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ABSTRACT

Precisely recommending relevant items from massive candidates
to a large number of users is an indispensable yet computationally
expensive task in many online platforms (e.g., Amazon.com and
Netflix.com). A promising way is to project users and items into a
Hamming space and then recommend items via Hamming distance.
However, previous studies didn’t address the cold-start challenges
and couldn’t make the best use of preference data like implicit feed-
back. To fill this gap, we propose a Discrete Content-aware Matrix
Factorization (DCMF) model, 1) to derive compact yet informative
binary codes at the presence of user/item content information; 2)
to support the classification task based on a local upper bound of
logit loss; 3) to introduce an interaction regularization for dealing
with the sparsity issue. We further develop an efficient discrete
optimization algorithm for parameter learning. Based on extensive
experiments on three real-world datasets, we show that DCFM out-
performs the state-of-the-arts on both regression and classification
tasks.

CCS CONCEPTS

•Information systems→Collaborative filtering;

KEYWORDS

Recommendation, DiscreteHashing, Collaborative Filtering, Content-
based Filtering

ACM Reference format:

Defu Lian, Rui Liu, Yong Ge, Kai Zheng, Xing Xie, and Longbing Cao. 2017.

Discrete Content-aware Matrix Factorization. In Proceedings of KDD’17,

August 13–17, 2017, Halifax, NS, Canada., , 10 pages.

DOI: http://dx.doi.org/10.1145/3097983.3098008

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD’17, August 13–17, 2017, Halifax, NS, Canada.

© 2017 ACM. 978-1-4503-4887-4/17/08. . . $15.00
DOI: http://dx.doi.org/10.1145/3097983.3098008

1 INTRODUCTION

Recommender systems aim to recommend relevant items (e.g., pro-
ducts and news) to users via mining and understanding their prefe-
rences for items. Thanks to the development of recommendation
techniques over the past decades, they have been widely used in
various web services such as Amazon.com and eBay.com for impro-
ving sale of products and increasing click-through rate of adverti-
sements. However, within most of these web services, the number
of customers and products is dramatically growing, making recom-
mendation more challenging than ever before. For example, there
are more than 300 million active Amazon customers and over 480
million products for sale till now. Consequently, it is challenging to
generate immediate response to find out potentially-preferred pro-
ducts for customers via analyzing large-scale yet sparse browsing,
purchasing and searching data.

In the past, a variety of recommendation approaches have been
proposed, which include content-based methods, collaborative fil-
tering algorithms, and the combination of both kinds [1]. Among
these recommendation algorithms, dimension reduction techniques
exemplified by matrix factorization demonstrate not only high ef-
fectiveness but also the best sole-model performance [1]. Matrix
factorization algorithms factorize anM ×N user-item rating matrix
to map both users and items into a D-dimensional latent space,
where one user’s preference for an item is modeled by the inner
product between their latent features. When content information
of users and items is available, content-aware matrix factorization
(CaMF) algorithms have been introduced [3, 16, 23], where extrac-
ted features from content information are also mapped into the
same latent space. Such incorporation of content information usu-
ally leads to better recommendation performance [16]. In CaMF
methods, users’ preference for items could be still modeled as the
inner product between the latent features of users and items [16].
The computational complexity for generating top-K preferred items
for all users is O(MND +MN logK). Therefore, CaMF methods are
often computationally expensive and lead to crucial low-efficiency
issues when either M or N is large.

Upon the independence of generating top-K preferred items for
different users, one way to solve the aforementioned challenge is
to distribute the computation with parallel/distributed computing
techniques [40]. Another promising solution for improving the effi-
ciency is to encode real-valued latent factors with compact binary
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codes because the inner product between binary codes could be
computed much more efficiently via bit operations. Furthermore,
by indexing all items with special data structures, approximately
querying top-K preferred items with user binary codes has loga-
rithmic or even constant time complexity [21, 29]. The extensive
efficiency study has been presented in [37]. However, learning com-
pact binary codes is generally NP-hard [8] due to the discretization
constraints. To tackle this problem, people resort to a two-stage
procedure [19, 37, 39]. This procedure first solves a relaxed optimi-
zation algorithm via discarding the discrete constraints, and then
performs direct binary quantization. However, according to [35],
such a two-stage procedure results in a large quantization loss due
to oversimplification. Consequently, a learning based framework
was proposed for direct discrete optimization [35]. In spite of the
advantages of such a framework, there are two important limitati-
ons. First, the content information of users and items is not taken
into account, thus cold-start problems could not be well addressed.
Second, they cannot make good use of preference data like binary
feedback or implicit feedback (e.g., click data), which is often more
prevalent in many recommendation scenarios.

To address these limitations, we propose Discrete Content-aware
Matrix Factorization (DCMF) to learn hash codes for users and
items at the presence of content information (such as user’s age
and gender, item’s category and textual content). Without impo-
sing discretization constraints on latent factors of content informa-
tion, our framework requires the minimal number of discretization
constraints. By additionally imposing balanced and de-correlated
constraints, DCMF could derive compact yet informative binary
codes for both users and items. Besides supporting the regres-
sion task, this framework can also handle the classification task
based on a local variational bound of logistic regression when ta-
king binary feedback or implicit feedback as input. In order to
make better use of implicit feedback, an interaction regularizer is
further introduced to address the sparsity challenge in implicit feed-
back. To solve the tractable discrete optimization of DCMF with
all the challenging constraints, we develop an efficient alternating
optimization method which essentially solves the mixed-integer
programming subproblems iteratively. With extensive experiments
on three real-world datasets, we show that DCMF outperforms the
state-of-the-arts for both classification and regression tasks and
verify the effectiveness of item content information, the logit loss
for classification tasks, and the interaction regularization for sparse
preference data.

To summarize, our contributions include:

• We study how to hash users and items at the presence of their
respective content information for fast recommendation in both
regression and classification tasks.

• Wedevelop an efficient discrete optimization algorithm for tackling
discretization, balanced and de-correlated constraints as well as
interaction regularization.

• Through extensive experiments on three public datasets, we show
the superiority of the proposed algorithm to the state-of-the-arts.

2 PRELIMINARIES

Matrix factorization operates on a user-item rating/preference ma-
trix R of size M × N , where M and N is the number of users and

items, respectively. Each entry ri j indicates rating/preference of a
user i for an item j (using preference for subsequent presentation).
All observed entries are denoted by Ω = {(i, j)|ri j is known}. The
set of items for which a user i have preference is Ii of size Ni = |Ii |
and the set of users having preference for an item j is Uj of size
Mj = |Uj |. sgn(·) : R→ {±1} is a sign function. Below, upper case
bold letters denote matrices, lower case bold letters denote column
vectors, and non-bold letters represent scalars.

2.1 Content-aware Matrix Factorization

Matrix factorization maps both users and items onto a joint D-
dimensional latent space (D � min(M,N )), where each user is
represented by p̃i ∈ RD and each item is represented by q̃j ∈ RD .
Thus, each user’s predicted preference for each item is estima-
ted by inner product. At the presence of their respective con-
tent information, encoded as xi ∈ RM×F and yj ∈ RN×L re-
spectively, content-aware matrix factorization additionally maps
their respective features into the same latent space via a matrix
U ∈ RF×D and a matrix V ∈ RL×D respectively. Then each user
(item) is represented by pi = p̃i +U ′xi (qj = q̃j +V ′yj ) according
to [3, 4]. In this case, the predicted preference of user i for item
j is r̂i j = p′iqj = (p̃i + U ′xi )′(q̃j + V ′yj ). Thus different from
factorization machines [23], we don’t take interaction between user
(item) id and user (item) feature, and interaction between different
user (item) features into account. However, such a prediction for-
mula makes it possible to more easily leverage hash techniques for
speeding up recommendation. To learn {pi }, {qj }, U and V , we
can minimize the following objective function [16]:

∑

(i, j)∈Ω
�(ri j ,p′iqj ) + λ1

∑
i

‖pi −U ′xi ‖2 + γ1‖U ‖2F

+ λ2
∑
j

‖qj −V ′yj ‖2 + γ2‖V ‖2F (1)

where �(ri j ,p′iqj ) is a convex loss, like square loss �(ri j ,p′iqj ) =
(ri j −p′iqj )2 for rating prediction, logistic loss �(ri j ,p′iqj ) = log(1+
e−ri jp′

iqj ) for the classification task from binary feedback r ∈
{−1, 1}. When taking implicit feedback as input, an interaction
regularization

∑
i, j (p′iqj − 0)2, penalizing non-zero predicted prefe-

rence, should be imposed for better recommendation performance.
This is because the state-of-the-art objective function [10, 15, 17, 34]
for implicit feedback could be decomposed into a Ω-dependent
part and an interaction regularization. In particular, assuming
wi j = α + 1 if (i, j) ∈ Ω andwi j = 1 otherwise, then we have

∑
i, j

wi j (ri j − piqj )2

=(α + 1)
∑

(i, j)∈Ω
(ri j − piqj )2 +

∑

(i, j)�Ω
(0 − p′iqj )2

=α
∑

(i, j)∈Ω
(α + 1

α
ri j − p′iqj )2 +

∑
i, j

(0 − p′iqj )2 −
α + 1

α
r2i j

≈α
∑

(i, j)∈Ω
(ri j − p′iqj )2 +

∑
i, j

(0 − p′iqj )2 − r2i j

where the last approximation is derived since α is usually signifi-
cantly larger than 1.
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3 DISCRETE CONTENT-AWARE MATRIX
FACTORIZATION

After obtaining latent representation for users and items, generating
top-K preferred items for each user is considered as a similarity-
based retrieval problem. In particular, treating a user’s latent factor
as a query, one can compute “similarity” score between user and
item via inner product, and then extract the top-K preferred items
through the max-heap data structure. However, such a similarity-
based retrieval scheme, costing O(ND + N logK), leads to crucial
low-efficiency issues for real practice when N is large.

If representing them by binary codes, this similarity-based se-
arch could be accelerated by more efficiently computing the inner
product via the Hamming distance. Denoting Φ = [ϕ1, · · · ,ϕM ]′ ∈
{−1, 1}M×D and Ψ = [ψ1, · · · ,ψN ]′ ∈ {−1, 1}N×D as user and
item binary code, respectively, the inner product is represented
as ϕ ′

iψj = 2H(ϕi ,ψj ) − D, where H(ϕ,ψ) denotes the Hamming
distance between binary codes. Based on fast bit operations, Ham-
ming distance computation is extremely efficient. If only con-
ducting approximated similarity-based search, it has logarithmic
or even constant time complexity based on advanced indexing
techniques [21, 29]. For extensive efficiency study of hashing-based
recommendation could be referred in [37]. Below, we investigate
how to directly learn binary codes for users and items.

3.1 Loss Function

To derive the loss function, the first action is to convert continuous
latent factors into binary ones. In order to assure that each bit
carries asmuch information as possible, balanced constraints should
be imposed on binary codes of users and items [39]. To make binary
codes compact so that each bit should be as independent as possible,
de-correlated constraints are also imposed on them. And they may
lead to using shorter code for encoding more information [33].
Therefore, learning binary codes for users and items is to minimize
the following objective function.

∑

(i, j)∈Ω
�(ri j ,ϕ ′

iψj ) + λ1‖Φ −XU ‖2F + γ1‖U ‖2F

+λ2‖Ψ −YV ‖2F + γ2‖V ‖2F + β
∑
i j

(ϕ ′
iψj )2

s.t. Φ ∈ {−1, 1}M×D ,Ψ ∈ {−1, 1}N×D ,
1
′
MΦ = 0, 1′NΨ = 0

︸�������������������︷︷�������������������︸
balance

,Φ′Φ = MID ,Ψ
′Ψ = N ID︸���������������������������︷︷���������������������������︸

de-correlation

(2)

However, optimizing this objective function is a challenging task
and it is generally NP-hard due to involving combinatorial optimi-
zation over space of size (M + N )D. Accordingly, we introduce an
optimization framework that can minimize this objective function
in a computationally tractable way by softening the balanced and
de-correlated constraints. In particular, we can introduce a delegate
continuous variable P ∈ P forΦ and a delegate continuous variable
Q ∈ Q for Ψ, where P = {P ∈ RM×D |1′

M
P = 0,P ′P = MID } and

Q = {Q ∈ RN×D |1′
N
Q = 0,Q ′Q = N ID }. Then the balanced and

de-correlated constraints on users and items could be softened by
minP ∈P ‖Φ−P ‖F and minQ ∈Q ‖Ψ−Q ‖F , respectively. It becomes
a three-objective minimization problem. Applying scalarization

techniques of multi-objective optimization problems, we formulate
the tractable objective function of DCMF as follows:

∑

(i, j)∈Ω
�(ri j ,ϕ ′

iψj ) + α1‖Φ − P ‖2F + λ1‖Φ −XU ‖2F + γ1‖U ‖2F

+α2‖Ψ −Q ‖2F + λ2‖Ψ −YV ‖2F + γ2‖V ‖2F + β
∑
i j

(ϕ ′
iψj )2

s.t. 1′MP = 0,P ′P = MID , 1
′
NQ = 0,Q ′Q = N ID

Φ ∈ {−1, 1}M×D ,Ψ ∈ {−1, 1}N×D

(3)

where α1 and α2 are tuning parameters. If there are feasible solu-
tions in Eq (2), using very large values of α1 and α2 will enforce
Φ = P and Ψ = Q , turning Eq (3) to Eq (2). The comparative small
values of α1 and α2 allow a certain discrepancy between Φ and P ,
between Ψ and Q , making Eq (3) more flexible. Through jointly
optimizing binary codes and delegate real variables, we can get
nearly balanced and de-correlated hash codes for users and items.

Making use of tr(Φ′Φ) = tr(P ′P) = MD and tr(Ψ′Ψ) = tr(Q ′Q) =
ND, Eq (3) is equivalent to

∑

(i, j)∈Ω
�(ri j ,ϕ ′

iψj ) + β
∑
i j

(ϕ ′
iψj )2 − 2tr

(
Φ′(α1P + λ1XU ))

+λ1tr
(
U ′(X ′X +

γ1
λ1

IF )U
) − 2tr

(
Ψ′(α2Q + λ2YV ))

+λ2tr
(
V ′(Y ′Y +

γ2
λ2

IL)V
)

s.t. 1′MP = 0,P ′P = MID , 1
′
NQ = 0,Q ′Q = N ID

Φ ∈ {−1, 1}M×D ,Ψ ∈ {−1, 1}N×D

(4)

Note that we do not discard the discretization constraints but
instead directly optimize discrete Φ and Ψ. It is worth mentio-
ning that the norm of binary codes of both users and items are
constant and don’t take any effect of regularization, but the inte-
raction regularization of binary codes between each user and each
item is meaningful. Next, we develop an efficient learning solution
for such a mixed-integer optimization problem.

3.2 Optimization

Generally speaking, alternating optimization is used, taking turns
in updating each of Φ,Ψ,P ,Q,U and V , given others fixed. Alt-
hough the objective function in Eq (4) depends on the choice of loss
function, it only affects the updating rules of Φ and Ψ since their
update seeks binary latent representation to preserve the user-item
intrinsic preference.

3.2.1 Learning Φ and Ψ. We consider both regression and clas-
sification tasks for learning hash codes and thus elaborate the deri-
vation for their updating rules, respectively.

• Regression: Ignoring the term irrelevant to Φ and Ψ, the loss
function is

∑

(i, j)∈Ω
(ri j − ϕ ′

iψj )2 − 2tr
(
Φ′(α1P + λ1XU ))

− 2tr
(
Ψ′(α2Q + λ2YV )) + β

∑
i, j

ϕ ′
iψjψ

′
iϕ j , (5)
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where summation is conducted over users independently, so we
can update hash code for each user in parallel. In particular, lear-
ning hash code for a user i is to solve the following optimization
problem:

min
ϕi ∈{±1}D

ϕ ′
i (
∑
j ∈Ii

ψjψ
′
j + βΨ

′Ψ)ϕi

− 2ϕ ′
i (
∑
j ∈Ii

ri jψj + α1pi + λ1U
′xi ) (6)

Due to the discrete constraints, such an optimization problem is
generally NP-hard, we develop a coordinate-descent algorithm
to take turns to update each bit of the hash code ϕi when other

bits fixed. In particular, assuming the dth bit is represented by
ϕid and the remaining codes by ϕid̄ , the coordinate-descent
algorithm solves the following objective function:

min
ϕid ∈{±1}

ϕid (ϕ ′
id̄

∑
j ∈Ii

ψjdψjd̄ + βϕ
′
id̄
Ψ′
d̄
ψd −

∑
j ∈Ii

ri jψjd

− α1pid − λ1u
′
d
xi ),

whereψjd̄ is the remaining set of item codes excludingψjd ,ψd

is the dth column of the matrix Ψ while Ψd̄ excludes the dth

column from Ψ, ud is the dth column of the matrixU . Thus we
update ϕid based on the following rule:

ϕ∗
id
= sgn

(
K(ϕ̂id ,ϕid )

)
, (7)

where ϕ̂id =
∑
j ∈Ii (ri j − r̂i j + ϕidψjd )ψjd + α1pid + λ1u ′

d
xi −

βϕ ′
iΨ

′ψd + βNϕid while r̂i j = ϕ ′
iψj is prediction of preference,

and K(x ,y) equals to x if x�0 and y otherwise, meaning that

we don’t make an update if ϕ̂id = 0. The update rule is applied
among bits iteratively until convergence. Denoting the number
of the bit-wise iteration as #iter . Note that when the preference
prediction of observed entries is cached, r̂i j could be dynami-
cally updated, i.e., r̂∗i j = r̂i j + (ϕ∗

id
− ϕid )ψjd . The third term

except ϕi for all bits could be pre-computed before the user-level
iteration, costing O(ND2). Therefore, excluding overhead of pre-
computation, the complexity of updating the hash code for the
user i is O (

#iter (D2 + NiD)
)
, indicating that making update for

all users in sequence costs O (
#iter (MD2 + |Ω |D) + ND2) . If not

considering interaction regularization, the complexity could be
reduced to O(#iter |Ω |D). When leveraging parallel computa-
tion, its complexity could decrease by a factor of the number of
threads and (or) processes.

Similarly, we can learn hash code for an item j by solving

min
ψj ∈{±1}D

ψ ′
j (
∑
i ∈Uj

ϕiϕ
′
i + βΦ

′Φ)ψj

− 2ψ ′
j (
∑
i ∈Uj

ri jϕi + α2qj + λ2V
′yj )

Based on the coordinate-descent algorithm, we updateψj accor-
ding to:

ψ ∗
jd
= sgn(K(ψ̂jd ,ψjd )), (8)

where ψ̂jd =
∑
i ∈Uj (ri j − r̂i j + ϕidψjd )ϕid + α2qjd + λ2v ′

d
yj −

βψ ′
jΦ

′ϕd + βMψjd . Following the same analysis, the complexity

is O (
#iter (MD2 + |Ω |D) + ND2) when updating all items in

sequence.
• Classification We only consider the logistic loss �(ri j ,ϕ ′

iψj ) =
log(1+e−ri jϕ′

iψj ) due to its wide use in practice [3, 13]. However,
due to the non-linearity of this loss function, it is impossible to
directly obtain the close form of updating rule for hash codes of
users and items even based on the coordinate descent algorithm.
Therefore, we seek its upper variational yet quadratic bound [11]
and optimize the variational variable. In particular,

log(1 + e−ri jϕ′
iψj )

= log(1 + eϕ′
iψj ) − 1 + ri j

2
ϕ ′
iψj

≤λ(r̂i j )
((ϕ ′

iψj
)2 − r̂2i j ) −

1

2
(ri jϕ ′

iψj + r̂i j ) + log(1 + e r̂i j )

(9)

where λ(x) = 1
4x tanh(x/2) = 1

2x (σ (x) − 1
2 ) and the equality

holds only if r̂i j = ϕ ′
iψj . Using this upper bound, learning hash

code for user i is to solve

min
ϕi ∈{±1}D

ϕ ′
i

( ∑
j ∈Ii

λ(r̂i j )ψjψ
′
j + βΨ

′Ψ
)
ϕi − 1

2
ϕ ′
i

∑
j ∈Ii

ri jψj

− 2ϕ ′
i (α1pi + λ1U ′xi ), (10)

where r̂i j is the preference prediction based on the current va-
lue of ϕi and ψj . Through deviation, we can still apply Eq (7)

for updating the dth bit ϕid but the first term of ϕ̂id should be∑
j ∈Ii

( 1
4ri j − λ(r̂i j )r̂i j + λ(r̂i j )ϕidψjd

)
ψjd . Similarly, we can up-

date hash codes for items according to Eq (8) after adjusting the

first term of ψ̂id . The complexity of the updating rule remains
the same as before.

3.2.2 Learning P and Q . When fixing Φ, learning P could be
solved via optimizing the following objective function:

max
P

tr(P ′Φ), s.t. 1′MP = 0 and P ′P = MID . (11)

An analytical solution can be obtained with the aid of a centering
matrix Jn = In − 1

n 1n1
′
n . In particular, assume JMΦ = SPΣPT

′
P

as its Singular Value Decomposition, where each column of SP ∈
R
M×D̃ and TP ∈ RD×D̃ contains the left- and right-singular vec-

tors respectively, corresponding to D̃ non-zero singular values in
the diagonal matrix ΣP . Here, for generic purpose, the Φ is not

assumed full column rank, i.e., D̃ ≤ D. Note that 1′
M
JM = 0, so

1
′
M
JMΦ = 0, implying 1

′
M
SP = 0. Then we construct matrices ŜP

of size M × (D − D̃) and T̂P of size D × (D − D̃) by using a Gram-

Schmidt orthogonalization process such that Ŝ ′
P
[SP , ŜP , 1M ] = 0

and T̂ ′
P
[TP , T̂P ] = 0. Then the analytical solution for updating P is

determined as follows according to [18].

P =
√
M[SP , ŜP ][TP , T̂P ]′. (12)

In practice, to compute such an analytical solution, we could first
conduct eigendecomposition on the matrix Φ′JMΦ of size D × D

to obtain TP and T̂P , where each column of T̂P corresponds to
eigenvectors of zero eigenvalues. This only costs O(D3). Then,
we can obtain SP = JMΦTPΣ

−1
P

based on matrix multiplication

of O(MDD̃) complexity. And ŜP could be initialized to a random
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matrix followed by the aforementioned Gram-Schmidt orthogo-

nalization process, costing O(M(D2 − D̃2)). Therefore, the overall
complexity of updating P is O(MD2).

When fixing Ψ, learningQ could be solved in a similar way:

max
Q

tr(Q ′Ψ), s.t. 1′NQ = 0 andQ ′Q = N ID (13)

Its analytical solution is

Q =
√
N [SQ , ŜQ ][TQ , T̂Q ]′, (14)

where each column of SQ and TQ contains the left- and right-
singular vectors of JNΨ respectively. And the construction of

ŜQ and T̂Q is the same as that of ŜP and T̂P via the Gram-Schmidt

process. Its overall complexity is O(ND2).
3.2.3 LearningU andV . When fixing P andQ , taking all terms

related toU andV , the optimization problem with respect toU and
V is then respectively formulated as:

min
U

tr
(
U ′(X ′X +

γ1
λ1

IF )U
) − 2tr(Φ′XU )

min
V

tr
(
V ′(Y ′Y +

γ2
λ2

IL)U
) − 2tr(Ψ′YV ),

(15)

The optimal solution for them is derived as:

U = (X ′X +
γ1
λ1

IF )−1X ′Φ

V = (Y ′Y +
γ2
λ2

IL)−1Y ′Ψ.
(16)

When the number of features is large, conjugate gradient descent
could be applied. The time complexity only depends on the multipli-
cation between matrices, costing O ((‖X ‖0 + ‖Y ‖0)D#iter

)
, where

‖ · ‖0 is the �0 norm of matrices, equaling to the number of non-zeros
entries in the matrices, and #iter is the number of iterations of con-
jugate gradient descent to reach a given threshold of approximation
error.

3.3 Learning Hashing Codes in Cold-Start Case

When items have no rating history in the training set but are associ-
ated with content information, it remains unknown to derive their
hash codes. Accordingly, denoting feature representation, hash
codes and delegate continuous variables of these N1 items as X1,
Ψ1 andQ1, we can derive Ψ1 by solving:

min
Ψ1,Q1

−tr(Ψ′
1(λ2X1U + α2Q1)

)

s.t. Q ′
1Q1 = N1ID and 1

′
N1
Q = 0.

(17)

Resorting to the similar optimization techniques, we can easily
obtain the hash codes of the cold-start items. The hash codes of
cold-start users can be derived similarly.

3.4 Initialization

Note that the optimization problem involves a mixed-integer non-
convex optimization, a better initialization strategy could be im-
portant for faster convergence and finding better local optimum.
The solutions of two-stage learning schemes are promising. In par-
ticular, we first solve a relaxed optimization problem in Eq (3) by
discarding the discretization constraints and apply binary quan-
tization for obtaining hash codes for users and items. Note that
such an objective function has imposed balanced and de-correlated

constraints on latent factors of users and items, leading to a small
quantization error according to [35].

To solve the relaxed optimization problem, we can also leverage
alternating optimization for parameter learning. The update rules
for all parameters are the same except Φ and Ψ because of discar-
ding the discretization constraints. In particular, learning latent
factors for a user i in case of the regression task is achieved by
solving

min
ϕi ∈RD

ϕ ′
i (
∑
j ∈Ii

ψjψ
′
j + βΨ

′Ψ + α1ID )ϕi

− 2ϕ ′
i (
∑
j ∈Ii

ri jψj + α1pi + λ1U
′xi )

Thanks to its quadratics with respect to ϕi , there is a closed form
of the updating rule. However, such a closed form costs O(|Ω |D2 +

MD3) for updating latent factors of all users in sequence due to
its existence of interaction regularization. Therefore, coordinate
descent algorithm could be more appealing. In this case, the closed
form for updating ϕid is

ϕ∗
id
=

∑
j ∈Ii (ri j − r̂i j + ϕidψjd )ψjd − βϕ ′

iΨ
′ψd∑

j ∈Ii ψ
2
jd
+ βψ ′

d
ψd + α1

+
βϕidψ

′
d
ψd + α1pid + λ1u

′
d
xi∑

j ∈Ii ψ
2
jd
+ βψ ′

d
ψd + α1

(18)

where r̂i j is an aforementioned preference prediction and will be
cached and updated dynamically. In the case of classification, re-
sorting to the variational upper bound of logistic loss, the closed
form of updating ϕid is very similar to Eq (18), except that the
first term of numerator in the first part is replaced by

∑
j ∈Ii

( 1
4ri j −

λ(r̂i j )(r̂i j−ϕidψjd )
)
ψjd and the first part of denominator is replaced

by
∑
j ∈Ii λ(r̂i j )ψ 2

jd
.

In both cases, the updating rule for ψjd could be derived simi-
larly. Following the same analysis as before, its complexity of each
iteration could be reduced by a factor of D compared to a met-
hod which directly performs optimization with respect to ϕi . But
the former one may require a larger number of iterations until
convergence. After convergence, assuming the solution of the re-
laxed objective function is (Φ∗,Ψ∗,P∗,Q∗,U ∗,V ∗), the parameters
(Φ,Ψ,P ,Q,U ,V ) in Eq (3) could be initialized as a feasible solution
(sgn(Φ∗), sgn(Ψ∗),P∗,Q∗,U ∗,V ∗). The effectiveness of the propo-
sed initialization algorithm is illustrated in Fig 1.

4 EXPERIMENTS

4.1 Datasets

We evaluate the proposed algorithm on three public datasets of
explicit feedback from different real-world online websites. In these
three datasets, each user is assumed to have only one rating for
an item, otherwise, the average value of multiple rating scores is
assigned to this item.

The first dataset, denoted as Yelp, is the latest Yelp Challenge
dataset, which originally includes 2,685,066 ratings from 409,117
users and 85,539 items (points of interest, such as restaurants, hotels
and shopping malls). The rating scores are integers from 1 to 5.
Most items are usually associated to a set of textual reviews. For
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Figure 1: Convergence curve of the overall objective function and loss (square loss and logit loss) function with/without initi-

alization on the Yelp dataset. We see that it indeed helps to achieve faster convergence and lower objective/loss values.

each item, we aggregate all of its textual reviews and represent them
by bag of words, after filtering stopping words and using tf-idf to
choose the top 8,000 distinct words as the vocabulary according
to [28].

The second dataset, denoted as Amazon, is a subset of 8,898,041
user ratings for Amazon books [20], where all users and all items
originally have at least 5 ratings. All its rating scores are integers
from 1 to 5. Similarly, most books are provided a set of textual
reviews. A similar preprocessing procedure is applied for each
book’s reviews to obtain the content representation of each book.

The third one, denoted asMovieLens, is from the classic Movie-
Lens 10M dataset, originally including 10,000,054 rating from 71,567
users for 10,681 items (movies). The rating scores are from 0.5 to
5 with 0.5 granularity. Most movies in this dataset are associated
with 3-5 labels from a dictionary of 18 genre labels.

Due to the extreme sparsity of the Yelp and Amazon original
datasets, we remove users who have less than 20 ratings and remove
items which are rated by less than 20 users. Such a filtering strategy
is also applied for the MovieLens dataset. Table 1 summaries the
filtered datasets for evaluation.

Table 1: Data statistics of three datasets

Datasets #users #items #ratings Density

MovieLens 69,838 8,940 9,983,758 1.60%
Yelp 13,679 12,922 640,143 0.36%

Amazon 35,151 33,195 1,732,060 0.15%

4.2 Evaluation Framework

We will investigate the capability of the proposed algorithm for
incorporating content information, the effectiveness of both logit
loss and interaction regularization for the classification task. Ac-
cording to [28], there are two types of recommendation in practice:
in-matrix recommendation and out-of-matrix recommendation,
where the former task could be addressed by collaborative filte-
ring and the latter task corresponds to the well-known cold-start
problem in recommendation and cannot resort to collaborative
filtering. Thus, it is sufficient that we evaluate the proposed algo-
rithm from the following three perspectives for our investigation.
Note that efficiency study of the hashing-based recommendation is

not presented any more, since it has been extensively evaluated in
previous work [37].

In-matrix regression. In this evaluation, we first randomly sam-
ple 50% ratings for each user as training and the rest 50% as testing.
However, this task considers the case where each user has a set of
items that she has not rated before, but that at least one other user
has rated. Therefore, we carefully check this condition and always
move items in the test set, which are not rated by any user in the
training set, to the training set. We fit a model to the training set
and evaluate it on the test set. We repeat five random splits and
report the averaged results.

Out-matrix regression. This evaluation, corresponding to the
cold-start problems, considers the case where a new collection of
items appear but no one has rated them. In this case, we randomly
sample 50% items and put all ratings for them into the training set,
and then put the ratings for the rest items into the test set. This
corresponds to randomly shuffling item column in the user-item
matrix and then cutting matrix into two parts vertically. Hence this
guarantees that none of these items in the test set are rated by any
user in the training set.

In-matrix classification. This evaluation is similar to in-matrix
regression, but converts the aforementioned training sets of ratings
into binary like/dislike datasets. We follow the method proposed
in [13, 26] for constructing the binary datasets from the rating
datasets as follows. First, we treat only ratings of 4 stars or higher as
“like” preference. And then for each user we add the same number
of pseudo negative (“dislike”) items to “like” ones by sampling
in proportion to their popularity [6, 9, 25]. The popularity-based
sampling is chosen to discourage trivial solutions. For each test set,
only users’ “like” preferences for items are kept.

4.3 Evaluation Measures

We use two measures for these evaluation tasks, respectively suita-
ble for the regression and classification tasks.

For the regression task, error-based metrics such as root mean
square error (RMSE) and mean absolute error (MAE) are diver-
ged from the ultimate goal of practical recommender systems.
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Thus we measure the recommendation performance with a widely-
used NDCG (normalized Discounted Cumulative Gain) for evalua-
ting recommendation algorithms (including most of hashing-based
collaborative filtering algorithms) and information retrieval algo-
rithms [32]. This metric has taken into account both ranking pre-
cision and the position of ratings. The average NDCG at cut off
from 1 to 10 over all users is the final metric of the regression-based
recommendation accuracy. The larger value of NDCG indicates
higher accuracy of recommendation performance.

For the classification task, according to [13], MPR (mean per-
centile rank) is utilized for measuring the performance, since it is
commonly used in the recommendations based on implicit feedback
datasets [10, 27]. For a user i in the test set, we first rank all items
not rated in the training set, and then compute the percentile rank
PRi j of each “like” item j in the test set with regard to this ranking:

PRi j
�
=

1

N − |Ii (train)|
∑

j′�Ii (train)
1[pi j < pi j′ ],

where 1[x] = 1 if x is true and 1[x] = 0 otherwise, Ii (train) is
a set of the rated items of the user i in the training set, and pi j
is the probability that the user i likes the item j. After that, we
compute the average percentile rank over all “like” items of the
user i in the test set and denoted it as PRi . The final metric for
the classification-based recommendation accuracy is computed by
averaging PRi over all users. Accordingly, the smaller MPR value
indicates better rankings.

4.4 Baselines of Comparison

For hashing-based collaborative filtering, we only compare DCMF
with the state-of-the-art method: DCF [35], which outperforms
almost all two-stage binary code learning methods for collaborative
filtering, include BCCF [39], PPH [37], CH [19]. Note that DCF
also directly tackles a discrete optimization problem, subject to the
de-correlated and balanced constraints, for seeking informative
and compact binary codes for users and items. But it has not been
designed for classification-based collaborative filtering, and for in-
corporating content information.

For feature-based recommendation system, we compare a very po-
pular method: libFM [23], which has achieved the best sole-model
for the track I challenge–link prediction–of KDDCup 2012 [24].
It supports both classification and regression tasks of recommen-
dation, and provides several algorithms, including SGD, ALS and
MCMC, for optimization. With the advantage of learning hyperpa-
rameters in MCMC, we choose MCMC for optimization.

4.5 Results

In three tasks, the algorithm is sensitive to the tuning parameters
α1 and α2, so that they should not be set to large values. And
we tune them on a validation set, which are randomly selected
from the training data, by grid search over {1e-4, 1e-3, 1e-2, 1e-1,
1} and set both of them to 0.01. Our previous empirical studies
showed that recommendation performance is insensitive to γ1 and
γ2 [16], so we simply set

γ1
λ1
= 1 and

γ2
λ2
= 1. The most important

parameter among three tasks is λ2 since only item contents are
considered. This parameter of the initialization algorithm, denoted

as DCMFi, is different from DCMF. In the DCMFi, we tune it on the
validation set by grid search over {100,1000,10000,100000,1000000}
and respectively set them as 1000, 100000 and 1000000 on the Yelp,
Amazon, and MovieLens dataset. In DCMF, it is simply set to 1. The
interaction regularization, designed for implicit feedback datasets,
is only put into use in the classification task. Its coefficient β is set
to 0.01, 0.01 and 1e-6 on the Yelp, Amazon and MovieLens dataset
after tuning on the validation set by grid search over {1e-6,1e-4,1e-
2,1e-1}. β is much smaller on the MovieLens dataset since this
dataset is denser than others.

4.5.1 Regression. In this task, in addition to comparing DCMF
with DCF and libFM, we add DCMFi, representing the initializa-
tion algorithm with sign function applied, into the baselines. The
comparison results with varying length of hash codes are shown
in Fig 2, where DCF fails in the task of the out-matrix regression.
From this figure, we observe that DCF works well for in-matrix
regression, but adding item content through DCMF could improve
the performance. Discrete constraints indeed lead to quantization
loss by comparing DCMF with libFM, but their gap may also result
from the adaptive learning of hyper-parameters using the MCMC
inference. However, it is worth mentioning that in the task of the
out-matrix regression, DCMF could outperform libFM, particularly
on the MovieLens dataset. The reason still lies in the higher den-
sity of the dataset, so that libFM may overfit on the training set
and put more emphasis on ratings than item content information.
This could be further verified that with the increasing dimension
of latent factor (or hash codes), the performance of DCMF could
approach and even surpass that of libFM on three datasets. Finally,
the superiority of DCMF to DCMFi demonstrates the effectiveness
of the developed discrete optimization algorithm.

4.5.2 Classification. In this task, in addition to libFM and DCF,
we also compare DCMF with several variants of the initialization
algorithm – DCMFi, and show the results in Fig 4. We can observe
that for ranking all candidate items, DCMFi(c), the initialization
of DCMF with continuous latent factor, is better than DCMFi(c)/F,
which removes item content, and DCMFi(c)/IF, which removes both
interaction regularization and item content. Combining it with
the superiority of DCMFi(c)/F to DCMFi(c)/IF, we can demonstrate
the effectiveness of interaction regularization and item content
for improving recommendation performance. The comparison of
DCMFi(c)/IF with DCFi(c), the initialization of DCFwith continuous
latent factors, could reveal the benefit of using logit loss for mo-
deling the classification task. The overall benefit of incorporating
these three factors into the classification task could be further obser-
ved by the superiority of DCMF to DCF. The better performance of
DCMF than DCMFi(d) shows the validity of the proposed discrete
optimization algorithm. Finally, an interesting observation arises
from the comparison of libFM with DCMF and DCMFi(c). On both
Amazon and Yelp datasets, both DCMF and DCMFi(c) outperform
libFM. This mainly depends on the consideration of interaction
regularization. Due to the extremely small value of β , interaction
regularization almost couldn’t take effect on the MovieLens da-
taset. In other words, the high density of the MovieLens data is
an important factor that leads libFM to demonstrating surprising
recommendation performance.
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Figure 2: Item recommendation performance of hashing-based CFmethods in the regression task given different code lengths
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Figure 3: Efficiency v.s. data size and code length

4.6 Efficiency Study

After demonstrating the superior recommendation performance of
DCMF, we further study its efficiency with the increase of data size
and code length on the largest MovieLens dataset, and show them
in Fig 3. When fitting DCMF of 32-D, each round of iteration costs
several seconds and scales linearly with the increase of data size.
When fitting DCMF on 100% training data, each round of iteration
in case of classification scales quadratically with the increase of
code length due to interaction regularization while the regression
case is more efficient and scales linearly with code length.

5 RELATEDWORK

This paper investigates hashing-based collaborative filtering at the
presence of content information for regression and classification, so
we mainly review recent advance of hashing-based recommenda-
tion algorithms. For comprehensive reviews of hashing techniques,

please refer to [30, 31]. We also review some distributed/parallel re-
commender systems, since they share a similar spirit of improving
recommendation efficiency.

5.1 Hashing-based Recommendation

As a pioneer work, Locality-Sensitive Hashing has been utilized for
generating hash codes for Google News readers based on their click
history [5]. Following this work, random projection is applied for
mapping user/item learned latent representations from regularized
matrix factorization into the Hamming space to obtain hash codes
for users and items [12]. Similar to the idea of projection, Zhou et al.
applied Iterative Quantization for generating binary code from ro-
tated continuous user/item latent representation [39]. For the sake
of deriving more compact binary codes from user/item continuous
latent factors, the de-correlated constraint of different binary codes
was imposed on user/item continuous latent factors [19]. However,
since user/item’s latent factors’ magnitudes are lost due to binary
discretization, hashing only preserves similarity between user and
item rather than inner product based preference [37]. Thus they
imposed a Constant Feature Norm (CFN) constraint on user/item
continuous latent factors, and then separately quantized magnitu-
des and similarity. The relevant work could be summarized as two
independent stages: relaxed learning of user/item latent factors
with some specific constraints and subsequent binary discretization.
However, such two-stage methods suffer from a large quantization
loss according to [35], so direct optimization of matrix factoriza-
tion with discrete constraints was proposed. To derive compact
hash codes, the balanced and de-correlated constraints were further
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Figure 4: Item recommendation performance of hashing-based CF methods in the classification task, setting the length of

hashing code to 32. DCMFi(c) and DCMFi(d) represent the initialization algorithm of DCMF using continuous latent factors

and hash codes, DCFi(c) is the initialization algorithm of DCF using continuous latent factors. DCMFi(c)/F does not take

content information into account. DCMFi(c)/IF does not take content information and interaction regularization into account.

imposed. For the sake of dealing with implicit feedback datasets,
ranking-based loss function with binary constraints was proposed
in [36].

5.2 Distributed/Parallel Recommender System

Due to superiority of matrix factorization algorithms for recommen-
dation, their scalability has been extensively investigated recently.
Based on the usage of optimization algorithms, there are mainly
two lines of research. The first line is based on (block) coordinate
descent. For example, user-wise (item-wise) block coordinate des-
cent could be separated into many independent subproblems due to
the independence of updating rules for different users (items) [40].
However, it is hard to be scaled up to very large-scale recommender
systems since its parallelization in a distributed system requires
a lot of communication cost. Instead, coordinate descent based
parallel/distributed algorithm was proposed for updating rank-one
factors one by one. By storing a part of residual (ri j −ϕ ′

iψj ) related
to users and items in each machine, no communication of residual
is required. The other line is based on stochastic gradient descent.
For example, “delayed update” strategies were proposed in [2] and
a lock-free approach called HogWild was investigated in [22]. In
addition to proposing approximated but parallelized updating rules,
exact distributed/parallel update among independent matrix blocks
was proposed in [7]. When features of users and (or) items are
available, feature-based matrix factorization such as Factorization
Machine should be put into use. Its distributed optimization was
also studied in [14, 38] based on parameter servers. However, the
relevant work use continuous latent factors rather than hash codes.
As an alternative way for improving the recommendation efficiency,
the efficiency of hashing-based collaborative filtering in learning
binary codes and online recommendation could be significantly
improved with parallel/distributed techniques.

6 CONCLUSIONS

In this paper, we propose Discrete Content-aware Matrix Factoriza-
tion for investigating how to learn informative and compact hash

codes for users and items at the presence of content information,
and extend the recommendation task from regression to classifi-
cation. Simultaneously, we suggest an interaction regularization,
which penalizes non-zero predicted preference, for dealing with
the sparsity challenge. We then develop an efficient discrete optimi-
zation algorithm for learning hash codes for users and items. The
evaluation results of the proposed algorithm on three public data-
sets not only demonstrates the capability of the proposed algorithm
for incorporating content information, but also outperforms the
state-of-the-art hashing-based collaborative filtering algorithms on
both regression and classification tasks. And it is interestingly ob-
served that the interaction regularization could greatly improve the
recommendation performance when the user-item matrix is sparse,
verifying the effect of the interaction regularization at addressing
the sparsity issue.
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