
Efficient Join Order Selection Learning with Graph-based
Representation

Jin Chen
∗

University of Electronic Science and

Technology of China

chenjin@std.uestc.edu.cn

Guanyu Ye
∗

University of Electronic Science and

Technology of China

ygy@std.uestc.edu.cn

Yan Zhao

Aalborg University

yanz@cs.aau.dk

Shuncheng Liu

University of Electronic Science and

Technology of China

liushuncheng@std.uestc.edu.cn

Liwei Deng

University of Electronic Science and

Technology of China

deng_liwei@std.uestc.edu.cn

Xu Chen

University of Electronic Science and

Technology of China

xuchen@std.uestc.edu.cn

Rui Zhou

Huawei Technologies Co., Ltd.

zhourui24@huawei.com

Kai Zheng
†

University of Electronic Science and

Technology of China

zhengkai@uestc.edu.cn

ABSTRACT
Join order selection plays an important role in DBMS query opti-

mizers. The problem aims to find the optimal join order with the

minimum cost, and usually becomes an NP-hard problem due to

the exponentially increasing search space. Recent advanced studies

attempt to use deep reinforcement learning (DRL) to generate better

join plans than the ones provided by conventional query optimizers.

However, DRL-based methods require time-consuming training,

which is not suitable for online applications that need frequent

periodic re-training. In this paper, we propose a novel framework,

namely efficient Join Order selection learninG with Graph-basEd

Representation (JOGGER). We firstly construct a schema graph
based on the primary-foreign key relationships, from which table

representations are well learned to capture the correlations between

tables. The second component is the state representation, where a

graph convolutional network is utilized to encode the query graph

and a tailored-tree-based attention module is designed to encode

the join plan. To speedup the convergence of DRL training process,

we exploit the idea of curriculum learning, in which queries are

incrementally added into the training set according to the level of

difficulties. We conduct extensive experiments on JOB and TPC-H

datasets, which demonstrate the effectiveness and efficiency of the

proposed solutions.

∗
Equal contribution.

†
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/3534678.3539303

CCS CONCEPTS
• Information systems→ Data management systems; Data-
base management system engines.

KEYWORDS
Database; Join Order; Graph Representation

ACM Reference Format:
Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen,

Rui Zhou, and Kai Zheng. 2022. Efficient Join Order Selection Learning

with Graph-based Representation. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’22), August
14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3534678.3539303

1 INTRODUCTION
Join order selection, which aims to find the optimal join order, plays

a critical role in DBMS query optimizers. Figure 1 shows an ex-

ample of join order selection for an SQL query from a database

with four tables, i.e., T1,T2,T3,T4. There are many possible sequen-

tial join orders to execute the query, e.g., (T1 ▷◁ T2) ▷◁ (T3 ▷◁ T4),
((T1 ▷◁ T2) ▷◁ T3) ▷◁ T4, ((T1 ▷◁ T3) ▷◁ T2) ▷◁ T4, etc., from which join

order selection aims to find one with the lowest expected cost. With

the increase of the participating tables, the search space grows expo-

nentially, rendering the search for the optimal join order intractable

eventually. From the theoretical aspect, the join order selection prob-

lem can essentially be reduced from NPC problems, so practical

solutions often resort to sub-optimal results such as dynamic pro-

gramming [7], greedy search [4], and heuristic search [3, 4]. These

methods either search for the sub-optimal plans or prune the search

space depending on the estimated cardinality or cost. In spite of the

widespread adoption, they are prone to falling into local optimum,

resulting in unsatisfactory query plans with poor performance.

Deep reinforcement learning (DRL) has attained growing inter-

est in the join order selection problem [11, 17, 32, 33], as it has

shown superior performance over traditional methods and even the

native DBMS join plans. The DRL-based methods search for better

https://doi.org/10.1145/3534678.3539303
https://doi.org/10.1145/3534678.3539303

KDD ’22, August 14–18, 2022, Washington, DC, USA. Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou, and Kai Zheng

SELECT *

FROM 𝑻𝟏, 𝑻𝟐, 𝑻𝟑, 𝑻𝟒

WHERE 𝑻𝟏. 𝒄𝟏 = 𝑻𝟐. 𝒄𝟏

AND 𝑻𝟏. 𝒄𝟐 = 𝑻𝟑. 𝒄𝟐

AND 𝑻𝟑. 𝒄𝟑 = 𝑻𝟒. 𝒄𝟑 𝑇1 𝑇2

⋈ 𝑇3

⋈ 𝑇4

⋈

𝑇1 𝑇3

⋈ 𝑇2

⋈ 𝑇4

⋈

, , …
𝑇1 𝑇2

⋈

𝑇3 𝑇4

⋈

⋈

Optimal Join OrderAn SQL Query

Figure 1: Example of Join Order Selection for An SQL Query

query plans relying on previous tried episodes and the long-term

benefit rather than the immediate reward of the current sub-plan.

By incorporating deep learning, DRL allows agents to make deci-

sions without manual engineering of the state space. However, one

major barrier that prevents the DRL-based methods from being

practically adopted is the inefficiency of the model learning, due to

the following two reasons.

• “Deep". To enhance the expressiveness of state representations,

deep neural networks are introduced to encode the numerous

join plans and queries. However, the utilization of deep neural

networks introduces a large number of parameters for complex

computations, which is especially much more than the number

of training queries in public benchmark dataset. Such large-scale

networks are also prone to overfitting during the training process,

which would lead to poor performance on test data.

• “Reinforcement Learning (RL)". During the learning process

of DRL, the experience replay mechanism is employed to up-

date model parameters, where uniform sampling is adopted to

sample training data. A common strategy, prioritized experience

replay [25], is utilized for selecting more challenging samples.

Despite the fact that the prioritized experience replay mitigates

the issue caused by breaking the links of consecutive samples,

it is still hard to maintain a stable training process. The reason

lies in that deep neural networks are very sensitive to parameter

changes. The training queries and their sub-join plans are dis-

located in the experience memory with varying rewards, so the

model parameters can change significantly during the training

process. It has a negative impact on the convergence process,

which often leads to poor join order selections.

To tackle the inefficiency issue of DRL-based methods, we pro-

pose a novel framework, efficient Join Order selection LearninG

with Graph-basEd Representation (JOGGER). An intuitive idea to

address the inefficiency is to reduce the parameters of the deep

neural networks without harming the expressiveness of state rep-

resentations, which is a key component of DRL. To this end, our

framework contains two graph-based components to learn the infor-

mative representations with fewer parameters. The first component

is table representation learning, where the correlations between

tables would be well captured. We construct a schema graph based

on the primary-foreign key relationships from the native database

and then utilize the DeepWalk [22] algorithm to learn table rep-

resentations. Compared with the simple concatenation of column

embeddings in previous studies, these learned table representations

capture the correlations between tables and include more semantic

information of joins. The second component for state representa-

tions utilizes a graph convolutional network to encode queries and

contains a tailored-tree-based attention module to represent the

join plans. Both components have relatively small-scale networks

with fewer parameters, of which the training is highly efficient. In

addition, with the aid of the two components, we vectorize the state

embedding with rich information of correlations between tables.

In order to further speed up the convergence of DRL, we in-

tegrate curriculum learning into the training process, where the

training data gradually shifts from easy to more difficult samples.

The difficulty level of the curricula is determined by the number

of participating tables in the query, since a larger number of tables

indicates a larger search space.

Our main contributions are summarized as follows:

• We construct a schema graph to extract the correlations between

tables from the native primary-foreign key information and learn

the expressive representations of tables, where the global joinable

information is encoded and strong connections between tables

are captured.

• We design a tailored-tree-based attention method to encode the

sequential join structures for (sub) join plans, i.e., forests with

binary trees. Compared with Tree-LSTM [32], our method has

fewer parameters and further mitigates the overfitting problem.

• We adopt a curriculum learning strategy to link the number of

participating tables in the query to the difficulty level of learning

these samples. Samples are fed to the model at an ascending level

of difficulties to achieve a more stable learning process.

• We conduct extensive experiments using the public JOB and TPC-

H datasets, which demonstrate the effectiveness and efficiency

of the proposed methods.

2 PRELIMINARIES
2.1 Preliminary Concepts

Definition 1 (Join Plan). A join plan (i.e., join order), pq , is a
binary tree, where each inner node corresponds to a join predicate of
the given query q, and each leaf node represents a candidate joinable
table. Each query plan pq comes with a certain cost, denoted by c(pq),
computed by a cost function or a cost model.

In the rest of the paper, we will use the terms join plan, and join
order interchangeably, whenever the context is clear. We use Pq to

denote the set all possible join plans for q.

Definition 2 (Join Order Selection). Given an SQL query
q, the join order selection problem is to find a query plan p

q
opt that

achieves the lowest cost, i.e., ∀pqi ∈ P
q (c(p

q
i) ≥ c(p

q
opt)).

2.2 DRL-based Join Order Selection
The deep reinforcement learning (DRL) has been exploited to the

join order selection, usually consisting of the following components:

- Agent: the DBMS optimizer that aims to find the optimal join plan

from previous trials, interacting with the environment by taking

actions to change states and being rewarded. - Environment: the
DBMS, e.g., PostgreSQL, which provides the reward after agent

taking a certain action. - State: join plans with partial tables or all

tables, where the immediate states refer to join plans with partial

tables in a query and the terminal state is the join plan with all

participating tables. - Action: joins referring to which two tables can
be joined, where the action space changes for different queries and

states. - Reward: the cost from query planner of a DBMS. The agent

(optimizer) attempts to maximize the cumulative reward until the

Efficient Join Order Selection Learning with Graph-based Representation KDD ’22, August 14–18, 2022, Washington, DC, USA.

A
 D

a
ta

b
a

se

State

Experience

DBMS

Cost

Terminal State

Action

Selection

Initial State

Immediate State

O
p

ti
m

a
l

J
o

in
 O

rd
er

Query Representation

Learning

𝑬𝒒
A Query Graph

GCN

Join Plan

Representation

Learning
𝑬𝓣Join Forest

Tailored-tree-based

Attention

A
n

 S
Q

L
 Q

u
er

y

Column Identity

Join

Selection

Column Representation

Learning

𝑬𝒄

Linear

Layer

Table Representation Learning

𝑬𝑻𝟏

𝑬𝑻𝟐

𝑬𝑻𝑵A Schema Graph

Extract

Correlations

Training Query Set

Training Data

𝑝1 𝑝2 𝑝3

Q-LearningCurriculum

Learning

Figure 2: Framework Overview
end of the episode by learning from previous trials. In this work,

we use the cost from the query planner of a DBMS to denote the

reward, which is an estimate of the actual execution time for a join

plan and can be efficiently acquired from the DBMS.

It is worth to mention that another important concern related

to our framework design is the learning strategy selection in DRL.

Twomain strategies, value-based (e.g., Q-learning) and policy-based

(e.g., policy gradient) methods, have been exploited into the join

order selection problem [17, 32]. In particular, Q-learning saves a Q-

table, where each state is recorded with its maximumQ-value, while

the policy-based method attempts to learn a policy to maximize

the expected cumulative reward. Considering that the value-based

strategy can scale better in the discrete action space which is the

case in our problem, we adopt deep Q-learning strategy here.

3 FRAMEWORK AND METHODOLOGY
We propose a framework, namely efficient Join Order selection

learninG with Graph-basEd Representation (JOGGER), to find the

optimal join plan. We first give an overview of the framework and

then provide specifics on each component in the framework.

3.1 Framework
The JOGGER framework is comprised of four components: col-

umn representation learning, table representation learning, state

representation learning, and Q-learning, as shown in Figure 2.

(1) Column Representation Learning. The column representa-

tions are incorporated with the representations of column iden-

tity and the vectorized predicates (i.e., join and selection).

(2) Table Representation Learning. Considering that it is helpful
to estimate the cost (i.e., the reward in DRL-based join order

selection) accurately by capturing the correlations between

tables, we construct a schema graph based on primary-foreign

key relationships to capture the correlations between tables,

from which table representations are learned.

(3) State Representation Learning. The state representation is

modeled by the concatenation of the query representation and

the current join plan representation, where the query represen-

tation is learned by a Graph Convolutional Network based on a

query graph and the current join plan representation is learned

by a tailored-tree-based attention model based on a join forest.

(4) Q-learning. We follow previous strategies [11, 32] that main-

tain a pool to save the experience and learn the join order selec-

tion under a huge search space, where a curriculum-learning-

based optimization strategy is proposed to accelerate the train-

ing process by ranking the training queries from easy to hard.

3.2 Column representation Learning
The key to DRL-based join order selection is the value estimation

of the intermediate/terminal state, where a regression model is

learned to update model parameters. The representation of a state

generally includes the query and join sub-plan representations,

which rely on column and table representations. We first introduce

the column representation in detail in this section.

Given a query q, there are two types of predicates related to the

columns: join and selection. The join predicate decides which two

columns of the joining tables are connected. The selection predicate

decides the selectivity, i.e., how many tuples in a table are selected

after the predicates, and then participates in the join. Thus, we

consider both join and selection into the column representation.

We concatenate the representations of join and selection predi-

cates as well as the embedding of the column identity (ID) as the

final column representation. Specifically, for the representation of

the selection predicate, we take the selectivity into account, which

represents the percentage of rows having the same value as the

indexed column. Since the selectivity is a continuous value, a dis-

cretization strategy is adopted here to generate a feature vector. The

selectivity is discretized into three partitions with the same width.

In this way, each column has a vector zc ∈ R4 to represent the

join and selection predicates. The embedding of column identity,

ec , is obtained from the embedding matrixME ∈ R
M×D

, whereM
denotes the number of all columns in the database and D denotes

the number of dimensions. The whole column representation Ec is

KDD ’22, August 14–18, 2022, Washington, DC, USA. Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou, and Kai Zheng

Algorithm 1: CTRL
Input: A database

Output: Table representations
1 Build a schema graph S = (VT , ET) based on the

primary-foreign key relationships;

2 repeat
3 Uniformly select a node Ti from S;

4 Perform Random Walks onTi and collect the sequence L;
5 until reach the number of trails;
6 Perform Skip-gram algorithm and use an average pooling

layer to get the representation ET of each table node;

calculated by two linear layers:

E c = (zc ·W
L
0 ⊕ ec) ·W

L
1 ,

whereW L0 ∈ R4×D denotes the linear layer to translate the predi-

cate information into a continuous vector,W L1 ∈ R2D×D is another

linear layer to integrate the column identity, and ⊕ denotes the

concatenation of two vectors. Here, the embedding matrixME , and

the linear layersW L0
andW L1

are model parameters to learn.

3.3 Table Representation Learning
Although the existing models (e.g., DQ [11] and RTOS [32]) model

the representations of tables as those of their inclusive columns,

they fail to capture correlations between tables, which imply impor-

tant semantic information for joins. Inspired by Fauce [15], which

captures correlations between tables through exploring the possible

links, we design a Correlation-based Table Representation Learning

(CTRL) method to extract the correlations between tables with two

important steps:

Schema Graph Construction. Intuitively, a database schema,

which describes both the organization of data and the relationships

between tables, contains the primary-foreign key relationships be-

tween tables. Thus, we construct a schema graph to model the cor-

relations between tables. Specifically, a schema graph S = (VT , ET)
is an undirected graph, where VT = {T1,T2, ...,TN } denotes a set
of nodes consisting of N tables, and ET denotes a set of edges

connecting table nodes that have foreign key relationships.

Table Representation Learning based on Schema Graph. Af-
ter constructing the schema graph, we are able to learn the table

representations by the DeepWalk [22] algorithm, which utilizes the

graph structure to learn the representations of nodes without any

labels. Specifically, the DeepWalk algorithm includes the random

walk and sequence update procedures. First, DeepWalk randomly

samples a node Ti as the start of the walk from the schema graph

and randomly chooses a neighbour to move on. The random walk

is done until the maximum length of the walk is reached. After

many trials, we obtain multiple sequences with table nodes as ele-

ments. Second, the node representations are learned according to

the sampled random walks. The language model, Skip-Gram [18],

is utilized here to learn the node representations since the walks

have the same structure as the texts. Based on all of the previous

observed nodes in the random walk, Skip-Gram aims to maximize

the likelihood of observing the next nodes to learn a preliminary

representation E0T of each table.

Pooling

𝑬𝓣

𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

𝑇6

Query Graph

GCN

𝑬𝒒

Self-Attention Module

𝑬𝑻𝟒 𝑬𝑻𝟒.𝒄𝟐 𝑬𝑻𝟓.𝒄𝟑

Self-Attention Module

𝑬𝑻𝟓 𝑬𝑻𝟑𝑬𝑻𝟐.𝒄𝟐 𝑬𝑻𝟑.𝒄𝟐

(a) Query Representation (b) Join Plan Representation

𝑬𝑻𝟏 𝑬𝑻𝟐𝑬𝑻𝟏.𝒄𝟏 𝑬𝑻𝟐.𝒄𝟏

Figure 3: State Representation Learning

For a table T with n columns, the final table representation is

computed with an average pooling layer by considering E0T and

column representations of T as follows:

ET = AvgPool([E 0

T , ET .c
1
, ET .c

2
, ..., ET .cn]),

where ET .ci denotes the representation of the i-th column in table

T , which is calculated in Section 3.2. The table representations

are summarized in the matrixMT ∈ R
N×D

, where D denotes the

number of dimension, and N is the number of tables in the database.

The i-th column inMT denotes the representation of the table Ti .
The overview of the whole CTRL process is detailed in Algorithm 1.

More description can be attached in the Appendix.

3.4 State Representation Learning
The value estimation of the state in DRL affects the learning perfor-

mance, where a function, usually amulti-layer perception, is utilized

to map the state representation to the value. Thus, an informative

representation of the state may improve the estimation accuracy.

In join order selection problems, the state often includes the target

query q and the current join forest T containing a set of current

join plans. The final representation of the state is modeled by the

concatenation of two components, i.e., Eq ⊕ ET . Figure 3 shows
the details for state representation learning, which includes query

representation learning and join plan representation learning.

3.4.1 Query Representation Learning. We encode the participating

tables and their links into the query representation. To do so, we

first construct a query graph.

Definition 3 (Query Graph). Given a query q, the query graph
is denoted as an undirected graph J = (V q , Eq), whereV q is a set of
nodes denoting the participating tables {T1,T2, ...,TN } in the query
and Eq is a set of edges connecting joinable tables.

We represent the query graph J with a symmetry adjacent

matrixMA ∈ R
N×N

, where N denotes the number of the tables in

the database. If the tablesTi andTj are joined in the given query, the
element of the i-th (j-th) row and j-th (i-th) column in the matrix is

Efficient Join Order Selection Learning with Graph-based Representation KDD ’22, August 14–18, 2022, Washington, DC, USA.

denoted with 1, otherwise, it is 0. Previous studies [11, 32] flatten

the adjacent matrix to represent the query. However, the symmetry

adjacent matrix just captures the link information but ignores the

node information. To this end, we apply a more expressive graph-

based network [10] to capture the structure, as shown in Figure 3(a).

In particular, we apply two-layer graph convolutional networks,

the outputs of which are as follows:

H (2) = f (H (1),MA)

H (1) = f (H (0),MA) = f (MT ,MA),
(1)

where the function f (·) denotes a layer-wise propagation rule:

f (H (l),MA) = σ (MAH
(l)W (l) + b(l)). Next,W (l) ∈ RD×D is the

weight matrix for the l-th layer, and b(l) ∈ RD is the bias. The

weight matrix and the bias are the model parameters to learn. σ (·)
is the non-linear activate function (e.g., sigmoid, ReLU, and tanh).

Oncewe get the outputH (2) after the graph convolutional networks,
the representation of the query Eq ∈ RD is obtained through the

average pooling over H (2), shown in Equation (2).

Eq = AvgPool(H (2)) (2)

To sum up, we adopt the graph convolutional networks to vec-

torize the target query according to the query graph, which embeds

both table and link information of queries.

3.4.2 Join Plan Representation Learning. Another important com-

ponent of the current state is the join plan after selecting the latest

action. The join plan during the generation follows a forest struc-

ture, called join forest, indicating sequential information of the join

order. We first define the join forest in the following.

Definition 4 (Join Forest). Given a join plan and a set of se-
lected joins, a join forest is denoted as an undirected acyclic graph
T containing one or more join trees, in which the leaf nodes are the
tables. The non-leaf nodes denote the join connections, whose left and
right children represent the detailed join conditions. Each tree denotes
a sub-join plan for the given join plan and the whole forest denotes
the join plan.

The join trees are the basic components of the forest, and se-

quential information from the bottom to the top implies the join

order. To capture the sequential information under tree structures,

several tree-based LSTM models [12, 27, 35] have been proposed.

However, these models cannot perform efficiently due to the huge

number of parameters and complex calculations. Thus, we propose

to design a light-weight model for learning join plan representa-

tions. Inspired by the success of RTOS [32], a Tree-LSTMmodel, for

encoding immediate join plans, we propose a tailored-tree-based

attention model with fewer parameters, where tailored trees are

used to denote immediate join plans by their nodes and reflect the

join conditions by their columns. We further design an attention

mechanism on top of the tailored trees to effectively and efficiently

encode the immediate join plans.

Figure 3(b) shows an example of learning representations for

join plans. We firstly obtain the representation of each join tree t
in the join forest and then encode the join forest by the average
pooling operator as follows:

ET = AvgPool([ot
1
;ot

2
; ...]), (3)

where oti denotes the representation of the i-th join tree ti in the

join forest T . We use the join forest representation ET to denote

the join plan representation.

To encode each join tree, we design a Join Tree Representation

(JTR) algorithm with a join tree t as input, as detailed in Algo-

rithm 2. Benefiting from the tree structures, we encode the join

tree recursively. There are two types of nodes in the join tree. (1) If

the root node of the current tree t is a leaf, which corresponds to

table T , we represent the node with the table representation, i.e.,

ot ← ET (lines 1–2). (2) If the node is not a leaf, which actually

indicates a join, we represent the node with the join information,

including the left and right join conditions (lines 4–7). The tailored

trees and a self-attention mechanism are integrated to represent

the non-leaf nodes (lines 8–9).

Specifically, the input of the self-attention module contains the

representations of two nodes, EnL and EnR , and the joined columns,

EcL and EcR , where nL and nR denote the left and right tables,

respectively, and cL and cR denote the joined columns, respectively.

The input is the formulated as E = [EnL ;EcL ;EcR ;EnR] with a

shape of (4,D). The self-attention mechanism has three parameters

to learn, i.e., the key matrixW k ∈ RD×D , the value matrixW v ∈

RD×D , and the query matrixW q ∈ RD×D . The output of the self-
attention module is formulated as:

ot = softmax(
EW k (EW q)⊤

√
D

)(EW v) (4)

This attention module indeed computes the importance weight

of joined tables and joined columns, and then combines the inputs

and the importance weight as the output.

Algorithm 2: JTR
Input: A join tree t , Attention model parameters

W = {W k ,W q ,W v
}, Dimension of representations

D, Table representations {ET }, Column

representations {Ec }
Output: Join tree representation ot

1 if the root node n of t is a leaf then
2 ot ← ET ; // T denotes the corresponding table

3 else
4 EnL ← JTR(tnL ,W ,D, {ET }, {Ec });

// tnL denotes a tree with the root node nL
5 EnR ← JTR(tnR ,W ,D, {ET }, {Ec });

6 EcL ← Left column representation;

7 EcR ← Right column representation;

8 E ← [EnL ;EcL ;EcR ;EnR];

9 ot ← softmax(
EW k (EW q)⊤

√
D

)(EW v);

10 end

After traversing all the join trees in the join forest, we eventually

get the representation of the join forest for the current state.

By concatenating the query representation and the join plan

representation, the whole representation for the current state is

calculated as Es = Eq ⊕ ET .

KDD ’22, August 14–18, 2022, Washington, DC, USA. Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou, and Kai Zheng

3.5 Q-learning
We adopt the widely-used value-based strategy, DQN, to learn

the join order selection optimizer. Given the current state with

its representation Es , the optimizer selects the action depending

on the parameterized Q network, Qθ (Es ,a), shorted as Qθ (s,a),
where θ denotes the model parameters for the Q network. In this

work, the parameter θ denotes the weight of the full connected

layer with the shape of (D, |As |), where D denotes the dimension

of representations, and As = {a1,a2, ...} denotes the action space.

For each episode, each Qθ (s,a) has a estimated value y(s,a) which
is calculated as:

y(s,a) = r (a) +max

a′
Qθ ′(s

′,a′),

where s ′ refers to the next state of the selected action a under the

current state s , and r (a) denotes the reward of taking action a. Since
the cost can be obtained until the complete join plan is generated,

we get r (a) = c(pq) if the terminal state is obtained after taking

action a, otherwise r (a) = 0. Next, Qθ ′ denotes another network

(target network) with the same structure withQθ but with different

parameters. In practice, the two networks are initialized with the

same structure. The backpropagation is performed on Qθ , whose

parameters are copied to the target network Qθ ′ periodically. The

object function is to minimize the gap between the predicted Q

value and the estimated Q value, defined with a regression loss:

L(Q) =
∑
(s ,a)∈B

∥y(s , a) −Q (s , a) ∥2
2
, (5)

where B denotes the sampled data from the experience memory

pool. Each tuple in the experience memory pool records the current

state s , the selected action a, and the next state s ′ with the reward

(i.e., cost). To increase the probability of reaching the global opti-

mal, a ϵ-greedy strategy is adopted to collect more diverse episodes.

Especially, the optimizer randomly selects an action with the prob-

ability of ϵ and otherwise selects the action with the maximum Q

value. In this way, the reinforcement learning process and the deep

learning framework are integrated to learn the optimizer.

Curriculum-Learning-based Optimization. The training pro-

cess of DRL fluctuates frequently. The reason lies in that uniformly

sampling from the experience pool breaks the correlations between

the consecutive data, i.e., the episode with incremental join tables.

Meanwhile, deep networks are sensitive to the changes of param-

eters [24], which has a negative effect on the convergence of the

training process and harms the search for finding the optimal join

plan. To mitigate this phenomenon, we adopt curriculum learning,

with the aim of obtaining a relatively stable learning process.

Curriculum learning refers to a learning strategy that learns

from easier data to more difficult data [2, 5, 8, 20, 24]. This learn-

ing process imitates the learning behavior in human education,

which is organized as a curriculum. The core of curriculum learn-

ing is the curriculum setting. An appropriate curriculum setting

can effectively accelerate the training convergence and improve

the robustness of the training process.

In the join order selection problem, the number of participating

tables in a query can be taken as the learning difficulty. The setting

is intuitive, i.e., a larger number of tables in a query implies more

possible join orders hence a larger search space, which increases the

difficulty of finding the optimal join order. Therefore, we propose

a Curriculum-Learning-based Optimization (CLO) strategy, which

sets the curriculum based on the number of participating tables in

a query and gradually increases the difficulty of training data. The

overview of the whole CLO process is detailed in Algorithm 3.

Algorithm 3: CLO
Data: Training Query Set {q1,q2, ...,qn }
Input: Number of curriculum k , updating interval I
Output: The optimal model M∗

1 Sort the training set in ascending order based on the

number of participating tables ;

2 Split the sorted data into k partitions {P1,P2, ...,Pk } ;

3 Initialize the training set D = ∅, i = 0;

4 Initialize DQN model M;

5 for t=1,2,...,T do
6 if t is divided by I and i < k then
7 D ← D ∪ Pi and i ← i + 1;

8 end
9 train(M ,D) ;

10 end

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Dataset. Experiments are conducted on two publicly avail-

able datasets, Join Order Benchmark (JOB) and TPC-H, to validate

the effectiveness and efficiency of the proposed methods.

Join Order Benchmark (JOB) [14]: JOB is a real dataset from

Internet Movie Data Base (IMDB) datasets, which reflects the rela-

tionship between movies, actors, etc. It has 113 queries generated

from 33 templates, and each query involves a number of tables rang-

ing from 4 to 17. JOB has 21 tables and 108 columns in total. The

constructed schema graph for JOB has 21 nodes and 22 edges. TPC-
H [23]: TPC-H is a standard database benchmark for the industrial

test, where data is derived from the decision support applications

for an ad-hoc querying workload. It has 8 tables and 61 columns.

We finally get the version with 110 queries from 22 templates. The

schema graph for the TPC-H dataset contains 8 nodes and 8 edges.

For each dataset, we randomly select 90% of the queries for training

and the rest for testing.

4.1.2 Baseline. We compare JOGGER with both the traditional

methods and DRL-based methods.

DQ [11]: DQ encodes the query graph, join types, and the left

and right side of the join to represent the state with one-hot vectors,

where predicate information is also considered. DQ adopts DQN to

learn the join order.RTOS [32]: RTOS constructs the feature vectors
of join trees by leveraging the Tree-LSTM to capture the dynamic

sequential information of the join trees. RTOS also utilizes the Deep

Q-Network to train its agent.QP100 (QP1000): QP100 and QP1000
randomly generate 100 and 1000 join plans respectively, fromwhich

the one with the lowest cost is selected.Dynamic Programming
(DP): For each query, it chooses the plan with the lowest cost by the
dynamic programming algorithm. We use PostgreSQL to achieve

this method by setting the parameter ‘geqo_threshold’ larger than

the maximum number of joining tables.

Efficient Join Order Selection Learning with Graph-based Representation KDD ’22, August 14–18, 2022, Washington, DC, USA.

0 2500 5000 7500 10000 12500 15000 17500
Trained episodes

0

2

4

6

8

10

M
RC

JOGGER
RTOS
DQ
QP100
QP1000
DP

Figure 4: Training curve on JOB. The MRC is evaluated on
the testing queries.

DQ and RTOS both utilize the feedback of latency from the

DBMS to train the model. For fair comparisons, we train all of the

DRL-based methods depending on the cost to validate the efficiency

of the proposed method.

4.1.3 Metrics. The metric, Mean Relative Cost (MRC), is utilized to
evaluate the methods following the previous study [32]. We take the

DP method as the baseline to calculate the relative cost. A method

withMRC = 1 has the same cost as DP, and a smaller value ofMRC
reflects a better performance.

4.2 Experimental Results
4.2.1 Overall Performance. We compare JOGGER with the baseline

methods and report the performance in terms of MRC.

Table 1: MRC TO DYNAMIC PROGRAMMING
Algorithm MRC on JOB MRC on TPC-H

JOGGER 1.0038 1.0000
RTOS 1.0698 1.0000
DQ 2.7492 1.0217

QP100 8.4484 1.1473

QP1000 2.2188 1.0000

Table 1 reveals that JOGGER shows superior performances in

terms of MRC on both JOB and TPC-H datasets. On the TPC-H

dataset, whose search space is limited to 8 joins, all of the ap-

proaches can find relatively optimal join plans. QP1000 achieves

better performance than QP100, because QP1000 can explore more

different join orders when faced with a larger search space. How-

ever, the JOB dataset is more difficult to learn, and the disparities

between the approaches become significant. JOGGER and RTOS

outperform DQ, with improvements of 173% and 157% on the JOB

dataset, respectively. The reason lies in that capturing the tree struc-

tures of join plans enhances the expressiveness of the state and

thus improves the estimation accuracy. Furthermore, the proposed

JOGGER outperforms RTOS with a relative 6.6% improvement on

the JOB dataset. JOGGER achieves better performances with fewer

model parameters, demonstrating the effectiveness of JOGGER.

Figure 4 depicts the training curve for the JOB dataset, which has

a larger search space and makes finding the best join order more

difficult. JOGGER decreases rapidly at the same time of converging

to the lowest MRC. JOGGER achieves a lower MRC than QP1000

after 5,000 episodes, whilst RTOS just surpasses QP100. Moreover,

JOGGER achieves nearly the same performance as DP with 7,500

episodes, whereas RTOS has just gone beyond QP1000. Compared

with JOGGER and RTOS, DQ has not only the worst performance

but also frequent fluctuations. The reason lies in that DQ may gen-

erate identical embeddings for different plans, ignoring the depth

information, and lead to confusion for the optimizer. Although

RTOS solves the problem, it requires a large number of parameters

and takes a long time to reach a better result. Owing to the greater

expressiveness and curriculum learning, JOGGER shows superior

performance throughout the training process.

4.2.2 Ablation Study. In this section, we first verify the effective-

ness of curriculum learning and then validate the effects of the differ-

ent representation learning methodologies for tables. We gradually

remove the important components of the JOGGER. Curriculum-

Learning-based Optimization (CLO) is removed first, followed by

Correlation-based Table Representation Learning (CTRL).

Table 2: MRC TO DYNAMIC PROGRAMMING
Settings MRC on JOB MRC on TPC-H Notation

JOGGER 1.0038 1.0000 JOGGER

w/o CLO 1.0069 1.0000 JOGGER-C

w/o CTRL&CLO 1.1376 1.0000 JOGGER-2C

Effect of CLO. As shown in Table 2, JOGGER achieves the lowest

MRC on the JOB dataset and performs slightly better than JOGGER-

C. Curriculum learning also shows superior performance on the

convergence speed, as indicated in Figure 10, where JOGGER con-

verges within around 7,500 episodes and maintains a relatively sta-

ble performance after 7,500 episodes. JOGGER-C achieves a similar

result until 10,000 episodes. This result demonstrates the advantage

of accelerating the training process with curriculum learning. It can

be seen that JOGGER has a relatively turbulent performance near

the 2,000 and 4,000 episodes. This can be explained by the fact that

we incrementally add the curricula P2 in the episode of 2,000 and

P3 in the episode of 4,000. The optimizer encounters the unfamiliar

states and makes certain corrections to its previous action choices.

But the optimizer quickly adjusts and converges to a better value.

By integrating CLO, JOGGER not only converges faster but also

achieves a lower MRC.
Effect of CTRL. Table 2 illustrates the MRC of the three methods

on the JOB and TPC-H datasets. JOGGER-C and JOGGER-2C only

vary in the table representation approach. Both JOGGER-2C and

JOGGER-C perform well on the simpler TPC-H dataset, with an

MRC of 1.00. The simple representation strategy can work well in

a small search space. JOGGER-2C, however, fails to capture the

complicated information as the action space expands, resulting in

an MRC of 1.1376 on the JOB dataset. The proposed JOGGER-C

achieves a relatively 12.98% improvement compared with JOGGER-

2C, illustrating the effectiveness of capturing the correlations be-

tween tables. The reason lies in that there are frequent correlations

between tables, rather than independence. Capturing these rela-

tionships helps to improve estimation accuracy by increasing the

expressiveness of representations.

4.2.3 Efficiency. To validate the learning efficiency of the proposed

JOGGER, we further conduct experiments to measure the running

time of the different approaches. We also take the state-of-the-art

method, RTOS, into consideration. Each method is run for 17,500

KDD ’22, August 14–18, 2022, Washington, DC, USA. Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou, and Kai Zheng

episodes, with the time it takes to attain the lowest MRC recorded

as well. Experiments are tested on the JOB dataset, which is more

challenging to learn. The results are summarized in Table 3.

Table 3: TIME-CONSUMPTION IN SECONDS

Algorithm

Total

running

time

#Episode of

optimal value

Time of

optimal value

JOGGER 28,084.92 11,200 16,644.89
JOGGER-C 31,285.19 13,500 24,053.99

RTOS 49,008.07 15,300 42,551.12

From Table 3, it can be concluded that JOGGER shows superior

performance in running time and convergence speed. The distinc-

tion between JOGGER and JOGGER-C is whether or not curriculum

learning methodologies are used. Compared to JOGGER-C, JOG-

GER reduces the training time and reaches the optimal value faster.

Absolutely, at the start of the training, queries with a smaller num-

ber of tables are trained, which take fewer iterations to get the

representations, so that these queries require less time of training.

Specifically, the total training time of JOGGER is 28,084.92 seconds,

achieving a relative improvement of 13.39% over JOGGER-C. It

reaches the optimal value in 11,200 episodes within 16,644.89 sec-

onds, earlier than JOGGER-C. This further validates that curriculum

learning can bring faster and more stable training to the model.

Another observation is that JOGGER shows superior perfor-

mances in learning efficiency as evident by the result that even

JOGGER-C runs faster than RTOS. The running time for running

17,500 episodes of JOGGER-C is 31,285 seconds, which is signif-

icantly smaller than that of RTOS. On the average time for 100

episodes, JOGGER-C even reduces 36.2% time compared to RTOS.

The reason lies in that JOGGER-C has a substantially smaller num-

ber of model parameters than RTOS. By applying the two different

types of Tree-LSTM to learn the representation of join plans, RTOS

includes 22 variables for updating, whereas there are only three

weight matrices in the tailored-tree-based attention module. Our

proposed JOGGER-C has a much smaller number of parameters

and thus requires less training time. We further summarize the pa-

rameters of baselines i.e., 2.2787M for DQ, 2.5156M for RTOS, and

1.1997M for JOGGER. These statistics correspond with the num-

ber of the models instead of the actual memory cost. In addition,

JOGGER-C is more efficient than RTOS, as evidenced by the fact

that JOGGER-C achieves the optimal value before RTOS.

4.2.4 Latency Evaluation. The ultimate goal of the join order se-

lection is to find the optimal join order for execution and therefore

we also care about the performance of latency. According to a re-

cent study [32], we employ the Geometric Mean Relevant Latency

(GMRL) to evaluate the latency performances of various models.

Similar to MRC, a lower GMRL suggests a better performance over

the latency. We evaluate the performance on the testing dataset

and report the results of JOB and TPC-H with different templates.

We compare JOGGER with the DRL-based method, RTOS, and tra-

ditional method, QP1000, where results are reported in Table 4.

From Table 4, we can clearly observe that JOGGER achieves

the lowest GMRL on both JOB and TPC-H, followed by RTOS and

QP1000. The GMRL of JOGGER is less than 1 in both two datasets,

which implies that JOGGER develops better join plans than DP, i.e.,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Template ID

1
2
3
4
5
6
7
8
9

10

G
M
RL

JOGGER
RTOS
QP1000

Figure 5: GMRL on different templates of JOB

PostgreSQL. Especially in the JOB dataset with a larger search space,

JOGGER still shows superior performances, achieving a relatively

28.8% lower GMRL than RTOS and even a relatively 76.3% lower

GMRL than QP1000.

Table 4: GMRL TO DYNAMIC PROGRAMMING
Algorithm GMRL on JOB GMRL on TPC-H

JOGGER 0.7993 0.9701
RTOS 1.1228 1.0038

QP1000 3.3683 1.0823

Figure 5 further shows the performances in terms of GMRL for

each template on the JOB datasets. Both JOGGER and RTOS have

lower GMRL than QP on almost all templates of the JOB dataset.

But RTOS performs dramatically bad on T29, which has the greatest

number of tables, while JOGGER shows superior performance on

this template. It once again provides evidence that our model can

improve the effectiveness and efficiency of the DRL-based join order

selection problem.

Summary of Our Empirical Study:
• JOGGER achieves the highest MRC, which outperforms the best

among the baseline methods by 6.6% in the JOB dataset.

• Correlation-based Table Representation Learning (CTRL) im-

proves 12.98% of MRC on the JOB dataset, demonstrating the

effectiveness of capturing table correlations.

• Curriculum-Learning-based Optimization (CLO) strategy signif-

icantly reduces the running time, achieving a relative 13.34%

improvement compared with that without curriculum learning,

and reaches the optimum faster.

• JOGGER shows superior performances in terms of running time,

reducing by 74.50% w.r.t. the state-of-the-art method.

5 RELATEDWORK
5.1 RL for Join Order Selection
Reinforcement learning (RL), an essential part of machine learning,

has been researched for databases over the last five years [34]. Re-

inforcement learning models do not require extensive high-quality

training data. Especially for the join order selection, the community

prefers to apply reinforcement learning in both online [28–30] and

offline [6, 11, 13, 17, 32, 33] approaches to optimize join orders.

DQ [11] uses deep Q learning as the whole learning framework

where a basic neural network is employed. Rejoin [17] applies the

value-based strategy, PPO [26], and embeds the height of the join

trees into the feature vectors. AlphaJoin [33] utilizes the Monte-

Carlo search tree as the basic architecture for reinforcement learn-

ing. These works utilize the fixed-size vectors to represent the join

plans, disregarding the sequential information of the join orders.

RTOS [32] further proposes a Tree-LSTM based optimizer to allow

Efficient Join Order Selection Learning with Graph-based Representation KDD ’22, August 14–18, 2022, Washington, DC, USA.

dynamically changing updates. However, none of the prior studies

take into account learning efficiency, which is crucial for applying

learning strategies.

5.2 Representations of Join Plans
The representations of join plans and queries are important, de-

pending on which the cardinality and the value function are esti-

mated. Neo [16] first utilizes a Tree Convolutional Network [19]

to encode the tree structures of join plans. RTOS further adopts

a Tree-LSTM [27] to capture the sequential information, where

the non-leaf nodes in the join trees are encoded by the output of

the Tree-LSTM network. This improves the expressiveness of the

representations and the fits in dynamic changes of the join plans.

However, LSTM requires a great number of parameters to train,

which could lead to an overfitting problem for a small number of

queries. Thus, we apply the lightweight attention mudole to encode

the join plans. Despite of the existing models for tree structures

in NLP tasks [1, 21, 31], it is still challenging to directly apply the

attention mechanism to the join tree structures.

6 CONCLUSION
This paper focuses on the learning efficiency of deep reinforcement

learning for the join order selection. To improve the efficiency in

deep networks, we design the graph-based encoder to enhance the

expressiveness of the representations for joins and queries while re-

ducing the number of parameters in networks. As for the reinforce-

ment learning process, we integrate a curriculum-learning-based

optimization, where queries with a greater number of participat-

ing tables are later added to the training set. This strategy shows

superior performance in accelerating the training process.

ACKNOWLEDGMENTS
This work is partially supported by NSFC (No. 61972069, 61836007

and 61832017), and Shenzhen Municipal Science and Technology

R&D Funding Basic Research Program (JCYJ20210324133607021).

REFERENCES
[1] Mahtab Ahmed, Muhammad Rifayat Samee, and Robert E Mercer. 2019. Improv-

ing Tree-LSTM with Tree Attention. In 2019 IEEE 13th International Conference
on Semantic Computing (ICSC). IEEE Computer Society, 247–254.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum learning. In Proceedings of the Annual International Conference on
Machine Learning. 41–48.

[3] Swati V Chande and Madhavi Sinha. 2011. Genetic optimization for the join

ordering problem of database queries. In India International Conference. 1–5.
[4] Leonidas Fegaras. 1998. A new heuristic for optimizing large queries. In Interna-

tional Conference on Database and Expert Systems Applications. 726–735.
[5] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter

Abbeel. 2017. Reverse curriculum generation for reinforcement learning. In

Conference on Robot Learning. 482–495.
[6] Jonas Heitz and Kurt Stockinger. 2019. Join query optimization with deep rein-

forcement learning algorithms. arXiv preprint arXiv:1911.11689 (2019).
[7] Yannis E Ioannidis and Younkyung Cha Kang. 1991. Left-deep vs. bushy trees:

An analysis of strategy spaces and its implications for query optimization. In

Proceedings of the SIGMOD International Vonference on Management of Data.
168–177.

[8] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexan-

der Hauptmann. 2014. Self-paced learning with diversity. Advances in Neural
Information Processing Systems 27 (2014), 2078–2086.

[9] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In International Conference on Learning Representations.
[10] Thomas Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph

Convolutional Networks. ArXiv abs/1609.02907 (2017).

[11] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and

Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement

Learning. CoRR abs/1808.03196 (2018).

[12] Phong Le and Willem H. Zuidema. 2015. Compositional Distributional Semantics

with Long Short Term Memory. In Proceedings of the Fourth Joint Conference on
Lexical and Computational Semantics. 10–19.

[13] Kyeong-Min Lee, InA Kim, and Kyu-Chul Lee. 2020. DQN-based Join Order

Optimization by Learning Experiences of Running Queries on Spark SQL. In

International Conference on Data Mining Workshops. 740–742.
[14] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of
the Very Large Data Base Endowment 9, 3 (2015), 204–215.

[15] Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and Ac-

curate Deep Ensembles with Uncertainty for Cardinality Estimation. Proceedings
of the Very Large Data Base Endowment 14, 11 (2021), 1950–1963.

[16] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: a learned

query optimizer. Proceedings of the Very Large Data Base Endowment 12, 11 (2019),
1705–1718.

[17] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement learning for

join order enumeration. In Proceedings of the International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management. 1–4.

[18] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In International Conference
on Learning Representations.

[19] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional neural

networks over tree structures for programming language processing. In Thirtieth
AAAI Conference on Artificial Intelligence.

[20] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. 2017. Autonomous Task Se-

quencing for Customized Curriculum Design in Reinforcement Learning.. In

International Joint Conference on Artificial Intelligence. 2536–2542.
[21] Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard Socher. 2020. Tree-

Structured Attention with Hierarchical Accumulation. In International Conference
on Learning Representations.

[22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In International Conference on Knowledge Discovery and
Data Mining. 701–710.

[23] Meikel Poess and Chris Floyd. 2000. New TPC benchmarks for decision support

and web commerce. Sigmod Record 29, 4 (2000), 64–71.

[24] Zhipeng Ren, Daoyi Dong, Huaxiong Li, and Chunlin Chen. 2018. Self-paced

prioritized curriculum learning with coverage penalty in deep reinforcement

learning. Transactions on Neural Networks and Learning Systems 29, 6 (2018),

2216–2226.

[25] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized

experience replay. arXiv preprint arXiv:1511.05952 (2015).
[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[27] Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved

Semantic Representations From Tree-Structured Long Short-Term Memory Net-

works. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics and the International Joint Conference on Natural Language Processing.
1556–1566.

[28] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan

Jo, and Joseph Antonakakis. 2019. Skinnerdb: Regret-bounded query evaluation

via reinforcement learning. In International Conference on Management of Data.
1153–1170.

[29] Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel Mose-

ley, Saehan Jo, Joseph Antonakakis, and Ankush Rayabhari. 2021. SkinnerDB:

Regret-bounded Query Evaluation via Reinforcement Learning. Transactions on
Database Systems 46, 3 (2021), 1–45.

[30] Kostas Tzoumas, Timos Sellis, and Christian S Jensen. 2008. A reinforcement

learning approach for adaptive query processing. History (2008).

[31] Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen. 2019. Tree Transformer: Inte-

grating Tree Structures into Self-Attention. In Conferenceon Empirical Methods in
Natural Language Processing-International Joint Conference on Natural Language
Processing. 1061–1070.

[32] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement

Learning with Tree-LSTM for Join Order Selection. In International Conference
on Data Engineering. 1297–1308.

[33] Ji Zhang. 2020. AlphaJoin: Join Order Selection à la AlphaGo.. In Very Large Data
Base.

[34] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2020. Database meets

artificial intelligence: A survey. Transactions on Knowledge and Data Engineering
(2020).

[35] Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015. Long short-termmemory

over recursive structures. In International Conference on Machine Learning. 1604–
1612.

KDD ’22, August 14–18, 2022, Washington, DC, USA. Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou, and Kai Zheng

𝑻𝟑:title

id

kind_id

episode_nr

episode_of_id

imdb_id

imdb_index

md5sum

phonetic_code

production_year

season_nr

series_years

𝑻𝟏:movie_link

id

movie_id

linked_movie_id

link_type_id

𝑻𝟐:link_type

id

link

𝑻𝟒:movie_companies

id

company_id

movie_id

company_type_id

𝑻𝟓:movie_keyword

id

movie_id

keyword_id

𝑇2 𝑇1 𝑇3 𝑇5

𝑇4Schema Graph

Figure 6: Schema Graph Construction

A EXAMPLES
In order to better understand some concepts mentioned in this

work, we provide several examples.

A.1 MDP for Join Order
Reinforcement Learning (RL) is an important branch in machine

learning concerned with how an agent can pick its actions in a

dynamic environment to transit to new states in such a way that

optimizes the sum of cumulative reward. The core of RL is to build

a Markov Decision Process (MDP), where the effects of an action

taken in a state depend only on that state and instead of the prior his-

tory. Deep learning techniques are then applied in RL to memorize

the numerous states due to its strong expressiveness, called Deep

RL (DRL). Deep neural networks also have the ability to estimate

the unknown states depending on the previously states.

The agent (optimizer) interacts with the environment (the DBMS)

in the following way. The environment records the current state,

i.e., the immediate join plan, and generates a set of valid actions on

which two tables can be joined under the current state. The opti-

mizer selects an action from the action set depending on the value

estimation, where deep neural networks are applied to estimate the

value for actions and states. Then the selected action is rewarded

by the DBMS, which changes to the next state with the selected

join. This process is a MDP and stops until a complete join plan

is constructed, where all the tables are joined. The whole process

from the initial state to the terminal state is called an episode, after

which a new episode will repeat until the model converges. Figure 7

shows an episode of the DRL-based join order selection procedure.

A.2 Schema Graph
Example 1. Figure 6 shows a database with five tables, denoting

five nodes to be connected. Table T3 is connected to table T4 by the
column id ofT3 and movie id ofT4. Thus, the table nodesT3 andT4 are
connected. By enumerating all the primary-foreign keys, we obtain a
schema graph.

B DETAILS OF ALGORITHM
B.1 Correlation-based Table Representation

Learning (CTRL)
First of all, we give an overview of the whole CTRL process in

Algorithm 1. Given a database with N tables as input, CTRL first

builds a schema graph S based on the primary-foreign keys of

tables (line 1), which represents the semantic information of the

given database to some extent. Then the DeepWalk [22] algorithm

is adopted, which iteratively performs Random Walks on a selected

table node Ti ∈ VT
and collects the sequence L until reaching

the number of trails (lines 2–5). After that, it performs Skip-gram
algorithm and uses an average pooling layer to get the representa-

tion E0T of each table node (line 6). We can see that CTRL focuses

on the global location information, i.e., the neighbours, and thus

captures the correlations between tables by randomly walking on

the schema graph. The learned table representations can either be

frozen or be further updated in the later training steps. Next, we

elaborate on the details of the schema graph construction and table

representation learning in Algorithm 1.

B.2 Curriculum-Learning-based Optimization
The overview of the whole CTRL process is detailed in Algorithm 3

Given a set of training queries {q1,q2, ...,qn } as input, CLO first

sorts the queries in ascending order based on the number of par-

ticipating tables (line 1) and splits the training query set into k
partitions (line 2). Thus, we obtain the curriculum for training,

which rises in difficulty as the number of tables increases. After

that, CLO incrementally adds the partitions into the training set

at regular intervals (lines 6-8) until all of the training queries have

been put into training. DQN is then trained based on the current

training dataset (line 9). By incorporating curriculum learning to

DQN, the training set shifts from easier to more difficult queries,

which is beneficial to the model convergence.

B.3 Column Embeddings
As shown in Figure 8, we concatenate the representations of join

and selection predicates as well as the embedding of the column

identity (ID) as the final column representation.

Example 2. For the predicate “title.production_year BETWEEN
1980 AND 1984", the estimated selectivity is 0.5. The value of 0.5 can be
allocated into the second partition and thus the vector for the column
t "title.production_year" is [0, 1, 0], which will be sent to the following
linear layers.

C EXPERIMENT DETAILS
C.1 Dataset Statistics

Table 5: DATASET INFORMATION

DataSet Size #Tables #Columns #Templates #Queries

JOB 3.6G 21 108 33 113

TPC-H 4.0G 8 61 22 110

Efficient Join Order Selection Learning with Graph-based Representation KDD ’22, August 14–18, 2022, Washington, DC, USA.

𝑇1 𝑇2

⋈ 𝑇3

⋈ 𝑇4

⋈

𝑇1 𝑇2

⋈

𝑇1 𝑇2

⋈ 𝑇3

⋈

Immediate StateInitialization Immediate State Terminal State

Action: 𝑇1. 𝑐1 = 𝑇2. 𝑐1 Action:𝑇1. 𝑐2 = 𝑇3. 𝑐2 Action:𝑇3. 𝑐3 = 𝑇4. 𝑐3
{𝑇1, 𝑇2, 𝑇3, 𝑇4}

Figure 7: An Episode of DRL-based Join Order Selection

Join

1 0 1 0 Column ID

Selection: Discretization Selectivity

Linear Layer

Linear Layer

Figure 8: Column Representation Learning

C.2 Implementation Details
All of the experiments are run on an Intel(R) Xeon(R) Silver 4214

CPU @ 2.20GHz, and NVidia GeForce RTX 3080 GPU. We tune the

parameters of DRL-based methods, DQ, RTOS, and JOGGER. The

dimension of the embeddings is set to 128 and the batch size is set

to 256. The optimizer Adam [9] with a weight decay of 0.005 is

adopted here to update the model parameters. The learning rate is

set as 0.003 by default.

To get table representations, we utilize the public implementation

of DeepWalk
1
. The dimension of embeddings is set to 128, the

number of walks to 10, and the maximum length of the walks to

40. These table representations are input into the models without

updating during the training process.

For curriculum learning, we divide the original training set into

three curricula: P1, P2 and P3, with no duplicate data in each

curriculum. The updating interval for the training data is set to 2,000.

Specifically, The first 2,000 episodes are trained with P1, where the

queries have fewer participating tables. The later 2,000 episodes are

trained with P1 ∪ P2. After 4,000 episodes, the curriculum P3 is

added for training, and the model is trained on the entire training

set until the end.

C.3 Latency Performance on TPC-H
Figure 9 shows the performance on the TPC-H dataset. On the

TPC-H dataset, due to the smaller number of tables in the queries,

the discrepancy gap between models on each template is not large.

However, we observe that the DRL-based methods JOGGER and

RTOS have better performance than the traditional method QP.

1
https://github.com/phanein/deepwalk

2 3 5 7 8 9 10 11 18 21
Template ID

1

2

G
M
RL

JOGGER
RTOS
QP1000

Figure 9: GMRL on different templates of TPC-H

0 2500 5000 7500 10000 12500 15000 17500
Trained episodes

0

2

4

6

8

10

M
RC

JOGGER
JOGGER-C
JOGGER-2C
DP

Figure 10: Training curve on JOB for ablation study.

C.4 Ablation Study
A training curve on JOB is shown in Figure 10, where we can see

that both JOGGER-C and JOGGER-2C have a decreasing tendency.

Both approaches go below 2 after 8,300 episodes. But the difference

occurs after 8700 episodes. JOGGER-C reaches the minimal value

of 1.0069 after 11,200 episodes while JOGGER-2C is in a fluctuating

state. This result implies that introducing the primary-foreign key

relationships benefits better convergence to learn the join order.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Preliminary Concepts
	2.2 DRL-based Join Order Selection

	3 Framework and Methodology
	3.1 Framework
	3.2 Column representation Learning
	3.3 Table Representation Learning
	3.4 State Representation Learning
	3.5 Q-learning

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	5.1 RL for Join Order Selection
	5.2 Representations of Join Plans

	6 Conclusion
	Acknowledgments
	References
	A Examples
	A.1 MDP for Join Order
	A.2 Schema Graph

	B Details of Algorithm
	B.1 Correlation-based Table Representation Learning (CTRL)
	B.2 Curriculum-Learning-based Optimization
	B.3 Column Embeddings

	C Experiment Details
	C.1 Dataset Statistics
	C.2 Implementation Details
	C.3 Latency Performance on TPC-H
	C.4 Ablation Study

