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ABSTRACT

Recently accumulated massive amounts of geo-tagged photos pro-
vide an excellent opportunity to understand human behaviors and
can be used for personalized tour recommendation. However, no ex-
isting work has considered the visual content information in these
photos for tour recommendation. We believe the visual features of
photos provide valuable information on measuring user / Point-of-
Interest (POI) similarities, which is challenging due to data sparsity.
To this end, in this paper, we propose a visual feature enhanced
tour recommender system, named ‘Photo2Trip’, to utilize the visual
contents and collaborative �ltering models for recommendation.
Speci�cally, we �rst extract various visual features from photos
taken by tourists. �en, we propose a Visual-enhanced Probabilistic
Matrix Factorization model (VPMF), which integrates visual fea-
tures into the collaborative �ltering model, to learn user interests
by leveraging the historical travel records. Moreover, user interests
together with trip constraints are formalized to an optimization
problem for trip planning. Finally, the experimental results on real-
world data show that our proposed visual-enhanced personalized
tour recommendation method outperforms other benchmark meth-
ods in terms of recommendation accuracy. �e results also show
that visual features are e�ective on alleviating the data sparsity and
cold start problems on personalized tour recommendation.
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1 INTRODUCTION

Recent years have witnessed a revolution in location-based social
network services. As a consequence, large amounts of geo-tagged
photos have been accumulated from users. �ese footprints (or
check-ins) provide an excellent opportunity to understand human
behaviors and can be used in many �elds, including personalized
tour recommendation. Tour recommendation aims to �nd a trip
route visiting several POIs that maximize the utility of users ac-
cording to their trip constraints and their speci�c interests on POIs.
It can help tourists narrow down candidate POIs to visit, and plan
an appropriate visit order and corresponding duration at each POI
in an unfamiliar place.

Tour recommendation is complex because tourists have di�erent
interests and trip constraints, such as time limitation, the popular-
ity of POIs, and travel time between POIs [11]. �erefore, how to
learn user interests plays an important role in personalized tour
recommendation. Brilhante et al. [4, 5] used visit frequency in a
POI category as user visit preference. Lim et al. [18] used average
visit duration of all users in a POI category as user interest and took
personal visit duration into consideration in tour recommendation,
which got be�er results than frequency-based approaches. How-
ever, if a user has not visited any POIs in a category yet, the above
methods are not able to make personalized tour recommendation.
A straightforward solution is leveraging collaborative �ltering to
predict user interest of each unvisited POI.

Nevertheless, the check-in data is extremely sparse since most
users are not residents in their tour destinations. And the sparsity
issue causes di�culties for collaborative �ltering methods to learn
e�ectively. Besides, the cold start problem (no historical check-in
records for new users or new POIs) is even more severe in per-
sonalized tour recommendation. �erefore, additional information
needs to be incorporated to address these issues. We �nd that the
visual features in geo-tagged photos taken by users can provide
important context information for predicting user visit interests.
From these photos, the POI information can be inferred, also users’
behaviors and preferences can be revealed. For example, Figure 1
shows three pairs of POI photos from two di�erent users. A tourist
who favors the POIs in the �rst column might also be interested
in the second one since they exhibit similar visual appearances.
�ese observations motivate us to leverage the visual information,
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Figure 1: �ree pairs of POI photos from six di�erent POIs

and visited by two users having similar visual appearances.

which is overlooked by existing methods, in addition to others for
personalized tour recommendation.

To this end, in this paper, we leverage the visual contents of
geo-tagged photos together with collaborative �ltering models for
personalized tour recommendation. Speci�cally, we �rst extract var-
ious visual features from photos taken by tourists, and utilize them
to understand the styles of the POIs and the visual preferences of
users. �en, we propose a Visual-enhanced Probabilistic Matrix Fac-
torization model (VPMF), which integrates visual features into the
collaborative �ltering model, to learn user interests by leveraging
the historical travel records of peer users. A�er that, user interests
together with trip constraints are formalized to an optimization
problem for trip planning. Our experimental results on real-world
Yahoo! Flickr datasets show that VPMF signi�cantly improves the
performance of visit interest prediction for tour recommendation.
On average, it improves by over 5% on trip planning with respect
to F1 and over 25% on visit duration prediction with respect to Root
Mean Square Error (RMSE), comparing with the state-of-the-art
methods. To summarize, our contributions are listed as follows.

• To the best of our knowledge, this is the �rst work that
utilizes visual features of geo-tagged photos to learn user
interests for personalized tour recommendation.

• A VPMF model is proposed to integrate visual features into
the collaborative �ltering model for enhanced performance.
�e model uses the content of user-generated photos to
improve the prediction accuracy. Moreover, it reduces the
negative impacts of the data sparsity problem and the cold
start problem.

• �e proposed method has been evaluated on large-scale
real-world data for tour recommendation. �e experimen-
tal results show that our method outperforms state-of-the-
art methods in terms of di�erent metrics, such as precision,
recall, F1, and RMSE.

�e rest of this paper is organized as follows. In the next section,
we discuss the related work. Section 3 provides the problem de�ni-
tion and preliminaries. We introduce our system framework and
propose visual feature enhanced recommendation algorithm VPMF
in Section 4. Experimental results and discussions are presented in
Section 5, followed by the conclusion in Section 6.

2 RELATEDWORK

�is paper makes a forward step for tour recommendation, which
is rooted in POI recommendation. POI recommendation is to rec-
ommend a list of top k most relevant POIs to a user, based on user
implicit feedback, such as check-in frequency. Collaborative �lter-
ing is widely used in POI recommendation. �e state-of-the-art
collaborative �ltering (CF) is based on matrix factorization and its
variants [15, 16, 23, 27]. Salakhutdinov & Mnih [23] proposed a PMF
model in a Bayesian probabilistic framework to include Gaussian
noise in observations. Under the Gaussian assumption, maximiz-
ing the posterior probability over latent features is equivalent to
minimizing the square error.

Recently, more advanced models have been proposed to exploit
additional information for POI recommendation [1, 13], such as
check-in locations, social in�uence, temporal information and tran-
sition between POIs. Ye et al. [28, 29] considered the social in�uence
under the framework of a user-based CF model and modeled the ge-
ographical in�uence by a Bayesian CF model. Moreover, both Yuan
et al. [30] and Gao et al. [10] introduced temporal preference to en-
hance the e�ciency and e�ectiveness of Ye et al.’s solution. Cheng
et al. [7] considered more comprehensive information, such as the
multi-center of user check-in pa�erns, and skewed user check-in
frequency. Moreover, Liu et al. [19] proposed a bi-weighted low-
rank graph construction model, which integrates users’ interests
and their evolving sequential preferences with temporal interval
assessment to provide POI recommendations for a speci�c time
period. However, most of these methods did not explicitly consider
the visual content in user-generated photos in POI recommenda-
tion. Besides, they evaluated each venue independently without
considering other information and ignored the order of visits. More-
over, there are no overall time constraints, and traveling time is not
considered. In this paper, we focus on tour recommendation which
recommends relevant POIs as well as order the POIs into a trip to
satisfy di�erent constraints, e.g., the maximum travel time budget.

Tour recommendation has become very important in recent
years. A large number of public available traveler e-footprints
(such as geo-tagged photos and blogs) make automatic trip plan-
ning possible. Arase et al. [2] proposed a photo trip pa�ern mining
framework to detect users’ frequent trip pa�erns extracted from
public geo-tagged photos, i.e., typical sequences of visited cities and
visit duration as well as trip themes that characterize the trip pat-
terns. Lu et al. [22] leveraged existing travel clues from geo-tagged
photos to suggest customized route plans according to users’ pref-
erences. �ey used geo-tagged photos to discover the tour paths
within a destination and travel routes between destinations. Cheng
et al. [6] further proposed a probability-based personalize travel
recommendation model based on user’s pro�les (such as gender,
age, and race) by leveraging users’ a�ributes in user-generated
photos. Although they also utilized visual features in geo-tagged
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photos, they only used facial visual content to infer user’s pro�les
and did not take advantage of general visual features. A recent work
named PersTour [18] is closely related to our work and re�ects the
levels of user’s interest based on visit durations, which are obtained
from real-life travel sequences based on geo-tagged photos. Pers-
Tour uses average POI visit duration as user interest and has not
employed collaborative �ltering to predict user interest. However,
the major di�erence between our work and related research de-
scribed above is that we extract visual features from user-generated
photos and consider these visual features with the mobility pa�ern
of tourists in our personalized tour recommendation framework.

3 PRELIMINARIES

In this section, we �rst introduce some basic concepts of tour rec-
ommendation, followed by the correlation analysis between the
visual features of POIs and users’ ratings. At last, we introduce a
basic collaborative �ltering model and three visual features will be
used in our tour recommendation system.

3.1 Basic Concepts

Popularity. �e popularity of a POI p (denoted as Pop (p)) is
de�ned as the number of times that the POI p has been visited.

Time-based User Interest. We de�ne the interest of a user u
in a POI p (denoted as Int (p)) as the ratio between the personal
visit duration and the average visit duration of all users.

Personalized POI Visit Duration. With the de�nition of time-
based user interest, we can de�ne the personalized visit duration of
POI p (denoted as TV isit (p)) as the multiplication of user interest
and the average time spend at POI p.

Travel Time. Travel time is the time cost moving from POI
pi to POI pj (denoted as TT ravel (pi ,pj )), which is based on the
distance between two POIs pi and pj and the given moving speed.

Tour Recommendation. Given m POIs in a city, each POI pi
has a category label Cat (pi ) and a latitude/longitude location, a
user u with the starting POI p1 and the ending POI pn , and a time
budget B, we want to �nd an optimal trip route I = (p1, ...,pn )
that maximizes user utility under the following constraints: (1) it
starts at location p1 and ends at location pn ; (2) it completes within
the time budget. �e utility of visiting POI pi is represented by
the popularity and the user interest of this POI, which are denoted
as Pop (pi ) and Int (pi ) respectively. �e cost of traveling from
pi to pj (denoted as Cost (pi ,pj )) is calculated as the summation
of the travelling time TT ravel (pi ,pj ) and the personalized visit
duration of POITV isit (pj ). �at is,Cost (pi ,pj ) = TT ravel (pi ,pj )+
TV isit (pj ).

3.2 Correlation Analysis

Before designing a tour recommendation model, it is important
to understand tourist visit behaviors. In other words, we try to
answer the question: “do tourist visit behaviors correlate with the
visual style and appearance of POIs?” To answer this question, we
analyzed the correlation between visual contents in photos of POIs
and time-based user interest. First, we predict user personalized
POI visit duration using the average visit duration of all users
of the category of the POI. �en given top–k most similar POIs
on visual appearance as neighborhoods of a POI, we predict user

Figure 2: �e e�ects of user interest prediction under given

visual neighborhoods of POIs and users respectively.

visit duration at the POI using the average visit duration of its
neighborhoods. Finally, given top–k most similar users on the
visual content of photos posted by users as neighborhoods of a
user, we predict user visit duration at the POI using the average
visit duration of the POI taken by his/her neighborhoods. Our
analysis results are shown in Figure 2, in which RMSE metric is
used to measure the prediction error and the smaller value the
be�er. From Figure 2, we can see that the prediction errors have
reduced about 6.3% and 2.4% under given visually similar neighbors
of a POI and under given neighbors of a user with similar visual
taste, respectively. From the results, we can see the answer to the
above question is “yes”.

3.3 PMF Model

Probabilistic Matrix Factorization (PMF) [23] is a simple, accurate,
and e�cient model among collaborative �ltering methods. PMF
not only can deal with very large datasets, but also has the ability
to make recommendations for users only make few ratings in rec-
ommender systems [12, 26]. We will later show how to improve
PMF with visual features in Section 4.

Matrix factorization methods construct a latent low-rank dimen-
sional space to represent each user and POI. From the linear com-
bination of the latent features, the missing relationships of users
and POIs can be estimated. Using the initial matrix R ∈ RN×M as
training data, where Ri j is the time-based user interest of user ui in
POI pj , matrices U ∈ RD×N and V ∈ RD×M can be learned using
Matrix Factorization techniques, so that they can approximate ma-
trix R with matrix R̂, such that R ≈ R̂ = UTV . PMF expresses the
process of learning in the Bayes probabilistic framework, where the
user-POI relation in R is an observation, and U and V describe the
system inner characters and need to be evaluated. �e observation
R is modeled as a draw from a Gaussian distribution, where the
mean of Ri j is UT

i Vj . And U and V are drawn from the zero-mean
normal distribution.

p (R |U ,V ) = N (R̂,σ 2) = N (UTV ,σ 2) (1)

p (U ) = N (0,σ 2
U ),p (V ) = N (0,σ 2

V ) (2)
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�e likelihood of observing a speci�c user-POI relation in R can be
expressed as follows.

p (R |U ,V ,σ 2) =
N∏
i=1

M∏
j=1

[N (Ri j |U
T
i Vj ,σ

2)]Ii j (3)

whereN (x |µ,σ 2) denotes the normal distribution with mean µ and
variance σ . Ii j is an indicator function, in which Ii j = 1 if Ri j is
known and 0 otherwise. Now, through a Bayesian inference, we
can obtain the posterior probability of U and V as follows.

p (U ,V |R,σ 2,σ 2
U ,σ

2
V ) ∝ p (R |U ,V ,σ 2)p (U |σ 2

U )p (V |σ 2
V ) (4)

To calculate U and V , so as to maximize the posterior probability
given observation R, we can learn the latent feature U and V of
users and POIs purely based on the observation R using Equation 4.

3.4 Visual Features in Geo-tagged Photos

�ere are lots of di�erent types of visual features in geo-tagged
photos. In order to improve recommendation accuracy, we should
choose visual features in a proper way. We assume that tourists
are a�racted by the visual e�ects of POIs, such as colors, abstract
features, and visual contents, as shown in Figure 1. More speci�-
cally, given two POIs pi and pj , we could calculate the similarity
s (pi ,pj ) between the two POIs by measuring their visual correla-
tion through extracted visual features. Next we introduce some
widely used visual features.

ColorHistogram. In POI photos, color is the �rst impression to
people. For example, POI photos with large color areas, such as blue
sky, golden beaches, and blue sea water, have a deep impression on
users. Color histogram is a widely used visual feature. We adopt
a standard color histogram feature and extract a 512-dimensional
color feature vector for each photo. And a joint histogram in RGB
color space has 8 bins in each channel.

Scale-Invariant Feature Transform (SIFT). For point descrip-
tion, the SIFT descriptor [21] is known as scale-invariant features
and widely used in object recognized and content-based image
search for its good classi�cation accuracy [8]. �e SIFT �nds in-
terest points and captures the local shape around it using edge
orientation histograms. SIFT features are also robust to changes in
lighting, noise, and minor di�erences in viewpoint. Because many
of the photos are taken from the same scene but di�erent angles,
SIFT will be useful in this scenario. We extract a 128-dimensional
SIFT feature a�er resizing each POI photo to 256×256 pixels.

Convolutional Neural Networks. Di�erent from above hand-
cra�ed visual features, convolutional neural network (CNN) can
automatically discover high-level visual features of photos by learn-
ing from training data. It has been shown that CNN performs well
in image classi�cation and object detection. �e features extracted
by CNN can re�ect a photo globally, regionally, and locally. Intu-
itively, these features (or some of them) should be useful for visual
recommendation as we will show in our later experiments. In this
paper we use the VGG16 model [24], which is the state-of-the-art
architecture, to extract features from user-generated geo-tagged
photos. Speci�cally, we resize each photo to 224*224 pixels as the
input of VGG16 and obtain a 4096 dimension visual feature vector
as the output of the second fully-connected layer.

Personalized Trip Planning

Color Features
SIFT

Features

CNN

Features

1

2

3

Construct User Travel Sequences

User Trip

Constraints

User Interests

Prediction

Geotagged 

Photos
POIs

Visual Features Extraction

Figure 3: Framework of Photo2Trip Recommender System

4 PHOTO2TRIP TOUR RECOMMENDATION

4.1 System Framework Overview

Figure 3 shows the framework of our Photo2Trip personalized tour
recommendation system, which is composed of three main parts.
First, we crawl the photos from the public photo-sharing web site
(i.e., Flickr). With the same approach described in [17], we obtain
a list of POIs from Wikipedia and map these photos to user-POI
visits. And we construct user travel sequences based on them. Sec-
ond, a�er mining the travel pa�erns of users’ trip sequences, we
extract the visual features in the user-generated photos using the
visual toolbox, and then propose a visual-enhanced probability
matrix factorization (VPMF) model to predict user visit interests.
�ird, with user’s input trip constraints, including travel time lim-
itation, the starting POI, and the ending POI, the trip planning
module generates a personalized trip route that maximizes user
utility while adhering to the user’s trip constraints. Trip planning
is further modeled as an orienteering problem and solved using
linear programming.

In the following subsections, we will introduce two essential
modules (i.e., user interest prediction and personalized trip plan-
ning) in our framework in detail.

4.2 VPMF Model

As observed in Section 3.2, user visit behaviors are related to the
visual appearance of POIs, and the visual contents in user-posted
photos re�ect the user visit preferences. According to the idea of
neighbor-based collaborative �ltering, it is natural to assume that
the visit behavior and the visual taste of a user are similar to that
of his/her neighbors, and the interests of a POI are similar to those
of its similar visual POIs. Based on the above analysis, we propose
a visual-enhanced PMF model to improve user interest prediction
accuracy. We �rst select top–k nearest neighbors for each POI and
for each user respectively based on the visual content similarity of
the photos of POIs and the photos taken by users. And then we
incorporate the constructed visual neighborhoods into the learning
process of PMF.
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�e similarity of two POIs is measured by the cosine similarity
of the visual feature vectors. For the reason of each POI has more
than one photos, to get a representative visual features vector of a
POI, we merge each dimension visual vectors extracted from POI
photos using the maximum pooling method. A�er that, we linearly
combine three similarities of di�erent visual features to get the
eventual similarity s (pi ,pj ) of two POIs. �e similarity s (ui ,uj ) of
two users is also calculated by the cosine similarity of the visual
vectors of photos posted by the user in the same way.

Inspired by neighborhood MF [15], in the probability matrix fac-
torization process, the latent features of usersui and POIs pj should
be close to their neighborhoods Nui and Npj respectively. Based
on this intuition, we add Gaussian priors to user’s and POI’s latent
feature vectors to ensure that Ui and Vj are centered around the
mean of their neighborhood and formulate the following equations.

Ui =
∑

l ∈Nui

s (i, l ) ×Ul + Ũi , Ũi ∼ N (0,σ 2
U I) (5)

Vj =
∑

l ∈Npj

s (j, l ) ×Vl + Ṽj , Ṽj ∼ N (0,σ 2
V I) (6)

In the above two equations, the latent feature vector of each user
and each POI comprise of two terms. �e �rst term characterizes
the neighborhood related feature of the user or the POI. For notation
convenience, we normalize the similarities to ensure∑l ∈Nui

s (i, l ) =

1 and ∑l ∈Npj
s (j, l ) = 1. �e second term emphasizes the unique

feature of each user and each POI, which could diverge from their
neighborhood. �e variance parameter σ 2

U and σ 2
V are used to con-

trol the divergence. �e lower the variance, the less diverges the
feature vector from that of the neighbors. With the visual neighbor-
hood incorporated, the conditional distributions of the observed R,
as shown in Equation 3, does not change. Based on the Bayesian
formula, the posterior distribution over the latent factors of users
and POIs is given as follows (Equation 7).
p (U ,V |R,σ 2,σ 2

U ,σ
2
V ) ∝ p (R |U ,V ,σ 2) × p (U |S,σ 2

U ) × p (V |S,σ 2
V )

=

N∏
i=1

M∏
j=1

[N (Ri j |U
T
i Vj ,σ

2)]Ii j

×

N∏
i=1
N (Ui |

∑
l ∈Nui

s (i, l ) ×Ul ,σ
2
U I)

×

M∏
j=1
N (Vj |

∑
l ∈Npj

s (j, l ) ×Vl ,σ
2
V I)

(7)

Given the hyperparameters σ 2,σ 2
U and σ 2

V , maximizing the log
posterior to �ndU ,V in Equation 7 is equivalent to minimizing the
following objective function.

L (U ,V ,R) =
1
2

M∑
i=1

N∑
j=1

Ii j (Ri j −U
T
i Vj )

2

+
1
2λU

M∑
i=1
| |(Ui −

∑
l ∈Nui

s (i, l ) ×Ul ) | |
2
Fro

+
1
2λV

N∑
j=1
| |(Vj −

∑
l ∈Npj

s (j, l ) ×Vl ) | |
2
Fro

(8)

where λU = σ 2/σ 2
U , λV = σ 2/σ 2

V and | |.| |2Fro denotes the Frobe-
nius norm. �e objective function given by equation 8 is smoothed
by the parameter λU and λV , which control the neighborhood in-
�uence of users and POIs based on the error objective function. �e
lower the values of λU and λV , the less the visual neighborhood
information relies on.

A local minimum of the objective function (Equation 8) can be
found by performing stochastic gradient descent(SGD) on Ui and
Vj . �e update formula is given as follows:

∂L

∂Ui
=

N∑
j=1

(Ri j −U
T
i Vj ) (−Vj ) + λU (Ui −

∑
l ∈Nui

s (i, l ) ×Ul )

− λU
∑

i ∈Nul

s (i, l ) (Ul −
∑

j ∈Nul

s (j, l ) ∗Uj )

(9)

∂L

∂Vj
=

M∑
i=1

(Ri j −U
T
i Vj ) (−Ui ) + λV (Vj −

∑
l ∈Npj

s (j, l ) ×Vl )

− λV
∑
j ∈Npl

s (j, l ) (Vl −
∑

i ∈Npl

s (i, l ) ∗Vi )

(10)

4.3 Trip Planning

Trip Planning can be modeled using a bi-criteria generalization of
travelling salesman problem (TSP) with two con�icting objectives:
maximizing the collected utility and minimizing the travel cost.
�e orienteering problem (OP) is a variant of TSP that seeks for
a trip that maximizes the total collected utility while maintaining
the travel cost under a given value. �at is, the travel cost objec-
tive is turned to a constraint. OP can be formulated as an integer
programming problem as follows [11, 20]. Let n be the number of
POIs, where the starting POI is denoted as p1 and the destination
POI is denoted as pn . �e utility of visiting POI pi is represented
by the popularity Pop (pi ) and the user interest Int (pi ) of this POI.
�e cost of traveling from pi to pj is calculated as the summation
of the travelling time and the personalized visit duration of POI
pj . One main di�erence between our work and prior works is that
we personalize the visit duration at each POI predicted by VPMF,
instead of using the average visit duration for all users. With the
time budget B, we want to �nd an itinerary I = (p1, ...,pn ) that
satis�es the following constraints.

Max
N−1∑
i=2

N∑
j=2

xi, j (ηInt (Cati ) + (1 − η)Pop (i )) (11)

N∑
j=2

x1, j =
N−1∑
i=1

xi,n = 1 (12)

N−1∑
i=1

xi,k =
N∑
j=2

xk, j ≤ 1, f or all k = 2, ...,N − 1 (13)

N−1∑
i=1

N∑
j=2

Cost (i, j )xi, j ≤ B (14)

2 ≤ pi ≤ N , f or all i = 2, ...,N (15)

pi − pj + 1 ≤ (N − 1) (1 − xi, j ), f or all i, j = 2, ...,N (16)
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�e objective function (i.e., Equation 11) is to maximize the total
popularity and the interest score of visited POIs in the trip, where η
is the weight given to balance the popularity and the interest. For a
path from p1 to pn , if POI pi is followed by POI pj , we set the vari-
able xi, j = 1. Otherwise, we set xi, j = 0. Constraint 12 ensures that
the trip starting at POI p1 and ending at POI pn . Constraint 13 en-
sures that the trip is connected and each POI is visited at most once.
Constraint 14 ensures that the trip meets the time budget B, based
on the function Cost (pi ,pj ) that considers both the traveling time
and the personalized POI visit duration. Constraints 15 and 16 en-
sure that there are no sub-tours in the proposed trip, adapted from
the sub-tour elimination used in the travelling salesman problem
[9]. �e orienteering problem is NP-hard. Hence, exact solutions
for the orienteering problem are not feasible for a large number of
POIs. �e orienteering problem can be formulated as an integer
programming problem. For solving this integer programming prob-
lem, we use the lpsolve linear programming package [3] to obtain
optimal solutions.

5 EXPERIMENTS

5.1 Dataset

We apply the proposed photo2trip method on the Yahoo! Flickr
Creative Commons 100M (YFCC100M) dataset [25], the largest
public multimedia collection released, which consists of 100 million
photos and 0.8 million videos posted on Flickr with relevant meta
information, such as the date/time taken, geo-location coordinates
and geo-graphic accuracy. �e geo-graphic accuracy ranges from
the world level to the street level.

From this dataset, we use geo-tagged photos that were taken
in four cities, namely Toronto, Budapest, Edinburgh, and Vienna.
More details regarding this dataset are shown in Table 2. �e dataset
was previously used for tour recommendation by Lim et al. [18]. As
described in [17], we �rst obtain a list of POIs from Wikipedia and
then map these photos to user-POI visits. A�er that, we construct
user travel sequences and evaluate our proposed approach.

5.2 Comparison Methods

In our experiments, we compare our proposed approaches with
three popular baseline approaches and a recently proposed ap-
proach PersTour [18]. A brief introduction of each of them is shown
as follows.

• Random Selection (Rand). Iteratively and randomly
choose a POI pj from unvisited POIs as next POI.

• GreedyNearest (GNear). Iteratively and greedily choose
the nearest POIpj with the least valueTT ravel (pi ,pj ) from
unvisited POIs as next POI .

• Greedy Most Popular (GPop). Iteratively and greed-
ily choose the most popular POI pj with the most value
Pop (pj ) from unvisited POIs as next POI.

• PersTour and η = 0.5 (PT-.5). PersTour [18] with bal-
anced emphasis on both POI popularity and user interest.
�at means the objective function is to maximize the total
popularity and the interest score of POIs in the trip.

• PersTour and η = 1 (PT-1). Perstour [18] with full em-
phasis user interest. In other words, the objective function
is to maximize the total interest score of POIs in the trip.

As described in Section 3, instead of using the average POI visit
duration as user interest in PersTour [18], we chose the PMF [23]
model to predict user visit interests in terms of di�erent granularity.
We �rst use the PMF model to predict the user visit interests on
the category of a POI, and then we predict user visit interests on a
speci�c POI. Our approaches are listed as follows.

• Photo2Trip using PMF on POI Category level and

η = 0.5. (PT-PMFC-.5) Based on PersTour [18] with bal-
anced emphasis on both POI popularity and user interest,
we add the PMF model to predict user interests on the cat-
egory of a POI. �at means the prediction interests in one
unvisited category is the same.

• Photo2Trip using PMF on POI Category level and

η = 1. (PT-PMFC-1) Based on PersTour [18] with full
emphasis on user interest, we add the PMF model to predict
user interests on the category of a POI.

• Photo2Trip using PMF on POI level and η = 0.5. (PT-

PMF-.5) Based on PersTour [18] with balanced emphasis
on both POI popularity and user interest, we add the PMF
model to predict user interest on a speci�c POI, more detail
than the category level.

• Photo2Trip using PMF on POI level and η = 1. (PT-

PMF-1) Based on PersTour [18] with full emphasis on user
interest, we add the PMF model to predict user interest on
a speci�c POI.

Again, the user-generated geo-tagged photos provide important
contexts for predicting user visit interest for personalized tour
recommendation. To integrate these photos into personalized tour
recommendation, we extract three di�erent visual features from
these photos and incorporate the visual features into the PMF model
(i.e., VPMF). Since we noticed the advantage of predicting user visit
interest on a speci�c POI, we use VPMF to predict user visit interest
on a speci�c POI, instead of predicting user visit interest on the
category of POIs. �erefore, we have following two approaches
based on VPMF.

• Photo2Trip using VPMF on POI level and η = 0.5.

(PT-VPMF-.5) �is is the model described in Section 4,
personalized tour recommendation using the VPMF model
to predict user interest on a speci�c POI. In this case, the
objective function is to maximize the total popularity and
the interest score of POIs in the trip.

• Photo2Trip using VPMF on POI level and η = 1. (PT-

VPMF-1) �e objective function, in this case, is to maxi-
mize the total interest score of POIs in the personalized
tour recommendation using the VPMF model to predict
user interest on each POI.

5.3 Evaluation Metrics

We evaluate the popular baseline approaches, PersTour [18], and our
proposed photo2trip approaches based on PMF and VPMF using
leave-one-out cross-validation [14]. When evaluating a speci�c
travel sequence of a user, we use the user’s other travel sequences
as training data. We evaluate the performance of each algorithm
using the following metrics.

• Tour Precision. �e precision of POIs recommended in
the trip is the proportion of POIs recommended in a trip

Session: Fast Forward 4 MM’17, October 23-27, 2017, Mountain View, CA, USA

921



Table 1: Performance comparison of tour recommendation in terms of Precision, Recall and F1-score

Algo.
Toronto Budapest Edinburgh Vienna

Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score

GNear .464±.010 .544±.008 .484±.012 .359±.021 .477±.008 .393±.011 .386±.005 .501±.021 .422±.012 .385±.024 .530±.026 .426±.011
GPop .611±.015 .389±.037 .466±.016 .544±.037 .350±.035 .413±.037 .592±.015 .459±.008 .503±.009 .543±.005 .364±.021 .423±.023
Rand .451±.002 .274±.028 .336±.019 .401±.035 .237±.038 .289±.024 .450±.031 .271±.014 .325±.016 .487±.006 .285±.018 .351±.008

PT-1 .720±.015 .755±.021 .728±.018 .772±.021 .777±.018 .768±.031 .604±.020 .662±.011 .616±.029 .618±.002 .660±.013 .625±.014
PT-.5 .704±.014 .774±.025 .729±.011 .781±.009 .788±.010 .777±.008 .631±.014 .742±.019 .671±.014 .646±.006 .715±.009 .666±.006

PT-PMFC-1 .724±.021 .755±.024 .731±.019 .807±.012 .792±.018 .792±.020 .605±.017 .663±.018 .618±.021 .631±.019 .664±.020 .635±.021

PT-PMFC-.5 .718±.011 .779±.015 .739±.020 .816±.020 .801±.035 .801±.031 .640±.007 .750±.009 .680±.010 .645±.012 .715±.020 .667±.025

PT-PMF-1 .746±.011 .769±.012 .751±.009 .813±.021 .797±.026 .795±.031 .620±.025 .674±.016 .631±.035 .654±.008 .676±.012 .651±.015

PT-PMF-.5 .725±.012 .791±.015 .749±.021 .821±.025 .806±.021 .803±.030 .643±.009 .756±.012 .685±.011 .655±.017 .725±.015 .676±.020

PT-VPMF-1 .749±.021 .805±.011 .765±.019 .812±.002 .808±.012 .809±.007 .621±.015 .678±.013 .634±.021 .660±.008 .685±.028 .676±.019

PT-VPMF-.5 .728±.022 .828±.023 .762±.029 .831±.011 .809±.012 .819±.023 .645±.025 .768±.016 .696±.035 .672±.011 .751±.009 .709±.023

PT-VPMF-1 over PT-1 4.03% 6.62% 5.08% 7.72% 3.98% 5.34% 2.81% 2.41% 2.92% 6.78% 3.78% 8.16%
PT-VPMF-.5 over PT-.5 3.41% 6.98% 4.53% 6.40% 2.66% 5.41% 2.22% 3.50% 3.73% 4.02% 5.03% 6.45%

Table 2: Dataset description

City # Photos # Users # POI

Visits

# Travel

Sequences

Toronto 157,505 1,395 39,419 6,057
Budapest 145,364 954 18,513 2,361

Edinburgh 82,060 1,454 33,944 5,028
Vienna 461,905 1,155 34,515 3,193

that was also in a user’s real-life travel sequence, de�ned as
|Pr∩Pv |
|Pr |

, where Pr and Pv are the set of POIs recommended
in the tour and visited by the user in real-life, respectively.

• Tour Recall. �e recall of POI recommendation in the trip
is the proportion of POIs in a user’s real-life travel sequence
that was recommended, de�ned as |Pr∩Pv |

|Pv |
, where Pr and

Pv are the set of POIs recommended in the trip and visited
by the user in his/her real-life travel sequence, respectively.

• Trip F1-score. It combines both precision and recall of a
recommended trip together with the harmonic mean.

• Root-Mean-Square Error (RMSE) of POI Visit Dura-

tion. RMSE is a frequently used to measure the di�erence
between a value predicted by a model and the value actu-
ally observed. Let p be a POI in recommended itinerary I ,
which was visited in real-life. Let Dr be the recommended
duration and Dv be the duration in real-life respectively.
�en, RMSE is de�ned as follows.

RMSE =

√∑
p∈I (Dr − Dv )2

|I |

5.4 Results and Discussion

5.4.1 E�ectiveness of PMF on the Category Level of POIs. We
�rst evaluate the performance of incorporating PMF into trip plan-
ning to predict user visit interests on the category level of POIs. As
shown in Table 1, both PT-PMFC-1 and PT-PMFC-.5 in most cases
outperform the state-of-the-art PersTour, in terms of precision, re-
call and F1. As expected, PT-PMFC consistently outperforms the
greedy and random methods. �is observation shows the e�ec-
tiveness of integrating collaborative �ltering into predicting visit
interests in trip planning, which indicates that using the PMF model
to predict user interests on the category level is more accurate than
using the average visit time of all user in a category as user interest.

0.0 0.2 0.4 0.6 0.8 1.0

Contribution Ratio

Toronto

Budapest

Edinburgh

Vienna

CNN 35.7%

CNN 24.3%

CNN 37.1%

CNN 32.3%

SIFT 30.4%

SIFT 33.1%

SIFT 22.9%

SIFT 40.3%

Color 33.9%

Color 42.6%

Color 40.0%

Color 27.4%

Figure 4: Performance improvement contribution of di�er-

ent visual features.

5.4.2 E�ectiveness of PMF on the POI Level. We then evaluate
the performance of incorporating PMF into trip planning to predict
user visit interests on the POI level, a lower granular level than
the category level. As shown in Table 1, both PT-PMF-1 and PT-
PMF-.5 consistently outperform both PT-PMFC-1 and PT-PMFC-
.5, in terms of precision, recall and F1. �e results indicate that
predicting user visit interests on the POI level is more accurate and
more e�ectiveness in trip planning, comparing with predicting on
the category level of POIs.

5.4.3 E�ectiveness of VPMF on the POI Level. We further eval-
uate the performance of integrating VPMF into trip planning to
predict user visit interests on the POI level by leverage visual con-
tent in geo-tagged photos. As shown in Table 1, both PT-VPMF-1
and PT-VPMF-.5 consistently outperform both PT-PMF-1 and PT-
PMF-.5, in terms of precision, recall and F1. �e results indicate that
predicting user interests by integrating visual content inside the
PMF model is more accurate than the approaches based on the PMF
model, and show signi�cant e�ectiveness in trip planning. Overall,
PT-VPMF-1 outperforms the existing popular approach PT-1 5.38%,
and PT-VPMF-.5 outperforms the existing popular approach PT-.5
5.03% with respect to the average F1 value on the four cities.

5.4.4 E�ectiveness of Di�erent Visual Features. As shown in
Table 1, integrating visual features extracted from user-generated
photos into the PMF model improves the performance of predicting
user interests. �e contributions of di�erent visual features in our
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Table 3: Performance comparison of visiting duration prediction in terms of RMSE

Algo.
RMSE

Toronto Budapest Edinburgh Vienna

PT-1 145.20 ± 9.25 65.35 ± 6.31 73.39 ± 9.53 62.99 ± 5.28
PT-.5 143.55 ± 9.88 57.27 ± 5.12 91.48 ± 5.07 68.93 ± 5.69

PT-PMFC-1 127.29 ± 7.14 52.53 ± 5.01 70.17 ± 4.52 59.90 ± 6.04
PT-PMFC-.5 121.87 ± 8.59 50.52 ± 8.25 84.23 ± 9.35 61.26 ± 6.28
PT-PMF-1 110.90 ± 9.99 44.19 ± 9.18 66.68 ± 5.35 52.47 ± 5.87
PT-PMF-.5 104.67 ± 6.78 47.37 ± 9.21 73.72 ± 8.53 51.31 ± 6.21
PT-VPMF-1 109.76 ± 6.51 32.71 ± 5.35 65.72 ± 8.05 48.61 ± 7.25

PT-VPMF-.5 101.85 ± 7.68 41.87 ± 8.38 82.12 ± 9.94 44.88 ± 6.01

PT-VPMF-1 over PT-1 24.41% 49.95% 10.45% 22.83%
PT-VPMF-.5 over PT-.5 29.04% 26.89% 17.76% 34.89%

Table 4: Performance comparison with cold start scenario in terms of Precision, Recall and F1-score

Algo.
Toronto Budapest Edinburgh Vienna

Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score

PT-1 .678±.004 .682±.011 .672±.002 .572±.020 .582±.008 .567±.017 .522±.010 .584±.006 .539±.019 .602±.012 .566±.011 .567±.012

PT-.5 .635±.004 .741±.015 .676±.011 .488±.004 .681±.011 .548±.018 .522±.011 .703±.032 .588±.014 .486±.003 .630±.009 .533±.023

PT-VPMF-1 .703±.012 .703±.008 .695±.009 .611±.008 .607±.011 .596±.012 .580±.004 .607±.018 .593±.012 .653±.009 .584±.014 .592±.011

PT-VPMF-.5 .691±.023 .808±.015 .736±.027 .528±.014 .677±.010 .573±.023 .583±.018 .722±.002 .630±.005 .484±.017 .662±.024 .524±.012

proposed VPMF model are shown in Figure 4. We can observe
that color histogram feature is be�er than other features in two
cases, and SIFT and CNN are the best in one case respectively. �is
indicates that the integrating three types of features together are
useful to express user’s visit behavior and visual taste. Overall, we
obtained the best performance through integrating three types of
visual features.

5.4.5 Visiting Duration Prediction Accuracy. With the availabil-
ity of user interest predictions, we can personalize the POI visit
duration more accuracy for each user. Apart from the accuracy
of POIs recommended in a trip, recommending the appropriate
amount of time to spend at a speci�c POI is another important
consideration in tour recommendation. Visit duration at each POI
is important in trip planning. In general, users intend to spend less
time on uninteresting POIs to save time budget for interesting POIs.
�is matches user’s behaviors that users usually prefer visiting a
few POIs with high interest using all time budget to visiting many
POIs with less interest. As shown in Table 3, the recommended
personalized POI visit duration of PT-VPMF outperforms state-of-
the-art personalized methods PT over 10% in all case and over 25%
on average in terms of RMSE. �is shows that personalized user
visit duration prediction at a POI using VPMF more accurately
re�ects the real-life POI visit duration of users.

5.4.6 Cold Start Scenario. A cold start user means a user with-
out any travel history data. To investigate the performance of
VPMF for cold start users, we adapted the concept of leave-one-out
cross-validation [14] in our experiments. �at is, we leave one
user out for testing. Speci�cally, we removed all historical travel
data of this user and only kept his/her photos with all geo-tags
removed. As we lack the check-in history of this user, this user
is considered as a cold start user. Only visual content in photos
can help reveal user interest. �erefore, the model must have the
ability to address the inherent cold start nature and to recommend
trip plan accurately to achieve acceptable performance. As shown
in Table 4, the performance of all methods decreases comparing

with warm start shown in Table 1. PT-PMF has no results in Table
4 since it cannot handle cold start users. On this cold start scenario,
PT-VPMF-1 outperforms PT-1 5.74%, and PT-VPMF-.5 outperforms
PT-.5 5.15% with respect to the average F1 value. �is demonstrates
the signi�cant bene�ts of incorporating visual features of photos
to alleviate the cold start problem.

6 CONCLUSION

In this paper, a tour recommender system leveraging geo-tagged
photos, named ‘Photo2Trip’, was proposed to recommend not only
suitable POIs to visit but also visit duration at each POI. Speci�cally,
we proposed a Visual-enhanced Probabilistic Matrix Factorization
model (VPMF), which integrated visual features into the collab-
orative �ltering model, to learn user interests by leveraging the
historical travel records. Our work improved existing tour recom-
mendation research in two ways: (i) we introduced collaborating
�ltering into trip planning to predict user visit preferences of non-
visited POIs, instead of using the average visit duration of each
category of POIs for all users as individual interest; and (ii) we ex-
tracted and integrated visual features in user-generated photos of
POIs into the collaborative �ltering model PMF to further improve
user interests prediction.

Using the Yahoo! Flickr dataset across four cities, we evalu-
ated the e�ectiveness of our proposed approache against various
baseline methods. �e experimental results showed that: (i) using
collaborative �ltering to predict user interest resulted in accurate
prediction to the real-life travel sequences of users, in terms of both
precision and F1-score; (ii) incorporating visual features into the
PMF model could further improve the accuracy of prediction; (iii)
our proposed VPMF approaches predicted personalized POI visit
duration more accurately, and (iv) incorporating visual features
into PMF signi�cantly alleviated the cold start problem.
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