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Abstract

En route travel time estimation (ER-TTE) aims to
predict the travel time on the remaining route. S-
ince the traveled and remaining parts of a trip usu-
ally have some common characteristics like driving
speed, it is desirable to explore these characteris-
tics for improved performance via effective adap-
tation. This yet faces the severe problem of data
sparsity due to the few sampled points in a trav-
eled partial trajectory. Since trajectories with dif-
ferent contextual information tend to have differen-
t characteristics, the existing meta-learning meth-
ods for ER-TTE cannot fit each trajectory well be-
cause it uses the same model for all trajectories. To
this end, we propose a novel adaptive meta-learning
model called MetaER-TTE. Particularly, we utilize
soft-clustering and derive cluster-aware initialized
parameters to better transfer the shared knowledge
across trajectories with similar contextual informa-
tion. In addition, we adopt a distribution-aware ap-
proach for adaptive learning rate optimization, so
as to avoid task-overfitting which will occur when
guiding the initial parameters with a fixed learning
rate for tasks under imbalanced distribution. Fi-
nally, we conduct comprehensive experiments to
demonstrate the superiority of MetaER-TTE.

1 Introduction
Travel time estimation (TTE) is a fundamental problem in
many applications such as route planning [Xu et al., 2019; Xu
et al., 2015], navigation [Kisialiou et al., 2018] and vehicle
dispatching [Yuan et al., 2013]. Most of the existing TTE
methods [Zhang et al., 2018; Xu et al., 2020; Fang et al.,
2020] mainly focus on pre-route travel time estimation (PR-
TTE), which estimate the travel time of a given entire route.

Different from PR-TTE problem, en route travel time es-
timation (ER-TTE) is proposed to predict the travel time for
the remaining route while driving. As we know, the traveled
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and remaining parts of a trajectory tend to have some com-
mon characteristics owing to the shared contextual informa-
tion (e.g., departure time, weekdays and weather condition)
and driver’s emotion. For example, if a user drives fast in the
traveled route, he is likely to drive at a high speed in the re-
maining route, probably because he has to catch a plane. Al-
though PR-TTE methods can also support ER-TTE, they do
not consider traveled routes, resulting in sub-optimal results.
Therefore, we need to not only capture the useful character-
istics from the traveled route, but also utilize these character-
istics in the estimation accordingly. However, model adapta-
tion inevitably faces the notorious cold-start problem due to
the few sampled points in traveled routes.

Recently, meta-learning is known as one of the most suc-
cessful approaches for cold-start problem [Finn et al., 2017;
Hospedales et al., 2020], with a basic idea to learn the general
knowledge through several tasks that can be rapidly adapted
to new tasks. It has been leveraged in various domains such as
computer vision [Ye et al., 2020] and natural language pro-
cessing [Madotto et al., 2019], and proven to be successful
due to its good generalization ability. Therefore, it provides
great opportunities for ER-TTE as well. By considering each
trajectory as a learning task, we can learn a more generalized
model for ER-TTE with meta-learning first, then the general-
ized model can be rapidly adapted to estimate the travel time
of remaining routes via fine tuning on traveled routes.

However, directly applying classical meta-learning frame-
work [Mishra et al., 2017; Finn et al., 2017] in ER-TTE like
state-of-the-art method SSML [Fang et al., 2021] would in-
cur inaccuracy due to two limitations. First, the same global
parameters are utilized to guide the parameter initialization
for all tasks. Unfortunately, using a globally shared param-
eter setting is unlikely to achieve better performance in ER-
TTE, because trajectories with different contextual informa-
tion tend to have different characteristics including the travel
speed, which will severely affect the travel time. For exam-
ple, the travel duration of a trajectory is usually much longer
in rush hours than in off-peak hours. Therefore, it would be
better to divide trajectories into several categories according
to their contextual information, and capture the shared char-
acteristics in each category respectively, i.e., the similar con-
textual information can be shared to engage the travel time



estimation of trajectories within each category.
Second, these meta-learning methods [Finn et al., 2017;

Santoro et al., 2016] adapt the initialized parameters to each
task with a fixed learning rate, based on the assumption that
tasks are distributed uniformly. However, in ER-TTE, task
distribution is not always balanced, the uneven distribution of
contextual information would result in task-overfitting [Yu et
al., 2021] during the adaptation. For example, the traffic flow
is lower in midnight than in the daytime, trajectories collect-
ed in midnight are much fewer than those collected in the
daytime, and they have different characteristics. Guiding the
initialized parameters with a fixed learning rate tends to over-
fit the trajectories in the daytime, because these trajectories
account for the majority and fitting them can achieve good av-
erage performance. It is nevertheless easy for these methods
to ignore the trajectories collected in midnight, which may
not be acceptable for real-world applications. Therefore, we
need to adaptively guide the parameter initialization for dif-
ferent trajectories with different learning rates.

To address the above limitations, we propose a novel
framework, namely MetaER-TTE, which not only alleviates
the cold-start problem, but also supports personalized adapta-
tion for each trajectory. Specifically, to better share the gen-
eralized characteristics among trajectories with similar con-
textual information, we adopt a cluster-enhanced parameter
initialization method based on soft-clustering and a cluster-
aware parameter memory. By deriving cluster-aware network
parameters in the initialization step, we can guarantee that
the performance will not be affected by the diversity of tra-
jectories with different contextual information. Moreover, a
learning rate generator is designed to set different learning
rates for different trajectories, so as to avoid task-overfitting
which may occur when guiding the parameter initialization
with a fixed learning rate to tasks with uneven distribution.
The contributions of this paper can be summarized as follows:

• We propose an adaptive meta-learning method for ER-
TTE, which supports personalized adaptation to each
trajectory for more accurate estimation.

• We adopt a soft-clustering method to derive the cluster-
aware initialized parameters, in order to better transfer
the shared knowledge across trajectories with similar
contextual information.

• A learning-rate generator is further designed to adaptive-
ly guide the global initial parameters for each trajectory
with a reasonable distribution-aware learning rate to pre-
vent task-overfitting.

• We conduct extensive experiments on two real-world
datasets to demonstrate the effectiveness of our method.

2 Related Work
2.1 Travel Time Estimation
TTE is one of the key topics in transportation systems. These
years, large datasets and computational power enable the suc-
cess of deep learning. Some recent studies attempt to solve
the TTE problem by deep learning.

DeepTTE [Wang et al., 2018] utilizes a geo-convolution to
split the whole path with intermediate GPS points into sev-
eral sub-paths, then predicts the travel time of each sub-path
and the whole path by a multi-task loss function. ConST-
GAT [Fang et al., 2020] leverages a spatial-temporal graph
attention network to fully exploit the joint relations of spa-
tial and temporal information to improve the performance of
TTE. CompactETA [Fu et al., 2020] considers road network
constraints, and applies graph attention network to learn the
spatio-temporal dependencies as well as positional encoding
to encode the sequential information of the path to infer the
travel time. TADNM[Xu et al., 2020] divides the path into
several segments according to their transportation modes, and
capture the spatial-temporal correlations for each segment to
provide accurate TTE for mixed-mode paths.

Although the above methods can well support PR-TTE,
they can only achieve suboptimal results in ER-TTR due to
the failure of considering traveled part of trajectories.

2.2 Meta-learning
Meta-learning is a learning paradigm which aims to learn
the general knowledge across a variety of different tasks to
rapidly adapt to new tasks with little training data. Recen-
t meta-learning algorithms can be divided into three cate-
gories: model-based [Munkhdalai et al., 2018; Santoro et
al., 2016], metric-based [Snell et al., 2017; Sung et al.,
2018] and optimization-based [Andrychowicz et al., 2016;
Finn et al., 2017] meta-learning.

State-of-the-art work SSML [Fang et al., 2021] is a model-
based meta-learning methods for ER-TTE, which aims to
learn the meta-knowledge from the traveled partial trajecto-
ries to estimate the travel time of the remaining routes. How-
ever, it cannot adapt to each trajectory well due to the lack of
adaptation. MAML [Finn et al., 2017] is one of the most
successful optimization-based meta-learning for learning a
good initialization. On the basis of MAML, some approach-
es have attempted to fit each task adaptively. PAML [Yu et
al., 2021] is also for recommendation that finds similar users
as a reference to provide better personalized learning rates.
HSML [Yao et al., 2019] divides different tasks into several
categories and promote knowledge customization to different
clusters to enhance the effectiveness.

Inspired by the above works, we propose an adaptive meta-
learning method for ER-TTR based on MAML, which pro-
vides personalized initial parameters and learning rates for
trajectories with different contextual information.

3 Preliminary
We define a trajectory t as a sequence of road segments, i.e.,
t = {r1, r2, ..., rn}, where ri is the i-th road segment in
this trajectory. Furthermore, we record contextual informa-
tion such as the departure time, the day of the week and the
weather condition for each trajectory. Then we divide the en-
tire trajectory into two parts. The former is the traveled route
which has already been collected during the travel, represent-
ed as ttr = {r1, r2, ..., rm}, m < n; the later is the remain-
ing route denoted as tre = {rm+1, rm+2, ..., rn}. The goal
of ER-TTE task is to estimate the travel time of remaining
routes by making use of traveled routes.



For the meta-learning setting, each trajectory is viewed
as a learning task. We divide the trajectories into a train-
ing set T train and a testing set T test. For each trajecto-
ry t, in order to make full use of temporal labels in the
traveled route, we generate sub-trajectories {r1, ..., rm∗20%},
{r1, ..., rm∗40%}, ..., and {r1, ..., rm} forming a support set
Ds, each sub-trajectory in support set has a travel time, and
take the remaining route as a query set Dq .

4 MetaER-TTE
In this section, we introduce our proposed method: an adap-
tive meta-learning model for ER-TTE, namely MetaER-TTE
shown in Figure 1. First, we introduce the base model named
ConSTGAT [Fang et al., 2020]. It is a state-of-the-art TTE
method that integrates relations of road segments and traffic
prediction to estimate the travel time. Second, we present the
details of the MetaER-TTE model, which support effective
adaptation to each trajectory to achieve better performance in
ER-TTE.

4.1 Base Model
We adopt a PR-TTE method ConSTGAT [Fang et al., 2020]
as our base model, since it is an existing work, we briefly in-
troduce it in this section. For each road segment ri, it learns
the representation of contextual information XCI

i (e.g., de-
parture time, weekdays and weather condition), predicts the
traffic condition XTC

i and captures the spatial correlations
XSC
i (i.e., the spatial relationship of ri and its adjacent road

segments). Then it combines these information to estimate
the travel time of ri:

ŷi = FCθest((X
CI
i ⊕XTC

i ⊕XSC
i )) (1)

where θest ∈ Rdest denotes the parameters of the estimation
layer, and ⊕ means the tensors concatenation. The predicted
travel times of the road segments are summed up to obtain
the predicted travel time of the entire route. In particular,
we denote the parameters of network layers that obtain XCI

i ,
XTC
i and XSC

i as θ∗, so the parameters of the base model
can be represented as θ = {θ∗, θest}.

Finally, ConSTGAT calculates the loss for road segment
Lri and the entire route Ltj with Huber loss and absolute
percentage error (APE) respectively, and combines them to
obtain the joint loss:

Ljoint =
1

h

h∑
j=1

(
1

n(j)

n(j)∑
i=1

Lri + Ltj ) (2)

where h is the number of entire routes and n(j) is the number
of road segments in tj .

4.2 Meta Optimization
Next, we elaborate an adaptive meta-learning framework with
parameters φ∗ for ER-TTE named MetaER-TTE, which sup-
ports the effective adaptation to each trajectory. The frame-
work is composed of three components: task-clustering, a
cluster-aware parameter memory and a learning rate gener-
ator. We cluster trajectories into several categories according

to their contextual information, and then derive the cluster-
aware initialized parameters for personalized estimation with
a cluster-aware parameter memory. Moreover, the learning
rate generator provides different learning rates for different
trajectories to adaptively guide the generalized knowledge to
each trajectory.

Task-clustering
In order to better transfer the shared knowledge among tra-
jectories with similar contextual information, we utilize a
soft-clustering method to divide the training trajectories in-
to several categories according to their contextual informa-
tion. Here we adopt soft-clustering method instead of hard-
clustering or classification methods because trajectories with
different contextual information may share the knowledge
due to the rapidly changing traffic condition. For example,
the travel speed in off-peak hours may be as slow as in rush
hours affected by a sudden traffic accident. Moreover, soft-
clustering can guarantee differentiability, and ensures that rel-
evant knowledge can be attentively learned from trajectories
in different categories.

First, we conduct a cluster assignment to each cluster for
each trajectory. Specifically, we project the contextual infor-
mation XCI ∈ Rdci of trajectory tj to get the query vector
qj ∈ Rdq , represented as:

qj = Wq(X
CI) + bq (3)

where Wq ∈ Rdci×dq and bq ∈ Rdq are learned parameters.
Then we use the query vector to calculate the similarity score
skj between it and each learned cluster center {gk}Kk=1 as:

skj =
exp(〈qj , gk〉)∑K
k=1 exp(〈qj , gk〉)

(4)

where K denotes the number of clusters, the determination
of cluster numbers will be discussed in experiments. The
learned similarity score will be used to derive cluster-aware
initialized parameters for personalized travel time estimation,
and then obtain cluster enhanced representation for each tra-
jectory to generate a more reasonable learning rate. Before
training, we randomly initialize each cluster center, and up-
date the cluster centers during the training process.

Cluster-aware Parameter Memory
Moreover, considering that trajectories with different con-
textual information (e.g., departure time, weekdays, weather
condition) have different characteristics, it is irrational to u-
tilize the same global parameters to estimate the travel time
for all the remaining partial trajectories, because there exist-
s impact from the diversity of different trajectories. There-
fore, a cluster-aware parameter memory MP ∈ RK×dq×dest

is designed to store the parameters of the estimation layer for
different clusters. It aims to provide personalized initialized
parameters for each trajectory according to the similarity s-
core skj calculated by Eq. (4).

Following the idea of Neural Turing Machine [Graves et
al., 2014], the memory cube MP has a read head to retrieve
the memory and a write head to update the memory. Specifi-
cally, we retrieve the parameter matrix Mj,P ∈ Rdq×dest for
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Figure 1: the architecture of MetaER-TTE. Each trajectory is viewed as a learning task, the goal is to estimate the travel time of remaining
routes by utilizing the traveled route. The task-clustering and the cluster-aware parameter memory are designed to derive cluster-aware
initialized parameters for each cluster. The learning rate generator combines the representation of contextual information and cluster-enhanced
representation to provide personalized learning rate for each trajectory to avoid task-overfitting.

trajectory tj :
Mj,P = skj ·MP (5)

Mj,P is served as the personalized initial parameters of the
estimation layer to provide more accurate estimation, and will
be updated locally during the training process as:

MP = α · (skj ⊗Mj,P ) + (1− α)MP (6)

where ⊗ denotes the tensor product, and α is a hyper-
parameter to control how much new parameter information
is added to the memory. In particular, the similarity score skj
is used here to ensure that the new information will be atten-
tively added to the memory.

Learning Rate Generator
The learning rate in local update determines whether the ini-
tialized parameters can be moved to the optimal value for
each task, simply using the same learning rate like previous
meta-learning methods [Finn et al., 2017] will result in task-
overfitting in ER-TTE due to the uneven distribution of tra-
jectory contextual information.

In ER-TTE, the trajectory contextual information is not al-
ways balanced. For example, the traffic flow is lower in mid-
night than in daytime, thus trajectories collected in the day-
time are more than those collected in midnight. Adapting
with the fixed learning rate will overfit trajectories in daytime,
and fail to achieve optimal parameters for other trajectories in
midnight, because trajectories in daytime account for the ma-
jority and fitting them can achieve good average performance.
To this end, we propose a learning rate generator to provide
distribution-aware learning rate for each trajectory.

Since the learning rates are related to the contextual in-
formation distribution, trajectories with similar contextual in-
formation are likely to share similar learning rates. Directly
using only contextual information of trajectory itself is not
sufficient to generate a reasonable learning rate, it is better to
take generalization among similar contextual information into

consideration as well. Therefore, we make full use of cluster-
s to obtain a cluster enhanced representation which contains
the shared contextual information in the same cluster. The
cluster enhanced representation XCE of trajectory tj is:

XCE =

K∑
k=1

skj · gk (7)

where · is multiplication. Next we combine the contextual in-
formation xCIj and the cluster enhanced representation XCE

as a reference to obtain an adaptive learning rate. Now, we
can get a learning rate function for a trajectory:

lrj = FCτ (XCI ⊕XCE) (8)

where FCτ is a fully-connected layer with the parameter τ
which will be trained in global update. The distribution-aware
learning rate is used to guide the initialized parameters so as
to find task-adaptive parameters.

Local Update
In traditional model training, the parameters of a neural net-
work are initialized and converge to a good local optimum
based on a large number of training data. Similarly, the opti-
mization goal in local training is to update the local parame-
ters for each trajectory by minimizing the loss function based
on the support set. Thus the local parameters for task tj will
be updated as follows:

θ∗j ← θ∗j − lrj · ∇θjLD
s

joint (9)

θestj ← θestj − lrj · ∇θjLD
s

joint (10)

where θ∗j and θestj are initialized from the global parameters
φ∗ andMj,P respectively, Ljoint is the joint loss calculated in
Eq. (2), lrj is the personalized learning rate for tj , calculated
in Eq. (8).



Global Update
In meta optimization process, we aim to minimize the loss
function on the query set. All the parameters needed to be
updated globally are represented as Θ, including the shared
initial parameters φ∗, the parameters for clustering and those
for knowledge adaptation such as τ . Similar to MAML [Finn
et al., 2017], we take one-step gradient decent to update the
global parameters Θ as follows:

Θ← Θ− γ
∑

t∈T train

∇ΘL
Dq

joint (11)

where γ is the fixed learning rate for updating the initializa-
tion of global parameters. And the Ljoint is the joint loss on
the query set. Both local update and global update are com-
puted via back-propagation. Meanwhile, the cluster-aware
parameter memory MP is updated by Eq. (6).

5 Experiment
5.1 Datasets
We perform our experiments on two real trajectory datasets,
Beijing and Porto. Trajectories in Beijing dataset were col-
lected from May 1st to May 18th, 2016. There are 1041584
trajectories covering the road network. Porto dataset is pub-
licly available with 737063 trajectories generated from Jul
1st, 2013 to Jul 1st, 2014. We map the GPS trajectories to
the road network to get the corresponding sequence of road
segments for two datasets respectively. Then we remove the
noisy records which have extremely small travel time (i.e.,
< 120s) or those with very few road segments (i.e., < 10).
For Beijing dataset, 80% of the trajectories are used to train
the model and the remaining 20% are used to test. For Porto
dataset, we select the last two months for testing the model
and the remaining ten months for training. We choose hyper-
parameters by conducting meta-train using different hyper-
parameters and select the parameters with the best perfor-
mance, thus we do not set the validation set.

5.2 Evaluation Metrics and Configuration
Three metrics are used to evaluate the performance of our
methods, including mean absolute percentage error (MAPE),
mean average error (MAE), and root mean square error
(RMSE), which are widely used in regression problems. The
time slot is set to 30 minutes to avoid the absence of historical
traffic conditions due to the sparse data. Other settings of our
base model are the same as ConstGAT [Fang et al., 2020].
For each trajectory, we split it into 30% as the traveled route
and 70% as the remaining route, the average numbers of the
road segments in the traveled and remaining parts of trajecto-
ries are 15, 34 in Beijing dataset, and 14, 31 in Porto dataset.
The number of clusters is set as 3 for two datasets according
to the comparisons of different cluster numbers in Figure 2.
The initial learning rate of global update is set as 0.0001.

5.3 Baselines
First, in order to verify that we choose the strongest PR-TTE
method as our base model, we estimate the travel time of the
remaining route with existing PR-TTE methods. Second, to

confirm the importance of the traveled route, as well as the ef-
fectiveness of our model for solving the cold-start problem in
ER-TTE, we compare our model with methods that deal with
cold-start problems, e.g., TransferTTE, MAML and SSML,
in these methods, we estimate the travel time of remaining
routes via fine-tuning on traveled routes. For fair comparison,
the same base model ConSTGAT is used in TransferTTE,
MAML, SSML and our model MetaER-TTE,

• DeepTTE [Wang et al., 2018] transforms the raw GPS
trajectory to a series of local-paths, and captures spatial-
temporal dependencies based on these local-paths to es-
timate the travel time.

• CompactETA [Fu et al., 2020] considers road network
constraints and spatial-temporal dependencies to infer
the travel time.

• ConstGAT [Fang et al., 2020] is selected as our base
model, it integrates the relations of road segments and
traffic prediction to estimate the travel time.

• TransferTTE is based on transfer learning, which trains
the base model ConstGAT on the training set and fine-
tunes the model on traveled routes for testing.

• MAML [Finn et al., 2017] is a classic meta-learning
method, which aims to learn a general initialization from
multiple tasks and adapt it to new tasks.

• SSML [Fang et al., 2021] is a state-of-the-art meta-
learning model for ER-TTE, it aims to learn the meta-
knowledge to fast adapt to a user’s driving preference.

5.4 Performance Comparison
We ran three times of each method and take the average val-
ues as the final results. Table 1 illustrates the experimental
results of all methods on two datasets. The improvements
are calculated as the difference of MetaER-TTE and the best
method (underlined) over the best method, shown in percent-
age. For MAPE, MAE, RMSE, smaller values indicate better
performances, thus the values of improvements are negative.
Base Model Comparison. The framework of meta-learning
is based on a base model. We need to select a base model
which is relatively good, because it can increase the bottom-
line performance. As is shown in Table 1, the ConSTGAT
model which fully exploits the joint relations of spatial and
temporal information, has the best performance. Therefore,
we choose ConSTGAT as the base model.
Meta-learning Strategy Comparison. Next, we evaluate
the effectiveness of meta-learning strategies for ER-TTE. As
is shown in Table 1, we can observe that the performance
of TransferTTE is better than all the PR-TTE methods, in-
dicating that learning from the traveled route can improve
the accuracy of the estimation for the remaining route. Then
the meta-learning based models (MAML, SSML, MetaER-
TTE) outperform TransferTTE on both datasets, revealing
that meta-learning can further improve the performance by
alleviating the cold-start problem in ER-TTE. SSML, which
incorporates self-supervised learning to the meta-learning
paradigm, performs better than MAML, but worse than our
method, because it cannot adapt to each trajectory well. The



Dataset Beijing Porto
Metrics MAPE (%) MAE (s) RMSE (s) MAPE (%) MAE (s) RMSE (s)

deepTTE 32.77 160.80 237.67 19.65 119.52 183.59
CompactETA 30.65 154.02 217.58 19.37 115.82 174.25

ConstGAT 27.02 136.35 194.95 18.68 109.79 168.39
TransferTTE 26.77 135.37 194.15 18.61 109.56 168.17

MAML 26.70 133.86 193.35 17.80 102.02 158.76
SSML 25.38 127.21 188.11 17.68 98.63 150.96

MetaER-TTE-H 25.01 123.41 179.98 17.74 99.65 154.84
MetaER-TTE-P 25.52 127.85 180.69 17.44 96.30 149.22
MetaER-TTE-L 26.56 132.67 191.79 17.58 98.35 150.82
MetaER-TTE 24.21 122.27 176.09 17.37 93.75 145.39
Improvement -4.60% -3.88% -6.38% -1.75% -4.94% -3.68%

Table 1: Performance comparison of MetaER-TTE and its competitors

Datasets Beijing Porto
Metrics MAPE (%) MAE (s) RMSE (s) MAPE (%) MAE (s) RMSE (s)

K=1 26.70 133.86 193.35 17.80 102.02 158.76
K=2 24.65 125.01 179.69 17.71 98.61 152.14
K=3 24.21 123.27 178.09 17.56 96.94 150.74
K=4 24.69 124.11 178.78 17.70 98.15 151.27
K=5 24.67 124.47 179.07 17.65 98.04 151.25
K=6 24.71 124.94 179.90 17.70 98.10 151.34

Improvement -9.33% -7.91% -7.89% -1.35% -4.98% -5.05%

Table 2: Performance of different cluster numbers

experimental results demonstrate the superiority of our mod-
el, which can be explained as that MetaER-TTE can not only
alleviate the cold-start problem in ER-TTE, but also support
personalized adaptation for each trajectory.
Comparison with Variants. In this part, we aim to evaluate
the usefulness of each designed component in MetaER-TTE,
we compare the MetaER-TTE with several variants:

• MetaER-TTE-H uses hard-cluster instead of soft-
cluster method. The numbers of clusters are set to 3 as
the same as our model.

• MetaER-TTE-P removes the cluster-aware parameter
memory and transfer the shared characteristics across al-
l trajectories, even they may have completely different
contextual information.

• MetaER-TTE-L removes the learning rate generator in
this variant and adapt the initialization to each trajectory
with a fixed learning rate that is set to 0.00001.

First, the soft-clustering method is superior than hard-
clustering, indicating that trajectories with different contextu-
al information may share the knowledge due to the dynamic
traffic condition. Second, from the result of MetaER-TTE-P
and MetaER-TTE-L, we can conclude that removing either
cluster-aware parameter memory or learning rate generator
would affect the estimation.
Influence of the Cluster Numbers. The improvements in
Table 2 are computed as the difference of the best perfor-
mances (K=3) and performances with 1 cluster over the per-
formances with 1 cluster on that metric, shown in percentage.
As is shown in Table 2, the best performances are achieved

at K=3. That is because departure time has dominated the
clustering. When K=3, we have approximate morning peak,
evening peak and off-peak clusters. Therefore, we set the
cluster number as 3.

6 Conclusion
In this paper, we propose a novel adaptive meta-learning
method for ER-TTE called MetaER-TTE. Specifically, we
adopt a soft-clustering method and a cluster-aware parame-
ter memory to derive cluster-aware network parameters in the
initialization step, so as to better transfer the shared charac-
teristics across trajectories with similar contextual informa-
tion. Moreover, in order to prevent task-overfittingwe design
a learning rate generator to guide the initialized parameters
for each trajectory with a reasonable learning rate. Finally,
we conduct extensive experiments on two real-world datasets
to verify the effectiveness of our proposed model.
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