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Abstract
Traffic speed prediction is known as an important
but challenging problem. In this paper, we pro-
pose a novel model, called LC-RNN, to achieve
more accurate traffic speed prediction than exist-
ing solutions. It takes advantage of both RNN and
CNN models by a rational integration of them, so
as to learn more meaningful time-series patterns
that can adapt to the traffic dynamics of surround-
ing areas. Furthermore, since traffic evolution is
restricted by the underlying road network, a net-
work embedded convolution structure is proposed
to capture topology aware features. The fusion
with other information, including periodicity and
context factors, is also considered to further im-
prove accuracy. Extensive experiments on two real
datasets demonstrate that our proposed LC-RNN
outperforms seven well-known existing methods.

1 Introduction
Traffic speed prediction (TSP) means to predict the future
speed of each road segment based on historical observations.
It has been recognized a vital technique for many traffic re-
lated applications, e.g. prospective traffic navigation to avoid
potential jam in advance [Yuan et al., 2010], just-in-time de-
parture recommendation in trip schedule [Khetarpaul et al.,
2013], and the construction of intelligent transportation sys-
tems [Leontiadis et al., 2011], etc. In recent years, trajectory
data have been accumulated to an extremely large volume in
enterprises. These data contain rich traffic information, which
enables us to understand traffic dynamics in greater detail,
and thus make accurate TSP possible. In this paper, we aim
to investigate the problem of TSP using trajectory data.

For each road segment, the fluctuation of its speed usually
follows some temporal patterns. For example, the speed in
downtown area is relatively low during rush hours. Once a
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congestion occurs, it tends to affect the speed of that road in
the near future. These patterns can be discovered by existing
supervised learning models and time-series models, such as
support vector regression (SVR) [Wu et al., 2003] and hybrid
auto-regressive integrated moving average (H-ARIMA) [Pan
et al., 2012]. Recently, recurrent neural network (RNN) has
achieved great success in the problem of sequence learning
[Sutskever et al., 2014]. As a result, TSP can be naturally
processed by RNN, and a solution based on long short-term
memory (LSTM), a variant of RNN, has been proposed in
[Ma et al., 2015a]. However, this is insufficient for TSP prob-
lem, since the speed of different road segments have strong
dependency with each other.

Therefore, the TSP model must deliberately incorporate
spatial correlations among different road segments. Spatial
correlation means that a congestion will affect surrounding
areas. Conversely, speed on a road tends to slow down if con-
gestions occur in its surrounding area. To this end, the convo-
lutional neural network (CNN) has shown powerful ability to
model similarity between pixels, as a kind of spatial relations,
in image processing [Krizhevsky et al., 2012]. This motivates
some recent studies [Zhang et al., 2017; Ma et al., 2017;
Wang et al., 2017] to adopt CNN in modeling how traffic
evolves in spatial. They have achieved significant success,
even though the predictions are spatial cell based, or restricted
by ring road only.

In despite of the advances of deep learning, previous meth-
ods have not fulfill their potential due to the following rea-
sons. First, spatial correlation of traffic is strongly restricted
by the underlying road network, but the integration between
its topology and CNN model is untouched. This explains why
these methods offer coarse-granularity speed prediction only.
Secondly, accuracy can be further improved by taking ad-
vantage of different models, e.g. RNN is good at learning
time series patterns with long time span, while CNN has su-
perior performance in spatial correlation understanding. We
thus aim to combine them together for improved time-series
prediction using features related to surrounding areas. Last
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but not the least, some context information like weather/peak
periods/holiday will affect traffic speed, and periodical pat-
terns for some roads in days/weeks also can help us predict
future. Accordingly, extraction and fusion with these infor-
mation play an important part too. It is thus crucial to design
an improved model with all above aspects to be handled.

To address above issues, we propose a more effective
model, called Look-up Convolution Recurrent Neural Net-
work (LC-RNN), to support accurate traffic speed prediction
in road segment granularity. The main contributions of this
paper can be summarized as follows:

1. LC-RNN adopts a road network embedded convolution
method to learn more meaningful spatial features. Based
on a set of topology aware look-up operations, the con-
volution layer is able to capture complex traffic evolu-
tion patterns restricted by the underlying road network.

2. LC-RNN seamlessly integrates RNN(LSTM/GRU) and
CNN in a rational way to make use of their advantages.
The basic idea is to feed the features of surrounding ar-
eas extracted by CNN to RNN for learning time-series
patterns, so as to achieve more accurate speed prediction
by referencing neighboring area dynamics.

3. By taking periodicity and context factors into consider-
ation, LC-RNN adaptively fuse the result with these in-
formation by a learnable parameter matrix to obtain a
more accurate prediction.

4. We evaluate our model on a large road network using
Beijing taxi trajectories and a small road network in
Shanghai. The results demonstrate the advantages of our
approach compared with seven benchmarks.

2 Problem Formulation
In this section, we briefly give out the formulation of network-
based traffic speed prediction problem.

We denote a road network as a directed graph G = (V,E),
where each vertex v ∈ V denotes an intersection or the seg-
mentation point of a road, and each edge r ∈ E is a road
segment. We use r.s and r.e to represent the start and end
vertexes of r. Figure 1(a) shows an abstract road network.

Given a time interval t, we use xrit to represent the aver-
age traffic speed of a road segment ri ∈ E. Towards the
whole road network, we use a speed vector, denoted by
Xt = [xr0t , x

r1
t , ..., x

r|E|−1

t ], to represent the speed informa-
tion of all road segments at the time interval t. Figure 1(b)
shows a speed vector for the interval 8:00-8:20am.

Problem: Given the historical observations {Xi|i =
1, ..., t}, this paper aims to predict Yt = {Xj |j = t+1, ..., t+
z}, where z is the number of time intervals to be predicted.

3 Model Description

3.1 The Overview of LC-RNN
Figure 2 presents the architecture of LC-RNN, which is com-
prised of several look-up convolution layers, a recurrent layer,
a periodicity extraction layer and a context extraction layer,
modeling local spatial evolution, long temporal dependency,
periodicity and context factors respectively.













(a) A road network



      

















(b) A speed vector at
8:00am - 8:20am

Figure 1: Road network and speed vector

For learning time-series patterns based on neighboring traf-
fic evolution patterns, we take the speed vectors of intervals
in the recent time and the topology of road network as in-
puts. By a set of topology aware convolution operations,
where the topology of road network is embedded into convo-
lution, look-up convolution (LC) can effectively capture the
spatial traffic dynamics of the surrounding areas. Since the
speed of one road will be affected by traffic condition from
more distance areas, a stack of LC layers is used to under-
stand such more distance spatial evolution. Meanwhile, we
attempt Batch Normalization (BN) [Ioffe and Szegedy, 2015]
after LC layer for faster training speed. After getting the com-
plex traffic evolution patterns, we reshape these features in the
way of time sequence to feed into RNN layer. As a varient of
RNN, LSTM is good at learning long time-series patterns, so
we predict speed of each road by using it, and concatenate all
speeds to get YST .

In addition to the explore of the spatio-temporal trend, we
extract the other information including periodicity and con-
text factors. Periodicity means that the current speed on cer-
tain road will be almost the same as days/weeks ago. Hence,
we feed the speed vectors of corresponding time intervals sev-
eral days/weeks ago into fully-connected (FC) layers, learn-
ing the daily/weekly periodicity to obtain YP . Concurrently,
we extract context factors such as weather, holiday and so on
by another two-layer FC neural network. The output of con-
text extraction layer YC is integrated with YP to achieve YE .
At last, we use a parameter-matrix-based method to fuse YST

  





































 



   




 



 












Figure 2: The architecture of LC-RNN. LC:Look-up Convolution;
BN:Batch Normalization; FC:Fully-connected; LSTM:Long short-
term memory
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and YE . These techniques can give a significant boost to the
accuracy of traffic speed prediction.

3.2 Look-up Convolution Layer
Traditional convolution neural network has been used in
many fields such as image and textual data analysis [Lecun
et al., 2015]. It has shown good performance on capturing
spatial features from adjacent pixels/grids of a tensor. How-
ever, since traffic evolution is restricted by the road network,
the speed of a road is impacted by road segments adjacent
in road network, but nonadjacent in the speed vectors. Em-
bedded graph struture is an effective method for many ap-
plications such as [Wang et al., 2016b]. Therefore, topology
must be embedded into convolution for learning spatial corre-
lations with road network constraints, which can be achieved
by the look-up operations proposed in [Wu et al., 2017]. We
thus design a look-up convolution layer that embed the topol-
ogy of road network into convolution to capture more mean-
ing spatial features.

We use a structure called adjacent road matrix, denoted
by M , to represent the road network topology. It records all
adjacent roads for each road r ∈ E by Sr. Concretely, Sr =
{r, r′ ∈ E | r′.s = r.e or r′.e = r.s}, denoting a set of
roads directly connected to r and r itself. For all roads, we
use S to denote all sets, namely S = {Sr|r ∈ E}. Then M
can be constructed by S which has the dimension of A× |E|,
where A = max{|Sr| |Sr ∈ S}. Here, M [:, i] records all
roads in the Sri . For example,M [:, 3] = [0, 2, 3, 6]T in figure
1(a). Since the adjacent segment sets for different roads have
different sizes, we pad each column with the road itself to A.

After expressing the road network topology by matrix M ,
we need to embed it into convolution to extract the informa-
tion of adjacent roads. To this end, look-up operation is com-
bined with convolution as shown in figure 3. For arbitrary
l-th layer, it takes M and the previous output X l−1 as in-
put. It is noted that the input of first layer is comprised of
the previous p and current speed vectors (in figure 2), namely
X0 = [Xt, Xt−1, ..., Xt−p]

T . At l-th layer, we use kl filters
to convolve and concatenate all matrices to get X l. The k-
th matrix convolved by the k-th filter can be formulated as
follows

X l,k = [xl,k
0 , ... ,xl,k

i , ... ,xl,k
|E|−1] (1)


































Figure 3: Look-up convolution at l layer

xl,k
i = relu(L(X l−1, L(M, i)) ∗W l,k + bl,k) (2)

where L(P,Q) = P [:, Q] denotes a look-up operation. It
returns a tensor by looking up the second dimension of P
according to the elements in Q (as index) as well as puting
these slices together. Hence, L(M, i) returns a vector M [:, i]
in our model. Based on this vector, we further get a sub-
matrix SX l−1

i by look-up operation L(Xl−1,M [:, i]).
Here, ∗ denotes the convolution operation which uses the

k-th filter W l,k being a h× A matrix to zigzag scan the sub-
matrix and the result is a vector which can be denoted as

xl,k
i = [xl,k0,i, ... , x

l,k
j,i , ... , x

l,k
p,i]

T (3)

xl,kj,i = relu(
h∑

m=0

A∑
n=0

wl,k
m,nsx

l−1
j+m,n + bl,k) (4)

where bl,k is a bias for the k-th filter, wl,k
m,n is the (m,n) el-

ement of W l,k, sxl−1j+m,n is the (m, j + n) element of the
sub-matrix SX l−1

i . More details about the implementation
of convolution layer could be found in [Bouvrie, 2006]. Here
we use rectifier linear unit (relu) [Krizhevsky et al., 2012] as
activation function, namely relu(x) = max(0, x), for reduc-
ing the problem of gradient vanishing.

In the process of matrix computation, the look-up operation
will be carried out for all roads at the same time which means
that it will not cost too much time. In addition, the size h of
filter is set a small number such as one or two, where h = 1
means we just explore the local spatial evolution at the same
time and h = 2 means we explore the evolution at the nearby
time intervals. In fact, We are going to use these two kinds of
filter at a layer for obtaining more descriptive and diversified
spatial characteristics.

3.3 Recurrent Layer
On top of the look-up convolution, we further use the RNN
model to learn the long-term temporal patterns that can refer-
ence surrounding area traffic dynamics. AfterN look-up con-
volution layers, the last output tensor XN ∈ R|p+1|×|E|×|kN |

is thus feed to RNN, where kN is the number of the convolu-
tion filters at the last LC layer. Before using recurrent layer,
we need to transform XN to the spatial evolution time se-
quence [V i,0

S , ... , V i,t
S , ... , V i,p

S ] for each road ri. Each vector
V i,t
S can be obtained by

V i,t
S = XN [t, i, :] (5)

Next, we can feed the sequence to the RNN layer. Ac-
cording to [Bengio et al., 2002], the standard RNN is in-
ferior at modeling long-term sequence information. On the
other hand, it is hard to train due to the problem of van-
ishing gradient. Fortunately, this drawback can be han-
dled by LSTM cell whose details can be found in [Graves,
2012]. Adopting LSTM, we can get the hidden state se-
quence [h0, ... , ht, ... , hp] generated iteratively by the fol-
lowing equations

ht = LSTM(V i,t
S , ht−1) (6)

After getting the last hidden state hp, the output can be
computed by

yi,t+j = φ(U j
yhk + bjy) (7)
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(a) Daily Period (b) Weekly Trend
Figure 4: Periodicity Information

where we use z units with learnable parameters to predict z
traffic speeds, thus yi = [yi,t+1, yi,t+2, ..., yi,t+z] can be got.
φ is relu activation if we fuse other information, otherwise,
tanh. At last, we concatenate the predict values of all road
segments to obtain YST = [y0, y1, ..., y|E|−1]T .

3.4 Periodicity and Context Extraction Layer
For obtaining a more accurate prediction, we can extract other
information including periodicity and context information.

Periodicity Information Extraction. Traffic speed usu-
ally changes periodically which means that the traffic speed
for an road segment at a certain time interval is similar with
the same time interval of the previous day or previous week
in the absence of special condition. In general, daily peri-
odicity and weekly trend are two main kinds of periodicity
information. Figure 4(a) depicts the average traffic speed of
a main road segment from 8:00am to 22:00pm in one week.
We can see the obvious daily periodicity, especially at week-
days. Figure 4(b) describes the traffic speed at a certain time
interval (17:00pm-17:20pm) of Wednesday from March 2016
and July 2016. As time goes by, the traffic speed decreases
slightly. We also find the same properties in part of other road
segments.For extracting the periodicity information, we can get the
daily periodicity and weekly trend information for each road
segments at the time intervals to be predicted. For each road,
a FC layer is used for extracting the average speed of several
days ago and another FC layer is used to extract the trend
of weekly changes. Then we integrate the two results and
concatenate all to get YP that has the same shape with YST .

Context Information Extraction. In addition to the peri-
odicity information, context factors is another important in-
formation to extract such as weather and holiday event. Fig-
ure 5(a) shows that the driving in the heavy rain (Jun 13-14)
is slower than that in sunny days (May 30-31) because of safe
driving. On the other hand, figure 5(b) shows that the traffic
speed during holidays (Qingming Festival) can be different
from during normal days (the previous week of Qingming
Festival).

In our experiment, we mainly consider holiday, weather
and metadata (i.e. Weekday/Weekend, DayOfWeek, HourOf-
Day). To predict future traffic speeds, the holiday and meta-
data can be directly obtained, however, the weather is un-
known. Instead, we can use forecasting weather information.
Formally, feature learning algorithm [Wang et al., 2016c] or
a fully connected layer is adopted to extract context informa-
tion and another fully connected layer is used to map low to
high dimensions to get YC . Then we integrate it with YP from

(a) Weather (b) Holiday
Figure 5: Context Information

periodicity learning to obtain YE .

3.5 Fusion
Usually, the predicted speed is closer with the current time,
the result is more accurate by spatio-temporal learning. And
the faraway speed need to be corrected more by periodic-
ity. On the other hand, different context factors affect speed
in different degrees. Hence, we decide to use a parameter-
matrix-based fusion matrix to fuse the two results by

Ỹt = tanh(WST ◦ YST +WE ◦ YE) (8)

where ◦ is element-wise multiplication,WST andWE are the
learnable parameters.

Our LC-RNN can be trained via backpropagation to predict
Yt by minimizing mean squared error between the predicted
speed vectors and the true vectors:

L(θ) = ||Yt − Ỹt||22 (9)

where θ are all learnable parameters in the LC-RNN.

4 Experiments
In this section, we mainly conducted experiments on two size
road networks in Beijing and Shanghai respectively to evalu-
ate the effectiveness of LC-RNN.

4.1 Data Preparation
In our experiment, we used two datasets from Beijing and
Shanghai to test our LC-RNN model detailed as follows.
• Beijing: The trajectory data and context factors was col-

lected from 1st Mar. to 31st Jul. in 2016. We mainly
extracted a graph more than 10 thousand main road seg-
ments. There are more than 2 million trajectories cover-
ing the road network every day. The weather condition
can be divided into 10 types (e.g. Sunny, Rainy), tem-
perature ranges from -4 ◦C to 36 ◦C and wind speed is
divided into 4 levels. There are about 12 important hol-
idays and 24 weekends among the dataset. We use the
previous 10 time intervals as input, namely p = 10. Fur-
thermore we use the corresponding intervals of previous
5 days and 3 weeks to extract periodicity information.
The data of the first 4 months were used as the training
set, and the remaining 1 month as the test set.
• Shanghai: Trajectory data was collected from 1st Mar.

to 31st Apr. in 2015. We just extracted a small road net-
work about 1.5 thousand main roads. The weather con-
dition is divided into 6 types and there are 8 weekends.
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We use the previous 10 intervals and corresponding in-
tervals of previous 5 days. Among the data, the last 15
days are test set and the others are training set.

In the preprocessing stage, we calculate the mean velocity
of each road at each time interval. Data sparsity is also a
challenging problem [Yin et al., 2016], we use the data from
6:00am to 22:00pm and infer the missing value by spatial-
temporal filling method [Yi et al., 2016] to alleviate it. In the
output of the LC-RNN, we use tanh as our final activation,
whose range is between -1 and 1. Hence, we use the Min-
Max Normalization method to scale the traffic speed into [-
1,1]. In the evaluation, we re-scale the predicted value back
to the normal values. We train our network with the following
hyper-parameters setting: mini-batch size (48), learning rate
(0.0002) with adam optimizer, 1 × A filters (32) and 2 × A
filters (16) in each LC layer. We select 90% of the training
data for training model, and the remaining 10% is chosen as
the validation set with 3 early stopping.

4.2 Benchmarks
We compare our model with the following baseline methods.
• SVR [Wu et al., 2003]: Support Vector Regression

(SVR) is an powerful regression method which has
greater generalization ability.
• H-ARIMA [Pan et al., 2012]: H-ARIMA is a method

combined of ARIMA and HA to predict future values.
• SAE [Lv et al., 2015]: Stacked Auto Encoders (SAE)

is a deep learning model to learn generic traffic features
and predict future values.
• LSTM [Ma et al., 2015a]: As a representative of RNN,

LSTM can effectively handle long temporal dependence
and reduce gradient vanishing which is appropriate for
speed prediction.
• GC [Defferrard et al., 2016]: Graph Convolution (GC),

pooling and fully-connected is used to forecast future
speed.
• DCNN [Ma et al., 2017]: Deep Convolution Neural

Network (DCNN) with convolution, pooling and fully-
connected is used for speed prediction.
• ST-ResNet [Zhang et al., 2017]: Spatio-Temporal

Residual Network (ST-ResNet) uses residual network to
model three temporal properties to do prediction.

4.3 Performance Comparisons
We measure our methods and other benchmarks by Root
Mean Square Error (RMSE).

Results on Beijing: We first give the comparison with 7
other benchmarks on the Beijing dataset, as shown in Table
1, where time interval is 10min and the number of intervals
to be predicted z is 1. Meanwhile, we compare all 7 variants
of LC-RNN with different layers and components. Taking
LC-3-RNN-E-BN for example, it uses 3 lookup convolution
layers with BN layers, recurrent layer and fuses with external
factors. We observe that all of these 7 models are better than 7
benchmarks. And we can find that LC-3-RNN-E-BN reduces
error to 5.274, which significantly improves accuracy.

Then we analyze the effects of different components:

Methods RMSE
SVR 10.245
H-ARIMA 11.867
SAE 8.471
LSTM 5.958
DCNN 6.085
GC 5.514
ST-ResNet 5.749
LC-3 5.437
LC-3-RNN 5.328
LC-3-RNN-E 5.296
LC-3-RNN-E-noFusion 5.392
LC-3-RNN-E-BN 5.274
LC-2-RNN-E-BN 5.319
LC-4-RNN-E-BN 5.285

Table 1: Comparison among different methods on Beijing dataset

• The structure of look-up convolution layer: Results of
LC-3, DCNN and ST-ResNet shows that look-up con-
volution achieves a good result compared with general
convolution. That is to say, the topology of road net-
work can be captured by our look-up convolution oper-
ation. On the other hand, using 3 LC layers obtains the
best result, compared with 2/4 LC layers, because it can
get a high-level features with suitable parameters. At
last, we observe that BN between LC layers gains a little
improvement which demonstrate the effectiveness of it.
• The structure of recurrent layer: Taking temporal depen-

dency into consideration, LC-3-RNN feed the features
from local spatial evolution into recurrent layer (LSTM
in our experiment) and LC-3 do not. The result indicates
that LC-3-RNN is further promoted which demonstrates
the effectiveness of recurrent layer.
• Periodicity and context extraction layer: LC-3-RNN-E

considers the other information including periodicity in-
formation and context factors. If not, the model is de-
graded as LC-3-RNN. It shows that the result of LC-3-
RNN-E is better than LC-3-RNN, pointing out that ex-
ternal extraction layer is beneficial for speed prediction.
• Fusion: Different from LC-3-RNN-E, LC-3-RNN-E-

noFusion use a straight-forward method, i.e.YST + YE ,
instead of parameter-matrix-based fusion (Eq.8). It
shows the error greatly increases, demonstrating the ef-
fectiveness of parameter-matrix fusion method.

In addition, we predict the traffic speed of the road network
with the size of time interval varying from 5 to 30 minutes
and the number of intervals to be predicted varying from 1 to
4. Here time interval size with 10 minutes and the number
of predicted intervals with 1 are default parameter. Figure
6 shows the comparative performances for LC-RNN and the
benchmarks since 2015. We give the analysis about the two
scenarios.

• Varying time interval size: In figure 6(a), we can find
that the performance of LC-RNN is always better than
the other benchmarks under any time interval size set-
ting. And we can see that the prediction performance
becomes a little better when the length of time interval
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(a) Varying the size of
time interval


























 







(b) Varying the number of
intervals to be predicted

Figure 6: Prediction performance on Beijing dataset

increases. Intuitively, this may be due to the fact that the
traffic speed becomes smoother with increasing the size
of time interval. The result indicates that our model can
effectively predict the traffic speed on the road network.

• Varying the number of time intervals to be predicted: As
shown in figure 6(b), LC-RNN achieves the best perfor-
mance when varying the quantity of intervals needing to
be predicted. Note that the performance becomes worse
with the quantity increases since the correlation of traffic
speed between time intervals being predicted and current
moment decreases.

In summary, from the above experimental result, we can
find that LC-RNN achieves the best performance compared
with the state-of-the-arts on the Beijing. The fusion of spa-
tial evolution on the road network, temporal dependency and
other information are the key to success.

Results on Shanghai: Table 2 shows the results of our
model and other benchmarks on Shanghai dataset. Here,
we adopt LC-3-RNN-E-BN which achieves best performance
on the Beijing. We can find our model has relatively from
4.8% up to 48.4% lower RMSE than these benchmarks on the
Shanghai, demonstrating that our proposed model has good
generalization performance on the road network with differ-
ent scale. In addition, the result about varying the size of time
interval and the number of predicted intervals is also similar
with one on the Beijing and we can find conclusion among
the previous analysis.

5 Related Work

5.1 Traffic Speed Prediction
Traffic speed prediction is an important problem that has been
intensively studied in the last few decades. Classical meth-
ods include ARIMA and its variations including seasonal-
ARIMA [Zhang et al., 2005] and H-ARIMA [Pan et al.,
2012]. Some supervised learning methods, such as SVR [Wu
et al., 2003] and LR [Ristanoski et al., 2013], are used to
deal TSP as a regression problem for each road segments in-
dividually. The boltzmann machine [Ma et al., 2015b] and
bayesian networks [Wang et al., 2016a] models can be used to
portray spatial correlation, though they cannot be applied for
TSP directly due to the nature of probability model. More re-
cently, more advanced solutions are proposed to capture traf-
fic evolution in spatial using deep learning models. [Wang
et al., 2017] proposed a CNN based model with error feed-
back to deal with TSP on the ring road (only), and [Ma et
al., 2017] use a deep CNN model for a similar problem of

Methods RMSE
SVR 9.083
H-ARIMA 9.317
SAE 7.421
LSTM 5.274
DCNN 5.269
GC 4.921
ST-ResNet 5.087
LC-3-RNN-E-BN [ours] 4.686

Table 2: Comparison among different methods on Shanghai dataset

traffic flow prediction. Above two models have shown good
performance, though they fail to consider the topology struc-
ture of road network, and the results can be further improved
if different deep learning models can be integrated.

5.2 Deep Learning
Deep learning techniques have been successfully applied to
various applications [Sutskever et al., 2014; Yin et al., 2017].
As one of famous techniques, RNN achieves great success
in sequence learning tasks. The incorporation of LSTM
[Graves, 2012] enables RNN to learn long-term sequence in-
formation. Traffic speed of each road following some long-
term temporal partterns can be naturally solved by LSTM
[Ma et al., 2015a]. Another well-known technique called
CNN is good at capturing spatial dependency. It is widely
used in the field of computer vision [Lecun et al., 2015] and
many other applications including traffic management [Zhang
et al., 2017; Wang et al., 2017]. [Zhang et al., 2017] ap-
plies CNN to deal with grid-based crowd flow prediction
and [Wang et al., 2017] predicts traffic speed on the ring
road. Embedding is a novel technology frequently used in the
field of natural language processing [Mnih and Kavukcuoglu,
2013] to extract latent features of words. In modeling tra-
jectory, the look-up operations of embedding are adopted in
[Wu et al., 2017] to represent the road network constraints.
Graph Convolution [Defferrard et al., 2016] is a spectral ap-
proach that ensures strictly localized filter and low computa-
tional complexity as well.

Compared to existing TSP solutions, our model takes ad-
vantages of both RNN and CNN by an integration of them
with look-up operations, so that more meaningful time-
series patterns adaptive to surrounding area dynamics can be
learned to improve accuracy.

6 Conclusion
In this paper, we propose a novel deep learning based model
LC-RNN for forecasting traffic speed. Our model not only
seamlessly integrates CNN and RNN to learn speed fluctua-
tion patterns that can reference surrounding area dynamics,
but also adopts a road network embedded convolution to rep-
resent the constraints of the underlying road network. We
further improve accuracy by adaptively fusing with other in-
formation including periodicity and context factors. The ex-
perimental results on two real datasets demonstrate the effec-
tiveness of LC-RNN model for the TSP problem.
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