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ABSTRACT
Ride-hailing applications are becoming more and more popular

for providing drivers and passengers with convenient ride ser-

vices, especially in metropolises like Beijing or New York. To obtain

the passengers’ mobility patterns, the online platforms of ride ser-

vices need to predict the number of passenger demands from one

region to another in advance. We formulate this problem as an

Origin-DestinationMatrix Prediction (ODMP) problem. Though

this problem is essential to large-scale providers of ride services

for helping them make decisions and some providers have already

put it forward in public
1
, existing studies have not solved this prob-

lem well. One of the main reasons is that the ODMP problem is

more challenging than the common demand prediction. Besides

the number of demands in a region, it also requires the model to

predict the destinations of them. In addition, data sparsity is a se-

vere issue. To solve the problem effectively, we propose a unified

model, Grid-Embedding basedMulti-task Learning (GEML) which
consists of two components focusing on spatial and temporal in-

formation respectively. The Grid-Embedding part is designed to

model the spatial mobility patterns of passengers and neighbor-

ing relationships of different areas, the pre-weighted aggregator of

which aims to sense the sparsity and range of data. The Multi-task

Learning framework focuses on modeling temporal attributes and

capturing several objectives of the ODMP problem. The evaluation

of our model is conducted on real operational datasets from UCAR

and Didi
2
. The experimental results demonstrate the superiority of

our GEML against the state-of-the-art approaches.

1
https://biendata.com/competition/UAI/

2
They are ride-hailing services providers in China.
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1 INTRODUCTION
Recently, ride-hailing applications are becoming prevalent choices

of daily commuting, such as Didi, UCAR, and Uber, which aim to

provide passengers with convenient ride services and improve the

efficiency of public transportation. For instance, on Didi, millions

of taxi-calling transactions are generated in Beijing per day [20].

To provide high-quality services and achieve company profits, ride-

hailing platforms need to fully understand the passenger demands

in real time. On one hand, to satisfy passenger demands, the plat-

forms must possess the awareness of passengers’ timely mobility

patterns to pre-assign orders to service vehicles in advance. On

the other hand, it is crucial to maximizing the profit by uncover-

ing popular and high-profit routes from the historical passenger

demands, thus avoiding empty drives (i.e., driving without passen-

gers). Therefore, instead of merely forecasting the possible number

of passenger demands within a region, it is rather important to

gain knowledge of passenger demands in terms of the origin and

destination of each trip. Because the demand quantity between

two regions at different time slots not only carries the strength of

passenger demands but also establishes a bootstrap to mine useful

mobility patterns. Fortunately, with adequate modeling strategies

and the availability of large-scale passenger transactions, passenger

demands coupled with mobility patterns are becoming predictable.

In this paper, we investigate the modeling of passenger demand

from a new perspective, which is defined as Origin-Destination
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Matrix Prediction (ODMP). In summary, the origin-destination ma-

trix carries two aspects of information: (1) combinations of different

origins and destinations; and (2) the number of passenger demands

for each origin-destination combination. The target of ODMP is to

predict the number of ride-hailing orders from one geographical

region to another in a given time slot.

Unfortunately, in spite of existing studies on passenger demand

modeling, the results achieved are hardly satisfactory. Recent stud-

ies [1, 17, 28, 29] attempt to predict the passenger demands by

modeling the trajectory data acquired from GPS devices on taxies.

However, the trajectory data cannot reveal passengers’ exact mo-

bilities as the onboard GPS only records the routes traveled by the

vehicle, which contain many empty drives. To address this issue,

passengers’ mobility records (i.e. orders) from ride-hailing appli-

cations have been used in some recent works [20, 22, 24], which

can reflect the real passenger demands and mobilities. Neverthe-

less, these methods only focus on the start points of orders and

predict the quantity of orders arising in a region. In addition, these

methods depend on auxiliary features extracted from multi-source

data which are usually unavailable in most cases, thus limiting the

generalizability of such models. Although prior works [12, 27] have

considered the quantities of both in-flow and out-flow crowds in a

certain area, they are incapable of matching the origins with exact

destinations among the large volume of transactions.

Passengers’ timely mobility pattern is a crucial factor for the

effectiveness of demand modeling. For instance, in the morning

rush hour, a large collection of crowds tend to travel from the

residential areas to their workplaces. If we can discover such trends

earlier and predict the passenger demands with origin-destination

information, the ride-hailing platforms will be able to accurately

suggest the possible dispatch location for each service vehicle in

advance. However, it is quite challenging to model the passengers’

mobility patterns and accurately predict the origin and destination

at the same time due to the following reasons. First, it naturally

requires to simultaneously consider (1) the quantity of passenger
demands from a given region and (2) the final destinations of
these demands. Most demand prediction problems are treated

as simple regression tasks, i.e., approximating the quantity of ride

services needed for a specific area in the recent future. However, this

neither helps service providers understand their customers’ desired

destination, nor provides insights on popular routes. In real-life

scenarios, it is crucial to not only estimate the number of passenger

demands in a certain region but also uncover the corresponding

destinations of these demands, thus offering more opportunities for

the service providers to allocate their resources and improve their

customer services for a specific area. The second challenge arises

from Spatial and Temporal feature fusion. ODMP problems

are associated with both spatial and temporal information, and the

characteristics between different regions at different time slots vary

significantly. It is hard for a model to model these two kinds of

information in a unified way to effectively capture their dynamic

correlation patterns. Last but not least, Data Sparsity is severe

in ride-hailing records. The situation is quite common that there

might be thousands of demands in particular urban areas, while

some suburbs might only receive a few demands at the same time.

To this end, we propose a model called Grid-Embedding based

Multi-task Learning (GEML) to directlymodel passengers’ mobility

records on graphs. Specifically, we represent passengers’ origin-

destination records associated with geographical regions in a graph

where the nodes represent geographical regions (defined as Grids)

and the links between nodes denote the existence of passenger

demands, with the weights on links denoting the quantity of orders.

Note that the grids are obtained by partitioning the whole map of

an area (state, city, or town) at a different level of granularity, and

the formal definition of a grid is provided in Section 2.2. With the

defined grids, the OD matrix in a given time slot can be constructed.

As shown in Figure 1, the area is partitioned into 16 grids, and the

mobility records are summarized in the corresponding OD matrix.

GEML is inspired by recent advances inmodeling and performing

convolutions on graphs [10, 11]. The aggregation function defined

in Graph Convolutional Networks (GCNs) can be regarded as a kind

of message passing scheme [6, 9], which effectively captures the

information flow into a node from its directly connected neighbors.

Motivated by the message passing and neighborhood aggregation,

the traffic flow from one grid to another can be modeled through

mimicking the messages passed between the grids, and the embed-

dings of corresponding grids can be learned by aggregating the

features of the connected grids. However, if we straightforwardly

apply existing GCNs to the graph defined by the OD matrix, the

learned embeddings for the grids with rare orders would tend to

be unreliable and ineffective due to the data sparsity. Moreover, it

would be infeasible to learn embeddings for isolated nodes (e.g., a

newly built community) without any order history regardless of

being as origins or destinations. To alleviate the sparsity issue of

data, we propose to exploit the geographical correlation of grids

based on the first law of geography [8] that everything is related

to everything else but nearby things are more related than dis-

tant things. For example, the numbers of passenger demands in

two geographically close grids tend to be proximate to each other.

Specifically, we consider two kinds of neighbors in our grid embed-

ding part and they are Geographical Neighbors and Semantic
Neighbors based on whether two grids are geographically close

or connected by passenger demands. The former one is used to

measure the intrinsic closeness between one grid and its neigh-

bors, while the semantic neighbors are used to model the semantic

strength of the traffic flow between the origins and destinations in

the grid network.

Based on the representation of each grid learned by grid embed-

ding, we design a multi-task neural network for ODMP by incorpo-

rating the significant temporal information of passenger demands.

Inspired by existing work that separately models the inbound and

outbound traffic of a grid, we also conduct two subtasks which

predict the numbers of specific incoming and outgoing demands in

each grid at different time slots. The rationale for introducing these

two subtasks is that we are able to capture more dynamic mobility

patterns at each grid individually. With the supplement of two in-

dividual subtasks, the overall demand prediction task can capture

stronger intrinsic temporal patterns because the overall demands

within each grid have a substantially larger scale or granularity.

For example, during the morning rush hours, the ride-hailing de-

mands may have different destinations in terms of fine-granularity

grids, resulting in the data sparsity issue, by that, we mean that the

destinations of passenger demands may spread very widely, but
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Figure 1: Example of Grids and OD Matrix

the aggregated incoming and outgoing demands for these grids are

sufficient.

The main contributions of this work are summarized as follows:

• We propose a novel problem ODMP that predicts the pas-

senger demands of given origins and destinations at a given

time slot in a novel and unified way, which can significantly

help ride-hailing platforms prepare cars and dispatch orders.

• We formulate the ODMP problem by dividing the interested

area into grids on the map. Then we design the grid em-

bedding network to perform embedding for each grid via

graph convolutions among novelly defined grid neighbor-

hoods (geographical and semantic neighbors), which models

traffic transferring relationships among different grids by

mimicking the message passing schema in GCNs.

• We design a Multi-task Learning network resorting to Long
Short-Term Memory Recurrent Networks (LSTMs) for captur-

ing temporal trends of passenger demands. Two subtasks

predict individual incoming and outgoing demands in a grid,

while the main task predicts the demands between each pair

of grids.

• Extensive experiments on two real-world and large-scale

ride-hailing datasets demonstrate the proposed GEMLmodel

outperforms baselines.

2 PRELIMINARIES
2.1 Definitions
We first introduce several fundamental concepts to formulate the

ODMP problem. We assume the area of interest is partitioned into

subareas as grids.

Definition 2.1. Grid. The entire spatial region of interest (such as

a specific city) is divided into n non-overlapping grids, denoted by

G = {д1,д2, ...,дn }. Figure 1(a) depicts an example of Grids, where

the region is partitioned into 16 grids. The range of every grid is

defined by the maximum and minimum coordinates.

Note that we choose this method because it is general and handy.

Some studies use the road network to divide the city area but road

network data is not always completed or available in every city.

Some studies just take the POIs as the origins and destinations,

which would aggravate the sparsity of data. Because POIs are too

microcosmic and enormous in scale, which makes them incapable

of showing mobility patterns in a suitable granularity.

Definition 2.2. Time Slot. We evenly partition the time into a

sequence of t slots, which are represented as {Slot1, Slot2, ..., Slott }.
The interval between any two consecutive slots is constant.

Definition 2.3. OD Matrix. In each time slot, for any two grids

дi ,дj ∈ G, the total number of travel demands from дi to дj is
denoted as mi, j . Hence, we define the Origin-Destination (OD)

Matrix as M ∈ NG×G
where each entrymi, j ∈ M represents the

number of passenger demands from grid дi to grid дj .

2.2 Origin-Destination Matrix Prediction
Problem 1. Origin-Destination Matrix Prediction.For t time

slots, given a sequence of t observed OD matrices {M1,M2, ...,Mt }

and a set of auxiliary features Xaux (optional based on availability),
the Origin-Destination Matrix Prediction (ODMP) is a regression
task to predict the OD Matrix Mt+1 in the next time slot Slott+1.

3 SOLUTION
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Figure 2: An overview of the GEML model.
In this section, we introduce the unified model Grid-Embedding

based Multi-task Learning (GEML) which is a general solution

to the ODMP problem. Figure 2 presents an overview of GEML.

Firstly, based on Definition 4, the OD matrices can be extracted

from the mobility records of ride service providers. External data

sources will be used to produce auxiliary features if available. Then,

the grid embedding part of GEML learns the embedding vector for

each grid through the information aggregation of two types of its

neighbors: geographical and semantic neighbors. Afterwards, the

sequential vector representations of each grid will be fed into the

multi-task neural network to learn a representation of a grid in the

most recent time slot ta . Finally, the vector representation of the

grids will be utilized to generate the predicted OD matrix.

In our proposed GEML model, we capture both spatial and tem-

poral patterns in a unified way. From the spatial perspective, we

propose a neighbor-based grid embedding method to learn the vec-

tor representation of each grid by aggregating the information of

its neighbors. From the temporal perspective, we design a multi-

task learning framework to model the dynamic trends of passenger

demands over time. In what follows, we will present the technical

details in both grid embedding and multi-task learning.

3.1 Grid Embedding
Due to the limitation of GCNs on grids with low-scale demands,

we propose two kinds of neighborhood functions under the context

of ODMP for passenger demand modeling, namely geographical

neighbors and semantic neighbors. They are utilized to measure the

intrinsic closeness between one grid and its neighbors and capture
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the semantic strength of the traffic flow between the origin and

destination in the grid network, respectively. Figure 3 depicts the

aggregation of these two kinds of neighbors.
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Figure 3: Illustration of grid embedding for both geographi-
cal and semantic neighborhoods.

3.1.1 Geographical Neighborhood. As Section 2.1 states, we

divide the target area into non-overlapping grids. Geographical

neighbors of grid дi are those grids that are geographically adjacent
with it. For a grid дi , its geographical neighbor set is formulated as:

Φi = {дj |dis(дi ,дj ) ≤ L}. (1)

where dis(дi ,дj ) denotes the spatial distance of these two grids’

centers, the straight length from дi ’s center to дj ’s geographically.
And L is a threshold of the distance which can determine the range

of neighborhood. For instance, the distances between д6 and д1,

д2 in Figure 1(a) are

√
2u and 1u respectively, where u denotes an

arbitrary measurement unit. A grid’s geographical neighbors are

important for the modeling of itself. Intuitively, being the geograph-

ical neighbors of дi , the grids in the set Φi are more likely to have

close densities of passenger demands and share similar features

with дi . For example, if grid дi and дj ∈ Φi are adjacent and located
in a sparsely populated suburb, then both of them are likely to have

fewer demands.

3.1.2 Semantic Neighborhood. The major advantage of pre-

dicting passenger demand via OD matrix is that we can better dis-

cover the mobility relationships among different grids in a timely

manner. If there is at least one demand between дi and дj (can be

either direction), then they are the semantic neighbor of each other.

For grid дi , within an arbitrary time slot t ′ = 1, 2, ..., t , we can

obtain a set of its semantic neighbors via:

Ωi
t ′ = {дj |mi, j > 0 ∥ mj,i > 0,mi, j ∈ Mt ′ ,mj,i ∈ Mt ′}. (2)

According to Eq.(2), it is worth mentioning that the numbers of

different grids’ semantic neighbors at different time slots are uncer-

tain. The rationale of defining the semantic neighbors of each grid

is that the characteristics of each grid are not only determined by

the geographical neighbors surrounding it but also affected by its

interaction patterns. Specifically, the interaction patterns of grid дi
in time slot tk is reflected by other grids дj ∈ G that appears in the

same trip with дi (i.e., either from дi to дj or from дj to дi ). Because
the ODMP problem is time-sensitive, it is crucial to consider the

semantic relationship between different grids at different time slots.

For instance, large amounts of people tend to travel from remote

areas to their workplaces in the city center during the morning

rush hour. By introducing the concept of semantic neighbors, we

can thoroughly take such timely patterns into account for the grid

embedding learning.

3.1.3 Pre-Weighted Aggregator for Grid Embedding. In our

model GEML, we infer the vector representation of each grid дi
in time slot tk by aggregating the information of its geographical

neighbors Φi and semantic neighbors Ωi
t ′ . Instead of training a

distinct embedding vector for each grid, we train an aggregator

function that learns to accumulate and select feature information

from a grid’s neighborhood. Before detailing our pre-weighted

aggregator for grid embedding, we first briefly introduce the naive

form of aggregator adopted by [10]:

vi = σ
(
W ·MEAN

(
{v′i } ∩ {v′j ,дj ∈ Ni )}

) )
, (3)

where vi is the embedding vector of grid дi ;W is the weight ma-

trix to learn; σ is the nonlinear Siдmoid activation function; and

MEAN (·) denotes the element-wise mean operator. The naive ag-

gregation approach computes the grid feature vi by taking the

element-wise mean of the features v′j of all its neighbors дj ∈ Ni
and concatenating them to the previous feature v′i of itself. How-
ever, despite some variants of the basic aggregator (e.g., pooling

aggregator and LSTM aggregator [10]), existing aggregation meth-

ods in graph convolution lack sufficient ability to fully capture the

relationship among different grids in the scenario of ODMP for

demand modeling. The reason is that these aggregators are not

able to differentiate the importance of each grid neighbor when

fusing all their features. Intuitively, the closer the geographical

distance between two grids is, the more similar attributes they will

have. Also, in the semantic neighbor set, the popularity degree of a

neighbor grid should pose influence on the aggregation process as

it retains representative mobility patterns.

In light of this, we present a pre-weighted aggregator which

can selectively lay more emphasis on important grid neighbors for

grid embedding. For the geographical neighbors Φi of grid дi , we
leverage the distance between дi and дj ∈ Φi , denoted by dis(дi ,дj )
as a weighting factor for the aggregator. Accordingly, we formulate

the pre-weighted aggregator for geographical neighbors as the

following:

rit ′ = σ
(
Wд · (fit ′ +

∑
дj ∈Φi

dis(дi ,дj )∑
dis(дi ,дj )

fjt ′)
)
, (4)

where rit ′ denotes the geographical embedding vector of grid дi

at time t ′;Wд is the trainable weight matrix; while fit ′ and fjt ′ are
respectively the features of дi and дj ∈ Φi before the geographical
aggregation operation. Similarly, at each time t ′, we conduct the
pre-weighted feature aggregation regarding the semantic neighbors

Ωi
t ′ of grid дi :

sit ′ = σ
(
Ws · (fit ′ +

∑
дj ∈Ωi

t ′

deдree(дj )∑
deдree(дj ) + ϵ

fjt ′)
)
, (5)

where the weighting factor deдree(дj ) is the degree of grid дj (i.e.,
the number of demands starting from or ending at дj during each
time slot t ′). In addition, ϵ is a very small value close to zero in

case deдree(дj ) = 0; sit ′ denotes the semantic grid embedding of

grid дi at time t ′; Ws is the weight matrix; while fit ′ and fjt ′ are
respectively the features of дi and дj ∈ Ωi

t ′ before the semantic
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aggregation operation. It is worth noting that rit ′ and sit ′ are both
updated for every successive time slot t ′ because the features for
every grids and semantic neighbors for дi are time-dependent.

Intuitively, the embedding vectors rit ′ and sit ′ carry the informa-

tion of the geographical and semantic aspects respectively, which

are learned in parallel via two distinct neighborhood contexts and

feature spaces. In the last stage of grid embedding, the final rep-

resentation vit ′ of grid дi at time t ′ is computed by combining the

grid embedding vectors from both aspects:

vit ′ = [rit ′ , s
i
t ′], (6)

where [·] represents the concatenation of two vectors.

3.2 Multi-Task Learning
With the final representation vectors, there will be a sequence of

t embedding vectors for each grid дi , i.e., {vi
1
, vi

2
, ..., vit }. In this

section, we propose a multi-task learning scheme with periodic-

skip LSTM for ODMP, whose architecture is shown in Figure 4. As

a complementary to the main task, two subtasks enable our model

to capture stronger intrinsic temporal patterns by enlarging the

scale or granularity of overall demands within each grid.

3.2.1 Periodic-Skip LSTM. Taking a time series {xt }Tt=1 as in-
put, Recurrent Neural Network (RNN) encodes {xt }Tt=1 into hidden

states {ht }Tt=1 via ht = f (xt ,ht−1), where f (·) is a non-linear

mapping function. To capture the long-range dependency [2, 16],

we leverage the RNN with long short-term memory architecture

(LSTM) via the following formulation [13]:

ft = σ (Wf [ht−1,xt ] + bf )
it = σ (Wi [ht−1,xt ] + bi )
ct = ft ⊙ ct−1 + it ⊙ tanh(Wc [ht−1,xt ] + bc )
ot = σ (Wo [ht−1,xt ] + bo )
ht = ot ⊙ tanh(ct )

(7)

where σ (·) is the Siдmoid activation function; ⊙ is the element-

wise multiplication. i, f, o and c are respectively the input gate,

forget gate, output gate, and cell state vectors. When each of them

is being updated, there are corresponding trainable weightsW and

1st day2nd day3rd day4th day5th day
Figure 5: The number of passenger demands w.r.t. different
hours and days.

the bias vectors b. For notation convenience, we simplify the LSTM

system in Eq.(7) as:

ht = LSTM(xt ,ht−1). (8)

Clearly, LSTMs can learn the representation of the current input

based on its dependency on the hidden state learned from the previ-

ous time step, so ht is actually more focused on inputs that are close

to time t . However, this setting might not fit the scenario of ODMP-

based demand modeling. To fully understand the dynamic patterns

of passenger demands, we randomly sample 5 days’ transactions

from UCAR dataset (see Section 4) and plot the hourly passenger

demands for each day in Figure 5. Apparently, at the same time of

these days, the number of passenger demands share similar pat-

terns. However, when predicting the passenger demands for the

next hour, the sequence modeling scheme in LSTM will force the

model to gather information from the previous consecutive hours.

This may be less helpful for demand prediction as the irrelevant

inputs incur much noise. In light of this, to better model the pe-

riodicity, we take the grid embedding sequence {vi
1
, vi

2
, ..., vit } as

inputs and further convert Eq.(8) into a periodic-skip LSTM which

skips irrelevant sequential patterns:

hit = LSTMps (vit ,h
i
t−p ) (9)

where p is the number of hidden states skipped through. That

is to say, the latent representation hit of grid дi is computed using

the corresponding embedding vit and the historical hidden states

with a time step interval p.

3.2.2 Main Task: Predicting the OD Matrix. By the periodic-

skip LSTM framework, we can produce hit which is the vector

representation for grid дi at time t . In order to obtain the value of

each entry mi, j in the OD Matrix, we define a transition matrix

Wm ∈ Rd×d to model the transition from grid дi to дj . By this

mean, m̂i, j (i.e., the predicted demand from дi and дj at t + 1) can
be computed as:

m̂i, j = (Wmhit )
⊤hjt , (10)

and we use mean squared error to compute the loss function for

the main task:

LODMP =
1

|Mt+1 | × N

N∑
n=1

| |Mt+1 − M̂t+1 | |, (11)

wheremi, j ∈ Mt+1 is the real value in the OD matrix at time

t + 1, n ≤ N is the index of the training sample.

3.2.3 Two Subtasks: Predicting the In- and Out-Degrees. In
parallel with the main task of predicting the overall OD Matrix de-

scribed above, we also separately model the inbound and outbound
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Table 1: A summary of datasets in use.

dataset UCAR Didi

time span 31 days 30 days

city Beijing Chengdu

total area 53 × 52 km
2

49 × 55 km
2

grid granularity 2.65 × 2.6km2
3.27 × 3.67km2

time slot granularity 1 hour 1 hour

auxiliary features weather; POIs -

traffic flow of a grid at a given time slot t . Eq.(12) and Eq.(13) work

out the predicted number of orders going into (and out of) a grid.

p̂i = w⊤
inh

i
t , (12)

q̂i = w⊤
outh

i
t , (13)

where win and wout are two projection weights that are used to

project the grid embeddings to a scalar. Then, similar to the main

task, the loss function for modeling the inbound and outbound

orders can be formulated as:

LI N =
1

|G | × N

N∑
n=1

∑
дi ∈G

(pi,n − p̂i,n )
2. (14)

LOUT =
1

|G | × N

N∑
n=1

∑
дi ∈G

(qi,n − q̂i,n )
2. (15)

where G is the number of grids in the OD matrix, n ≤ N is the

index of the training sample.

3.2.4 Loss Functions. Corresponding to the three tasks defined

above, we formulate the overall loss function by combining the

losses for the main task as well as two subtasks:

LGEML = ηLODMP + ηinLI N + ηoutLOUT (16)

Because the importances of different loss functions may be dif-

ferent, ηin , ηout , η are added as the weights of them.

3.2.5 Optimization Strategy. Above all, we optimize the param-

eters to minimize the final loss function defined in Equation (16). All

parameters are updated by using the Stochastic Gradient Descent

(SGD) method. Specifically, we use Adam [15], a variant of SGD to

optimize the parameters in our model.

4 EVALUATION
This section evaluates GEML model through extensive experiments.

Particularly, we aim to answer the following research questions:

RQ1 : How is the effectiveness of GEML on ODMP tasks?

RQ2 : How does each proposed component of the model con-

tribute to the performance of GEML?

RQ3 : How does each major hyperparameter affect the prediction

performance of GEML?

RQ4 : What are the actual mobility patterns learned by GEML?

4.1 Datasets
We conduct experiments on two real-world datasets generated by

two ride-hailing applications, namely UCAR and Didi. The UCAR

dataset is collected in Beijing urban area, from 1st to 31st of August

in 2016. The Didi dataset ranges from 1st to 30th of November in

2016 and covers the urban area of Chengdu
3
. Table 1 summarizes

3
https://outreach.didichuxing.com/research/opendata/

the characteristics of two datasets. Note that both datasets have

been desensitized. We divide Beijing and Chengdu into 400 and 225

grids respectively, based on grid granularities in Table 1, as it takes

5 minutes on average for a taxi driver to drive such distance, which

is a reasonable waiting time for passengers as the statistics in [22].

The OD matrix sequences on both datasets are constructed with

1-hour granularity.

4.2 Baselines
To show the effectiveness of our GEML model on ODMP tasks, we

compare GEML with the following state-of-the-art competitors.

• HA: We adopt History Average to predict each entry in the

OD matrix with the mean of each grid’s history demands.

• LSTM: LSTMs are designed to model long- and short-term

dependencies, and are directly used in ODMP problems with

different application scenarios. In this paper, we leverage

LSTM with the settings in [14].

• LSTNet: LSTNet [16] is a state-of-the-art time series pre-

diction model, which combines both LSTM and CNN for

spatiotemporal feature modeling.

• GCRN: The recent proposed Graph Convolutional Recurrent
Network (GCRN) [19] is built to model structured sequences.

It combines CNNs on graphs with RNN to jointly identify

spatial correlations and dynamic patterns.

To validate the performance gain from each component of our

model, we implement five variants of GEML listed below:

• GEML-S1: We remove the aggregator for semantic neigh-

bors and only keep the geographical aggregator.

• GEML-S2:We remove the subtasks of predicting out and in

degrees of each grid and optimize the model via a single-task

scheme which only predicts the OD matrix.

• GEML-S3:We replace the periodic-skip LSTM with a stan-

dard LSTM in Eq.(7).

• GEML-S4:We replace the pre-weighted aggregator with a

naive mean aggregator in Eq.(3).

• GEML-AF: For UCAR dataset, we leverage the available

auxiliary features of weather and POIs for GEML.

4.3 Experimental Settings
We evaluate the prediction accuracy with two widely-applied met-

rics, namely Root Mean Square Error (RMSE) and Symmetric Mean
Absolute Percent Error (SMAPE):

RMSE =

√√√
1

|Mt+1 | × N

N∑
n=1

| |Mn
t+1 − M̂n

t+1 | |, (17)

SMAPE =
2

|Mt+1 | × N

N∑
n=1

∑
m∈Mn

t+1

m − m̂

m + m̂ + 1
. (18)

RMSE is scale-sensitive while SMAPE is not, so RMSE is suitable

for the comparison within the same dataset, and SMAPE can be

used to evaluate the same method across different datasets.

In order to check the effectiveness of our model on all the seven

days of a week, we keep the last week of a month as the test set and

the rest is training set, the last 10% of which is used for validation. To

fairly compare model’s capability, we train all models by optimizing
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Table 2: Results on demand prediction of different methods.

Dataset Metric HA LSTM LSTNet GCRN GEML GEML-S1 GEML-S2 GEML-S3 GEML-S4 GEML-AF

UCAR

RMSE

1.3515 1.3085 2.1559 0.3769 0.1605 0.2200 0.1791 2.5431 0.2281 0.2727

- +3.2% -59.5% +72.1% +88.1% +83.7% +86.7% -88.2% +83.1% 79.8%

SMAPE

0.7334 0.4141 1.1268 0.3083 0.0209 0.0403 0.0247 1.4310 0.0386 0.2165

- +43.5% -53.6% -53.6% +97.2% +94.5% +96.6% -95.1% +94.7% +70.5%

Didi

RMSE

2.8382 12.0027 19.5626 4.1512 1.6928 4.7939 2.5196 7.0960 2.0409 -

0% -322.9% -589.3% -46.3% +40.3% -68.9% +11.2% -150.0% +28.1% -

SMAPE

0.6199 0.5121 1.3599 0.3842 0.2678 0.4960 0.4255 1.5883 0.3253 -

- +17.4% -119.4% +38.0% +56.8% +20.0% +31.3% -156.2% +47.5% -

the mean square error. The length of the skipped intervals p is set as

24 (i.e., one day). The weights of three sub-loss functions are set as

(0.25, 0.25, 0.5) while the number of the embedding dimension and

hidden state are 128. All our models utilize the Mean Aggregator

and include two layers. Because of the sparsity of the datasets,

we use L1 regularization to enhance the weights’ sparsity of our

model. The learning rate is searched in [0.0001, 0.001, 0.01, 0.1], and

batch size is 23. We realize our GEML model through Pytorch 0.4.1

on Python 2.7, which is based on the existing benchmark called

GraphSAGE [10].

4.4 Performance Evaluation
4.4.1 The Effectiveness of GEML. Table 2 summarizes the re-

sults of all compared methods under RMSE and SMAPE. The per-

centage under the metric value represents the performance gain of

each method with respect to HA. Note that all differences between

our model and others are statistically significant (p<0.01).

From Table 2, we make the following observations:

• Unexpectedly, the results of LSTM and LSTNet on second

dataset are obviously worse than HA. A possible reason for

LSTM might be that LSTM is a totally time-series method

which ignores the spatial attributes of the ODMP problem.

While LSTNet utilizes CNN to model the spatial attributes. It

is not suitable to OD Matrix because there is no meaningful

spatial relationship between adjacent elements in a matrix.

• Methods tailored for temporal graph data (GCRN and GEML)

achieve better overall performances. This might prove that it

is more reasonable to model an OD Matrix as a graph when

we solve the ODMP problem.

• The performance of HA is poor but stable on both datasets,

which sometimes is even better than other baselines. This

may enlighten us that if we can’t catch the attributes of a

problem, a simple model is a better choice.

As the auxiliary features of Didi dataset are not available, we

just compare the rest four simple versions on this dataset. From the

right columns of GEML in Table 2, it can be observed that:

• GEML-S3 has the worst performance on both datasets obvi-

ously, which testifies that our data owns strong periodicities

among different days. The overall performance of GEML-

S1 is the second worst one, and then GEML-S2, GEML-S4.

Correspondingly, the periodic component plays the most

important role to improve our model’s performance.

• Out of our expectation, GEML-AF does not show any obvious

advantage, and even worse than other simple versions. One

possible reason might be that the two kinds of auxiliary fea-

tures, POIs and weather do not belong to the same domain

with the graph features. More precisely, our model is de-

signed for the graph attributes, and these auxiliary features

may become a disturbance to the model.

4.4.2 Analysis of Parameter Sensitivity. This section analyzes

the parameter sensitivity of our model on the embedding dimension

in Grid Embedding part and the weights of three loss functions in

Multi-task Learning part.

Embedding Dimension. In Grid Embedding part a suitable set-

ting of the embedding dimension is important for a sufficient rep-

resentation. We conduct experiments on several alternatives of the

embedding dimension, 32, 64, 128, 256 and 512. Figure 6 shows the

results, from which, we can observe that:

• Didi’s results fluctuate a lot with the increase of the embed-

ding dimension while UCAR’s behave more stably. This may

be because of different sparsities and ranges of them. Ac-

cording to our statistics, Didi’s dataset is denser, meanwhile,

with a larger range than UCAR’s.

• Both datasets obtain best results with the embedding di-

mension equaling to 128. Moreover, we can see that GEML

obtains relatively fine results on UCAR when the embedding

dimension is equal to 256. We suppose this is related to the

feature dimension. UCAR’s feature dimension is 802, almost

twice of Didi’s 452, so the embedding dimension 128 show a

more obvious advantage on Didi while nearly even with the

embedding dimension 256 on UCAR.

Weights of sub-loss functions. In Multi-task Learning part,

we choose several sets of weights to conduct experiments. For

example, the three values of each horizontal label e.g. (0.1, 0.1, 0.8)

in Figure 7 represent the weights of LI N , LOUT , and LODMP
respectively. According to the results in Figure 7, we obtain the

following observations:

• GEML still shows a more stable performance on UCAR’s

dataset rather than on Didi’s under both metrics. It should

be on account of the sparsity and scale of datasets.

• GEML performs best on Didi’s dataset when the weights

equal to (0.25, 0.25, 0.5). This result seems reasonable because

LI N and LOUT are designed to assist the prediction of

OD Matrix, and the main target still should be minimizing

LODMP . The performance of GEML under different weights

on UCAR is almost even. It is supposed to be related to the

sparsity and range of the dataset, which makes this dataset

not sensitive to the weights’ variation.
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Figure 6: Results of different embedding dimensions

Figure 7: Results of different weights on loss functions

4.5 Visualization of Mobility Patterns
In order to give an intuitive presentation, Figure 8 shows a part of

passengers’ mobility patterns learned by GEML during different

time slot on a work day in Beijing. We choose some transfers that

contain more than 10 demands and get the integer of the predicted

result by rounding it off. The red squares denote theGrids we have
defined in Section 2 and the red arrows represent the passengers’

transferring direction. The rectangles close to the arrows provide

the number of transferred passengers between two grids. The first

value in the rectangle is the predicted result of our model while the

one in the bracket is its ground truth.

From Figure 8, we can draw the following observations:

• Figure 8(a) indicates that in the morning, people tend to

leave home and march to different destinations, e.g. work

or entertainment venues. Because many residential areas

are located in д202, д205, д189 and д169. Meanwhile, there is a

software park located in the neighborhood of д267, and д290
is the Olympic Forest Park.

• From Figure 8(b), we can see that after lunch, there are still

many passengers leaving for work and entertainment venues.

The famous Xidan Financial street just located in д168, to-
gether with д167 and д189 which are residential and financial

mixture areas. And near д253 and д233, there is the largest
art center in Beijing, well-known as the 798 Art District.

• According to Figure 8(c), there is no accordant direction for

passengers’ mobilities. For example, some people prefer to

go home after an exhausting day fromд129 toд272 which is al-
most a purely residential area. But even at 9:00 pm, there are

still people to the 798 Art District. One possible reason may

be that evening time is people’s leisure time when people

can choose any destinations as they like.

5 RELATEDWORK
5.1 Demand and Mobility Prediction
In this subsection, we review mainstream schemes on the demand,

mobility and other volume prediction problems.

Studies of the common demand prediction only focus on origins

of passenger demands. Some [28, 29] of them are based on trajectory

data. Zhao et al. [29] employ a holistic approach to analyze both

yellow cabs and Uber’s trips in NYC and show high predictability

of the taxi demand. Zhang et al. [28] propose a framework com-

bining clustering and time-series forecasting based on historical

taxi trajectories to predict taxi demands for hotspots in urban ar-

eas. The popularity of ride-hailing applications generates billions

of passenger mobility records and some studies [20, 22, 24] con-

duct demand predictions based on this kind of data. Wei et al. [22]

present a hybrid model to combine spatial features, the tendency of

temporal fluctuation, and a classifier of zero-demand areas, which

predicts integrated results for passenger demands of different areas.

Tong et al. [20] put forward a unified linear regression model with

more than 200 million dimensions of features extracted from multi-

source data to predict the passenger demand for each POI. Yao et al.

[24] propose a model consisting of temporal view, spatial view and

semantic view, to predict the passenger demands within an area.

However, all these methods ignore the destinations of passenger

demands so that they cannot provide the global mobility patterns

of passengers in a city.

There are some researches [7, 12, 14, 18, 27] studying passenger

mobilities. Hoang et al. [12] integrate a seasonal model and a trend

model, then a residual model to predict the numbers of in-flow

and out-flow crowds of a region, while Zhang et al. [27] propose a

deep-learning-based approach called ST-ResNet to solve the same

task. But these two studies overlook the transferring relationships

among areas. Ren and Xie [18] utilize the tensor decomposition

to predict the OD trip matrix. Deng et al. [7] design a latent space

model based on road networks to predict traffic matrix, which

learns the attributes of vertices in latent spaces to capture both

topological and temporal properties. LSTMs based methods are

employed by [14]. Nevertheless, they either have not considered

the problem from both spatial and temporal perspectives or fail to

give an adequate and meaningful representation for each region.

Chen et al. [5] propose a trend alignment with dual-attention multi-

Task recurrent neural networks (TADA) to predict sales volume for

supermarkets. Yin et al. [25] build a scalable probabilistic tensor

factorization model (SPTF) for predicting heterogenous behavior

data. But they are designed closely with the problem features, which

is not suitable for our scenario.

5.2 Graph Representation Learning Based
Methods.

Recently, some methods based on graph representation learning

are proposed. Hamilton et al. [10] propose GraphSAGE, a general

inductive framework that leverages node feature information to

efficiently generate node embeddings for graph data. Unfortunately,

they are just focused on the spatial perspective and cannot cap-

ture the temporal trend of the data. Seo et al. [19] build a model

called GCRN to generalize the classical RNN to structured data

by an arbitrary graph, which can be used to predict sequences of

structured data. However, this method is incapable of modeling the

transferring relationship between areas either because they have

not taken the semantic neighbors into consideration.

There are some studies [3, 4, 21, 23, 26] inspiring us to model the

passengers’ mobilities into graph structures and consider different
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g202        g267 g169 g189 g244 g205 g290 26767 gg290ggg14 (15) 10 (12) 16 (15) 11 (11) 
(a) Mobility patterns at 7:00 o’clock

g171        g267 g168 g189 g167 g253 g129 267 gg18989 gg16868 14 (11) 15 (14) 22 (19) 15 (13)  g233 
(b) Mobility patterns at 14:00 o’clock

g172        g272 g191 g211 g194 g253 g129 g19494g25353g19494g172 ggg19191gg2119191110 (12) 19 (16) 10 (12) 10 (11)  g232 
(c) Mobility patterns at 21:00 o’clock

Figure 8: The visualization of mobility patterns on a workday in Beijing
perspectives of the problem. For example, Yin et al. [26] design a

latent class statistical mixture model based on the observation that

the behaviors of a user in social media systems, named temporal

context-aware mixture model (TCAM), to account for the intentions

and preferences behind user behaviors. Wang et al. [21] propose a

streaming recommender model based on neural memory networks

with external memories to capture and store both long-term stable

and short-term dynamic interests in a unified way.

6 CONCLUSION
In this paper, we define ODMP problem of passenger demands,

which can provide important references for drivers and ride service

providers’ decision-making. Comparing with the common demand

prediction, it is more challenging because it requires to predict not

only the number of demands in a area but also the destination of

them. What’s more, data sparsity is a severe issue in large-scale

datasets. To address this problem, the first insight is to model the

mobility patterns for areas through the informations of their neigh-

bors, based on which we design the Grid-Embedding framework.

And we add pre-weighted functions to its aggregating process so

that it can sense the range and sparsity of the data. Then we utilize

a multi-task LSTM with a periodic-skip component to model the

temporal trend. The subtasks can assist the main task to capture

stronger intrinsic temporal patterns by enlarging the scale or gran-

ularity of overall demands within each grid. The whole process

is an end-to-end model called Grid-Embedding based Multi-task

Learning (GEML). We evaluate our model on two real-world and

large-scale ride-hailing datasets, which demonstrates the proposed

GEML model outperforms baselines.
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