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ABSTRACT

The pervasiveness of GPS-enabled devices and wireless com-
munication technologies results in massive trajectory data,
incurring expensive cost for storage, transmission, and query
processing. To relieve this problem, in this paper we propose
a novel framework for compressing trajectory data, REST
(Reference-based Spatio-temporal trajectory compression),
by which a raw trajectory is represented by concatenation of
a series of historical (sub-)trajectories (called reference tra-
jectories) that form the compressed trajectory within a given
spatio-temporal deviation threshold. In order to construct a
reference trajectory set that can most benefit the subsequent
compression, we propose three kinds of techniques to select
reference trajectories wisely from a large dataset such that
the resulting reference set is more compact yet covering most
footprints of trajectories in the area of interest. To address
the computational issue caused by the large number of combi-
nations of reference trajectories that may exist for resembling
a given trajectory, we propose efficient greedy algorithms
that run in the blink of an eye and dynamic programming
algorithms that can achieve the optimal compression ratio.
Compared to existing work on trajectory compression, our
framework has few assumptions about data such as moving
within a road network or moving with constant direction
and speed, and better compression performance with fairly
small spatio-temporal loss. Extensive experiments on a real
taxi trajectory dataset demonstrate the superiority of our
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framework over existing representative approaches in terms
of both compression ratio and efficiency.
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1 INTRODUCTION

The prevalence of various mobile devices has resulted in a mas-
sive amount of trajectory data. While they contain a wealth of
mobility information [28, 29, 33] and offer great opportunities
for heightening our understanding about human mobilities,
transmitting and storing raw trajectory data consumes too
much network bandwidth and storage capacity [6, 19, 32].
This is calling for effective trajectory compression techniques
that can remove redundant and inessential samples from raw
trajectory data to reduce the storage cost while preserving
the utility of data.

Trajectory compression approaches can be generally clas-
sified into spatial and spatio-temporal compression. Treating
trajectories as polylines, spatial compression methods are also
known as line simplification algorithms [2, 3, 7], which dis-
card some samples within a given spatial deviation threshold
from its original locations. However, trajectories are spatio-
temporal records of moving objects, in which temporal infor-
mation is also critical in many applications such as trajectory
monitoring [14] and location tracking [16]. Ignoring temporal
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information during compression may produce unbounded er-
roneous results when querying the decompressed data. There-
fore, recent studies focus on spatio-temporal compression
algorithms [12, 19, 21, 25, 30], which adopt spatio-temporal
criteria to bound the compression loss. The common fea-
ture of the above approaches is that they just exploit the
spatio-temporal characteristics of the single trajectory to
be compressed and assume moving objects do not change
speed and/or direction frequently while traveling. However,
this is quite an optimistic assumption for objects moving
with complicated traffic condition, which is why those algo-
rithms cannot achieve high compression ratio on real-world
trajectory data. Recently, Song et al. [27] propose a data-
driven approach, called PRESS, that leverages shortest path
and frequent trajectory pattern to compress trajectories in
a road network. Nevertheless, there are two key prerequi-
sites for PRESS to work properly. First, object movements
must be constrained by a network, which does not apply
for a wide range of free-space moving objects such as ani-
mals, flying objects and so on. Second, the network should
be relatively stable so that the compressed trajectories can
be used properly. However, it is not uncommon the topology
of road network changes frequently in developing areas (e.g.,
major cities of China)1. Since PRESS relies on precomputed
all-pair shortest paths, it has to recompute a large number
of shortest paths every time the network updates, which is
a time consuming process. Moreover, it takes tremendous
space to store the all-pair shortest paths for each version of
road network2.

In this paper, we propose a completely data-driven frame-
work, called REST (Reference-based Spatio-temporal trajec-
tory compression), for trajectory compression. There are a few
advantages for REST compared to existing work. First, trajec-
tories can originate from any kind of space (either constrained
or non-constrained space). Second, it includes both spatial-
only and spatio-temporal compression algorithms. Third, it
only takes small amount of memory to store the auxiliary
information (i.e., reference set). Fourth, the trajectory data
are indexable and usable in their compressed form. This
framework is based on some prior studies that find human
mobilities have inherent high-level spatial and temporal regu-
larity [8] (i.e., people have high probability to repeat similar
travel patterns) and highly skewed travel distribution [34]
(i.e., different people often take similar routes when traveling
between certain locations). Therefore it is feasible to extract
a relatively small collection of trajectories, named reference
trajectories, which “covers” most trajectories in the region
of interest. Then given a new trajectory in the same area,
there is high chance we can use a proper concatenation of
reference (sub-)trajectories to resemble, at least partially, the
given one. Compared with the raw format that keeps every
location sample, this representation saves significant space

1TomTom claims their digital maps have fixes and updates every week.
https://www.tomtom.com/en au/mydrive-connect/
2Keeping all-pair shortest path requires O(|V |2) space where V repre-
sents the vertex set in a road network.
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Figure 1: REST Framework Overview

since only a series of identifiers and offsets of the reference
(sub-)trajectories need to be recorded.

As shown in Figure 1, the REST framework is comprised
of two components: reference set construction and reference-
based compression. The first component aims to build a
reference system, where the challenge is how to trade off
high coverage and low redundancy in the reference set such
that subsequent compression can be performed more effec-
tively and efficiently. To this end, we present three kinds
of approaches including Frequent Pattern-based Approach,
Redundancy Reduction Approach and Compression-based
Approach, which use different strategies to select a compact
yet expressive reference set from a large training dataset. The
second component needs to tackle the computational issue
in the great number of reference trajectories we can use to
represent a given trajectory. For the sake of efficiency, we
propose greedy algorithms that try to represent the longest
possible sequence of samples with a single reference trajectory.
We also develop optimal algorithms to calculate the minimal
storage cost of the compressed trajectory and obtain the
corresponding optimal combination of reference trajectories.

Our main contributions can be summarized as follows:

• We propose a data-driven trajectory compression frame-
work targeting free-space trajectory data and consider-
ing spatio-temporal dimensions.

• We present three strategies to build a reference trajec-
tory set with high coverage and low redundancy.

• We propose greedy and optimal algorithms for both
spatial-only and spatio-temporal compression to trade
off compression efficiency and effectiveness.

• We conduct extensive experiments based on real taxi
trajectory dataset, which empirically demonstrate the
advantages of our proposed framework compared to
the representative approaches.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the preliminary concepts, error metric and
reference-based compression problem. We then propose the
construction of reference trajectories in Section 3. The algo-
rithms for spatial-only and spatio-temporal compression are
presented in Section 4 and Section 5 respectively. We report
the results from empirical study in Section 6, followed by the
related work in Section 7. Section 8 concludes this paper and
outlines the direction to further extend our work.
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2 PROBLEM STATEMENT

In this section, we will present a set of preliminary concepts,
introduce the error metric between raw and compressed tra-
jectories, and finally state our problem and goal.

2.1 Preliminary

Definition 1 (Raw Trajectory). A raw trajectory of
a moving object in 2D Euclidean plane, denoted as T , is
a finite sequence of timestamped locations with the form of
((x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)), where (xi, yi) stands
for the longitude and latitude information of a sampled loca-
tion at time stamp ti.

Definition 2 (Sub-Trajectory). A sub-trajectory, de-

noted by T (i,j), is made of consecutive sample points of T from
the i-th to j-th triplet, i.e., T (i,j) : ((xi, yi, ti), ..., (xj , yj , tj)).

Trajectory compression is a process to reduce storage cost
while keeping utility of a trajectory. Normally there are two
measures when comparing trajectory compression methods:

• Compression Ratio measures how much space has been
saved by compressing raw trajectories. It is usually de-
fined as the ratio between space costs of raw trajectories

and compressed trajectories, i.e., CR = space(T )
space(T ′) .

• Compression Loss measures to what extent a com-
pressed trajectory can be reconstructed to its corre-
sponding raw format. It is usually quantified by a
distance between raw trajectory and decompressed
trajectory based on some predefined distance function.

These two factors are often trade-off: high compression
ratio usually leads to greater compression loss and vice versa.
Based on compression loss, trajectory compression can be
classified into lossless compression and lossy compression.
Due to the extremely fine granularity (hence almost infinite
cardinality) of spatio-temporal dimensions in free space, loss-
less compression algorithms either are not practical or have
extremely low compression ratio. Thus in this paper we resort
to bounded lossy compression algorithm.

Definition 3 (Bounded Lossy Compression). Given
a deviation threshold ε, an ε-Bounded Lossy Compression
algorithm transforms a raw trajectory T into a compressed
trajectory T ′, such that the distance between the reconstructed
trajectory T ∗ and T does not exceed ε, i.e., d(T, T ∗) ≤ ε,
where d is some predefined distance function for trajectories.

2.2 Error Metric

In this work, we propose a simple but effective variant of Dy-
namic Time Warping (DTW) [4] distance, called MaxDTW,
to serve the error metric. It works exactly the same way as
DTW in looking for the best alignment between two unsyn-
chronized trajectories, with the only exception that it just
needs to record the maximum distance among all matched
pairs instead of the sum. More formally,

Definition 4 (MaxDTW). Given two trajectories Ta =
(p1, p2, ..., pn) and Tb = (q1, q2, ..., qm), the MaxDTW dis-
tance between them is defined as follows:

MaxDTW (Ta, Tb) =

{
0, if Ta = Tb = ∅
+∞, if Ta = ∅ or Tb = ∅
max{d(pn, qm), Q(pn, qm)}, otherwise

Q(pn, qm) = min

{
MaxDTW (T (1,n−1)

a , T
(1,m−1)
b )

MaxDTW (T (1,n−1)
a , T

(1,m)
b )

MaxDTW (T (1,n)
a , T

(1,m−1)
b )

where d(a, b) is a given distance between point a and b.

Similar to DTW, we can use a dynamic programming
algorithm [4] to compute MaxDTW.

2.3 Reference-based Compression

As observed in previous studies [34], there is strong bias when
most drivers plan their routes, which means given a new
trajectory it is very likely to find from a historical trajectory
dataset a few trajectories that resemble, at least partially,
the given one. We name these trajectory set as reference
trajectory set, denoted by R, which can be generated from
a historical trajectory dataset in the region of interest (e.g.,
where the trajectories to be compressed also reside). While
it is difficult to define the optimality of R, there are two
qualitative measures for a good one – high coverage and
low redundancy. Here high coverage means it has enough
power to represent a given trajectory in the same area of
interest, which heavily affects the compression ratio. Low
redundancy means most trajectories in R are quite unique
in terms of their geographical locations since overlapping
reference trajectories do not increase the expressive power and
make the compression inefficient. In the rest of the paper we
use reference trajectory set and reference set interchangeably
when no ambiguity is caused.

Problem Statement: Given a reference trajectory set
R, a trajectory T to be compressed and an error threshold
ε, a reference-based compression algorithm uses a selected
subset of R, or their sub-trajectories whenever possible, to
represent T , denoted as T ′, and guarantees that the distance
between T ′ and T does not exceed ε.

An ideal case is that the trajectory T can be fully repre-
sented by selected trajectories in R, so the compressed tra-
jectory T ′ will be in the form of sub-trajectory sequence, i.e.,
T ′ = ((T1, s1, e1), (T2, s2, e2), ...), where Ti ∈ R (recorded
by a 4-byte identifier), si (ei) is the start (end) index with
respect to Ti (each recorded by a 2-byte integer since a trajec-
tory cannot be quite long). Therefore each triplet of T ′ only
occupies 8 bytes in memory, the same as that of an original
sample point when temporal information is not considered. If
a raw trajectory with 100 sample points can be represented
by 10 reference trajectories, the compression ratio will be
800/80 = 10.

Inevitably, with the constraint of ε there may exist some
parts that cannot be described by any reference trajectory.
In such cases we simply keep its original samples for that
part in the compressed form. So in practice a compressed
trajectory T ′ is in the mixture form of sample sequence
and sub-trajectory sequence. The first bit of each triplet
can be spared to indicate if the next 8-byte space holds an
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Figure 2: Running example

original sample point or a reference trajectory triplet without
incurring any space overhead.

3 REFERENCE SET CONSTRUCTION

In this section, we propose three methods to build a compact
and expressive reference set, which is relatively stable and do
not require frequent updates to compress new data. Figure 2
shows a training trajectory set, in which each trajectory sam-

ple is labeled by T
(j)
i indicating the j-th sample of trajectory

Ti. Besides, the first sample of each trajectory is companied
by a number that indicates the start time stamp. We assume

the sampling interval is 1 time unit. For instance, T
(2)
2 is the

second sample of T2 whose time stamp is 3.

3.1 Frequent Pattern-based Approach
(FPA)

Previous studies have shown that trajectories of moving ob-
jects often follow certain patterns, such as commuter patterns,
peak/off peak patterns, weekend patterns, etc. Therefore a
natural thought is to leverage these frequent patterns for
building a reference set. Given a trajectory dataset, its fre-
quent pattern is a set of sub-trajectories of which the occur-
rence frequencies exceed a certain support threshold. Inspired
by [15], we first introduce calculating point and calculating
trajectory to discretize trajectories into sequential data and
then apply Sequential Pattern Mining algorithms [1] to find
frequent sub-trajectories. Specifically, given a sample point
set P = {p1, p2, ..., pn}, pi is called a calculating point a if
|pj .x−pi.x| ≤ εs and |pj .y−pi.y| ≤ εs. Then all pj can be rep-
resented by a. A calculating trajectory is a sequence formed
by the calculating points chronologically. The following steps
are performed to find all of the frequent sub-trajectories:

• Find all calculating points and calculating trajectories.
• Given the minimum support threshold, the frequent cal-
culating points are obtained by scanning all calculating
points.

• Remove non-frequent calculating points, and obtain
frequent calculating sub-trajectories.

• Remove the frequent calculating sub-trajectories who
is the sub-trajectories of another frequent calculating
trajectories.

• Return all the frequent sub-trajectories.

3.2 Redundancy Reduction Approach

Since only using frequent patterns may result in low coverage,
we next present two variant methods to achieve higher cover-
age and reduce redundancy (to some extent) simultaneously.

3.2.1 Segment Redundancy Reduction (SRR). Given a train-
ing trajectory set, we aim to extract a set of non-redundant
sub-trajectories. First we define redundant segment in below,

Definition 5 (Redundant Segment). Given a mini-
mum length threshold η and a distance threshold εs, two
sub-trajectories (segments) with the same number of sam-

ples, i.e., T
(i,i+m)
a and T

(j,j+m)
b , are said to overlap with

each other if m ≥ η and their maximum pairwise distance
dmax = max

0 ≤k ≤m
d(Ta.pi+k, Tb.pj+k) ≤ εs. If a sub-trajectory

s overlaps with any existing sub-trajectory in a reference set
R, s is called a redundant segment.

η is to avoid the existence of too many short segments. The
basic idea of our approach is to eliminate all the redundant
segments of training trajectories and use remaining segments
as the reference set. To save space, we omit the pseudo-code.

3.2.2 Trajectory Redundancy Reduction (TRR). The refer-
ence set constructed by SRR algorithm may end up with too
many short segments if η is too small, or too many whole
trajectories otherwise (since it gets harder to identify long
segment overlap). We present an alternative approach to
reduce redundancy by treating each trajectory as atomic, i.e.,
either use the entire one or nothing. The redundant trajectory
is defined as follows:

Definition 6 (Redundant Trajectory). Given an over-
lap threshold θ, a distance threshold εs, a trajectory T is called
redundant if the overlap portion between T and R, denoted as
L(T,R), exceeds θ, where L(T,R) is calculated as the portion
of samples in T that are sufficiently close to any samples in
R, i.e.,

L(T,R) =
|p ∈ T |∃q ∈ R, d(p, q) ≤ εs|

|T | > θ (1)

The TRR algorithm checks every training trajectory T
and calculates the overlap portion with R. If the value is
below θ, T is added into R as a reference trajectory.

3.3 Compression-based Approach (CA)

As the ultimate goal of building a reference set is to achieve
high compression ratio, we can compress a training trajectory
against the current reference set with the spatial compression
algorithm proposed in the following section and record the
compression ratio. If the ratio is high enough, that means
the training trajectory can be well described by existing
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reference trajectories, i.e., it is redundant; otherwise, it is
non-redundant. The non-redundant training trajectory will
be added into the current reference set.

4 SPATIAL COMPRESSION

In this section, ignoring the time information, we compress a
given trajectory using as few reference trajectories as possible
to minimize the space cost.

4.1 Matchable Reference Trajectory

We will firstly introduce matchable reference trajectory – a
basic concept that will be used throughout our algorithms.

Definition 7 (Matchable Reference Trajectory

(MRT)). Given a sub-trajectory T (i,j) and a spatial deviation
threshold εs, its matchable reference trajectory set, denoted
as M(T (i,j)), includes all the reference sub-trajectories with

less-than-εs MaxDTW distance with T (i,j), i.e.,

M(T
(i,j)

) =
{
T
(k,g)

∣∣∣T ∈ R, 1 ≤ k ≤ g ≤ |T|,

MaxDTW (T
(i,j)

,T
(k,g)

) ≤ εs
} (2)

Here each MRT T
(k,g) is recorded as a triplet (T.id, k, g)

(costing 8 bytes). To retrieve the MRTs, we propose an effi-
cient method based on the following observation.

Lemma 1. Any sub-trajectory of the MRT of T (i,j) is also
an MRT of sub-trajectory of T (i,j).

The proof is directly from the property that MaxDTW
distance between longer sequences upper bounds their sub-
sequences. Therefore the MRT set of T (i,j) can be more
easily derived by joining the MRT sets of its sub-trajectories.
Algorithm 1 is proposed based on this intuition. First, the
MRT sets of all the length-2 sub-trajectories is obtained and
added to a hash set M(T (i,j)) (lines 1-2). Then for each

length-n (2 < n ≤ |T |) sub-trajectory T (i,j), we check if

existing MRT of T (i,j−1) and T (j−1,j) can also be the MRT
of T (i,j) (lines 6-9), and verify if a longer MRT can be formed

for T (i,j) by joining M(T (i,j−1)) and M(T (j−1,j)) (lines 10-
11). The algorithm can be terminated early if we find the
MRT sets of all length-n sub-trajectories are empty since all
longer sub-trajectories will not have MRT based on Lemma 1.

Given εs = 0.9, η = 1 and the reference set generated by

SRR algorithm previously, i.e.,R = {T1, T2, T
(3,15)
3 , T4, T5, T6,

T7}, Figure 3 illustrates the MRTs for T , to name a few,

M(T (2,9)) = {T (1,8)
2 }, M(T (10,15)) = {T (6,14)

4 , T
(7,12)
5 }.

4.2 Greedy Spatial Compression

Once the MRT set is obtained, a natural thought is to process
the given trajectory in its chronological order and compress
the longest possible sub-trajectory with its MRT (selecting
an arbitrary MRT if multiple longest MRTs exist), until the
last sample point has been reached. This approach is called
Greedy Spatial Compression (GSC) algorithm since it seems
not a global strategy to combine MRTs in order to achieve

Figure 3: Matchable Reference Trajectories

Algorithm 1: Matchable Reference Trajectory Search

Input: T , R, εs
Output: M

1 for each T (i,i+1) ∈ T do

2 M(T (i,i+1)) ← MRT set for segment T (i,i+1);

3 for n ← 3 to |T | do
4 for each length-n sub-trajectory T (i,j) ∈ T do

5 for T
(m,n)
a ,T

(s,t)
b ∈ M(T (i,j−1)),M(T (j−1,j)) do

6 if MaxDTW (T (i,j),T
(m,n)
a ) ≤ εs then

7 Add T
(m,n)
a into M(T (i,j));

8 if MaxDTW (T (i,j),T
(s,t)
b ) ≤ εs then

9 Add T
(s,t)
b into M(T (i,j));

10 if a = b and n = s then

11 Add T
(m,t)
a into M(T (i,j));

12 if no length-n sub-trajectory has MRT then
13 Break;

14 return M ;

the minimal storage cost. However, we will prove later it also
yields space optimal compressed trajectory.

Consider the example in Figure 3. With GSC algorithm,

we firstly compress T (1,3) with T
(12,14)
1 since it is the first

longest sub-trajectory with non-empty MRT set. Then the

remaining part of T are represented by T
(3,8)
2 , T

(6,15)
4 , T (17),

T
(8,10)
7 respectively, resulting in the space cost of 40 bytes,

i.e., 25% of its original space (160 bytes).

4.3 Optimal Spatial Compression

In the sequel, we propose a dynamic programming algorithm,
called Optimal Spatial Compression (OSC), that aims to
minimize the required storage size for T ′. Specifically, given
a trajectory T and its MRT set M(T ), we define FT [i] as

the minimum storage size needed for compressing T (1,i), and
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T ′(1,i) as the corresponding compressed sub-trajectory to
achieve this optimum storage. FT [i] can be derived by the
following recursive formula shown in Equation (3).

FT [i] =

{
0 if i = 0

min
1≤j≤i∧M(T (j,i)) �=∅

{FT [j − 1] + 8} otherwise (3)

where the MRT set of single sample point, i.e., M(T (i,i)), is
manually set to non empty.

It is trivial FT [0] = 0 when T = ∅, i.e., i = 0. When i > 0,
FT [i] is computed by picking the minimum of: 1) the optimal

storage cost of sub-trajectory T ′(1,j−1), i.e., FT [j − 1], plus

the storage (8 bytes) for an MRT of sub-trajectory T (j,i) if

M(T (j,i)) �= ∅ when 1 ≤ j < i; and 2) the optimal storage

cost of sub-trajectory T ′(1,i−1), i.e., FT [i−1], plus the storage
(8 bytes) of original sample point pi ∈ T when j = i.

Algorithm 2: Optimal Spatial Compression

Input: T , M(T )
Output: T ′

1 T ′ ← null;

2 FT [0] ← 0;

3 for i ← 1 to |T | do
4 min ← 8|T |;
5 for j ← 1 to i do

6 if M(T (j,i)) �= ∅ and FT [j − 1] + 8 < min then

7 min ← FT [j − 1] + 8;

8 pre[i] ← j − 1;

9 FT [i] ← min;

10 i ← |T |;
11 while 0 < i ≤ |T | do
12 if pre[i] ← i− 1 then

13 Add pi into T ′;
14 i ← i− 1;

15 else

16 Add arbitrary T
(k,g) ∈ M(T (pre[i]+1,i)) into T ′;

17 i ← pre[i];

18 return T ′;

With Equation 3, now we can compute the minimum
storage size of compressed trajectory, which is presented in
Algorithm 2. Note that we introduce another notation pre[i]
for recording the last-to-first sample points having been com-
pressed before achieving FT [i] to facilitate the reconstruction
of the compressed trajectory T ′ with minimum storage size.
It first initializes T ′ = null and FT [0] = 0 (lines 1-2). Then
the algorithm processes all points of T in the sampling order
from 1 to |T |, where each recursion starts with initializing the
minimal storage size to the whole storage of T , i.e., 8|T |, and
computes FT [i], pre[i] according to Equation 3 (lines 3-9).
Finally, it presents the procedure of construction T ′ from
table pre (lines 10-17). It is easy to analyze the complexity
of Algorithm 2 is O(|T |2).

Take Figure 3 as a case, we can finally get FT [20] = 40 with

T (1), T
(1,8)
2 , T

(7,12)
5 , T

(13,14)
6 , T

(8,10)
7 compressing T based on

Equation 3. It is worth noting that there may be more than
one combination of reference trajectories and original sample
points of T to get the minimum storage size of T ′.

Recall the previous example that the compressed trajectory
based on GSC algorithm also costs the same space. We show
by Lemma 2 that it turns out not to be a coincidence. The
proof is omitted due to space limit.

Lemma 2. The compressed trajectory T ′ generated by GSC
is also space optimal.

5 SPATIO-TEMPORAL
COMPRESSION

In this section, we extend spatial compression algorithms into
spatio-temporal compression algorithms considering both
spatial and temporal information.

5.1 Time Correction Cost

Intuitively, given a spatial deviation threshold εs and a tempo-
ral deviation threshold εt, if the MaxDTW distance between
two trajectories Ta and Tb is smaller than εs, we also need
to modify some timestamps of either Ta or Tb such that the
maximum time difference between the matching sample pairs
(along the optimal alignment path) does not exceed εt as well.
Each correction of time will incur some extra space, denoted
by c, to record the position where this correction takes place
and the new timestamp. Here we set c = 4 bytes to record
the index (15 bits) of corrected samples and time (e.g., sec-
onds) of day (17 bits). However, c can be reconfigured to
suit different application requirement. The total extra space
incurred by rectifying the timestamps of Tb to match Ta is
called Time Correction Cost, denoted as Cεt

Ta
(Tb).

Suppose the matched sample pairs between Ta and Tb when
calculating their MaxDTW distance are (a1, b1), (a2, b2), ...,
(an, bn) (n ≤ |Ta + Tb − 1|). Note that this representation
contains replication of original samples, i.e., ..., ai, ... may
refer to the same sample in Ta, since a sample in Ta(Tb) can
match multiple samples in Tb(Ta). Then the time correction
cost Cεt

Ta
(Tb) can be derived by sequentially processing each

(ai, bi)(1 ≤ i ≤ n), and performing the following actions:

• Initialize t = 0 to record the most recent correct times-
tamp of Tb and set b0.t = 0, Cεt

Ta
(Tb) = 0;

• If |t+bi.t−bi−1.t−ai.t| ≤ εt, update t = t+bi.t−bi−1.t;
• Otherwise update t = max{ai.t, bi−1.t}, Cεt

Ta
(Tb) =

Cεt
Ta

(Tb) + c, and record the actual index of bi in Tb

and the corrected timestamp t.

When applying the above procedure to our spatio-temporal
compression, Ta is the given trajectory to be compressed
and Tb is a MRT of Ta. Reconstruction of Ta’s temporal
information with Tb is also straightforward. Scanning from
the first point of Tb, we will replace bi’s timestamp with
the corrected timestamp if a correction record can be found;
otherwise set bnew

i .t = bnew
i−1 .t+ boldi .t− boldi−1.t.
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Table 1: Compressed Trajectory from GSTC

T Mopt(T
(i,j)) Time Correction C

εt
T

T (1,3) T
(12,14)
1 T

(12)
1 .t = 1 4

T (4,9) T
(3,8)
2 T

(4)
2 .t = 6, T

(7)
2 .t = 8 8

T (10,16) T
(6,15)
4 T

(6)
4 .t = 10, T

(9)
4 .t = 12,

T
(11)
4 .t = 13, T

(13)
4 .t = 14

16

T (17) T (17) 0

T (18,20) T
(8,10)
7 T

(8)
7 .t = 18 4

Table 2: Compressed Trajectory from OSTC

T Mopt(T
(i,j)) Time Correction C

εt
T

T (1) T (1) 0

T (2,9) T
(1,8)
2 T

(4)
2 .t = 6, T

(7)
2 .t = 8 8

T (10,15) T
(7,12)
5 T

(7)
5 .t = 10 4

T (16,17) T
(13,14)
6 T

(13)
6 .t = 16 4

T (18,20) T
(8,10)
7 T

(8)
7 .t = 18 4

5.2 Greedy Spatio-temporal Compression

Similar with GSC algorithm, Greedy Spatio-temporal Com-
pression (GSTC) algorithm also iteratively replaces the longest

sub-trajectory (i.e., T (i,j)) with its MRT. However, instead
of choosing an arbitrary MRT for this longest sub-trajectory,
GSTC finds the one with least time correction cost in order
to minimize the storage for compressed trajectory.

Applying GSTC algorithm on the running example in
Figure 3, the selected MRTs and time correction cost are
detailed in Table 1. Since each original sample point costs
12 bytes now (with timestamp), the storage cost of T ′ is 76
bytes, which is 31.67% of the original space cost (240 bytes).

5.3 Optimal Spatio-temporal Compression

In this part we extend OSC algorithm to Optimal Spatio-
temporal (OSTC) algorithm in below.

FT [i] =

⎧⎪⎨
⎪⎩

0 if i = 0

min
{
FT [i − 1] + 12, min

1≤j<i∧M(T (j,i)) �=∅
{FT [j − 1] + C

T (j,i) (Mopt(T
(j,i)))} + 8

}
otherwise

FT [i] records the minimal space needed for compressing

sub-trajectory T (1,i). FT [0] = 0 defines the termination con-
dition. For i ≥ 1, the algorithm either 1) keeps the original

sample pi ∈ T ; or 2) compresses T (j,i) with Mopt(T
(j,i)). In

the first case, the final space cost is simply the compressed
space of T (1,i−1) plus 12 bytes (for storing pi). In the second
case, the space cost is the minimal sum of compressed space
for T (1,j−1), time correction cost of Mopt(T

(j,i)) and space

for Mopt(T
(j,i)) (8 bytes). The process of calculating FT [|T |]

and construction of T ′ is similar to Algorithm 2 and thus
omitted here due to space limitation. The time complexity
of this algorithm is also O(|T |2).

Taking the example in Figure 3, we employ OSTC algo-
rithm to calculate the proper MRTs and time correction
shown in Table 2, and achieve the minimal storage size of
T ′ (i.e., 64 bytes), resulting in an approximately 15.79%
reduction compared to GSTC algorithm.

Table 3: Experiment Parameters

Parameters Values

No. of trajectories to construct
reference set |DR|

50k, 100k, 150k, 200k,
250k

Spatial deviation threshold εs 200m, 400m, 600m,
800m, 1000m

Temporal deviation threshold εt 30s, 60s, 90s, 120s, 150s
Length of query trajectory |T | 50, 100, 150, 200, 250

6 EXPERIMENT

In this section, we conduct extensive experiments to vali-
date the effectiveness of our proposed algorithms. All the
algorithms are implemented on an Intel(R) Xeon(R) CPU
E5-2630 v2 @ 2.60GHZ with 256 GB RAM.

6.1 Experiment Setup

We use a real trajectory dataset generated by taxis in Beijing
over one week, which contains about 2 million trajectories.
Trajectories in one day (about 280k) are used as training
dataset to construct the reference set, and the rest are used
to test the performance of different compression algorithms
under various parameter settings with the average perfor-
mance for one day recorded. The ranges and default values
(underlined) of all the parameters are summarized in Table 3.

6.2 Experiment Results

6.2.1 Performance of Reference Set Construction. We first
evaluate the performance of reference set construction and its
impact to spatial compression. Two metrics, Size of Reference
Set (the number of sampling points in the reference set)
and Compression Ratio, are compared among the following
methods (specified in Section 3) by varying |DR|, εs.

• FPA: Frequent Pattern-based Approach with minimum
support 100.

• SRR-5: Segment Redundancy Reduction approach with
minimum sub-trajectory length η = 5.

• SRR-20: Segment Redundancy Reduction approach
with minimum sub-trajectory length η = 20.

• TRR-40: Trajectory Redundancy Reduction approach
with overlap threshold θ = 40%.

• TRR-70: Trajectory Redundancy Reduction approach
with overlap threshold θ = 70%.

• CA-3: Compression-based Approach with compression
ratio threshold δ = 3.

• CA-5: Compression-based Approach with compression
ratio threshold δ = 5.

Effect of |DR|. In this set of experiment, we study the
effect of |DR|. As shown in Figure 4(a), naturally the sizes of
reference sets generated from all approaches increase when
more training trajectories are used. However, we also no-
tice that the increase becomes slower when |DR| > 150k
since with more reference trajectories accumulated there is
increasing chance that subsequently added trajectories are
redundant. Among those competing methods, FPA generates
the smallest reference set while TRR-70 results the largest
followed by CA-5, SRR-20, TRR-40, CA-3 and SRR-5. It
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Figure 4: Performance of Reference Set Construc-
tion: Effect of |DR|
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Figure 5: Performance of Reference Set Construc-
tion: Effect of |εs|

is found that the size of reference set almost stops growing
beyond 400k, which only takes a few megabytes memory
space. From Figure 4(b), the compression effectiveness heav-
ily depends on the size of reference set since a larger reference
set normally means greater coverage hence better compres-
sion ratio. Compression algorithm performs the worst on the
reference set generated by FPA, which aims at capturing the
major traveling patterns of training trajectories. Even though
CA-5 generates a smaller reference set than TRR-70, it has
the best compression ratio, which implies that the reference
set generated by CA-5 is of high coverage and low redun-
dancy. This is due to the fact that CA directly optimizes the
compression ratio during the construction of reference set
while SRR and TRR try to minimize the redundancy.

Effect of εs. Next we study the effect of spatial deviation
threshold. In Figure 5(a), the sizes of reference sets decrease
with the increase of εs, since εs affects the granularity of
patterns for FPA and the judgment of redundant trajectories
for other approaches. Greater εs means more trajectories be-
come redundant, which in turn results in smaller reference set.
On the compression ratio aspect, Figure 5(b) demonstrates
that as εs increases the compression performance improves
in spite of smaller reference set since a given trajectory has
more chance to match fewer but longer reference trajectories.

6.2.2 Performance of Compression Algorithms. In this part
we evaluate the effectiveness (compression ratio) and effi-
ciency (running time) of the proposed compression algorithms,
namely GSC, OSC, GSTC and OSTC, based on the same
reference set generated by compress-based approach. More-
over, we also implement two representative spatio-temporal
compression algorithms, namely Normal Douglas-Peucker
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Figure 6: Performance of Compression Algorithms:
Effect of |εs|

(NDP) algorithm based on SED [19] (a spatial trajectory sim-
plification algorithm with synchronous Euclidean distance)
and PRESS [27] (a spatial-temporal trajectory compression
algorithm with the constraint of road network), as our com-
petitors. For NDP, we define εs as the maximal allowed SED
between a raw trajectory and its compressed trajectory. Since
the spatial compression component of PRESS is lossless, we
use εs and εt to represent the error metrics, TSND and NSTD,
in the temporal compression component, respectively.

Effect of |εs|. As expected, compression ratio of all al-
gorithms gradually increases as εs grows (see Figure 6(a)).
Naturally, GSC and OSC achieve the best compression ratio,
since they do not consider temporal information. The result
also verifies our previous lemma that GSC and OSC have
the same power in terms of compression ratio. Moremore,
the compression ratio of OSTC and GSTC grows faster than
that of PRESS and NDP, showing more benefits as εs in-
creases. OSTC achieves the best compression ratio amongst
all spatio-temporal compression methods, confirming the op-
timality of our proposed algorithm. In terms of running time
in Figure 6(b), NDP is fastest and almost not affected by εs,
while OSTC is most time-consuming. The running time of
our proposed algorithms increase since a greater |εs| results in
more MRT enumerations during the compression. PRESS is
also affected by |εs| since it is related to the angular search re-
gion during bounded temporal compression. Moreover, GSTC
(OSTC) runs slower than GSC (OSC) because of the extra
time cost for obtaining the optimal MRT.

Effect of εt. Obviously, as depicted by Figure 7(a), NDP,
GSC and OSC are not affected by εt since they do not consider
temporal information at all. For GSTC and OSTC, a smaller
εt means more time stamps of the MRTs are likely to violate
the temporal constraint, leading to more time correction cost,
which explains the increasing trend of compression ratio as
εt grows. In addition, the compression ratios of OSTC and
GSTC are very close and both outperform PRESS and NDP
constantly by a large margin. When it comes to efficiency
in Figure 7(b), none of the approaches except PRESS is
affected by εt, which is natural for GSC, OSC and NDP. As
to GSTC and OSTC, εt affects the number of time stamps
to be rectified but the total number of time stamps to be
checked remains the same. The efficiency of PRESS slightly
decreases with εt as its angular search region increases.

Effect of |T |. To study the effect of the length of trajectory,
we select five groups of trajectories from the test dataset,
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Figure 8: Performance of Compression Algorithms:
Effect of |T |

each including 10000 trajectories with about 50, 100, 150, 200,
250 samples respectively and record the average compression
ratio and running time for each group. In Figure 8(a), the
compression ratios of all methods increase with |T |, as longer
trajectories tend to have more redundant samples hence there
are more room to improve the compression ratio. Regardless
of |T |, proposed methods of REST framework well outperform
their competitors constantly. As illustrated in Figure 8(b),
the running time of all methods increase with the length of
trajectory, while the growth of computational cost for OSTC
and OSC is relatively faster due to the quadratic complexity
with respect to |T | when deriving the optimal storage cost
based on dynamic programming.

Summary of our empirical study:

• The generated reference set is very space efficient.
• OSTC has the best compression ratio but sacrifices
some efficiency.

• GSTC achieves good balance between efficiency (second
to NDP) and effectiveness (second to OSTC).

7 RELATED WORK

The existing trajectory compression algorithms can be clas-
sified into two categories based on whether taking the tem-
poral information into account: 1) spatial compression algo-
rithms [2, 3, 7, 10, 13, 18, 31]; 2) spatio-temporal compression
algorithms [9, 12, 19–22, 24, 25].

7.1 Spatial Compression Algorithms

Spatial compression algorithms treat the trajectories as poly-
lines, so they are sometimes referred to as line generaliza-
tion/simplification algorithms. Douglas-Peucker (DP) algo-
rithm [7] is a classic line generalization approach that uses

a perpendicular distance threshold to reduce the number of
points while preserves directional trends of lines when dis-
playing geographic features. As DP algorithm is simple and
feasible, a variety of applications have been proposed [18].
Later Hershberger et al. [10] speed up DP algorithm to the
time complexity of O(nlogn), in which n is the number of
original data points. Similar to the DP algorithm, Bellman’s
algorithm [2, 3] also fits a finite number of line segments to
a curve using dynamic programming and obtains the opti-
mal solution by minimizing the root mean square error yet
preserving the most essential spatial features. The Reser-
voir Sampling Algorithm [31] is proposed to select a random
sample of n points at equal probability without replacement
from a pool of N (n ≤ N) records, in which the value of N
is unknown in advance. Due to the pure geometric nature,
the above algorithms cannot be applied when the temporal
information of trajectories also matters.

7.2 Spatio-temportal Compression
Algorithms

Taking the temporal component of trajectories into account,
Meratnia et al. [19] propose an algorithm, called TD-TR, for
the purpose of sampling and dilution over trajectory streams
by modifying the distance formula of DP algorithm. The
Sliding Window Algorithm [12] is designed to keep spatio-
temporal information of a trajectory within a sliding window
by taking the first point of the potential line segment as an
anchor and then growing the segment until it exceeds some
error bounds. Such process repeats with the next data point
until the entire positional time series has been simplified
into a piecewise line. Inspired by Sliding Window Algorithm,
Opening Window Algorithm [19, 20] also anchors the first
point in the line series, but defines the third point as float in
the series. The float slides forward to each subsequent data
point of the trajectory until the distance threshold is violated
or the float reaches the end of the trajectory. Once the vio-
lation occurs, the end of the current line segment, which is
also the anchor of the next segment, has two choices: 1) the
point resulting in the violation (Normal Opening Window
Algorithm); 2) the point before the one that causes the vio-
lation (Before Opening Window Algorithm) [20]. Muckell et
al. introduce a heuristic method called Spatial Quality Sim-
plification Heuristic (SQUISH) [21], using a priority queue
where the priority of each point is defined as an estimate
of the error that the removal of that point would introduce.
SQUISH compresses each trajectory by removing points of
the lowest priority from the priority queue until it achieves
the target compression ratio. Considering the spatio-temporal
information as well as the sequential nature of the trajectory
data, STTrace [25] algorithm is developed for trajectory com-
pression to catch the significant spatio-temporal features in
a trace, such as direction and speed. All the above work only
utilize the spatio-temporal characteristics of the trajectory
to be compressed. Recently, Song et al. develop a framework,
PRESS [27], that leverages the constraint of road network
to achieve better compression performance. To adopt this
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framework, a digital map with topological structure of the
road network is required such that the target trajectory can
be transformed into a sequence of road segment using map
matching algorithms [5, 11, 17, 23, 26]. PRESS separates
the spatio-temporal information of a given trajectory into
spatial path and time sequence, which are then compressed
by Hybrid Spatial Compression (HSC) algorithm and error
Bounded Temporal Compression (BTC) algorithm respec-
tively, achieving spatial lossless and temporal error-bounded
compression. However, the pre-computation and storage of
all-pair shortest paths and most frequent paths require a
stable road network and large memory space to be available,
which limits the applied scenarios of PRESS.

8 CONCLUSION AND FUTURE WORK

In this paper we propose a novel data-driven framework,
called REST, to compress the spatio-temporal trajectories. In
order to achieve high effectiveness and efficiency, we addressed
a few challenges by proposing different strategies to construct
a compact but expressive reference set, and designing efficient
and optimal algorithms to represent a given trajectory with
selected matchable reference trajectories. To the best our
knowledge, it is the first data-drive approach to compress
trajectories in unconstrained space with both spatial and
temporal dimensions considered. Extensive empirical study
based on real trajectories dataset confirms the superiority of
our proposed framework over the state-of-the-art approaches
in terms of compression ratio, efficiency and space cost. Since
the compressed trajectories are in the form of sequence of
reference trajectories, our next step is to develop effective
indexing structures to support efficient query processing over
compressed trajectories without full decompression.
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