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ABSTRACT

Exploring Hidden Points of Interest (H-POIs), which are rarely

referred in online search and recommendation systems due to in-

sufficient check-in records, benefits business and individuals. In

this work, we investigate how to eliminate the hidden feature of

H-POIs by enhancing conventional crowdsourced ranking aggrega-

tion framework with heterogeneous (i.e., H-POI and Popular Point

of Interest (P-POI)) pairwise tasks. We propose a two-phase solu-

tion focusing on both effectiveness and efficiency. In offline phase,

we substantially narrow down the search space by retrieving a set

of geo-textual valid heterogeneous pairs as the initial candidates

and develop two practical data-driven strategies to compute worker

qualities. In the online phase, weminimize the cost of assessment by

introducing an active learning algorithm to jointly select pairs and

workers with worker quality, uncertainty of P-POI rankings and un-

certainty of the model taken into account. In addition, a (Minimum

Spanning) Tree-constrained Skip search strategy is proposed for the

purpose of reducing search time cost. Empirical experiments based

on real POI datasets verify that the ranking accuracy of H-POIs can

be greatly improved with small number of query iterations.

CCS CONCEPTS

• Information systems → Location based services; Crowdsourc-

ing; Answer ranking; Spatial-temporal systems.

KEYWORDS

Hidden POI, POI ranking, spatial crowdsourcing

∗
Kai Zheng is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330844

ACM Reference Format:

Yue Cui, Liwei Deng, Yan Zhao, Bin Yao, Vincent W. Zheng, and Kai Zheng.

2019. Hidden POI Ranking with Spatial Crowdsourcing. In The 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19),
August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3292500.3330844

1 INTRODUCTION

In Location Based Social Networks (LBSNs), people check-in, rate

and share their experience with friends when visiting a Point of

Interest (POI). They also use these systems to explore new potential

destinations. These networks are growing at an unprecedented

speed, which makes it difficult for a user to extract her favorable

information. To deal with the huge volume of data in LBSNs and

understand user behavior patterns, POI recommendation systems,

aiming at recommending a user the POIs that she may be interested

in but has never visited, have attracted increasing attention recently.

However, as people rely more and more on recommendation sys-

tems, some challenges have emerged. First, the diversity of a user’s

decision will surely deteriorate. A personalized POI preference mod-

eling strategy concerning geo-spatial factors [2, 13, 24, 25], user

preference [2, 13, 24] and social influence [24, 25], can recommend

a POI/POIs that is/are highly preferred by the user. But meanwhile,

she may not have equitable access to other information that allows

her to make a choice different from her current preference. Second,

the recommendation result is often biased for popular POIs that

have a greater share of check-in records in the overall LBSNs data-

base and thus aggregates inequality of business market. A simple

example is that when you travel to Chengdu and seek for a local

stylish hot-pot restaurant for dinner, the places recommendation

system suggests you to go are most likely to be ones frequently

visited by tourists but not the most authentic ones that hide in

small alleys and visited by the locals as daily routine. Therefore,

the effectiveness of existing POI recommendation systems is yet

to be improved on recommending POIs with few online check-in

records, which will be formally defined as Hidden POIs (H-POIs).

The recent rise of crowdsourcing marketplaces allows individu-

als and organizations to leverage brainpower of humans to operate

on data in ways that are difficult for computers to perform [10].

https://doi.org/10.1145/3292500.3330844
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Figure 1: H-POI Ranking Framework Overview

Prominent platforms such as AmazonMechanical Turk
1
and Zhihu

2

have made it easy for everyone to publish tasks or be a worker to

perform tasks. Based on crowdsourcing platforms, ranking from

binary comparisons becomes a ubiquitous problem in modern ma-

chine learning applications [21]. Given a set of n objects and a set of

binary comparisons between pairs of objects, e.g., i is better than j
(denoted as i ≻ j), the task of ranking aggregation is to infer a total

order over objects that aggregates the given measurements. Com-

mon settings for this problem allow binary comparisons to be mea-

sured either heuristically or based on machine learning approaches

and extensive studies have been conducted [6, 12, 17, 18, 22, 23].

Inspired by these works, we put forward H-POI ranking problem

with crowdsourcing, which takes advantage of crowd power to rank

those POIs that are rarely mentioned in LBSNs but still of interest

to people in their real lives.

It is worth mentioned that our works share some similarities

with [23], which also studies the problem of ranking aggregation

in crowdsourced settings. It shows in [23] that incorporation of

worker quality and adaptively sampling the next assessment pair

and worker can reduce the labeling cost while maintain accuracy.

However, their methodologies can not be applied to our problem

because of the following challenges.

First, due to the “hidden" feature of H-POIs, only special group

of workers are qualified to perform a certain task. This is different

from pairwise ranking aggregation on common objects, e.g., images

classification, sentence comprehension [23, 26], where almost every

worker on the Internet is capable (can recognize the objects and

report an answer based on her experience) of a performing task.

Thus, worker quality need to be estimated in a more accurate way.

Second, it is impractical to ask a worker to compare two H-POIs,

since it is highly likely that a worker has never been to one sides

or even both sides of a H-POI pair. However, in a conventional

crowdsourcing setting, in [23] for instance, the two sides of the

pairwise tasks are comparable to any worker. Third, the amount of

H-POIs to be ranked can be very large. Though the active learning

strategy put forward in [23] performs well on reducing the number

of tasks, the searching time cost of obtaining a next pair and worker

can be incredibly high, especially when the candidate task pool is

large.

In this work, we aim to address the above challenges by a series

of novel strategies. First, instead of taking pure H-POIs as pairwise

tasks, i.e., <H-POI, H-POI>, we generate heterogeneous pairs, i.e.,

1
https://www.mturk.com/

2
https://www.zhihu.com/signup?next=%2F

<H-POI, P-POI>, (where P-POI is short for Popular POI and is for-

mally defined in Definition 3). The validation of a heterogeneously

pairwise task is defined considering both category (see Definition

4) and service region (see Definition 5) of POIs. More specifically,

a pair is valid only when the H-POI and P-POI are of the same

category and the service region of H-POI is included in that of the

P-POI. We then evaluate worker qualification over certain task type

and task location by taking workers’ check-in records into account.

As for category reliability, we define a check-in graph, design 3

meta-paths and then adapt a state-of-the-artmetapath2vec network
embedding approach to learn the representation vectors of work-

ers and categories. Worker’s qualification score can be computed

based on the obtained vectors. Second, to identify each worker’s

most active areas, we adapt X-means [8] clustering algorithm with

a modification of model quality criterion, to deal with the case

when the amount of worker check-in records varies widely. Third,

to maintain effectiveness and improve efficiency, we propose an

optimized active learning strategy, which uses Tree-constrained

Skip (TCS) search to reduce the search space, and further, we make

use of P-POIs ranking to supervise the active learning process. The

framework for this H-POI ranking strategy is shown in Figure 1.

Our contributions in this paper can be summarized as follows:

• We identify necessities and challenges of exploring H-POIs.

Based on this, we define a two-phase solution to aggregate

ranking of H-POIs.

• In the offline phase, we present novel pair generation strate-

gies and develop worker reliability evaluation models.

• In the online phase, we present a novel active learning strat-

egy called Tree-constrained Skip with Supervision (TCSS),

aiming at reducing searching cost and selecting next pairs

that can better improve our current knowledge of the ranking

by taking worker quality and supervision of P-POIs ranking

into account.

• Finally, we conduct extensive experiments based on real POI-

review datasets. The favorable results verify our expectation

that our proposed framework can reach a high accuracy with

relatively small number of iterations.

This paper is organized as follows. Section 2 provides definitions

and states the problem. In Section 3, we design a greedy strategy

to generate pairwise tasks, present approaches to evaluate worker

reliability on categories and locations respectively. Moreover, two

novel active learning strategies are described in Section 3.We report

the experimental results in Section 4, followed by related work in

Section 5. Finally, we conclude the paper in Section 6.



2 PROBLEM STATEMENT

In this section, we present a set of preliminary concepts and then

state our problem.

2.1 Preliminary

Definition 1. (Point of Interest) A Point of Interest (POI),
denoted by p, is a place associated with positional coordinate lp , a
category, an overall score sp ∈ [0, S], where S is the upper bound of
scores, and a list of check-in records cp : {c1p , c

2

p , ...}. Each check-in
record cip includes a user ID, check-in time and the user’s rating score
sip ∈ [0, S].

Definition 2. (Hidden Point of Interest) Given a threshold
θ , a Point of Interest (POI) is called a Hidden POI (H-POI), denoted by
ph , if its number of check-in records is no more than θ , i.e., |cp | ≤ θ .

Definition 3. (Popular Point of Interest) In contrast with
H-POI, a POI is called a Popular POI (P-POI), denoted by pp , if its
number of check-in records is no less than Θ, i.e., |cp | ≥ Θ.

We assume the overall score of a P-POI is valid and such of a

H-POI is invalid for insufficient rating records.

Definition 4. (POI Category) The category of POI p, denoted
as Cp , indicates the functionality of it. A POI may fall into multiple
categories.

Definition 5. (POI Service Region) Given a POI p, its service
region is described as a circular area with radius rp and center lp .

Since it is hard to obtain accurate value of rp , we assume that

rp is a Gaussian distributed random variable, i.e., rp ∼ N (µ,δ ). µ
and δ are identical for a certain POI type (hidden or popular). We

assume the mean of normal distribution for P-POIs is k times larger

than that of H-POIs, i.e, µpp = kµph , where k > 1. µph and k are

manually set parameters based on the geographical scale of the

study area.

2.2 Problem Definition

Definition 6. (Spatial Task) A spatial task, denoted by s =<
ph ,pp >, is a pairwise comparison task between H-POI ph and P-POI
pp . A worker is supposed to report her preferred POI in the given
spatial task.

Definition 7. (Comparable Hidden Point of Interest) A H-
POI ph is called a Comparable H-POI, if there exists at least κ P-POIs
and each P-POI, i.e., pp , should satisfy following conditions:

(1) Cph = Cpp , and
(2) d(lph , lpp ) ≤ rpp − rph

where d(a,b) is the Euclidean distance between a and b.

We mainly take distance and category into consideration when

generating heterogeneous comparable pairs. The second constraint

ensures a H-POI’s service region is inside that of the P-POI, which

implies that if a worker ever had visited ph , she is highly likely to

know the pp as well.

Definition 8. (Valid Spatial Task Set) Given a spatial task
set, it is called a Valid Spatial Task Set (VTS), denoted by S , if all
comparable H-POIs are included and for each Comparable H-POI, the
comparable conditions can be satisfied by P-POIs in VTS.
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Figure 2: Running Example

Definition 9. (Minimum Valid Spatial Task Set) A VTS is
called a Minimum Valid Spatial Task Set (MinVTS), denoted as Smin ,
if none of its subset is a VTS.

Problem Statement. Given a H-POI set Ph , a P-POI set Pp
and a spatial crowdsourcing worker setW , we study the problem

of how to generate candidate tasks and distribute proper tasks to

proper workers with a goal of aggregating an accurate ranking for

Comparable H-POIs in Ph in a small number of query iterations.

Some major notations used throughout the paper are listed in

Appendix A

3 PROPOSED METHOD

3.1 Pair Generation

There usually exists a large number of P-POIs, H-POIs and valid

<H-POI, P-POI> pairs in a VTS. Therefore, it is quite expensive

to search for a best pair in each round of the subsequent active

learning process. To solve this problem, we construct MinVTS, in

which the number of P-POI is minimal, all H-POIs are compara-

ble and the comparable conditions can be satisfied by P-POIs in

MinVTS. Formally, the optimization goal of building MinVTS is

to find minimum P-POIs that satisfy comparable constraints of all

Comparable H-POIs.

However, finding an optimal MinVTS is time consuming, con-

sidering the large number of H-POIs and P-POIs. A greedy search

algorithm is designed below.

MinVTS Greedy Search Algorithm. Algorithm 1 in Appendix

B.1 illustrates the basic process of MinVTS greedy search. Input of

the algorithm is H-POI set Ph , P-POI set Pp , and κ (the least number

of P-POIs a that a H-POI should be matched with). First, MinVTS

Greedy Search finds all Comparable H-POIs and constructs a VTS

that contains all valid spatial tasks for each H-POI. It initializes

zero arrays M and N to hold the “demand" and “supply" of H-POIs

and P-POIs, e.g., Mph = 0 indicates there are κ tasks required by

ph and Npp = 5 means pp can meet the demand of 5 H-POIs. In

each iteration, it is prior to match H-POIs with the highest demand

(the smallest entry in M). P-POI that contributes to the highest

demanded H-POIs is greedily selected and added to the output

set. If there are more than one P-POI candidates selected in above

greedy process, then a P-POI that can meet demand of the greatest

number of unsatisfied (number of matched P-POIs is less than κ)
H-POIs will be selected as priority. Then M is refined. The above

iteration continues until each H-POI is matched in κ tasks.

The time complexity of Algorithm 1 isO(|Ph | × |Pp | +κ × |Ph | ×
|Pp |) = O(|Ph |×|Pp |), the first term of which is the cost of finding all



Table 1: Example of Pair Generation

iteration M min Imin N Smin

1
st

{1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0} 0 {1,2,3,4,5,6,7,8,9} {1:7,2:7,3:6,4:2} {{1:1,2,3,4,5,6,8} }

2
nd

{1:1,2:1,3:1,4:1,5:1,6:1,7:0,8:1,9:0} 0 {7,9} {2:2,3:2,4:0} {{1:1,2,3,4,5,6,8},{2:1,2,3,4,6,7,9} }

3
rd

{1:2,2:2,3:2,4:2,5:1,6:2,7:1,8:1,9:1} 1 {5,7,8,9} {3:4,4:2}

{{1:1,2,3,4,5,6,8},{2:1,2,3,4,6,7,9},

{3:5,7,8,9} }

4
th

{1:2,2:2,3:2,4:2,5:2,6:2,7:2,8:2,9:2} 2 {-} {-}

{{1:1,2,3,4,5,6,8},{2:1,2,3,4,6,7,9},

{3:5,7,8,9} }

Comparable H-POIs and their corresponding P-POIs and the second

term illustrates the worst case of MinVTS search, where all H-POIs

are matched with κ different P-POIs. In the worst case of space

cost, where in each iteration |Imin | = |Ph |, the space complexity is

O(|Ph | × |Pp |).
We demonstrate the algorithm with the running example in Fig-

ure 2. Table 1 shows the iteration progress, where κ is set as 2.

The first line of Table 1 can be interpreted as: in the first iteration,

number of P-POIs that have been matched for H-POIs with index

{1, 2, 3, 4, 5, 6, 7, 8, 9} are all 0 (see “M" column), thus, “min" is set

to be 0 (see “min" column), the indexes of H-POIs whose entry

is “min" in M are {1, 2, 3, 4, 5, 6, 7, 8, 9} (see “Imin" column), the in-

dexes of P-POIs can bematched to H-POIs in Imin are {1, 2, 3, 4} and

their corresponding contribution to H-POIs in Imin are {7, 7, 6, 2}

(see “N" column), thus, pp1 is picked, and {1 : 1, 2, 3, 4, 5, 6, 8} de-

notes pp1 is added to Smin in this iteration with related H-POIs

{ph1 ,ph2 ,ph3 ,ph4 , ph5 ,ph6 ,ph8 } (see “Smin " column). Similarly, we

continue the loop until “min" becomes 2 in the last iteration.

3.2 Category and Area Aware Worker

Reliability Calculation

It is essential to understand how well a worker can perform on

tasks of certain types and at certain locations, before assigning her

a task. In this section, we discuss how to evaluate worker reliability

for POI categories and areas by using her historical check-ins.

We first design meta-paths, employ a network embedding ap-

proach to obtain workers’ representation vectors and category

representation vectors, and next compute the corresponding confi-

dence score. Then we adapt a modified X-means clustering algo-

rithm to identify each worker’s active areas.

3.2.1 Category Reliability. In spatial crowdsourcing, a worker’s
mobility behavior patterns in the real physical world can bemodeled

as a heterogeneous information network,G = (V ,E), in which there
are three type of nodes in V and two types of edges in E. More

detailed descriptions of nodes and edges are as follows.

Definition 10. (Worker-based Node): A worker-based node
represents a specific worker, denoted asW .

Definition 11. (POI-based Node): A POI-based node represents
a specific POI, denoted as P .

Definition 12. (Category-based Node): A category-based node
represents a POI category, denoted as C .

Definition 13. (POI Relevance Edge): A POI relevance edge
exists only between node W and node P, denoted as e(W , P). It repre-
sents the POI Relevance Relation (PRR) of a worker and a POI. The
edge weightw(W , P) is defined as the times workerW visited P .

Definition 14. (Category Relevance Edge): A category rele-
vance edge exists only between node P and node C, denoted as e(P ,C),

representing the Category Relevance Relation (CRR) of a POI and a
POI category. The edge weightw(P ,C) is 1 if e(P ,C) exists.

The prime goal in heterogeneous network representation learn-

ing is to learn low-dimensional latent representations X ∈ R |V |×d ,
d ≪ |V | that are able to capture the structural and semantic re-

lations among them. DeepWalk [16] is an algorithm in network

representation learning based on word2vec [14], which applies

random walks to obtain node sequences. In a general DeepWalk

setting, random walks are leveraged regardless of node type and

edge type. However, the ignorance of node type may lead to poor

information-extracting paths. The meta-path-based random walk

has been proved to be effective dealing with heterogeneous infor-

mation networks that consist of multi-typed and interconnected

objects [5]. Inspired bymetapath2vec model, we design a weighted

meta-path-based random walk strategy and then propose a skip-

gram model to achieve node embedding. Three types of meta-paths

are designed as follows.

(1) CPC path: a CPC contains C nodes, P nodes and category

relevance edge and is denoted in the form ofC1

CRR
−→ P1

CRR
−→

C2...
CRR
−→ Ci

CRR
−→ Pi ...

CRR
−→ Cl . It represents the relation-

ships between a POI (P) and two categories (C).

(2) PWP path: a PWP path is denoted in the form of P1
PRR
−→

W1

PRR
−→ P2...

PRR
−→ Pi

PRR
−→ Wi ...

PRR
−→ Pl , which contains

W nodes, P nodes and POI relevance edges. It bridges the

relationship between two POIs (P) and a worker (W).

(3) CPWPC path: a CPWPCpath is denoted in the form ofC1

CRR
−→

P1
PRR
−→ W1

PRR
−→ P2...

CRR
−→ Ci

CRR
−→ Pi ...

CRR
−→ Cl , which con-

tains W nodes, P nodes, C nodes, POI relevance edge and

category relevance edges. It represents the two categories

(C) and POIs (P) visited by a worker (W).

The above meta-path-based random walk strategy ensures that

the semantic relationships between different types of nodes can be

properly incorporated into skip-gram. The optimization function is

defined as

arдmax

θ

∑
v∈V

∑
t∈TV

∑
ct ∈Nt (v )

logp(ct |v ; θ ) (1)

where v is a node in V , TV denotes set of node type in V , Nt (v) is
v ′s neighborhood of type t and p(ct |v;θ ) denotes the conditional
probability of having a context node ct given a node v. As a common

practice, p(ct |v;θ ) is defined as a softmax function [8], in which

p(ct |v ;θ ) =
eXct Xv∑

u∈Vt e
XuXv ,Xv is thevth row ofX andVt is the node

set of type t in the network. Transition probability is defined as the

weight between the current node and target node over the sum of

weight between the current node and its neighbors that are of the

same type as the target node. Getting the representation vector of

each node, we are then enabled to estimate worker reliability over

categories. The reliability score of worker w over category k can



be described as

αkw =
sim(Xw , XCk )∑|C |
j=1 sim(Xw , XCj )

(2)

where sim(a,b) is the dot product of (a,b).

3.2.2 AreaReliability. To evaluateworkers’ reliability in a spatial-
aware way, it is meaningful to understand her active area. Given a

check-in data set of workerw , it is easy to obtain the check-in loca-

tion set, Pw = {lp1 , lp2 , ..., lpn }, in the forms of latitude-longitude

coordinate. We implement clustering algorithms to partition the n
check-in locations into k(≤ n) sets Pw = {P1, P2, ..., Pk } and take

focus point(s) of each set as the centroid(s) of the worker’s active

area(s). We denote Pi as the subset of L and its centroid is denoted

as µi . Pelleg et al. [8] proposed X-means, a parameter indepen-

dent clustering algorithm that can quickly estimates the number of

partitions in k-means algorithm.

In X-means, the clustering centroids in each model is assumed

with x Gaussians, each with identical variance and its own mean

µi . Given a data set and candidate models that demonstrate clus-

tering solutions with various values of x, the aim of X-means is to

select the best model with Bayesian Information Criterion (BIC) [8].

However, as an approximation for a Bayes factor, BIC only valid

when the number of samples to be considered is large [1], but the

amount of check-in records for each worker can vary widely in

a dataset. Inspired by X-means and to better fit our problem, we

combine BIC and Akaike Information Criterion (AIC) [1], to score

clustering models. AIC is another estimator of the relative quality of

statistical models that can be applied to datasets with small number

of samples.

Given a location set P, the BIC and AIC scores for modelMj can

be calculated as follows:

BIC(Mj ) = ln(L̂) −
mj

2

ln(R) (3)

AIC(Mj ) = 2mj − 2ln(L̂) (4)

where R = |P | describes the number of samples,mj is the number of

parameters in modelMj and L̂ is the likelihood of data according to

Mj and taken at the maximum likelihood point. L̂ can be calculated

as stated in Section 3.2 of [8].

We modify X-means algorithm simply by adaptively implement-

ing AIC or BIC as splitting criterion. If the number of samples is

larger than a threshold H, then the criterion used to measure model

quality is BIC, otherwise AIC. We name the algorithm proposed as

AIC-BIC based X-means (A-B X-means). The pseudo code of A-B

X-means algorithm is presented in Appendix B.2

The A-B X-means algorithm described so far can identify proper

x centroids for a worker. Given a task pair s =< ph ,pp >, based
on the obtained centroids O = {o1,o2, ...ox } of workerw , now we

introduce how to calculate worker reliability on task locations by an

internal based approach. First, we introduce a set of cut-off values

0 ≡ γ0 < γ1 < ... < γm−1 ≡ inf . Assume the observed distance

between a centroid o and a POI p is d(o,p). If γi−1 < d(o,p) ≤ γi ,
then D(o,p) = i . Then, reliability of workerw on locations of POIs

in task s , denoted as ls , can be calculated as,

β lsw = (1 − λ) max

n∈[1,x ]
{

1

D(on, ph )
} + λ max

n∈[1,x ]
{

1

D(on, pp )
} (5)

where λ ∈ [0, 1] is a tuning parameter concerning the trade-off

between worker reliability importance on H-POIs and P-POIs.

3.3 Ranking Aggregation

The main idea of ranking is to assign each object with a score si
and obtain the rank by sorting the scores. In this section, we discuss

how to assign pairs to proper workers and aggregate workers’

feedbacks by presenting a novel active learning strategy called

Tree-constrained Skipwith Supervision (TCSS). Specifically, we first

review a Bradley-Terry based active learning model, then discuss

how to compute worker quality in the current spatial crowdsourced

setting and finally present the TCSS approach.

3.3.1 Crowed-BT. Each pairwise comparison result is obtained

from the crowd at a certain cost. It is desirable to properly select

the next pair of candidates that can better improve our current

knowledge of score distributions. Chen et al. extend Bradley-Terry

model to crowdsourcing setting, namely Crowd-BT, and incorporate

it with Bayesian framework to facilitate an active learning strategy

[23].

In Crowed-BT, the score of each object, si , is modeled by a Gauss-

ian distribution N (µi ,σi ), and the quality of worker ηw is modeled

by a Beta distribution, Beta(aw ,bw ). It computes the probability of

workerw giving the answer oi ≻ oj , which is denoted as oi ≻w oj ,
as

Pr (oi ≻w oj ) = ηw
esi

esi + esj
+ (1 − ηw )

esj

esi + esj
(6)

Then, a pure greedy strategy has been implemented to globally

select the triple (oi ,oj ,wk ) that maximizes information gain defined

in Equation 7.

Pr (oi ≻w oj )
(
KL

(
N (µ i≻w j

i , σ i≻w j
i ) | |N (µi , σi )

)
+ KL

(
N (µ i≻w j

j , σ i≻w j
j ) | |N (µ j , σj )

)
+

φKL
(
Beta(ai≻w j

k , b i≻w j
k ) | |Beta(ak , bk )

))
+Pr (oi ≺w oj )

(
KL

(
N (µ i≺w j

i , σ i≺w j
i ) | |N (µi , σi )

)
+ KL

(
N (µ i≺w j

j , σ i≺w j
j ) | |N (µ j , σj )

)
+

φKL
(
Beta(ai≺w j

k , b i≺w j
k ) | |Beta(ak , bk )

))
(7)

where KL(·) denotes the Kullback-Leibler (KL) divergence, φ is a

tuning parameter about comparison result and worker quality.

We choose to extend CrowdBT for that it well suit the preference

and can be optimized in terms of geo-spatial and categorical worker

quality and search space.

3.3.2 Computation of Overall Worker Quality. With infor-

mation extracted from LBSNs, worker quality score ηw can be

computed more accurately than be estimated with statistical tools.

There are two indexes discussed in previous sections: category re-

liability α and location reliability β . Thus, the overall quality of

workerw on task s can be computed as,

ηsw = ϵα
C(s )
w + (1 − ϵ)βlsw (8)

where ϵ ∈ [0, 1] is a manually set parameter tuning the trade-

off between category and location reliability importance and C(s)
denotes the category of task s .



Therefore, information gain can be redefined as a modification

of Equation 7 with Beta terms excluded as follow.

Pr (ph ≻w pp )
(
KL

(
N (µ

ph≻wpp
ph

, σ
ph≻wpp
ph

) | |N (µph , σph )
)

+ KL
(
N (µ

ph≻wpp
pp , σ

ph≻wpp
pp ) | |N (µpp , σpp )

))
+ Pr (ph ≺w pp )

(
KL

(
N (µ

ph≺wpp
ph

, σ
ph≺wpp
ph

) | |N (µph , σph )
)

+ KL
(
N (µ

ph≺wpp
pp , σ

ph≺wpp
pp ) | |N (µpp , σpp )

))
(9)

3.3.3 Tree-Constrained Skip Search. Despite its popularity for
the definition of expected information gain function, KL divergence

and its current extensions, the one presented in [23] for instance,

have two major shortcomings: 1) only one (pair of) object will

be selected and updated in each iteration and 2) in each iteration,

the searching time cost for a global optimal (pair of) object can

be very high. To deal with these problems, we propose a Tree-

constrained Skip (TCS) Search algorithm that finds a local optimal

pair in a Minimum Spanning Tree’s (MST) nodes and skip to two

sub-optimal nodes from the selected pair.

Algorithm 3 in Appendix B.3 illustrates TCS algorithm. A Min-

VTS can be further described in a graph. In each connected compo-

nent, if an edge (ph ,pp ) exists, the weight is defined as

w (ph, pp ) = −(dph + dpp − 1) (10)

where dp is the degree of node p. The lower the weight is, the more

likely the current nodes of the edge can compare with other nodes,

and thus, the pair is more informative to skip from. We perform

classic Kruskal Algorithm [11] on the weighted graph, purpose of

which is to select the most informative (|Ph | + |Pp | − 1) pairs. The
TCS algorithm can be described in a three-step iteration.

1) Select a pair among all MSTs’ edges and a worker that maxi-

mize Equation 9. Distribute the task to the selected worker. Update

scores of POIs.

2) Select a pair among all the neighbors of the H-POI of pair

selected in step (1) and a worker that maximize Equation 9. Assign

the task to the worker and update scores of POIs.

3) Select a pair among all the neighbors of the P-POI of pair

selected in step (1) and a worker that maximize Equation 9. Assign

the task to the worker and update scores of POIs. Then go to step

(1).

We describe one iteration of TCS in the running example. As

depicted in Figure 3, s1 =< ph1 ,pp1 > from MST is selected with a

proper worker in the first step (iteration). Then we update scores

for POIs. Next, we select the next pair, i.e., {s12}, from the adjacent

nodes of ph1 with a proper worker that maximizes information

gain defined in Equation 9, and update the distribution of selected

POIs. Then we go back to P-POI in s1, select a next pair from

{s2, s3, s6, s10, s13, s14}with a proper worker and update POIs scores.
In this way, all pairs have the possibility of being queried with its

expected information gain considered.

3.3.4 Tree-Constrained Skip Searchwith Supervision. As de-
scribed, reliable scores of P-POIs can be obtained in prior from

most LSBNs. We take advantage of this information to extend

TCS to Tree-Constrained Skip with Supervision (TCSS) Search.

Given a MinVTS, the P-POI set included in it can be described as

Pp = {pp1 ,pp2 , ...,ppn } and its current rank position (obtained from

Task in MST
Task in MinVTS but not in MST H-POI P-POI
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Figure 3: Example of Tree-Constrained Skip Search

sorting the current scores) R = {r1, r2, ..., rn }. As a common metric

[23, 26], the ranking accuracy can be described as,

ACC =

∑
ppi ,ppj ∈Pp

I(ri < r j ∩ ti < tj )

|Pp |( |Pp | + 1)/2
(11)

where ti is the real ranking position of pi , and I is a function which

returns 1 if the condition is true; otherwise 0.

Given a candidate triple < ph ,pp ,w >, the change of ranking
accuracy if obtaining ph ≻w pp , which is denoted as ∆ph ≻wpp , can
be defined as

∆ph≻wpp = ACCph≻wpp − ACC

=

∑
ppi ,ppj ∈Pp

I(r
ph≻wpp
i < r

ph≻wpp
j ∩ ti < tj )

|Pp |( |Pp | + 1)/2
− ACC

(12)

where r
ph ≻wpp
i denotes the ranking position of pi if ph ≻ pp is

reported by workerw . Similarly, we could obtain ∆ph ≺wpp .

Theorem 3.1. ∆ has a similar probability of being negative or
positive in both cases of ph ≻w pp and ph ≺w pp .

We prove Theorem 3.1 in Appendix C.

Theorem 3.1 indicates that ∆ can well measure the contribution

of pairs when workers answers are unknown in advance.

Now, we rewrite Equation 9 as

Pr (ph ≻w pp )
(
KL

(
N (µ

ph≻wpp
ph

, σ
ph≻wpp
ph

) | |N (µph , σph )
)

+ (1 + ∆ph≻wpp )KL
(
N (µ

ph≻wpp
pp , σ

ph≻wpp
pp ) | |N (µpp , σpp )

))
+ Pr (ph ≺w pp )

(
KL

(
N (µ

ph≺wpp
ph

, σ
ph≺wpp
ph

) | |N (µph , σph )
)

+ (1 + ∆ph≺wpp )KL
(
N (µ

ph≺wpp
pp , σ

ph≺wpp
pp ) | |N (µpp , σpp )

))
(13)

The above equation will degenerate to Equation 9 if all P-POIs rank

correctly. Due to limited space, readers could find the parameter

update strategy in Section 4.1 of [23].

We now theoretically explain why TCSS is more efficient. First,

with the implementation of MinVTS Greedy Search, the comparison

graph can be connected well since a P-POI is selected only if it

can be matched with the largest number of matchable H-POIs.

This promises the strong connected components of MinVTS is of

relatively small amount. Search time complexity thus could reach an

optimization ofO(|W |×(|Ph |+ |Pp |))while that of active learning in
CrowdBT isO(|W | × |Ph | × |Pp |) in the best and worst cases. Second,
information gain defined in Equation 13 considers uncertainty of

model, worker quality, uncertainty of P-POI ranking, which makes

selections effective. Third, though in the first step, pairs are not
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Figure 4: Effect of κ (LV)

selected as a global optimal of Equation 13, the searching space

includes all P-POIs and H-POIs. Moreover, as defined in Equation

10, candidate pairs in the first iteration have the most neighbors,

and thus, in next skips (step 2 and 3) the candidate pool is large,

which increases the probability of selecting an informative pair that

might not be an edge of MSTs.

4 EXPERIMENTS AND RESULTS

All the algorithms are implemented on an Intel Xeon CPU E5-2690

v4 @ 2.60 GHz. The experimental setups are described in Appendix

D.1.

4.1 Experimental Results on Las Vegas Dataset

For effectiveness and efficiency measurement, we evaluate the H-

POI ranking accuracy and CPU time cost. Accuracy is computed

as

ACC =

∑
phi

,phj
∈Ph
I(ri < r j ∩ ti < tj )

|Ph |( |Ph | + 1)/2
(14)

where ri denotes the obtained ranking position ofphi and ti denotes
the ground-truth position of phi . The CPU time cost only contains

the next pair searching time in ranking aggregation phase, because

this is the only online phase of all the proposed approaches. Mean-

while, we exclude the time cost from loading data from disk, which

dominates the computational time cost. All the parameters and their

default values in the experiments on LV dataset are summarized in

Appendix D.2.

4.1.1 Experiments on Pair Generation. We then evaluate the num-

ber of selected P-POIs from pair generation strategy, and the influ-

ence on the ranking accuracy and CPU time on aggregation phase

when parameter κ and number of sampled H-POIs varies.

Baseline. Since to the best of our knowledge, there is no existing

pair generation algorithm, we devise a baseline method as follow.

For each iteration in Algorithm 1, we randomly select a P-POI

instead of the one best meets the needs of H-POIs. This strategy is

denoted as MinVTS Random (MR). We compare the proposed MG

based TCSS (MG-TCSS) with

(1) MR based TCSS (MR-TCSS), where the input MinVTS of TCSS

is generated from MR;

(2) MR based TCS (MR-TCS);

(3) MR based CrowdBT [23] (MR-CBT), where CBT is the active

learning strategy described in Section 3.3.1.

(4) MG based TCS (MG-TCS);

(5) MG based CBT (MG-CBT).

Effect of κ. κ directly affects the number of P-POIs in MinVTS.

As demonstrated in Figure 4 (a), MinVTS Greedy (MG) significantly

reduce the number of selected P-POIs. From Figure 4 (b), we observe

that when κ increases, the accuracy of ranking based on TCS/TCSS
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Figure 5: Effect of H-POI Number (LV)

related algorithms increases; MG-TCSS increases most notably and

accuracy of CBT based aggregation remains relatively stable. This

is because: 1) small number of P-POIs lead to a more densely con-

nected graph that TCS and TCSS could effectively select pairs that

can better improve our knowledge of rankings; 2) the strategy of

P-POI supervision in TCSS performs better when the number of

P-POIs and H-POIs are not different much. Nevertheless, greater

number of P-POI will result in more candidate pairwise tasks and

lead to a higher searching time cost as shown in Figure 4 (c). More-

over, the implementation of TCS and TCSS significantly saves CPU

time.

Effect of H-POI number. Figure 5 shows the P-POI number,

aggregation accuracy and time cost on different pair generation

strategies by varying the number of sampled H-POI to be ranked.

Not surprisingly, the number of P-POIs in MinVTS increases when

H-POI number rises as there are more Comparable H-POIs need

to be matched. An interesting observation is that the number of

P-POIs picked in MG increases slower than that of MR. To explain

this, recalling the greedy strategy of MG, in each iteration, a P-POI

is selected first to meet the needs of the most demanding H-POI and

then adjusted with next-most demanding one. When the number of

iterations is small, the number of P-POIs matched with each H-POI

is less than the chosen κ. So, this strategy could make sure the

selected P-POIs can balance all H-POIs’ current number of matched

P-POIs and meanwhile match with its maximal matchable H-POIs.

As shown in Figure 5 (b), the accuracy of ranking decreases when

H-POI number becomes large. Observing the details, we find that

the decrease of MG based algorithms is slower than that of MR. This

is because the total number of POI is small and the connectivity of

graph is stronger. The same explanation fits the trend of sub-graph

(c) in Figure 5.

4.1.2 Experiments on Worker Qualification Evaluation Phase. Next
we evaluate the performance of worker qualification methods pro-

posed in Section 3.2. We first evaluate the clustering effectiveness

using a popular metric Davies-Bouldin Index (DBI) [3], where a

lower DBI indicates a better clustering algorithm. The effect of

H on ranking aggregation accuracy is also evaluated. As for the

metapath2vec algorithm adapted to compute category reliability,

we test the effect of dataset size over ranking accuracy.

Baseline: The baselines to compare with AIC-BIC-based X-

means (ABX) are as follows:

(1) AIC based X-means (AX), which only uses AIC as cluster

splitting criterion;

(2) BIC based X-means (BX), which only uses BIC as cluster

splitting criterion;

(3) K-means with k=5 (K5), which splits the samples with k-

means and set k as constant 5.
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The upper bound of cluster number for X-means algorithm is

set as 10. Since H doesn’t have influence on baseline clustering

algorithms, we only report accuracy results on AIC-BIC based X-

means when H varies. The baselines include 1) ABX based Random

Pair Select (ABX-RPS), where RPS randomly selects a pair and a

worker in each iteration of active learning phase; 2) ABX based

CBT (ABX-CBT). As for themetapath2vec algorithm, experiments

on Deepwalk (DW) [16] are conducted as a baseline. We implement

metapath2vec (MP) and Deepwalk with the embedding size = 128,

walks per vertex = 80 and walk length = 40.

Effect of H. As demonstrated in Figure 6, K-means (k=5) has

a higher DBI score than all the X-means based algorithms, which

proves that when the dataset is unbalance, ABX could lead to more

effective clustering results. The performance of ABX decreases

before H reaches a point around 200 and increases again after that.

This implies that for the current dataset there might be at least one

suitable H.

Effect of dataset size. Figure 9 shows the experimental results

on various dataset sizes, where x% means for each worker, we

only use x% of her total check-in records in the embedding al-

gorithm. As expected, with dataset size increasing, the ranking

accuracy of TCS/TCSS related algorithms increase. And the accu-

racy ofmetapath2vec outperforms Deepwalk significantly. This is

becausemetapath2vec can capture the heterogeneity of check-in

network more effectively.

With the experiments of varying H and dataset size, we draw a

conclusion that an accurate evaluation of worker quality can result

in a higher ranking accuracy.

4.1.3 Experiments on Ranking Aggregation Phase. The last set of
experiments evaluate the effect of iteration number and λ on rank-

ing accuracy. We evaluate the ranking accuracy and CPU time cost

over iterations (one successful task assignment is considered as an

iteration, i.e., selecting a proper task-worker triple) to show that

how the TCSS and TCS algorithms perform on efficiency. Moreover,

we also report how the supervision of P-POI ranking contributes

to the active learning process. λ varies from 0 to 1 denotes there is

more attention paid to worker reliability on H-POIs or P-POIs.

Baseline. The baseline methods include 1) CrowdBT (CBT),

which is the active learning strategy described in Section 3.3.1;

2) Random Pair Selection (RPS), where RPS randomly selects a pair

and a worker in each iteration.

Effect of iteration number. Figure 7 shows the accuracy and

time cost with number of iteration increases. Pair selection strate-

gies with TCS and TCSS achieve a higher accuracy than CBT and

RPS. We observe that it takes CBT 1.67 times of iterations of TCSS

to reach the same accuracy level before converge. From Figure 7

(b), it is evident that TCS and TCSS have a significant lower time
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cost than CBT. As mentioned in Section 4.3, the lower the number

of tasks distributed to the crowd, the less cost there will be. Thus

TCS and TCSS are more effective and economic.

The better performance of TCS and TCSS is probably resulted

from 1) when the number of iteration is small (e.g. < 600), TCS and

TCSS use worker quality data trained in Section 3.2 and TCSS lever-

ages the supervision of P-POI ranking to properly select qualified

worker, while CBT, could not estimate an accurate parameters on

worker quality; 2) TCS and TCSS both implement a tree-constrained

skip approach. In the Minimum Spanning Tree (MST), all to-be-

ranked POIs (nodes) are connected with the most informative pairs

(edges), which naturally reduces searching space. As for RPS, since

there is no need to “select" a task-worker triple, it is less time

consuming but it has the lowest accuracy as a side effect.

Effect of λ. We also evaluate the performance of ranking aggre-

gation by varying λ. We only report λ’s effect on ranking accuracy

since λ won’t influence time cost. As demonstrated in Figure 10,

when λ increases, ranking accuracies of TCS and TCSS first increase
and then decrease, while the performance of CBT and RPS remains

relatively stable. An interpretation for this observation is that when

λ is large, the emphasize on worker active area quality of P-POIs

becomes strong. However, since the service region of P-POI is larger

than that of a H-POI, a stress of “workers’ familiarity on P-POI"

would not contribute much to our goal for finding a pair and a

worker as well as improving the current ranking. Therefore, we

suggest λ to be set around 0.25 to balance the importance of worker

reliability on H-POIs and P-POI.s

4.2 Experimental Results on Phoenix Dataset

We test the same set of parameters on PN dataset and observe

similar results. The main differences with the LV dataset include

that 1) in MinVTS, the number of P-POIs is larger and the number

of P-POIs selected by MG is closer to that by RG. This is because

PH is a smaller dataset and the distribution of POIs is more sparse;

2) the performance of TCSS excesses that of TCS more significantly

on accuracy. This is due to the fact that when the connectivity of

graph is not too strong, supervision of P-POI ranking can help to



select a proper next pair. Due to space limit, we omit the display of

these results in this version.

5 RELATEDWORK

5.1 Crowdsourced Top-k

Crowdsourced top-k has attracted increasing attention due to the

popularity of crowdsourcing platforms. Given a set of objects, the

major goal of crowdsourced top-k algorithm is to infer the top-k

objects based on the crowdsourced comparison results. Ways to

aggregate high-quality answer from the crowd have been studied

independently by database community and machine learning com-

munity. The database community focuses more on heuristic-based

solutions. For instance, [7, 17] construct digraphs to describe the

pairwise results and compute the score by evaluating in-degree

and out-degree of each vertex, which represents an object. [7] also

proposes an approach to obtain the score through iteratively elim-

inating lower ranked objects until k objects left. [12] proposes

approaches to hybrid two types of tasks, rating and ranking. Ma-

chine learning community implements learning-based techniques

to estimate the scores. Chen et al. [23] proposes a CrowdBT model

by taking worker quality into consideration. Pfeiffer et al. [18]

propose CrowdGauss model that assumes the scores are in Gauss

distribution to estimate the scores by maximizing the product of

probability of si > sj , where si denotes the score of object oi , and
the times of oi ≻ oj reported by the crowd.

5.2 Spatial Crowdsourcing

Spatial Crowdsourcing (SC) can be deemed as one of the main

enablers of urban computing applications. According to the task

publish mode, SC can be classified into two categories, namely

Server Assigned Tasks (SAT) mode and Worker Selected Tasks

(WST) mode. Most of the current research carried out so far has

been focused on SATmode, where the SC-server takes charge of the

task assignment process. In SAT mode, the server assigns proper

tasks to workers in order to achieve some optimization goals such

as maximizing the number of assigned tasks after collecting all the

locations of workers at each timestamp [4, 9, 19]. It is a natural

problem in SC to distribute proper tasks to appropriate workers.

Spatial and temporal information of tasks and workers is taken

into consideration in most spatial crowdsourcing studies [15, 19,

20, 27, 28]. However, distinguishing from the traditional spatial

crowdsourced task, our work mainly concerns on novel techniques

to generate highly informative pair-wise tasks and estimate the

scores of H-POIs based on the answers with different qualities.

Moreover, in our work, spatial experience of a worker is also crucial

to contribute reliability of results.

6 CONCLUSION

In this work we have analyzed the necessities of H-POI exploration

and proposed a framework that can aggregate H-POI ranking from

pairwise comparisons of the crowd. Our solution starts with two

offline operations, first of which is finding theMinVTS as initial task

candidates and the second is computing worker category and geo-

spatial quality using her historical check-in data in LBSNs. In the

subsequent, through an active learning strategy we assign proper

tasks to proper workers to aggregate the ranking online. Extensive

experiments based on real POI-review datasets are conducted and

the favorable results confirm that the accuracy of ranking can be

enhanced with even a small number of iterations.
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A NOTATIONS

Table 2 summarizes the major notifications of this paper.

Table 2: Summary of Notations

Notation Definition

p A Point-of-Interest (POI)

ph A Hidden POI (H-POI)

pp A Popular POI (P-POI)

Ph A H-POI set

Pp A P-POI set

lp Location of POI p
Cp Category of POI p
rp Service region of POI p
w A worker

W A Worker set

s A spatial task

S A Valid Spatial Task Set (VTS)

Smin A Minimum Valid Spatial Task set (MinVTS)

d(a,b) Euclidean distance between a and b
κ Lower bound in Comparable H-POI conditions

H
Criterion determination threshold in

A-B X-means algorithm

λ
Tuning parameter of the trade-off between worker’s

location reliability importance on H-POIs and P-POIs

αCw Reliability of workerw on category C

βlsw Reliability of workerw on locations of POIs in task s
ηsw Overall reliability of workerw on task s

B PSEUDO CODE

B.1 MinVTS Greedy Search Algorithm

The pseudo code for MinVTS Greedy Search algorithm is displayed

in Algorithm 1.

B.2 AIC-BIC Based X-means Algorithm

The pseudo code for AIC-BIC Based X-means (A-B X-means) algo-

rithm is displayed in Algorithm 2.

B.3 Tree-constrained Skip Search Algorithm

The pseudo code for Tree-constrained Skip (TCS) Search algorithm

is displayed in Algorithm 3. Input parameter B describes total itera-

tion number budget and is set as infinity in above experiments for

evaluation purpose.

C PROOF OF THEOREM 3.1

proof : Assume there are n objects in total, the current ranking

accuracy is Acc , we next analyze the ∆ of accuracy after updating

object i . Assume the ranking change of i is K , without generality,
we assume K > 0, which means after updating, the ranking of i
increases K . Denoting that in the K objects, there are k1 objects
having a higher ground-truth score than iand k2 objects having a
lower ground-truth score than i , where k1 is of uniform distribution

U (0,K) and k1 + k2 = K . Then ∆ can be calculated as
k1−k2
n(n+1) =

Algorithm 1:MinVTS Greedy Search

Input: H-POI set Ph , P-POI set Pp , threshold κ
Output:MinVTS Smin = {s1, s2, ..., si }
Find all Comparable H-POIs and append to a set Pch and all

their matchable P-POIs. Construct an adjacent matrix T,

where Ti, j = 1 if pair < i, j > is matched in above process;

Initialize an empty set Smin={ };

InitializeM
1×|Pch | = 0, N

1×|Pp | ;

min← the minimum entry of M;

Imin ← indexes of entries with valuemin in M;

while min < κ do

for each pp in N do

for each ph in Imin do

Add Tph,pp to Npp ;

end

end

tmp_Ppmax ← indexes of entries with the maximum

value in N;

if |tmp_Ppmax | > 0 then

A similar accumulation as above but with N←

ppmax , and M←M \ { ph | with κ P-POIs matched }

end

ppmax ← arдmax

pp
{N };

Smin ← Smin ∪ { < ph , ppmax > | < ph , ppmax > is valid};

N ← N \ ppmax , Pch ← Pch \ { ph |Mph ≥ κ};

Reinitialize N;

Update M, min and Imin ;

end

Algorithm 2: A-B X-means

Input: Location set of a worker P = {li , l2, ..., ln }, upper
bound of number of clusters: K , criterion choosing

threshold H.

Output: Set of optimal x centroids O = {o1,o2, ...,ox }
Initialize: k← 1; O={ }; Clst← P;

if |P | > H then

criterion metric is set as BIC;

end

else

criterion metric is set as AIC;

end

while Clst is not empty and k < K do

for each sub-Clst in Clst do
Run k-means on points in sub-Clst with k ′ = 2;

Compute criterion score of the new splitting ;

if new splitting is better then
Update O ;

k← k+1;

end

end

Update Clst with split sub-Clsts;

end



Algorithm 3: TCS Algorithm

Input:MinVTS, worker set W, prior distribution

parameters {µp }, {σp } of each POI in MinVTS, the

total budget B

Output: POI Ranking by sorting {µp }

Construct adjacent matrixMA for MinVTS;

t← 0;

Find all connected components and run Kruskal algorithm

on each component to obtain the MSTs;

while t<B do

Select a pair (ph ,pp ) ∈ E(MSTs) and a workerw ∈W

that maximize Equation 13 ;

Ask the worker one her preference between ph and pp ;

Update {µph }, {σph } {µpp }, {σpp } based on her report;

t←t+1;

if t<B then

Select a pair (ph ,p
′
p ) ∈ the adjacent set of ph ,and a

workerw ∈W that maximize Equation 13;

Update scores according to the worker’s report;

t←t+1;

if t<B then

Select a pair (p′h ,pb ) ∈ the adjacent set of pp and

a workerw ∈W that maximize Equation 13;

Update scores according to the worker’s report;

t←t+1;

end

end

end

2k1−K
n(n+1) , which is a uniformly distributed random variable with

U (− K
n(n+1) ,

K
n(n+1) ) . In a similar way, we can obtain ∆ in the case

of K < 0. Theorem is proved.

D EXPERIMENT PARAMETERS

D.1 Experiment Setup

We use a real public crowd-sourced local business reviews dataset

generated by Yelp
3
. The Yelp dataset spanning over 11 metropolitan

areas in four aspects: business, check-in, user and review. Each POI

has a POI ID, a location (in the form of latitude and longitude), a city

tag, category tags (with several sub-categories), a score (between 0

to 5) and other business (POI) related information. Each review is

tagged with a review ID, a user ID, a POI ID, score (between 0 to 5)

and other context or date related information. Thus, the reviews can

be taken as check-in records. We extract the data in Las Vegas (LV)

and Phoenix (PN), USA, which contains the most POIs reviewed.

The dataset statistics are listed in Table 3. We set thresholds Θ = 50

to identify P-POIs. And the rating score for P-POIs are assumed

valid. As for H-POIs, in order to evaluate the ranking accuracy with

ground-truth, we take POIs with number of check-ins in range

(30,50] (different from the H-POI definition in Section 2 for evalua-

tion purpose) as H-POIs and the ranking generated by sorting their

3
https://www.kaggle.com/yelp-dataset/yelp-dataset

Table 3: Statistic of dataset

Attribute Las Vegas Phoenix

Total number of POIs 28865 18633

Number of H-POIs 5042 2865

Number of P-POIs 6277 2792

Total number of categories 1982 1865

Total number of users 86480 23871

Table 4: Parameter settings of LV dataset

Parameter Values (default in bold)

Size of dataset 20%,40%,60%,80%,100%

Criterion determination threshold H 50,100,150,200,250

Number of P-POIs per H-POI κ 1,2,3,4,5

λ 0.00,0.25,0.50,0.75,1.00

Number of iterations(quries) 400,600,800,1000,1200

Number of sampled H-POIs 200,400,600,800,1000

scores is regarded as ground-truth. For the nature of LBSNs, every

user can be regarded as a crowdsourcing worker. To simulate the

situation that real H-POIs share poor information in the database,

unless otherwise specified, all H-POIs related data are excluded

from the dataset in following experiments.

We re-categorized all the POIs into the highest categories gen-

erated by Yelp
4
. Since the answer of a crowdsourcing task is a

decision supposed to be based on the subjective quality of POIs, we

generate workers’ answers in a category-location aware way. For

each worker and category, we first compute the worker’s rating

of all the target H-POIs in her reviewing records over the sum of

corresponding H-POIs’ overall scores. If it is larger than 0.5, then

we consider the worker is reliable on this category. As for area

reliability, if she ever had check-in records within the circles cen-

tered by P-POI and H-POI respectively and with a radius of 0.005 (

measure by Euclidean distance of latitude and longitude), which

means she is highly likely to be familiar with both POIs. If a worker

satisfies both above conditions, we assume she will return a correct

answer (determined by POIs’s overall scores, i.e., if sphi < sppj then

the correct answer is phi ≺ ppj ), otherwise a wrong one.

D.2 Parameter settings of LV dataset

Table 4 displays the evaluated parameters of LV dataset. Consid-

ering the scale of Las Vegas, the mean of POI service region is set

as: µpp = 0.065 and µph = 0.0065. We assume worker reliability

on task categories and locations are equally important. Thus, ϵ is
set as 0.5. All values of accuracy and CPU time are based on 800

queried tasks.

4
https://www.yelpblog.com


	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Preliminary
	2.2 Problem Definition

	3 Proposed Method
	3.1 Pair Generation
	3.2 Category and Area Aware Worker Reliability Calculation
	3.3 Ranking Aggregation

	4 Experiments and Results
	4.1 Experimental Results on Las Vegas Dataset
	4.2 Experimental Results on Phoenix Dataset

	5 Related Work
	5.1 Crowdsourced Top-k
	5.2 Spatial Crowdsourcing

	6 Conclusion
	Acknowledgments
	References
	A Notations
	B Pseudo Code
	B.1 MinVTS Greedy Search Algorithm
	B.2 AIC-BIC Based X-means Algorithm
	B.3 Tree-constrained Skip Search Algorithm

	C Proof of Theorem 3.1
	D Experiment Parameters
	D.1 Experiment Setup
	D.2 Parameter settings of LV dataset


