimation accuracy.

Compressor. To study the effect of the compressor on
BICE, we evaluated two variants: BICE-LSTM and BICE-
LSTM2. BICE-LSTM that uses a single LSTM and without
the compressor. BICE-LSTM?2 uses two-layer unidirectional
LSTMs without the compressor. As shown in Fig. 4, the
accuracy of BICE-LSTM is the worst, and the efficiency of
BICE-LSTM?2 is lower than BICE (because the LSTM of the
upper layer needs to wait for the output of the lower layer in
BICE-LSTM?2). Still, the estimation accuracy of BICE-LSTM2
is lower than BICE. Therefore, the bidirectional LSTMs-
based compressor can effectively learn the information in the
encoding.

Batch Training. In Section IV-A4, we propose two
batch training methods, and the method adopted by BICE
is padding-based batch training. BICE-SeqBatch that uses
sequence-based batch training for batch training, and we can
see from Fig. 4 its estimation accuracy is lower than BICE.
The batch training method of BICE can adapt to a broader data
range (because longer node sequences may appear in the test
set), and the compressor can effectively avoid the knowledge-
forgetting problem caused by padding.

TABLE III: Results of Different Data Sampling Strategies

Mean q-errors (cardinality)

JOB-light | Synthetic | Scale | TPC-H(test)
BICE_strategy 12 7.89 2.67 21.9 7.81
BICE _strategy13 7.23 2.53 22.7 7.21
BICE 5.10 2.30 19.4 6.54

Mean g-errors (cost)

JOB-light | Synthetic | Scale | TPC-H(test)
BICE_strategy12 3.98 3.41 4.01 3.79
BICE_strategy 13 4.02 3.39 3.92 3.24
BICE 3.78 3.25 3.86 3.18

Mean g-error

0 20 40 60 80 100 0 20 40 60 80 100
The value of k The value of k

(a) Cardinality errors

Fig. 5: Analysis of k

Ensemble Model. BICE-NoAl does not sample data
through active learning and without building an ensemble
model. As seen in Fig. 4, BICE-NoAl has the most significant
estimation error due to its lack of learning ability for multiple
data categories. Thus the ensemble model in BICE has a
significant positive impact on the accuracy of the results. The
value of the data sampling proportion k for active learning
also affects the estimation accuracy, which we will analyze in
the next section.

Analysis of Data Sampling. Fig. 5 shows the results of our
analysis for the value of k. The model is equivalent to BICE-
NoAl when k£ = 0 or £ = 100. As can be seen from the figure,
the error in the estimation results reaches a minimum when the
value of k is between 20 and 40, and when k < 20 or k > 40,
active learning plays a minor role. The data obtained for each
category based on different sampling strategies become more
similar, so the estimation accuracy decreases continuously.
Tab. III shows the effects of using different data sampling
strategies on the estimation results, BICE_strategy12 that uses
strategy 1 and 2 for data sampling, BICE_strategy13 that uses
strategy 1 and 3, and we set their k to 50 for a fair comparison.
From the table, we can see that the estimation errors of the two
methods are significantly higher than BICE because although
BICE_strategy12 selects data with training value, it selects
fewer types of data. In BICE_strategy13, it selects data with
a single indicator, making it difficult to measure the training
value of the data accurately. Therefore, the sampling strategy
designed in this paper positively impacts estimation accuracy.

(b) Cost errors

V. RELATED WORK

Cardinality and cost estimation are the core tasks in query
optimization, and accurate estimation results can effectively
avoid producing poor execution plans. Recently, many estima-
tion methods based on learning models have achieved better
results than traditional ones. In this section, we provide an
overview of the relevant models.

A. Data-driven estimation model

Naru [15] bases on an autoregressive model for learning
data, which encodes discrete data using one-hot encoding
or embedding, after which each row of data feed into the
autoregressive model and training complete by minimizing
cross-entropy loss. Naru computes by filters in queries and
shows promising results on single table queries. NeuroCard [6]
improves on Naru by proposing a weighted data selection
method that draws training data from a joined table. Like Naru,

it uses the cross-entropy function to calculate the loss and
update the parameters in the autoregressive model. Compared
with Naru, NeuroCard performs better on multi-table queries.
Quicksel [49] is a cardinality estimation method based on the
uniform mixture model. It extracts the ranges corresponding to
each column from the query to construct a rectangle, removes
many ranges from the queries, and uses quadratic program-
ming for learning. Finally, the weighted summation uses to
output the estimated result. Quicksel can efficiently perform
calculations on multi-table queries. Data-driven models have
been highly successful, with their estimates being more robust
than other estimation methods, but have poor performance for
scenarios with frequent data changes.

B. Query-driven estimation model

MSCN [8] designs a multi-set convolutional network based
on Deep Set for cardinality estimation, which extracts tables,
joins, and filters information from the query to input into dif-
ferent sets for calculation. It incorporates bitmap information
to improve the accuracy of estimation. The estimation error
of MSCN on multi-table queries is significantly lower than
that of traditional estimation methods. Fauce [12] also extracts
information from the query for encoding. For filter conditions,
it uses data range representation for encoding. For join con-
ditions, it uses an embedded method to learn the information
of columns. Due to the complex situation of multiple tables
joins in the query, it designs a multi-table join algorithm to
encode joins. QPPNet [8] is a cost estimation model based on
tree convolutional networks, which uses different neurons for
different types of nodes in the query plan, and the neurons in
the upper layer receive the information output from the lower
layer. QPPNet finally outputs the estimated cost corresponding
to the query plan. The query-driven estimation model has
unique advantages in multi-table queries and is less affected
by data changes. In addition, we can well add the estimation
model based on the query plan tree to the query optimizer to
find a better execution plan.

VI. CONCLUSION

We present a bidirectional compressor-based ensemble
learning framework for efficient cardinality and cost estimation
in query optimization. The framework encodes query plan
trees into embeddings and employs a bidirectional LSTM-
based compressor to obtain compressed embeddings. An en-
semble model utilizing Bayesian neural networks, active learn-
ing, and transfer learning is incorporated. Empirical studies
demonstrate enhanced accuracy and computational efficiency
compared to the state of the art.

ACKNOWLEDGMENT

This work is partially supported by NSFC (No. 61972069,
61836007, 61832017, 62272086), Shenzhen Municipal Sci-
ence and Technology R&D Funding Basic Research Pro-
gram (JCYJ20210324133607021), Municipal Government of
Quzhou under Grant No. 2022D037, and Key Laboratory of
Data Intelligence and Cognitive Computing, Longhua District,
Shenzhen.

[1]
[2]

[3

=

[4]

[5

=

[6]

[7

—

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

Ibm knowledge center. [Online]. Available: www.ibm.com

V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and
T. Neumann, “How good are query optimizers, really?” Proc. VLDB
Endow., vol. 9, pp. 204-215, 2015.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database management
system,” in SIGMOD ’79, 1979.

J. Sun, J. Zhang, Z. Sun, G. Li, and N. Tang, “Learned cardinality
estimation: A design space exploration and a comparative evaluation,”
Proc. VLDB Endow., vol. 15, pp. 85-97, 2021.

X. Wang, C. Qu, W. Wu, J. Wang, and Q. Zhou, “Are we ready for
learned cardinality estimation?” Proc. VLDB Endow., vol. 14, pp. 1640-
1654, 2021.

Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen, and
I. Stoica, “Neurocard: One cardinality estimator for all tables,” Proc.
VLDB Endow., vol. 14, pp. 61-73, 2020.

J. Sun and G. Li, “An end-to-end learning-based cost estimator,” ArXiv,
vol. abs/1906.02560, 2019.

A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper,
“Learned cardinalities: Estimating correlated joins with deep learning,”
ArXiv, vol. abs/1809.00677, 2019.

Z. Wu and A. Shaikhha, “Bayescard: A unified bayesian framework for
cardinality estimation,” ArXiv, vol. abs/2012.14743, 2020.

R. Marcus and O. Papaemmanouil, “Plan-structured deep neural network
models for query performance prediction,” ArXiv, vol. abs/1902.00132,
2019.

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaud-
huri, “Selectivity estimation for range predicates using lightweight
models,” Proc. VLDB Endow., vol. 12, pp. 1044-1057, 2019.

J. Liu, W. Dong, D. Li, and Q. Zhou, “Fauce: Fast and accurate deep
ensembles with uncertainty for cardinality estimation,” Proc. VLDB
Endow., vol. 14, pp. 1950-1963, 2021.

M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, and S. B. Zdonik,
“Learning-based query performance modeling and prediction,” 2012
IEEE 28th International Conference on Data Engineering, pp. 390-401,
2012.

X. Zhou, C. Chai, G. Li, and J. Sun, “Database meets artificial
intelligence: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 34, pp. 1096-1116, 2022.

Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, P. Chen, P. Abbeel,
J. M. Hellerstein, S. Krishnan, and I. Stoica, “Deep unsupervised
cardinality estimation,” Proc. VLDB Endow., vol. 13, pp. 279-292, 2019.
S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das,
“Deep learning models for selectivity estimation of multi-attribute
queries,” Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data, 2020.

R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska,
“Bao: Making learned query optimization practical,” Proceedings of the
2021 International Conference on Management of Data, 2021.

X. Chen, H. Chen, Z. Liang, S. Liu, J. Wang, K. Zeng, H. Su, and
K. Zheng, “Leon: A new framework for ml-aided query optimization,”
Proc. VLDB Endow., vol. 16, pp. 2261-2273, 2023.

X. Yu, G. Li, C. Chai, and N. Tang, “Reinforcement learning with
tree-Istm for join order selection,” in 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1EEE, 2020, pp. 1297-1308.
Y. Zhao, G. Cong, J. Shi, and C. Miao, “Queryformer: A tree
transformer model for query plan representation,” Proc. VLDB
Endow., vol. 15, no. 8, p. 1658-1670, jun 2022. [Online]. Available:
https://doi.org/10.14778/3529337.3529349

H. Dombrovskaya, B. Novikov, and A. Bailliekova, PostgreSQL Query
Optimization. Springer, 2021.

P. Martins, P. Tomé, C. Wanzeller, F. S4, and M. Abbasi, “Comparing
oracle and postgresql, performance and optimization,” in World Confer-
ence on Information Systems and Technologies. ~ Springer, 2021, pp.
481-490.

Y. Han, Z. Wu, P. Wu, R. Zhu, J. Yang, L. W. Tan, K. Zeng, G. Cong,
Y. Qin, A. Pfadler, Z. Qian, J. Zhou, J. Li, and B. Cui, “Cardinality
estimation in dbms: A comprehensive benchmark evaluation,” ArXiv,
vol. abs/2109.05877, 2021.

C. M. Bishop, “Neural networks and their applications,” Review of
scientific instruments, vol. 65, no. 6, pp. 1803-1832, 1994.

B. Momyjian, “Explaining the postgres query optimizer,” 2015.

[26]

(271

(28]

[29]

(30]

[31]
(32]

[33]

[34]

[35]
[36]

[37]

(38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

X. Chen, Z. Wang, S. Liu, Y. Li, K. Zeng, B. Ding, J. Zhou, H. Su, and
K. Zheng, “Base: Bridging the gap between cost and latency for query
optimization,” Proc. VLDB Endow., vol. 16, pp. 1958-1966, 2023.

R. E. Tarjan, “Depth-first search and linear graph algorithms,” STIAM J.
Comput., vol. 1, pp. 146-160, 1972.

P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowl. Based Syst., vol. 151, pp. 78-94,
2018.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2016.

B. Rozemberczki, O. Kiss, and R. Sarkar, “Karate club: An api oriented
open-source python framework for unsupervised learning on graphs,”
Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, 2020.

L. Frohlich, “Postgresql,” 2022.

B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R. Narasayya,
“Al meets ai: Leveraging query executions to improve index recom-
mendations,” Proceedings of the 2019 International Conference on
Management of Data, 2019.

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with Istm,” Neural Computation, vol. 12, pp. 2451—
2471, 2000.

A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
NIPS, 2017.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Trans. Signal Process., vol. 45, pp. 2673-2681, 1997.

Z. Huang, W. Xu, and K. Yu, “Bidirectional Istm-crf models for
sequence tagging,” ArXiv, vol. abs/1508.01991, 2015.

O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8,
2018.

X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Frontiers of Computer Science, vol. 14, pp. 241 — 258, 2019.
C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” ArXiv, vol. abs/1505.05424, 2015.

Y. Gal and Z. Ghahramani, “Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning,” ArXiv, vol.
abs/1506.02142, 2016.

E. Kaufmann, O. Cappé, and A. Garivier, “On bayesian upper confidence
bounds for bandit problems,” in AISTATS, 2012.

F. Zhdanov, “Diverse mini-batch active learning,”
abs/1901.05954, 2019.

A. Kirsch, J. R. van Amersfoort, and Y. Gal, “Batchbald: Efficient and
diverse batch acquisition for deep bayesian active learning,” in NeurIPS,
2019.

S. Liu, X. Chen, Y. Zhao, J. Chen, R. Zhou, and K. Zheng, “Efficient
learning with pseudo labels for query cost estimation,” Proceedings of
the 31st ACM International Conference on Information & Knowledge
Management, 2022.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 22, pp. 1345-1359,
2010.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, pp. 43-76, 2021.

M. Barata, J. Bernardino, and P. Furtado, “An overview of decision
support benchmarks: Tpc-ds, tpc-h and ssb,” New Contributions in
Information Systems and Technologies, pp. 619—-628, 2015.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015.

Y. Park, S. Zhong, and B. Mozafari, “Quicksel: Quick selectivity
learning with mixture models,” Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020.

ArXiv, vol.

