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ABSTRACT
Automation in road vehicles is an emerging technology that has
developed rapidly over the last decade. There have been many
inter-disciplinary challenges posed on existing transportation in-
frastructure by autonomous vehicles (AV). In this paper, we conduct
an algorithmic study on when and how an autonomous vehicle
should change its lane, which is a fundamental problem in vehicle
automation field and root cause of most ‘phantom’ traffic jams.
We propose a prediction-and-search framework, called Cheetah
(Change lane smart for autonomous vehicle), which aims to opti-
mize the lane changing maneuvers of autonomous vehicle while
minimizing its impact on surrounding vehicles. In the prediction
phase, Cheetah learns the spatio-temporal dynamics from historical
trajectories of surrounding vehicles with a deep model (GAS-LED)
and predict their corresponding actions in the near future. A global
attention mechanism and state sharing strategy are also incorpo-
rated to achieve higher accuracy and better convergence efficiency.
Then in the search phase, Cheetah looks for optimal lane change
maneuvers for the autonomous vehicle by taking into account a few
factors such as speed, impact on other vehicles and safety issues. A
tree-based adaptive beam search algorithm is designed to reduce
the search space and improve accuracy. Extensive experiments on
real and synthetic data evidence that the proposed framework ex-
cels state-of-the-art competitors with respect to both effectiveness
and efficiency.

CCS CONCEPTS
• Applied computing → Transportation; • Information sys-
tems→ Spatial-temporal systems; • Computing methodologies
→ Planning and scheduling.

∗Corresponding authors: Kai Zheng and Han Su.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467072

KEYWORDS
Lane change maneuvers; Autonomous vehicle; Trajectory predic-
tion

ACM Reference Format:
Shuncheng Liu1, Han Su1,2∗, Yan Zhao3, Kai Zeng4, Kai Zheng1,2∗. 2021.
Lane Change Scheduling for Autonomous Vehicle: A Prediction-and-Search
Framework. In Proceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event,
Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3447548.3467072

1 INTRODUCTION
With the rapid growth in urbanisation and ownership of cars, most
major cities around the world suffer from high rates of traffic con-
gestion, resulting in significant fuel waste and air pollution [28].
In everyday life, one may often encounter traffic jams without any
obvious reason such as accidents, roadwork, or closed lanes, which
are commonly known as ‘phantom’ traffic jams. It usually occurs
when the traffic density is high, so even a small perturbation (e.g.,
forced lane change or hard braking) on traffic flow may generate
‘butterfly effect’ and cause serious traffic jams [32]. To prevent
phantom traffic jams, it requires all vehicles on road to maintain a
proper gap in-between and avoid improper lane changes or hard
braking, which is very difficult, if not impossible, for human drivers.

With the rapid development of vehicle automation technology,
this goal may be achieved in the future when a considerable por-
tion of on-road vehicles are autonomous vehicles (AV). Existing
studies have shown that with the help of Adaptive Cruise Control
(ACC) for car-following control, smooth acceleration and braking,
autonomous vehicles can maintain a constant gap to the preceding
vehicle, thus mitigating the phantom traffic jam problem [11, 31].
However, as for the Lane Change Assistant (LCA) of autonomous ve-
hicles, the existing methods mainly focus on the safety and comfort-
ableness of lane-change maneuver [5, 32, 35], leaving the impact on
other surrounding vehicles and eventually traffic conditions largely
uninvestigated. For example, the manual of Tesla (Model S) warns
drivers not to use Auto Lane Change on city streets or on roads
with changing traffic conditions [29]. Apparently, without taking
the driving behaviors of surrounding vehicles into account, it may
cause more serious traffic jams or even accidents if autonomous
vehicles decide when and how to change lane solely based on their
own status. Therefore, at the core of our work is the assumption
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that performing safe, smooth and efficient lane changes and reduc-
ing its impact on surrounding vehicles are both essential tasks for
the LCA systems of autonomous vehicles.

To sum up, hard braking and improper lane changes are the
two main reasons for most phantom traffic jams. In the field of au-
tonomous driving, the first issue was studied more extensively and
handled by ACC systems. However, the second issue has not been
addressed well due to a few challenges: 1) Lack of proper frame-
work; 2) Uncertainty of surrounding vehicles’ driving behaviors; 3)
Variety of vehicle maneuvers. In this work, we aim to address the
above challenges and propose a new LCA system that fulfills SAE
(Society of Automotive Engineers) level 4 or 5 automation [18].

For the simplicity of study, we consider a traffic scenario where
there is one autonomous vehicle A and many conventional vehi-
cles (with human drivers) C traveling on a multi-lane road. Our
system can only control the behaviors of the autonomous vehi-
cle: lane change, speed-up, speed-down, maintain speed. For other
conventional vehicles, we can collect their real-time locations via
Internet of Vehicles (IoV) or the autonomous vehicle’s sensors. Our
objective is to maximize the average speed of the autonomous vehi-
cle without disturbing the other conventional vehicles as much as
possible. To this end, we proposed a novel prediction-and-search
framework, called Cheetah, which consists of two phases. In the
prediction phase, a trajectory prediction model, namely GAS-LED
(Global Attention and State sharing based LSTM Encoder-Decoder),
is proposed to model the dependencies of spatial and temporal fea-
tures from neighboring vehicle’s historical trajectories and forecast
their future behaviors. The hidden state sharing technique coor-
dinated with global attention is designed to connect the encoder
and the decoder, which not only achieves high accuracy but also
reduces training time. Then during the search phase, Cheetah hunts
for optimal lane change maneuvers efficiently with adaptive beam
search algorithm based on the maneuver tree. Instead of setting
the width parameter (e.g., beam width) heuristically, our search
method can automatically select high-confidence nodes and prune
low-confidence nodes in each layer of the tree.

To the best of our knowledge, this work provides the first data-
driven solution to schedule the lane change maneuvers for au-
tonomous vehicles by taking contextual vehicles into account. Our
technical contributions can be summarized as follows:
•We develop a prediction-and-search framework that enables au-
tonomous vehicle to perform lane change efficiently and smart, by
minimizing its impact on other surrounding vehicles.
• We propose a trajectory prediction model (GAS-LED) that is
equipped with a global attention mechanism and state sharing to
improve the prediction accuracy and training efficiency.
•We propose a maneuver tree-based adaptive beam search algo-
rithm to find the optimal maneuver sequence efficiently.
•We conduct extensive experiments to evaluate our framework on
real and simulated data, verifying the effectiveness and efficiency
on multiple metrics.

2 PROBLEM STATEMENT
In this section, we briefly introduce a set of preliminary concepts
about Cheetah, based on which an overview of our problem and
proposed framework are presented.

2.1 Problem Setting
The existing LCS systems mainly focus on the safety and comfort-
ableness of driving, but ignore the impact of the lane change ma-
neuvers of the autonomous vehicle on its surrounding conventional
vehicles, whichmay cause traffic jams. In this work, we try to reduce
this impact as much as possible. More formally speaking, our ob-
jective is to maximize the average speed of the autonomous
vehiclewhileminimizing its impact on surrounding conven-
tional vehicles.

In this study, we consider an interactive environment where
there are one autonomous vehicle A and a set of conventional
vehicles C driving on a straight multi-lane road. For the sake of
simplicity, parking and turning are not considered for now. The au-
tonomous vehicle can obtain the real-time location of surrounding
vehicles through its sensors or IoV (Internet of Vehicles), and make
decisions on lane change maneuver at each time instant within a
target time duration T of interest. Without loss of generality, we
assume the dimensions and performance of all vehicles are the
same.

In the scenario mentioned above, we first define the notion of
lane. A lane L is part of the road used to guide vehicles in the same
direction. Usually, a road has multiple (at least two) lanes. Herein,
all the lanes are numbered incrementally from the leftmost side to
the rightmost side, e.g., L1, L2, · · · where L1 indicates the leftmost
lane. An advantage of using this type of lane-based coordination
system is to allow us to focus on the lane change behavior itself
without worrying about the lateral position of the vehicle. Next,
we introduce two basic units for spatial and temporal dimensions
respectively.
Trajectory Point. A trajectory point p indicates the location of
a vehicle in a 2-dimensional space, wherein p.L denotes the lat-
eral lane number and p.Dlon refers to the longitudinal distance of
the vehicle traveled from the starting point of a road, which is a
fixed point denoted as ps i.e., ps .Dlon = 0. ptCi or p

t
A is used to

denote the trajectory point of the vehicle Ci or A at time instant
t . The d(ptCi ,p

t
Cj
) denotes the longitudinal distance between two

trajectory points, which can be calculated as follows:
d (ptCi , p

t
Cj
) = |ptCi .Dlon − ptCj .Dlon | (1)

where ptCi .Dlon is the longitudinal distance of vehicle Ci at time t,
which equals to d(ps ,ptCi ).
Time Step. In order to model the problem more concisely, we treat
the continuous time duration as a set of discrete time steps, i.e., T =
{1, 2, ..., t, t + 1, ...}. In this study, we set the time interval between
two consecutive time steps to 0.5 seconds, which is analyzed in
Appendix.
Trajectory. A trajectory T consists of a sequence of vehicle’s tra-
jectory points, ordered by time step t , i.e., T = (p1,p2, · · · ,pt ). We
use TCi and TA to denote the trajectory of conventional vehicle Ci
and autonomous vehicle A respectively.
Lane ChangeManeuver.Amaneuver is a series of (almost) simul-
taneous behaviors performed by a vehicle in order to accomplish a
task (e.g., change lane). Inspired by recent studies in microscopic
traffic field, we represent a lane change maneuver at time t as
a pair of a lateral lane change behavior and a longitudinal mo-
tion behavior, i.e., Mt = ⟨Blc ,Bm⟩. Blc can be one of the three
behaviours: change left (Lt), change right (Rt), and do not change
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Figure 1: Cheetah overview

(Nt), i.e., Blc ∈ {Lt,Rt,Nt}. Bm indicates the longitudinal distance
travelled by the vehicle between current and the next time step, i.e.,
Bm = d(p

t ,pt+1).
Given a time duration of interest T, the autonomous vehicle

will perform a sequence of lane change maneuvers, denoted by
M = {M1,M2, ...,Mt }, with the objective to maximize its average
speed and minimize the impact on other conventional vehicles. In
this paper, we use maneuver to stand for lane change maneuver
whenever the context is clear.
Restrictions. We pose some traffic restrictions on all the vehicles:
• Speed limit: all lanes are subject to two speed limits: Vmin and
Vmax .
• Lane change restrictions: a vehicle can only change to adjacent
lane at each time step. Besides, it needs to keep Dlcs distance at
minimum with the preceding and tailing vehicles in the target lane.
• Safe following distance: all vehicles in the same lane should keep
a safe following distance Dss .

2.2 Framework Overview
To help autonomous vehicles perform lane change maneuver wisely,
we propose Cheetah, an innovative prediction-and-search frame-
work that first predicts the near future trajectories for conventional
vehicles and then searches for the optimal decisions from huge
possible maneuver space. Figure 1 illustrates the workflow of the
framework. Next we will briefly introduce each component sepa-
rately.
Trajectory Prediction. In order to reduce the impact on conven-
tional vehicles, the autonomous vehicle needs to predict the future
trajectories of surrounding conventional vehicles. To this end, we
develop an LSTM-based deep model, called GAS-LED, to predict the
trajectories of z time steps ahead by utilizing historical trajectories
in the past n time steps.

Instead of predicting the actual coordinates of each trajectory
point directly, GAS-LED is designed to make dual prediction for
lateral lane change behaviorBlc and distance of longitudinal motion
behavior Bm of conventional vehicles at future time steps. For Blc ,
the model estimates the probability of three behaviors and selects
the behavior with the maximum probability as the predicted result.
For Bm , the model outputs a longitudinal travel distance directly.

The most challenging part is how to maintain high accuracy in
dynamic traffic environments, where the context of the autonomous

vehicle keeps changing. To tackle the challenge, we adopt a parallel
model architecture integrated with a global attention mechanism to
improve the prediction accuracy. In addition, encoder and decoder
state sharing is enabled to improve the convergence efficiency, so
that the model can get up-to-date more quickly when the environ-
ment changes.
Maneuver Decision. Once the trajectory prediction model out-
puts the predicted maneuver sequences of conventional vehicles,
Cheetah can start searching the optimal maneuver sequence for
the autonomous vehicle and make decision on how to perform the
maneuver. However, since the motion behaviors Bm is a continu-
ous value, we need to discretize it first to make the search process
feasible and then convert it back to continuous value during post-
processing.

There are two goals during the search process. The first one
is to maximize the average speed of the autonomous vehicle VA,
which is calculated as the longitudinal traveled distance divided
by the time duration. The second one is to minimize the impact on
surrounding conventional vehicles, which is characterized by an
impact factor Fim to model the extent to which the conventional
vehicles are affected by the maneuver of autonomous vehicle. We
will discuss these two goals in more details in Section 4.

The challenge part of the maneuver sequence search is how to
reduce search space and achieve high efficiency. To this end, we
propose to use a maneuver tree structure to represent the entire
search space. Using our adaptive beam search algorithm, the ma-
neuver tree can be kept within a tractable size so the search can be
performed efficiently.

3 TRAJECTORY PREDICTION
To reduce the impact of autonomous vehicles on conventional
vehicles, i.e., Fim , it is necessary for autonomous vehicles to predict
the future trajectories of other conventional vehicles. In Cheetah
we propose a novel encoder-decoder network, called GAS-LED.
GAS-LED divides the trajectory prediction task into two sub-tasks,
namely lane change prediction and motion regression, which can
assure the accuracy of lane-level prediction and the reliability of
maneuver decision-making. Moreover, GAS-LED is designed to be
trained efficiently with fast convergence so that the model can get
up-to-date quickly when the environment changes dramatically.
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3.1 Limitation of Existing Algorithms
Existing studies on trajectory prediction can be broadly classified
into two categories, i.e., rule-based and learning-based trajectory
prediction algorithms. In the sequel, we will briefly discuss the
limitations of both types of methods w.r.t. to our objective.
Rule-based Trajectory Prediction. Rule-based trajectory predic-
tion algorithms mainly apply the transportation rules to simulate
traffic flowmodels. For example, a vehicle will move to the right lane
when there is no vehicle on its right front, or it will speed up when
there is no preceding vehicle. The simulated models can be applied
to predict the future possible actions of vehicles according to the
real-time road environment at each time step. The cellular automa-
ton algorithms are capable of simulating the traffic flows [10, 24, 26],
which complete the task efficiently in simple scenarios like one-way
straight lane and coarse-grained scene. However, these algorithms
ignore the historical trajectories of vehicles, which makes them
difficult to perform long-term predictions. Besides, since these al-
gorithms are designed for simple traffic conditions, the level of
accuracy will be reduced significantly in more complex scenarios
such as vehicles on a multi-lane road in our studied problem.
Learning-based Trajectory Prediction. In recent years, with a
success achieved in applying RNN to model non-linear temporal
dependencies in sequence learning tasks, there have been plenty
of works [2, 3, 14, 23] utilizing RNN to predict the trajectories of
vehicles. They have some common characteristics as follows:
• RNNs are adopted to extract long-term historical features.
• The scale of the networks is large, and there are many training
parameters and hyperparameters involved.
• Single models output lateral and longitudinal information, which
are continuous values in the Cartesian coordinate system.

These algorithms are able to predict long-term trajectories, and
deal with the scenes with fine granularity and multi-interaction
conditions based on the historical trajectory data of vehicles. How-
ever, the training process of the aforementioned network is usually
time-consuming due to a large number of parameters and hyper-
parameters. This will hinder autonomous vehicles from updating
model parameters promptly. Moreover, using a single model to
predict both lateral and longitudinal information can reduce the
accuracy of lane-level predictions, resulting in unreliable maneuver
decisions.

In summary, a trajectory prediction model that is accurate, effi-
cient and fine-grained is desired.

3.2 GAS-LED Model
We propose an LSTM encoder-decoder model with global attention
and state sharing mechanism, called GAS-LED (Global Attention
and State sharing based LSTM encoder-decoder), for trajectory
prediction. More specifically, a global attention [25] mechanism
is applied to assign different weights to the encoder state vectors
for reflecting the importance of different time steps while avoiding
complicating the model unduly. Besides, in order to improve the
convergence efficiency of the model, we design an encoder and
decoder state sharing mechanism to reduce the workload of calcula-
tion. Furthermore, we adopt a dual-model structure, i.e., two similar
GAS-LED models operate in parallel to perform lane change clas-
sification and motion regression simultaneously. The two models

share the same underlying structure, which are trained separately
and optimized for their own prediction task to improve accuracy.

Let Th denote a historical trajectory and T f denote a predicted
future trajectory. The length of Th and T f are indicated by n

and z respectively, i.e., Th = (pt−n+1,pt−n+2, · · · ,pt ) and T f =

(pt+1,pt+2, · · · ,pt+z ), where t represents the current time step. At
each time step, taking a historical trajectory Th of the past n time
steps as input, the GAS-LED model outputs the predicted trajectory
T f of the future z time steps. Next we give a detailed description
of the GAS-LED model.

Figure 2: GAS-LED model structure

Input. The autonomous vehicle can get a set of 2-dimensional
trajectory points from radar sensors including lateral lane number
p.L and longitudinal distance p.Dlon . GAS-LED needs to use a
sequence of historical trajectory points to forecast a sequence of
future trajectory points. The input features X of the models are
(xt−n+1, xt−n+2, · · · , xt ) with the input window length n, where
each x has 14 features: 2 for predicted vehicle (C0) and 12 for its
surrounding vehicles (C1∼6). These features are obtained from the
historical trajectory Th of conventional vehicles with length n.
Predicted vehicle C0 has two features: current lane number ptC0

.L

and longitudinal distance ptC0
.Dlon . For the surrounding vehicles

C1∼6, we choose them based on the previous work [14], which have
the most effect on a vehicle’s motion. Each of them has two features:
current lane number ptCq .L and relative longitudinal distance from
the predicted vehicle d(ptC0

,ptCq
), where q ∈ {1,2,3,4,5,6}.

Output. In the task of lane-level trajectory prediction, we focus
on which lane the vehicle is in, thus the model should output the
probability of lane change behaviorBlc , and then select the behavior
with the maximum probability as the predicted result. l̂t denotes a 3-
dimensional probability vector [l̂1t , l̂2t , l̂3t ] at time t , where l̂1=P(Lt),
l̂2=P(Rt) and l̂3=P(Nt). For the motion behavior Bm , the model
should output the longitudinal travel distance d(pt+1C0

,ptC0
), denoted

as m̂t .
For lane change prediction, the output of the model Yl includes

z 3-dimensional probability vectors, i.e., the classification probabili-
ties of {Lt,Rt,Nt} in near future time steps. For motion prediction,
the output of the model Ym includes z continuous values (i.e., the
longitude travel distance of the vehicle in the future time steps).
Prediction Objective. Obviously, the prediction of l̂ is a classifi-
cation task while the prediction of m̂ is a regression task. In the
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duration of interest T, our model needs to minimize the loss func-
tion as follows:

Loss =
∑
t∈T

3∑
i=1
−l it log(l̂ it ) +

1
|T |

∑
t∈T

(mt − m̂t )
2 (2)

where l it and mt denote the true values of the probability and
distance respectively. |T| denotes the length of T. This loss is the
sum of Cross-entropy loss and Mean Squared error.
Model Structure. As shown in Figure 2, the historical information
of the current vehicle and its surrounding vehicles is taken as
the input of our GAS-LED model. Then, two similar models are
applied in parallel to obtain multiple outputs simultaneously, i.e.,
the softmax activation for lane change classification prediction,
and the linear activation for motion regression prediction. In the
encoder part, the global attention assigns different weights to each
time step, which can reflect the importance attached to the hidden
states of different encoders [21]. Besides, the decoder uses the last
hidden and cell state vector (hn, cn ) of the encoder directly, as
indicated by the blue and purple lines in Figure 2.

To be specific, in the encoder part, the inputX is firstly embedded
into X̃ , i.e., X̃ = ϕeb (X ;Web ), where ϕeb is the embedding function
with ReLU non-linerlity,Web denotes the embedding parameters.

Secondly, X̃ is defined as the input to encoder LSTM, and the
LSTM outputs the hidden and cell states (ht1, c

t
1) at each time step,

which is formulated as follows:
ht1 , c

t
1 = LSTM1(ht−11 , c t−11 , X̃ ;Wl1) (3)

where ht−11 and ct−11 are the hidden and cell state vectors at last
time step respectively.

Thirdly, the global attention uses concatenated hidden state vec-
tors to output the attention vector a, which is calculated as follows:

a = ϕat (Concat (h1
1 , · · · , h

n
1 );Wat ) (4)

where ϕat is the attention function with softmax activation.
Finally, each element ai in a represents the importance at each

time step, and the output vector of the encoder part hencoder can
be formulated as follows:

hencoder =
∑

i∈{1,2,··· ,n}
ai · hi1 (5)

where hencoder extracts not only all the hidden states information
but also the different degree at each time step.

In the decoder part, an LSTM is firstly used to decode the output
vector from the encoder. However, this LSTM uses state sharing,
which means that the state vectors of each time step equal to the
last state vectors of the encoder, i.e., hn1 ,c

n
1 . The decoder LSTM is

calulated as follows:
ht2 , c

t
2 =

{
LSTM2(hn1 , c

n
1 , hencoder ;Wl2) ,t = 1,

LSTM2(hn1 , c
n
1 , h

t−1
2 ;Wl2) ,otherwise .

(6)

At the first time step, the input vector of the LSTM is the hencoder ,
after which the input will be changed to the hidden state vector at
the last time step.

Finally, the concatenated hidden state vectors are input to the
output layer. Since we use two parallel models, and the calculations
of these two models are same except for the output layer, we only
distinguish the output calculation as follows:

Yl = ϕol (Concat (h1
2 , · · · , h

z
2 );Wol ),

Ym = ϕom (Concat (h1
2 , · · · , h

z
2 );Wom )

(7)

where ϕol is the lane change output function with softmax activa-
tion, ϕom is the motion output function with linear activation.

To sum up, the lane change prediction outputs the specific lane
change behavior in the future time steps, while the motion regres-
sion prediction outputs the continuous value for the longitudinal

forward distance in the future time steps. The two outputs are sim-
ply combined to obtain the predicted trajectory points (p.L,p.Dlon )

of future time steps for the vehicleC0, as a result of the predicted fu-
ture trajectory T f

C0
. The detailed implementations of the GAS-LED

is described in Appendix.

4 MANEUVER DECISION
After having the predicted future trajectories of the surrounding
vehicles, the autonomous vehicle needs to plan its maneuvers based
on the prediction results. However, since the motion behavior Bm
of the vehicle is a continuous value, performing a search against it
directly will be extremely time-consuming. To speed up the search
process, we develop a two-phase process for maneuver decision:
maneuver sequence search and maneuver process. In the maneuver
sequence search phase, we search for a discretized version of the
optimal maneuver sequence of the autonomous vehicle. Specifically,
a discretized maneuver is a pair M̃ = ⟨Blc , B̃m⟩, where B̃m is a
discretized version of Bm taking one of three behaviors: speed-up
(Up), speed-down (Dw), and maintain speed (Mt). In the maneuver
process phase, we generate the precise values for Bm based on B̃m
obtained in the first phase. Since the logic of the maneuver process
phase is easy to implement by adopting authoritative technology–
Automotive Lane Change Aid (ALCA) [27], we mainly focus on
maneuver sequence search in this section.

4.1 Problem Definition
Given a prediction horizon z, the goal of maneuver sequence search
is to find a maneuver sequence M̃ = {M̃t , M̃t+1, ..., M̃t+z−1} of
length z 1) to maximize the average speed of the autonomous ve-
hicle; and 2) to minimize its impact on surrounding conventional
vehicles. In the following, we first quantitatively define the impact
factor used in search condition 2), and then formally define the
search objective.
Impact Factor Fim . At time t , we assume the maneuver of the
autonomous vehicle A can have impact on the set of conventional
vehicles, denoted asC, within a radius of R. Formally, the impact fac-
tor F tim is defined as the sum of the impact FCi ,tim for each surround-
ing conventional vehicles Ci ∈ C, i.e., F tim =

∑
FCi ,tim . Specifically,

we categorize the impact situations of maneuver within radius R
into three types: queuing, jumping the queue, and crossing. Figure
3 illustrates the three scenarios, where the red shaded area, called
conflicting zone, is the location that both vehicles plan to arrive at
the next time step. Prior transportation studies have shown that
crossing usually has the greatest impact, while queuing has the
least [1, 17]. So we simply assign 1, 2 and 3 as the impact factors
for queuing, jumping the queue and crossing. Next we present how
to predict the three impact situations.

Queuing Jumping the Queue Crossing

Figure 3: Three impact factors
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Obviously, the impact situations depend on the future predicted
trajectories of the surrounding vehicles and the future maneuver of
the autonomous vehicle. A vehicle’s status at time t can be described
using a quadruple (pt .L,pt+1.L,pt .Dlon, p

t+1.Dlon ), which is used
to describe its position at t and its immediate future position at
t + 1. Then the impact situations can be determined by checking
if the autonomous vehicle and the conventional vehicle are on the
same lane and their following distance is below the safe distance
threshold. We use Algorithm 1 (in Appendix) to predict the type of
impact situations and calculate the impact factor F tim .
SearchObjective.We define the overall search objective as a linear
combination of the above two search conditions. Specifically, at time
step t , we aim to search for the maneuver sequence that maximizes
the objective function defined below:

argmax
M̃

∑
t∈[t ,t+z]

V t
A − F

t
im (8)

It should be noted that we use the normalization for rescaling
the range of features (VA and Fim ) to [0, 1] before calculating the
objective.

4.2 Searching Maneuver Sequences
In the following, we introduce the maneuver tree structure and
present our adaptive beam search algorithm.
Maneuver Tree Structure. A maneuver tree is a tree-based data
structure. The depth of the tree is z, and each non-leaf node has 9
child nodes (i.e., 3 × 3 pairs of discretized maneuver). Each node
(except for the root) represents a kind of maneuver M̃ of the au-
tonomous vehicle, and each edge holds two weights namely Fim
(cost) and VA (benefit) of choosing this edge. The root node is the
current state while its child nodes represent the maneuvers.
Workflow Overview. At each time step, the maneuver tree will
be reinitialized as a nine-complete tree with a fixed depth z, with
the latest weights on each edge. First, based on the current trajec-
tory point of the autonomous vehicle, some invalid nodes can be
discarded based on the following rules:
• When the autonomous vehicle is in the rightmost lane, three
direct child nodes (denoting the behavior of ‘Change right’) of the
current node will be removed.
•When the autonomous vehicle is in the leftmost lane, three direct
child nodes (representing the behavior of ‘Change left’) of the
current node will be removed.

After deleting the invalid points, we use the adaptive beam search
algorithm to search for the optimal path in the tree. Finally, the tree
will be updated to prepare for the next search process.
Adaptive Beam Search Algorithm. For a search process, the
search method is applied to search for a z-length path from the
root node to the leaf node in the maneuver tree, while finding the
search object. Existing search methods used a predetermined num-
ber of candidate nodes in each layer (called the width) and only
those nodes are expanded next. i.e., Brute-force search (width=9),
Greedy search (width=1) [12] and Beam search (1<width<9) [15].
The greater the width, the fewer nodes are pruned and the more
time-consuming the search process is. In fact, the width may de-
pend on the weight distribution of each layer, and thus should
be predetermined more adaptively. For instance, in one layer, the
weights are (0.01, 0.4, 0.5, 0.003), in another layer, the weights are
(0.7, 0.6, 0.8, 0.9). If the algorithm fixes a small-sized width, it will

ignore some valuable nodes (0.7,0.6), leading to a local optimum
solution. Alternatively, if the algorithm fixes a large-sized width,
the algorithm will consider excessive nodes (0.01,0.03). Therefore,
the width in each layer depends on the different number of nodes
with high weights (a.k .a. high-confidence).

Instead of fixing the search width, we adaptively select the can-
didate nodes with high confidence in each layer. To automatically
select the candidate nodes, we define a threshold γ , which deter-
mines the minimum difference between high-confidence nodes and
low-confidence nodes. Specifically, in i-th layer, We rank all the
nodes based on their cumulative weights CW , i.e.,

∑
(V t
A − F tim )

where i ∈ [t, t + i]. Then, we can select the high-confidence nodes
(fromTop1 toTopK ) as the candidate nodes based onγ , i.e.,CWTopK
−CWTopK+1 ≥ γ . Thereafter, the nodes in i+1-th layer are the child
nodes of the candidate nodes in i-th layer, while the non-candidate
nodes are pruned to reduce search space.

The search procedure in our adaptive beam search algorithm is
similar to the classical beam search algorithm [15]. At each time
step, once reaching the search depth (i.e., z), the algorithm will
evaluate the solutions found during search at various depths and
return the best one (the one with the highest cumulative weights).
Example. As illustrated in Figure 4, nine maneuvers are shown
on the right side of the figure, and the autonomous vehicle holds
a maneuver tree. Each edge maintains a cumulative weight. In
this case, the number of candidate nodes in each layer is different
(4→6→7→5→5), following the threshold γ , and the non-candidate
nodes are pruned accordingly. The search result is a path of length z
(z = 5) with the maximum cumulative weights of VA − Fim (yellow
line).
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Figure 4: Adaptive beam search example

5 EXPERIMENTS
5.1 Experimental Settings
We implemented all models and algorithms in Python on Linux,
and ran the experiments on a machine with an Intel(R) CPU i7-
4770@3.4GHz and 32G RAM.
Datasets. As it requires interaction between the autonomous and
conventional vehicles, most of the experiments were conducted in
a simulated environment called SIM. SIM is generated using the
microscopic traffic simulator [7, 34, 36], which simulates the traffic
behaviors of 600 conventional vehicles on a cyclic six-lane road of
length 3km. We utilized Cheetah to control the autonomous vehicle
to perform lane change maneuvers.

Furthermore, we tested the trajectory prediction model (GAS-
LED) on a dataset constructed by merging two commonly-used
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real-world datasets: NGSIM US-101 [9] and I-80 [16]. The merged
dataset consists of real trajectories of conventional vehicles trav-
eling on a 1.14km-length freeway segment with six straight lanes.
The original trajectories were captured at 10Hz (10 frames per sec-
ond) over a period of 45 minutes. We preprocessed the dataset by
1) removing the frames with less than 10 vehicles, and 2) down-
sampling the datasets to a rate of 2Hz (setting the time step to 0.5s).
After preprocessing, the merged dataset has 10, 542 frames with
9, 864 conventional vehicles. On average, there are 223 vehicles per
frame, and the speed of vehicle is 33.4km/h.

On both datasets, we set the traffic restrictions asVmin = 0km/h,
Vmax = 115km/h, Dss = 10m and Dlcs = 10m according to [22].
Parameter Settings. Unless otherwise specified, we set the param-
eters in Cheetah throughout the experiments as follows. For the
trajectory prediction phase, we set both the length of input histor-
ical trajectories and the length of predicted trajectories to 5 (i.e.,
n = z = 5), following the settings used in the previous work [13].
For the maneuver decision phase, we set FCi ,tim to 1, 2 and 3 for
queuing, jumping the queue and crossing, respectively. For the dis-
cretized motion behaviors B̃m , we set the speed −up acceleration to
1.2m/s2 and the speed − down deceleration to 3m/s2, according to
the rates recommended by [4]. Moreover, we set the adaptive beam
search threshold as γ = 0.4, and the impact factor radius parameter
as R = 38m, which are evaluated in Appendix.
Compared Methods. We compared Cheetah against several lane
change algorithmas, including STNS [8], FLS [7], and SCMPC [5].
For the experiments on trajectory prediction, we further compared
against the state-of-the-art trajectory prediction models including
LSTM [3], S-LSTM [2], CS-LSTM [13], and ED-LSTM [23].

5.2 End-to-End Evaluation of Cheetah
In this section, we study the end-to-end performance of Cheetah
by comparing it against several lane change algorithms (STNS, FLS,
SCMPC). We conducted 100 tests on the simulation environment
SIM–wherein each test the autonomous vehicle was initialized
at a random position, and measured the effectiveness from both
macroscopic and microscopic aspects:
•Macroscopic: we recorded the end-to-end time of all vehicles (the
autonomous vehicle and all the 600 conventional vehicles) driving
through 3km.
•Microscopic: we recorded the average speed change rate of the
conventional vehicles affected by (i.e., within radius R = 38m of)
the autonomous vehicle. The speed change rate is defined as |V t+1

Ci
−

V t
Ci
|/V t

Ci
(%), where V t

Ci
and V t+1

Ci
are the speeds of a conventional

vehicleCi in two consecutive time steps. Thismetric directly reflects
the extent of impact on the surrounding vehicles.

Figure 5: Effectiveness of Cheetah

Macroscopic. We report the average end-to-end driving time of
the autonomous vehicle and the conventional vehicles in Figure 5a
and Figure 5b. As shown, Cheetah achieves the shortest average
driving time for both, which clearly demonstrates that Cheetah
can maximize the average speed of the autonomous vehicle, while
minimizing the impact on conventional vehicles.
Microscopic. We report the average speed change rate of the sur-
rounding conventional vehicles in Figure 5c. We can see that Chee-
tah causes the least significant impact on the speeds of surrounding
conventional vehicles, demonstrating the effectiveness of our frame-
work from the perspective of microscopic traffic.

5.3 Evaluation of Trajectory Prediction
In this section, we take a break-down evaluation of our trajectory
prediction model GAS-LED. We compared the trajectory prediction
model in Cheetah with state-of-the-art trajectory prediction models
(LSTM, S-LSTM, CS-LSTM, ED-LSTM). All compared models have
the same input and output structures. All the experiments were
done on the real dataset. The dataset was split into training and
test sets by a ratio of 4 : 1, and the test errors were recorded.

Table 1: Effectiveness of Trajectory Prediction
(a) Lane Change Prediction

ACC(%) prediction time step
Methods 1 2 3 4 5

LSTM 91.2 89.7 88.5 88.1 87.6
S-LSTM 94.5 93.1 92.8 92.2 90.5
CS-LSTM 95.1 94.3 93.9 93.2 91.8
ED-LSTM 95.8 95.2 94.6 93.5 92.3
GAS-LED 96.1 95.7 94.8 94.2 93.5

(b) Motion Regression
MSE(ft) prediction time step
Methods 1 2 3 4 5

LSTM 0.60 0.89 1.39 1.58 1.87
S-LSTM 0.36 0.91 1.07 1.33 1.63
CS-LSTM 0.39 0.81 1.27 1.59 1.90
ED-LSTM 0.27 0.63 0.93 1.20 1.49
GAS-LED 0.23 0.60 0.89 1.16 1.47

Effectiveness of GAS-LED. We study the lane change prediction
task and the motion regression task separately, and for both tasks
we used historical trajectories of length 5 to predict trajectories
of the next 5 time steps. We report the Accuracy (ACC) of the
prediction task in Table 1a, and the Mean Squared error (MSE) of
the motion regression task in Table 1b. As depicted, for both tasks,
our proposed GAS-LED model outperforms all the other methods
for all prediction time steps.

Figure 6: Efficiency of trajectory prediction

Efficiency of GAS-LED. To study the efficiency of the model, we
recorded the curve of the training loss in the first three training
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Table 2: Effectiveness of Updated Training Strategy
Strategies Lane change ACC(%) Motion MSE(ft)

CT 86.5 1.94
UD 92.7 1.49

epochs for all the prediction models. We choose the Cross-entropy
loss and Mean Squared error as the loss metrics, and plot the loss
curves in Figure 6a and Figure 6b. As shown, the loss of our GAS-
LEDmodel is minimized at around 1 epoch, while the other methods
are minimized at around 1.5 epochs. This is because ourmodel relies
on the state sharing of encoder-decoder structure, thus reducing
the training convergence time.
Necessity of a Continuously Updated Model. To demonstrate
the necessity of a continuously updated model in maintaining a
high trajectory prediction accuracy, we compared the prediction
accuracy of GAS-LED under two different training strategies:
• Constant model (CT): We trained a single GAS-LED model using
the entire training set, and used this model to do the prediction for
the entire testing set.
• Updated model (UD): We further divided the training and testing
dataset into time windows. We trained a separate GAS-LED model
on each training window, and used it to do the prediction on the
corresponding test window.

The results are shown in Table 2. We can see that the effect of the
updated model is much better than that of the constant model. This
clearly proves that the model needs to be updated in continuously
changing environments in order to maintain accuracy.

5.4 Trajectory Prediction in Cheetah.

Figure 7: Effectiveness of prediction-and-search framework

We further study the effectiveness of GAS-LED by putting it in the
Cheetah framework with maneuver search. We compared against
other prediction models in terms of both macroscopic and micro-
scopic effectiveness as in Section 5.2. The results are shown in
Figure 7a ,7b and 7c. We can see that in the Cheetah framework
with the maneuver search module, the proposed GAS-LED model
outperforms all the competitive models, due to the synergy of our
GAS-LED model and maneuver sequence search module. Other
models pay more attention to location information rather than in
the lane-change behaviors. This clearly shows that GAS-LED does
not only outperforms other models in the stand-alone trajectory
prediction task, but also is very effective in end-to-end lane change
scheduling.

5.5 Evaluation of Maneuver Decision
In this section, we take a break-down evaluation of Cheetah’s ma-
neuver decision phase. We study maneuver decision by comparing
different maneuver sequence search methods, i.e., Beam search

(BM) [15] with fixed width = 4, Greedy search (GD) [12] with fixed
width = 1, Brute-Force search (BF) with fixed width = 9, and our
Adaptive Beam search (ABM). We conducted 100 tests on the simu-
lation environment SIM, wherein each test the autonomous vehicle
was initialized at a random position and drove 3km.

Figure 8: Effectiveness and efficiency of the search method

Search Effectiveness. To study the effectiveness of the adaptive
beam searchmethod adopted in Cheetah’smaneuver decision phase,
we compared the accuracy of the maneuver results of different
search methods. As brute force search without any pruning (BF)
is guaranteed to produce the globally optimal result, we defined
the accuracy of {GD, BM, ABM} as the ratio that these methods
will generate the same maneuver as BF. We report the accuracy
results in Figure 8a. We can see that the accuracy of our ABM
search method is noticeably better than other methods since we
take adaptive nodes in each layer of the maneuver tree to search
the optimal path. Our ABM improves the accuracy by 3.6 − 10%
compared to other methods, which evidence the effectiveness of
Cheetah’s search method.
Search Efficiency. We also compared the search response time
and the number of searched nodes of different search methods
in Figure 8b and 8c. As we can see, the ABM prunes 23 − 46%
nodes during the search process, which results in 18−38% response
time reduction for the beam search and the brute force search. The
greedy search method takes the shortest response time since it
only considers one candidate node in each layer. Therefore, it will
mistakenly prune many high-confidence nodes, leading to a low
accuracy for the searching process.

6 RELATEDWORK
Lane change is one of the most conventional behaviors in au-
tonomous driving. In this study, an autonomous vehicle is supposed
to plan a series of lane change maneuvers. Existing lane change
planing studies typically consider the driving safety and comfort of
the vehicles [5–8, 35, 37, 38]. For example, [5] presents a novel con-
trol algorithm for lane change assistance and autonomous driving
on highways based on Scenario Model Predictive Control (SCMPC).
The basic idea is to account for the uncertainty in the traffic envi-
ronment by a small number of future scenarios to perform safe lane
change. [8] proposes a classical cellular automata model (called
STNS) for planning the behaviors of vehicles, where a set of rules
are applied to judgement the future lane change maneuvers. [35]
presents a kinematics model for lane change, which can plan the
trajectories based on the characteristics of polynomials. Besides, the
infinite dynamic circles are applied to detect collision during lane
change. [7] proposes a Freeway LaneSelection model (FLS), which
will enable transportation professionals to more accurately model
lane-changing behaviors on freeways. FLS algorithm consists of
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choice of target lane and gap acceptance decisions, which aims to
output the most accurate lane change maneuver.

Although the above lane change planning algorithms focus on
the safety, comfort, and accuracy of the lane change, they ignore
the potential impact of the lane change on other vehicles. Our
study focuses on the impact of the lane change of autonomous
vehicles, aiming to alleviate ‘phantom’ traffic jams. To the best of
our knowledge, this paper pioneers to schedule the lane change
maneuver by considering impact factors.

7 CONCLUSION
The development of vehicle automation technology has seen rapid
progress in the last decade. However, changing lanes smartly is
still a challenging problem for autonomous vehicles that lacks data-
driven solutions. In this paper, we propose Cheetah, a prediction-
and-search framework that helps the autonomous vehicle change
lanes more wisely. In order to achieve high effectiveness and effi-
ciency of autonomous driving, we addressed a few computational
challenges by proposing a GAS-LED model to predict the future
behaviors of neighboring vehicles based on their historical trajec-
tories, and designing a maneuver-tree-based adaptive beam search
algorithm to find the optimal maneuver sequence promptly. Exten-
sive empirical studies based on both real and synthetic datasets also
confirm the superiority of our proposed framework over the state-
of-the-art approaches in terms of the average speed of autonomous
vehicle, and its impact on surrounding vehicles.
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A APPENDIX
A.1 Notations
Table 3 shows the major notations used throughout the paper.

Table 3: Summary of Notations

Notation Definition

Ci A conventional vehicle Ci
A An autonomous vehicle A
Li The i-th lane of the road
Mt The lane change maneuver at time t

Fim
The impact factor of autonomous vehicle

on conventional vehicles
T A time duration of interest
t A time step t ∈ T
V t
A The speed of vehicle A at time t

ptC The vehicle’s trajectory point at time t
Dlon The vehicle longitudinal distance
T The vehicle trajectory

A.2 Time Step Setting
In this study, we treat the continuous time duration as a set of
discrete time steps, i.e., T = {1, 2, ..., t, t + 1, ...}. It serves as the
minimum frequency for autonomous vehicles to make lane chang-
ing decisions. Now the question is how to choose a suitable time
granularity in real application scenarios? According to [30], the
average duration of single-lane change is 4.6 seconds for a vehi-
cle, which includes the transition time and the observation time
required by the driver. In the field of microscopic traffic simula-
tion [20, 33]. However, the transition time of lane change is often
ignored and the duration of single-lane change is considered less
than 1.2 seconds. Therefore, without loss of generality, the time
granularity in this paper is set to 0.5 seconds, which means the time
interval between two consecutive time steps is 0.5 seconds.

A.3 GAS-LED Model Implementations
In our implementation of GAS-LED trajectory prediction model,
the encoder embedding layers contain 64 units with ReLU activa-
tion. The fully connected output layers for lane change and motion
prediction are comprised of 3 units and 1 unit, respectively. The en-
coder and decoder LSTMs have 128 units, while the global attention
involves two fully connected layers (activated by softmax), each
with 64 units. We train the model using the Adam optimizer [19]
for 15 epochs with a scheduled learning rate of 0.001 and a batch
size of 64.

A.4 Impact Factor Procedure
In our maneuver decision phase, the impact factor F tim is defined
as the sum of the impact FCi ,tim for each surrounding conventional
vehicles Ci ∈ C, i.e., F tim =

∑
FCi ,tim . To be specific, we categorize

the impact situations of maneuver within radius R into three types:
queuing, jumping the queue, and crossing. To predict the three
impact situations, We define the vehicle’s status at time t , i.e., a
quadruple (pt .L,pt+1.L,pt .Dlon, p

t+1.Dlon ). Then the impact situ-
ations can be determined by using the statuses of the conventional

Algorithm 1: Vehicle impact factor
Input: current time t , autonomous vehicle A, all conventional

vehicles C in radius range R , Ci ∈ C
Output: vehicle impact factor F tim

1 F tim ← 0;
2 foreach Ci ∈ C do
3 FCi ,tim ← 0;
4 if (pt+1Ci

.L) = (pt+1A .L) then
5 if |(pt+1Ci

.Dlon ) − (pt+1A .Dlon ) | < Dss then
6 if (ptCi .L) = (p

t
A .L) then

7 FCi ,tim ← 1 ; // queuing

8 else
9 FCi ,tim ← 2 ; // jumping the queue

10 end
11 end
12 else
13 if (pt+1Ci

.L) = (ptA .L) and (p
t
Ci

.L) = (pt+1A .L) then
14 if |(pt+1Ci

.Dlon ) − (pt+1A .Dlon ) | < Dlcs or
|(ptCi .Dlon ) − (ptA .Dlon ) | < Dlcs then

15 FCi ,tim ← 3 ; // crossing

16 end
17 end
18 end
19 F tim ← F tim + F

Ci ,t
im ;

20 end
21 return F tim ;

and autonomous vehicles. Algorithm 1 depicts the algorithm for de-
termining the type of impact situations and calculating the impact
factor F tim .
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Figure 9: Accuracy of threshold γ of adaptive beam search

A.5 Effect of Hyperparameters
Next we study the effect of the hyperparameters in Cheetah.
Effect of Adaptive Beam search Threshold γ .We conducted a
grid search for the threshold γ used in our adaptive beam search
from 0 to 1with stride 0.1, and measured the accuracy and response
time of maneuver sequence search. The results are depicted in
Figure 9 and Figure 10. We can see that when γ is greater than 0.4,
the accuracy begin to decline rapidly while the response time tends
to stabilize. Due to the above observation, We choose γ = 1.4 to
balance accuracy and efficiency.
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Figure 10: Response time of threshold γ of adaptive beam
search
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Figure 11: Effect of radius parameter R

Effect of Radius Parameter R of Impact Factor Fim . The radius
of the impact factor determines the size of the nearby environment
that the autonomous vehicle needs to consider. An overly large ra-
dius will cause calculation redundancy; conversely, an overly small
radius will ignore important nearby vehicles. And intuitively, the
radius is proportional to the maximal speed for the road. Therefore,
the radius is formalized as: R = k ×Vmax . We tested the parame-
ter k at different Vmax values, i.e., highway=32m/s, urban=15m/s,
20m/s and downtown=5m/s, so as to calculate the average impact
factor under different R. We took the average value of the impact
factor under each candidate value ofVmax to compare the different
values of k . As shown in the Figure 11, when k equals to 1.2, the
increasing trend of the impact factor slows down, which means the
impact factor tends to stabilize. Thus, k = 1.2 is taken as the default.
Correspondingly, we set the radius parameter in the experiments
as R = 38m w.r.t. Vmax=32m/s (115km/h).
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