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ABSTRACT
Due to the prevalence of GPS-enabled devices and wireless com-
munications technologies, spatial trajectories that describe the move-
ment history of moving objects are being generated and accumu-
lated at an unprecedented pace. Trajectory data in a database are
intrinsically heterogeneous, as they represent discrete approxima-
tions of original continuous paths derived using different sampling
strategies and different sampling rates. Such heterogeneity can
have a negative impact on the effectiveness of trajectory similarity
measures, which are the basis of many crucial trajectory process-
ing tasks. In this paper, we pioneer a systematic approach to tra-
jectory calibration that is a process to transform a heterogeneous
trajectory dataset to one with (almost) unified sampling strategies.
Specifically, we propose an anchor-based calibration system that
aligns trajectories to a set of anchor points, which are fixed loca-
tions independent of trajectory data. After examining four different
types of anchor points for the purpose of building a stable reference
system, we propose a geometry-based calibration approach that
considers the spatial relationship between anchor points and tra-
jectories. Then a more advanced model-based calibration method
is presented, which exploits the power of machine learning tech-
niques to train inference models from historical trajectory data to
improve calibration effectiveness. Finally, we conduct extensive
experiments using real trajectory datasets to demonstrate the effec-
tiveness and efficiency of the proposed calibration system.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

Keywords
similarity measure, trajectory database, trajectory calibration

1. INTRODUCTION
Driven by major advances in sensor technology, GPS-enabled

mobile devices and wireless communications, a large amount of
data recording the motion history of moving objects, known as tra-
jectories, are currently generated and managed in scores of applica-
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tion domains. This inspires a tremendous amount of research effort
on analyzing large scale trajectory data from a variety of aspects in
the last decade. Representative work includes designing effective
trajectory indexing structures [28, 1, 25, 2, 8], efficient trajectory
query processing [32, 5, 10], and mining knowledge/patterns from
trajectories [20, 17, 16, 22], to name a few.

In theory, a trajectory can be modelled by a continuous function
mapping time to space; in practice, however, a trajectory can only
be represented by a discrete sequence of locations sampled from
the continuous movement of the moving object, due to limitations
of location acquisition technologies. In other words, when a raw
trajectory is reported to the server and stored in the database, it is
just a sample of the original travel history. The sampling strate-
gies used to generate trajectory data can vary significantly for sev-
eral reasons. First of all, the sampling methods can be different,
such as distance-based methods (e.g., report every 100m), time-
based methods (e.g., report every 30s) and predication-based meth-
ods (e.g., report when the actual location exceeds a certain distance
from the predicted location). Secondly, different parameters may
be used even for the same sampling strategy. For example, based
on the time-based sampling strategy a geologist equipped with spe-
cialized GPS-devices can report her locations with high frequency
(say every 5 seconds) while a casual mobile phone user may only
provide one location record every couple of hours or even days (via,
for example, a Web check-in service). Such variations can also be
imposed by external factors (such as availability of on-device bat-
tery and wireless signal) and may change at owner’s discretion.

As such, trajectory data in real world database applications are
heterogeneous by nature. This, however, can be problematic when
these heterogeneous trajectories are processed directly. For exam-
ple, as we shall illustrate later, it does not make much sense to
compare two trajectories obtained using different sampling strate-
gies by directly applying existing trajectory similarity measures
like Euclidean distance, DTW [19], LCSS [18] or EDR [4]. This
is because these measures are all based on the spatial proximity
between sampled locations, and hence easily affected by the sam-
pling strategies adopted. Consider in Figure 1(a) that two moving
objects follow highly similar routes in an urban area, but adopt dif-
ferent sampling strategies. As a result, the raw trajectory (denoted
by the solid line) of object A has fewer sample points than that of B
(denoted by the dashed line). Figure 1(b) illustrates the actual tra-
jectory data stored in the database. It is easy to observe that the two
trajectories may have a greater distance (than they are supposed to
be) based on most trajectory similarity measures. A system rely-
ing on trajectory similarity search may produce misleading results
to the users if these trajectories are processed without the aware-
ness of this issue. Therefore, this issue of trajectory heterogeneity
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Figure 1: Motivation of calibration

must be dealt with in order to make meaningful similarity-based
trajectory processing.

1.1 Problem Analysis: A Case Study
Now let us examine the impact of sampling strategies on trajec-

tory similarity analysis through a case study. We test with four
commonly used trajectory distance measures: Euclidean Distance,
DTW [19], LCSS [18] and EDR [4]. These distance measures per-
form reasonably well according to the reported results. However,
whether it is explicitly mentioned or not, a prerequisite for these
measures to be effective is that the sampling strategies of all trajec-
tory data must be compatible (that is, very similar). In the sequel,
we will demonstrate that the effectiveness of these distance mea-
sures are highly sensitive to how trajectory data are sampled.

In this experiment, we first select 500 densely sampled trajecto-
ries on a road network as the original routes. For each of them, we
adopt a time-based sampling method with variable sampling rates
of 10, 20, 30, 60 and 100 seconds (denoted by T10, T20, T30, T60

and T100, respectively). Then we choose T30 as the baseline trajec-
tory and calculate the distance between T30 and other variants us-
ing these four trajectory distance measures. The average measured
normalized distance values are reported in Table 1. One can see
that, although all the trajectories re-sampled using different sam-
pling rates refer to exactly the same original trajectory, the reported
distance values vary widely no matter which distance measure is
adopted. Consequently, all the data analysis tasks relying on such
distance measures can be ineffective as similar trajectories may not
be properly identified as such. The root cause of this phenomenon
is that all these distance measures, as well as many other trajectory
processing techniques, are merely sample-based. In other words,
all the distance evaluations are performed between sample points.
These distance measures can work only based on some assump-
tions such as very dense point sampling. As we discussed earlier,
these assumptions may no longer hold for many real-life trajectory
datasets. This case study also illustrates the severity of the trajec-
tory heterogeneity problem.

Table 1: Effect of sampling rates
���������Rate

Distance
ED DTW LCSS EDR

10 0.35 0.21 0.71 0.75

20 0.21 0.09 0.27 0.37

30 0 0 0 0

60 0.24 0.15 0.47 0.53

100 0.25 0.21 0.75 0.68

1.2 Challenges and Contributions
With the observation and awareness of this heterogeneity prob-

lem for trajectory data, a calibration process is necessary before
raw trajectory data can be used for subsequent data analytics to
transform a set of heterogeneous trajectories into one with more
unified sampling strategies. The goal of this calibration processing
is to reduce or even eliminate the negative impact of the sampling
strategies on measuring trajectory similarity. In other words, all
trajectories after calibration should better resemble their original
continuous routes thus can be more accurately compared with each
other regardless of the sampling strategies used in generating the
raw trajectories. In order to achieve this goal, we need to construct
a reference system that is trajectory-independent and then rewrite
raw trajectories based on the same reference system.

It is a non-trivial task to perform trajectory calibration. First,
building a good reference set is the stepping stone for the entire
system. Since our goal is to rewrite the trajectory data using the ref-
erence set, we expect a good reference set to be stable, independent
of data sources, and have a strong association with the trajectory
data. The first and second properties are essential for producing
trajectories in a unified form, while the third property ensures that
the calibration process will not introduce a large deviation from
the original routes. Trajectory calibration may encounter three cir-
cumstances when rewriting a trajectory with the reference set: 1) a
trajectory point may need to be shifted and aligned onto the refer-
ence; 2) some trajectory points may need to be removed or merged
(when the sampling rate is higher than necessary); 3) some new tra-
jectory points may need to be inserted (when the sampling rate is
too low), all in the context of the chosen reference system. Further,
the criteria to judge the goodness of the calibration results need to
be established, for the system to enforce efficiently and effectively
and for the users to understand to what extent the calibration can
improve the data analysis results.

In this paper, we propose an anchor-based calibration system for
heterogeneous trajectory data. It comprises two components: a ref-
erence system and a calibration method. For the first component,
we present several reference systems by defining different types
of anchor points (space-based, data-based, POI-based and feature-
based), which are fixed small regions in the underlying space. A
series of strategies are designed for the calibration component, in-
cluding the methods to insert anchor points to trajectories in order
to make them more complete without scarifying geometric resem-
blance to the original routs. To this end, we first derive the trans-
fer relationship among anchor points by learning from a historical
trajectory dataset, and then infer the most probable alignment se-
quence and complement points with high accuracy by exploiting
the power of the Hidden Markov Model and Baysian Network. We
also perform an empirical study to examine the effect of calibra-
tion process, using the trajectories with a very high sampling rate
as the ground truth data (the original route) and generate raw trajec-
tories using a different sampling rate in a controlled way. Then we
measure the similarities between the raw trajectories, with a set of
commonly used distance functions, before and after the calibration
process. We will show in the experiment that while the similarities
between the raw trajectories heavily depend on the sampling rates,
with calibrated trajectories their similarities always highly resem-
ble those of the original routes for a wide range of sampling rates.

Continuing with the previous example in Figure 1, one possible
approach is to use the turning points a1, ..., a10 as the reference
system as shown in Figure 1(c), and rewrite both trajectories with
these points. Since trajectory B has enough samples to describe
its route, it is fairly simple to calibrate – just align each sample to
its nearest turning point. However, there is so much information
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lost in trajectory A that simply aligning each sample to its nearest
turning point (i.e., a1, a8, a9) still results in a low quality trajectory.
A good calibration system should help to infer that a7, a3, a4 are
very likely (indicated by a confidence value) to be passed by the
routes from a1 → a8, and a8 → a9. After both trajectories have
been calibrated, they can become similar again.

To sum up, we make the following major contributions.
• We make a key observation that widely existing heterogene-

ity in trajectory data caused by different sampling strategy
can harm the effectiveness of trajectory data analysis, thus
calls for a calibration system to reduce or eliminate the im-
pact of the sampling heterogeneity.

• We design an anchor-based calibration system in two phases:
building a reference system and performing calibration. As
a comprehensive solution, we present four types of anchor
points which are suitable for building a stable reference sys-
tem. On this basis, we propose two kinds of approaches,
geometry-based and model-based, to effectively align and
complement trajectories using the anchor points.

• We conduct extensive experiments based on large-scale real
trajectory dataset, which empirically demonstrates that the
calibration system can significantly improve the effective-
ness of most popular similarity measures for heterogeneous
trajectories.

The remainder of this paper is organized as follows. Section 2
introduces the preliminary concepts and overviews the calibration
system. We discuss the reference systems and calibration methods
in Section 3 and Section 4 respectively. The experimental obser-
vations are presented in Section 5, followed by a brief review of
related work in Section 6. Section 7 concludes the paper and out-
lines some future work.

2. PROBLEM STATEMENT
In this section, we present some preliminary concepts and give

an overview of the proposed calibration system. Table 2 summa-
rizes the major notations used in the rest of the paper.

Table 2: Summarize of notations
Notation Definition
T a raw trajectory

T a calibrated trajectory

p a sample point of a trajectory

a anchor point

A the set of anchor points in a reference system

T (ai → aj) a trajectory travelling from ai to aj
d(ai, aj) distance between anchor points ai and aj
d(Ti, Tj) distance between trajectories Ti and Tj

2.1 Preliminary Concepts

DEFINITION 1 (ORIGINAL ROUTE). An original route of a
moving object is a continuous mapping from time domain to spatial
coordinates (i.e., longitude and latitude), indicating the exact path
travelled by the object.

The original route does not exist in a practical database since no
positioning technique can acquire location records continuously.
Instead, only a set of samples from the original route can be ob-
tained and stored in the database.

DEFINITION 2 (RAW TRAJECTORY). A raw trajectory T is a
finite sequence of locations sampled from the original route of a
moving object, i.e., T = [p1, p2, ..., pn].

Please note that a time-stamp is usually associated with each lo-
cation record, but we will only concentrate on the spatial feature
of the trajectory in this paper. Simply speaking, the raw trajectory
of a moving object is only one possible sample from its original
route by using a specific sampling strategy. A sampling strategy
is the mechanism based on which the object decides to report its
location. Time-based sampling, distance-based sampling, turning-
based sampling and prediction-based sampling are among the most
widely used sampling strategies. Besides, the object can also adopt
different sampling rates which is the frequency of reporting the lo-
cation depending on the sampling strategy (e.g., every 500 meters
or 30 seconds, etc). In the rest of the paper, we will use trajectory
and raw trajectory interchangeably when the context is clear.

DEFINITION 3 (ANCHOR POINT). An anchor point is a fixed
spatial location in the space, which is stable and independent of the
trajectory data source.

An anchor point can either refer to a geographical object that
physically exists such as a Point of Interest (POI), or can be vir-
tually defined such as the centroid of a grid. Actually any kind of
entities in space can serve as the anchor points as long as they are
stable and not affected by the trajectory data input.

DEFINITION 4 (REFERENCE SYSTEM). A reference system is
a homogeneous set of anchor points.

All the anchor points that form a reference system must belong
to the same type. The homogeneity of anchor points in a reference
system guarantees the consistency of the trajectory calibration pro-
cess, i.e., all the trajectories are calibrated to the same type of an-
chor points. For example, all the POIs in a city can constitute a
reference system, while a union set of POIs and road intersections
cannot since they are not of the same type.

DEFINITION 5 (TRAJECTORY CALIBRATION). Given a ref-
erence system with anchor point set A, trajectory calibration for
T = [p1, p2, ..., pn] is a process that transforms T into another
trajectory T = [a1, a2, ..., am] where ai ∈ A (1 < i < m). T is
called the calibrated trajectory of T .

We expect the new trajectory T after calibration to preserve the
original route of T as much as possible, which is critical to re-
duce the erroneous adjustments to the original route. Ideally, the
trajectories that share the same original route will have the same
calibrated trajectory no matter what sampling strategies they adopt.
Therefore an evaluation criterion is how well the calibrated trajec-
tory resembles the original route.

2.2 System Overview
Figure 2 shows the overview of the proposed calibration system,

which basically comprises two parts: reference system generation
and trajectory calibration. In this work, we define four types of an-
chor points for constructing a reference system, i.e., space-based,
data-based, POI-based and feature-based anchor points. The refer-
ence system can be built offline since it is independent of data input.
The calibration process is divided into two phases: alignment and
complement. Generally, the alignment phase maps existing sam-
ple points of a trajectory to some anchor points. The complement
phase inserts additional anchor points to make the trajectory more
complete and similar to its original route, which is especially im-
portant for trajectories with low sampling rates. The calibration
process can be either online or offline depending on the application
requirement (e.g., an on-the-fly process or a batch process). We
will detail the discussion for each part in the next two sections.
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Figure 2: System overview

3. REFERENCE SYSTEMS
In this section, we will define several different types of anchor

points for building a reference system. Although any fixed entity
in the space can be an anchor point, not all of them are suitable
for calibration. First, a reference system should have a sufficient
number of anchor points in order to describe any given trajectory
with high quality. For example, if we simply use all cinemas in a
city as the reference system, a trajectory may have too few points
after calibration. As such, most information in the raw trajectories
will be lost. Second, a reference system should be stable and does
not require substantial changes to calibrate new data. This property
is crucial as it ensures that most new trajectories can be calibrated
without refurbishing the reference system. Based on this guideline,
we propose four types of anchor points that are expected to be suit-
able for building a reference system. We will study their effects on
the calibration process with experiments later in this paper.

It is worth noting that road intersections and segments are natu-
ral choices for anchor points if a digital road map is available. But
we will not adopt it in this work for two main reasons. First we
attempt to make the proposed methods general enough to fit both
constrained and unconstrained trajectories (e.g., traces of hiking,
boating, walking, and many out-door activities); and second, most
digital maps actually have legal or technical restrictions on their
use [26, 14], which hold back people from using them in creat-
ing new applications. Therefore in this work, we will build refer-
ence systems based on resources that are easier to acquire, and our
framework can be easily extended to accommodate the network-
based anchor points in future work.

3.1 Space-based Anchors
The most straightforward idea is to divide the entire space into

uniform grid cells, and use the centroids of the cells as the anchor
points. An obvious advantage of using grid centroids is that we can
easily build a reference system for any trajectory dataset without
extra resources or information. The idea of using grid to adjust tra-
jectories is inspired by the Realm method [13], but their purpose is
to represent spatial objects in a database with predefined precision.

3.2 Data-based Anchors
A space-based reference system, despite its simplicity, may not

capture the distribution of the trajectory data. In other words, the
space partition may be too fine-grained for a set of sparsely dis-
tributed trajectories but too coarse for another with dense distribu-
tion. Another option is to select a large enough set of historical
trajectories and use their sample points as the anchor points. Since
these samples, called archived samples, represent the travel history

of moving objects in the past, it is more reasonable to rewrite a
given trajectory based on this type of anchor point. Besides, each
anchor point is guaranteed to be a reachable location for a new tra-
jectory. But using archived samples also has down sides. First, we
must have a sufficient number of historical trajectories that locate in
the same region with the input trajectories. Second, the calibrated
trajectory may have a high degree of redundancy when the number
of archived samples is large. For instance, in our experiments, we
observe there can be more than 300 archived samples along a street
one hundred meters long. Third, the effectiveness of the reference
system may be affected by the noises residing in the archived data.

3.3 POI-based Anchors
A Point of Interest (POI) refers to a semantic location such as a

restaurant, hotel, shopping centre, etc. POIs are stable in terms of
their locations since a business or facility can usually last for a long
period. Besides, POIs have a consistent distribution with trajecto-
ries in the same area, since in most cases people travel from/to some
POIs to perform certain activities. Due to this property, we can use
a POI dataset to build a reference system for the same area (e.g.,
within a county/city). However, we observe that directly using the
POIs can be problematic. Since POIs can be densely distributed
in a small area, each trajectory point can be rewritten with many
possible candidate anchor points within close proximity. As such,
the trajectories after calibration may still have quite different sam-
ple strategies. In order to remedy this problem, we pre-process the
POI dataset by applying a density-based clustering method (e.g.,
DBSCAN [9]) to generate a smaller number of clusters, which will
be used as the anchor points. By this means, POIs in densely pop-
ulated areas can be merged into clusters and a cluster becomes an
anchor point. As such, trajectories with similar routes, but different
samples, will have a better chance to be re-synchronized by map-
ping their sample points to POI clusters.

3.4 Feature-based Anchors
The data-based reference system utilizes the historical archived

trajectory points as the anchor points, which can have a high de-
gree of redundancy. To remedy this issue, we can use only some
important points in trajectory data, called features, as the anchor
points. Moving objects usually travel in a constrained space such
as road networks, tracks or waterways. Therefore an important fea-
ture that can well characterize a trajectory is the turning points, at
which a moving object changes its direction significantly. In other
words, the main shape of a trajectory can be described by a few
turning points regardless how many samples it has originally. So
intuitively, if we can rewrite all the trajectories based on turning
points, their shapes can be well preserved and the samples are also
synchronized. We can adopt the algorithm in [6], which detects
point clusters that satisfy both the density requirement and the di-
rection change condition, to extract turning points.

3.5 Stability Test of Reference Systems
As we mentioned, reference system stability is a highly desired

property, which is crucial to the performance of calibration. As
such, in the last part of this section we conduct a quantitative anal-
ysis about the stability of the proposed reference systems. Since
both grid centroids and POI clusters are fixed locations and thus
inherently stable, we only evaluate the stability of the other two
reference systems, i.e., the ones based on archived samples and
turning points. We use a trajectory dataset that is collected from the
taxicabs in a big city for a period of three months (more detailed
description for this dataset will be provided in Section 5). This
dataset is divided into six equal parts according to the log time, so
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each part corresponds to about two weeks of the trajectory data.
Then we use the first part to construct the reference systems. After
that, we superimpose the second part on the first one and compute
their Hausdorff distance [15] to measure the similarity between two
sets of points. Next we merge the second and the first dataset into
one, and progressively append the remaining parts in a similar man-
ner. The Hausdorff distances between each appended part and the
existing reference system are reported in Figure 3. We can see that
for both methods the distances decrease quickly when the second
(1/6) and the third part (2/6) of the dataset are appended to the ref-
erence systems, and then stabilize thereafter. It means the reference
systems built upon the first half of the dataset have highly similar
distribution with the data in the other half. In other words, only a
part of the historical trajectory data can lead to a stable reference
system, which will nicely capture the distribution of new data.
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Figure 3: Stability of reference systems

4. TRAJECTORY CALIBRATION
In this section, we discuss in detail about the calibration pro-

cess based on a reference system built offline. Specifically, the
calibration process can be divided into two phases: alignment and
complement. The alignment phase maps a trajectory to some an-
chor points. The number of sample points in a trajectory may be
kept unchanged or reduced since multiple samples in close prox-
imity can be merged into the same anchor point. However a low-
sampling-rate trajectory cannot benefit from this phase alone since
the calibrated trajectory will be still low-sampled. The complement
phase inserts some anchor points in-between the trajectory points
after alignment, by estimating those important but missing anchor
points that the object may pass by.

4.1 Geometry-based Calibration
In this part we present a geometry-based calibration method,

which simply explores the spatial relationship between trajectories
and anchor points in space when choosing the anchor points for
alignment and complement.

4.1.1 Alignment
The geometry-based alignment is based on the simple idea of

finding the nearest anchor point for each sample point of a given
trajectory and then mapping the original sample point to its nearest
anchor point. More precisely, each sample point in a trajectory will
be aligned to a nearest anchor point. In order to avoid the case that
a sample point will be aligned to a faraway anchor point, we can
map a sample point to some anchor points within a distance thresh-
old ηdist and the sample points far away from any anchor point
will be removed. Besides, if several consecutive sample points, i.e.,
pi, pi+1 · · · , pj , of trajectory T are all close with each other thus
can be aligned to the same anchor point a, we will only record one
copy of a in the aligned trajectory. By this means, we can reduce
the unnecessary redundant samples and outliers in some trajecto-

ries. The alignment process involves a constrained nearest neigh-
bor search against the anchor point set for each trajectory point,
which has a logarithmic-scale complexity with respect to the num-
ber of anchor points (O(log |A|)) [24] when some space partition
or tree-based index is used. Thus the complexity of the alignment
is O(NT · log |A|), where NT is the size of the input trajectory.

4.1.2 Complement

Algorithm 1: Geometry-based Complement

Input: Anchor point datset A, aligned trajectory T , ηdist
Output: Complemnted trajectory T

1 Sl ← line segments li connecting consecutive anchor points ai and

ai+1 of T ;
2 for each li ∈ Sl do
3 Initialize an empty list L ← ∅;
4 Initialize a candidate complement anchor set Ci ← ∅;
5 Ci ← all anchor points a ∈ A satisfying d(a, li) ≤ ηdist;
6 a′ ← ai;
7 while true do
8 Find a∗ = argmina∈Ci

{d(a, ai)};

9 if the angle between
−−−→
a′, a∗ and −−−−−→ai, ai+1 < π

2
then

10 Insert a∗ to L;
11 a′ ← a∗;

12 Remove a∗ from Ci;
13 if Ci is empty then
14 break ;

15 Insert the points in L into T in-between ai and ai+1;

16 return T

The main idea of the geometry-based complement method is
to add the anchor points around the line segment in-between any
two consecutive samples into the calibrated trajectory, based on the
intuition that a moving object rarely changes its direction signifi-
cantly between two consecutive sampled locations. The main dif-
ficulty of this method lies in that, after the anchor points nearby
the line segments are selected, how to decide the right insertion
order for these points. Algorithm 1 illustrates the main structure
of our proposed method. Basically, given an aligned trajectory T ,
the geometry-based method consists four steps. (1) Connect each
two adjacent anchor points ai and ai+1 by a line segment li of T
(line 1). (2) Build an anchor point set Ci for each line segment that
keeps all the anchored points a whose distance to li is less than a
threshold ηdist (line 4-5). Ci holds all the candidate anchor points
that are potential to be used. (3) Then we iteratively find the next
anchor point a∗ from Ci to be inserted which has the minimum dis-
tance to the ai (line 8), and insert a∗ in-between ai and ai+1 if it
does not change the moving trend of li (line 9-10). (4) Repeat step
2 and 3 until Ci becomes empty.

The example in Figure 4 demonstrates how the anchor points are
selected and complemented into the trajectory segment in-between
ai and ai+1 by using the geometry-based complement algorithm.
First we find five candidate anchor points (a1, a2, a5, a7 and a8)
whose distances with the line segment li are less than ηdist. Then
these points are sequentially connected in the order of their dis-
tances with ai, and none of them conflicts with the major direction
from ai to ai+1.

The complexity of the above algorithm is dependent on two fac-
tors: the length of aligned trajectory T (i.e., the sum of the lengths
of the line segments) and the number of anchor points “close” to
T . Let L denote the average length of a trajectory segment and ρ
the average density of anchor points in the given reference system.
Then the average number of anchor points that are close to each
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Figure 4: An example of the geometry-based complement

line segment is Na = 2L · ρ · ηdist. Since these anchor points
need to be sorted based on their distances with ai, the overall com-
plexity is O(NT · Na logNa), where NT is the average size of
the aligned trajectory.

The geometry-based calibration has two major drawbacks. First,
it takes a greedy strategy to align each trajectory point in an isolated
manner, which ignores the relationship between anchor points. Sec-
ond, the anchor points inserted in the complement step are all around
the trajectory segments, which means it can only increase the sam-
pling rate of the trajectory while keep the shape unchanged. But
sometimes the shape of a trajectory has changed due to the loss of
some descriptive samples (e.g., the one at turning points), in which
case we need to complement the shape of the trajectory.

4.2 Model-based Calibration
To further improve the calibration performance, we propose a

more advanced model-based calibration approach, which explores
the correlations between anchor points that are learnt from a his-
torical trajectory archive, and leverages the power of the Hidden
Markov Model (HMM) and Bayesian inference to find the most
probable alignment sequence and complement points, respectively.
The model-based calibration consists of three steps: deriving an-
chor transition probability, global alignment and inferring comple-
mentary points. The first step learns from a historical trajectory
dataset, the transition probability of an object moving from one an-
chor point to another. In the second step, we feed the anchor transi-
tion probability as well as the spatial relationship between sample
points and anchor points into the HMM to derive the global op-
timal alignment. The third step also utilizes the anchor transition
probability to infer the likelihood of one or multiple anchor points
being passed through by the routes in-between two aligned anchor
points, and then complement the trajectory by inserting those an-
chor points whose likelihoods are more than a certain threshold.

4.2.1 Anchor Transition Probability
In this part we will derive the transition probability between an-

chor points. First of all, a reference map, represented as a directed
graph G(V,E), is built to indicate the direct transition probability
between two anchor points. Given a reference system and a his-
torical trajectory dataset, we can construct the reference map in the
following steps:

1. We add each anchor point in the reference system to the ver-
tex set V of the reference map.

2. We add a directed edge from ai to aj , denoted by e(ai, aj), if
there exists a trajectory T in the historical trajectory dataset
travelling from ai to aj directly, i.e., two consecutive points
pi, pi+1 of T are in close vicinity of ai and aj respectively.
We denote such a trajectory by T (ai → aj).

3. Each edge e(ai, aj) is annotated with the number of T (ai

→ aj).
After the reference map has been constructed, we can immedi-

ately get the 1-step transition probability from ai to aj as follows,

if e(ai, aj) exists in the map:

Pr1(ai → aj) =
|T (ai → aj)|
|T (ai → ∗)|

where T (ai → ∗) represents the trajectories travelling from ai to
any other anchor point. Figure 5 gives an example of the reference
map, where the direction of arrow represents the transition rela-
tionship between two anchor points and the number around each
arrow indicates how many trajectories travel through the two an-
chor points consecutively. Based on this reference map, we can
derive the 1-step transition probability, e.g., Pr1(a1 → a5) =

5
9

.

a1
a2 a3

a4 a5 a6
1

2
1

1

5

4 6

7

3
2

Figure 5: An example of the reference map

λ-step transition probability. The first order transition prob-
ability is not sufficient for inferring the relationship between an-
chor points without an edge. To address this issue, we leverage
the first order probability to get higher order transition probabil-
ities. First, a transition matrix M with mi,j = Pr1(ai → aj)
is defined. It is easy to get that M2 contains all the second or-
der transition probability, and entries mi,j (after normalization) in
M + M2 correspond to the 2-step transition probability, which is
the likelihood of transition from ai to aj within two steps. Anal-
ogously, we can get the λ-step transition probability by evaluating
the matrix M1:λ = M +M2 + ...+Mλ. But it is not efficient to
evaluate M1:λ during the calibration process since multiplication
of large matrix is very expensive. In this paper, we pre-compute
the transition matrix offline, by setting λ to be sufficiently large to
cover the most pairs of anchor points within the average distance
of trajectory sample points.

Background transition probability. Sometimes due to the spar-
sity of historical data, it cannot reflect all the transition relationships
between two anchor points even though they are close to each other.
To get a complete reference map, we define a background transition
matrix B by considering the spatial proximity between two anchor
points. Each entry bi,j of B, which represents the background tran-
sition probability from ai to aj , is defined as e−d(ai,aj).

Finally we define the transition probability from ai to aj , de-
noted by Pr(aj |ai), to be the normalized sum of the λ-step transi-
tion probability and the background transition probability, i.e.,

Pr(aj |ai) =
pi,j

pi,1 + pi,2 + ...+ pi,|A|
(1)

where pi,j = m1:λ
i,j + bi,j .

4.2.2 Global Alignment
The geometry-based approach aligns each individual point in an

isolated manner, which does not make use of the correlation be-
tween anchor points. Next we propose an HMM-based approach to
find the most probable alignment by utilizing the transition prob-
ability in the derived reference map. In particular, the candidate
anchor points are sequentially generated and evaluated on the basis
of their likelihoods. When a new trajectory sample point is to be
aligned, past hypotheses of the solution are extended to account for
the new observation. Among all candidates in the last stage, the
surviving path of anchor points with the highest joint probability
is then selected as the final solution. In contrast to local alignment
results in the geometry-based approach, the HMM-based approach
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takes into account the anchor points in a collective manner when it
generates the alignment.

Given a trajectory T , we treat each point pi ∈ T as an observed
state and identify a set of candidate anchor points Ai, whose dis-
tance with pi is less than a certain threshold ηdist. Each of these
candidate is regarded as a hidden state in the HMM. Each hidden
state aj ∈ Ai has an emission probability, Pr(pi|aj), which is the
likelihood of observing the point pi conditioned on aj being the
ground truth. Intuitively, we would assign a higher probability to
an anchor point if it is closer to pi. In this paper, we assume pi
follows a normal distribution with aj as the mean and a constant
σ as the variance, i.e., Pr(pi|aj) = N(aj , σ

2). The transition
probability between adjacent hidden states in the Markov chain,
i.e., Pr(ai|ai−1), can be obtained from the reference map that is
derived earlier. Here we will adopt the first-order Markov chain
based on the assumption of the 1-dependency, i.e., the probability
of the current state is only dependent on the previous one, since the
influence between two distant anchor points is usually very small.

Finally, we can compute the posterior probability of all hidden
state variables given a sequence of observations, i.e., Pr(ak|p1, ...,
pn) ∀ak ∈ Ak,. It can be rewritten as

Pr(ak|p1, · · · , pk, pk+1, · · · , pn) (2)

∝ Pr(ak|p1, · · · , pk) Pr(ak|pk+1, · · · , pn) (3)

where Pr(ak|p1, · · · , pk) is the forward probability and Pr(ak|
pk+1, · · · , pn) the backward probability. We can apply the forward-
backward algorithm [3] to calculate the probability of each candi-
date anchor point and select the most probable alignment sequence.
Since the forward-backward algorithm has the time complexity of
O(T ·N2), where T is the length of sequence and N is the number
of symbols in the state alphabet, the time complexity of the global
alignment algorithm is O(NT · |A|2), where NT is size of raw tra-
jectory and |A| is the total number of candidate anchor point sets
(i.e., |A1 ∪A2 ∪ ... ∪An|).

4.2.3 Inferring Complementary Points
Next we discuss how to infer the possible anchor points to be in-

serted in-between two consecutive points ai and ai+1 in an aligned
trajectory T = [a1, · · · , ai, ai+1, · · · , an]. The main idea is to
generate all possible paths between adjacent anchor points in the
aligned trajectory, evaluate the probability of these paths and ob-
tain the probability of each anchor point on any of these path. Af-
terwards, the anchor points with high confidence will be selected
as the complementary points. The Algorithm 2 illustrates the main
structure of this approach.

We denote the probability of an anchor point a∗ being passed by
the original route of T from ai to ai+1 by Pri(a

∗|T ). The aim
of this step is to find the anchor points a∗ such that Pri(a

∗|T ) is
greater than a pre-defined confidence threshold ηconfi (line 13-14).

Pri(a
∗|T ) is defined as follows (line 11-12):

Pri(a
∗|T ) =

∑

P∈PPλ(ai,ai+1)

Pri(P |T ) · exist(P, a∗) (4)

where PPλ(ai, ai+1) is the set of possible paths which are con-
structed by using anchor points and connect ai and ai+1 within
λ intermediate steps. exist(P, a∗) is an indicator, whose value is
equal to one if a∗ lies in the path P , and zero otherwise. In the
sequel, we will discuss how to obtain PPλ(ai, ai+1) and compute
Pri(P |T ), respectively.

1). Generate the possible paths.
In order to obtain PPλ(ai, ai+1), we need to enumerate all the

possible paths from ai to ai+1 within λ hops. Let N(ai) denote

Algorithm 2: Model-based Complement

Input: λ-step transition matrix M1:λ, transition probability
Pr(aj |ai), aligned trajectory T , ηconfi

Output: Complemented trajectory T
1 for each ai ∈ T do
2 S(ai → ai+1) ← candidate complementary points in-between

ai and ai+1 based on M1:λ;
3 Generate the path tree from ai to ai+1 by using S(ai → ai+1);
4 PPλ(ai, ai+1) ← all paths from ai to ai+1 in the path tree;
5 for each P ∈ PPλ(ai, ai+1) do
6 Calculate Pri(P |T ) by using transition probability

Pr(aj |ai);
7 Initialize a list of complementary points L ← ∅;
8 for each a∗ ∈ S(ai → ai+1) do
9 Pri(a

∗|T ) ← 0;
10 for each P ∈ PPλ(ai, ai+1) do
11 if a∗ ∈ P then
12 Pri(a

∗|T )+ = Pri(P |T );

13 if Pri(a∗|T ) ≥ ηconfi then
14 Add a∗ to L;

15 Insert all the anchor points of L into T in-between ai and ai+1;

16 return T

the anchor points in the reference map that are directly reachable
from ai in the reference map. We build a path tree from ai to ai+1

to help us find possible paths from ai to ai+1 (line 3-4). A path
tree from ai to ai+1 is built according to the following four rules:
(1) the root of the tree is ai; (2) the height of the tree is λ + 1; (3)
the child nodes of aj are N(aj); (4) ai+1 must be the leaf node.
An example of a path tree from a1 to a6 in illustrated by Figure
6(a). With the help of the path tree, finding all the paths P of
PP3(a1, a6) is simplified to visiting the tree from root a1 to all the
leaf nodes.

However, the above process can be very time consuming when
λ is large and/or each anchor point connects many other anchor
points. In order to reduce the search space in the path tree, we
can utilize the λ-step transition matrix M1:λ that is pre-computed
with the reference map (line 2). Based on the λ-step transition ma-
trix, it is easy to derive the set of destinations S(ai →) that can be
reached from ai within λ steps. Similarly, we can also get the set of
sources S(→ ai+1) that can reach ai+1 within λ steps. The joint
set S(ai → ai+1) = S(ai →) ∩ S(→ ai+1) then contains all the
anchor points on the paths from ai to ai+1 within λ steps. After that
we can delete the nodes that does not exist in S(ai → ai+1) and
their child nodes in the path tree, by which means many impossible
paths can be filtered out and the search space gets reduced substan-
tially. Continuing with the previous example, from M1:3 we know
that a3 can never reach a6 within 3 steps, so a3 and its child nodes
can be deleted from the original path tree. The optimized path tree
is shown in Figure 6(b).

1

2 4 5

1 3 3 5 6

2 4 5 2 2 6

(a)

1

2 4 5

1 5 6

2 4 5 6

(b)

Figure 6: An original path tree and its optimized path tree
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2). Evaluate Pri(P |T )
Now we need to evaluate the probability of a path P that con-

nects ai and ai+1 within λ steps, conditioned on the observed
alignment T = [a1, · · · , ai, ai+1, · · · , an] (line 6), i.e.,

Pri(P |T ) = Pri(a
∗
1, a

∗
2, · · · , a∗

k|a1, · · · , ai, ai+1, · · · , an) (5)

where k ≤ λ and a∗
1, a

∗
2, · · · , a∗

k are the points on path P . The re-
sulting trajectory will be [a1, · · · , ai, a

∗
1, · · · , a∗

k, ai+1, · · · , an].
However, the exact evaluation of Eq. (5) is too expensive to be

feasible for calibration. To address this issue, we make the assump-
tion that the probability of an anchor point is only affected by its
precedent in a path. Then Equation 5 can be simplified as follows:

Pri(a
∗
1, a

∗
2, · · · , a∗

k|a1, · · · , ai, ai+1, · · · , an)

=Pri(a
∗
1, · · · , a∗

k|ai, ai+1)

=
Pr(a∗

1|ai) Pr(a
∗
2|a∗

1) · · ·Pr(ai+1|a∗
k)

Pr(ai+1|ai)

(6)

The time complexity of Algorithm 2 is O(NT · |PP |2), where
NT is the size of the aligned trajectory and |PP | is the average
number of paths connecting two consecutive anchor points of T
within λ steps. Let do denote the average out degree of an anchor
point in the reference map, then |PP | can be evaluated as dλo . Usu-
ally the value of λ is very small, which makes the practical time
cost of Algorithm 2 reasonable. Besides, with the help of opti-
mized path tree, only a small subset of the possible paths needs to
be checked. The effect of this optimization will be verified in the
experiment (Sec 5.3.7).

5. EXPERIMENT
In this section, we conduct extensive experiments to validate

the effectiveness of our proposed calibration system, which entail
different combinations of reference systems and calibration meth-
ods. All the algorithms in our system are implemented in Java and
run on a computer with Intel Core i7-2600 CPU (3.40GHz) and
8 GB memory.

5.1 Experiment Setup

5.1.1 Data Preparation
Trajectory Dataset: We use a real trajectory dataset generated

by 33,000+ taxis in a large city over three months. In total, this
dataset has more than 100,000 trajectories. We define a trajec-
tory as a high-sampling-rate trajectory if the average time inter-
val between consecutive sample points is less than 10 seconds.
According to this criterion, we select 11,028 high-sampling-rate
trajectories from the dataset, and then divide them into two equal
parts. One of them, called the training dataset, serves as an archived
dataset which will be used for building a reference system, finding
turning points and training the reference map. The other one, called
the test dataset, is used for testing the effectiveness of calibration.

Manipulated Trajectory Dataset: We re-sample each trajec-
tory T in the test dataset to obtain three counterparts with varied
sampling rates, i.e., a sample per 50, 100, 150 seconds, denoted as
T50, T100, T150. These trajectories refer to the same original route
as the high sampled trajectory T but have different sampling rates.

5.1.2 Anchor Point
Grid Centroids: We divide the area of the large city into 1570

by 1358 cells, each with a side of 100 meters, and get 2,132,060
grid centroids.

Archived Samples: We use the 1,485,284 sample points in the
training dataset as the anchor points to build the data-based refer-
ence system.

POI Clusters: We purchase about 510,000 POI points of the
same city from a reliable third-part company. Approximately 17,000
POI clusters are obtained using DBScan and the geometric centre
of each cluster is used as the anchor point.

Turning Points: We extract about 32,000 potential locations of
turning points from the training dataset, and finally generate 2,400
turning points with the method described in Section 3.

5.2 Evaluation Approach

5.2.1 Calibration Methods
We propose four types of anchor points and two calibration meth-

ods, which lead to eight combinations of calibration process. But
we do not use the model-based calibration method with the grid
centroids and archived samples, since their cardinalities are very
large that renders the inference process not efficient. Therefore in
the following experiments, we will apply the geometry-based ap-
proach to all types of anchor points, and the model-based approach
on POI clusters and turning points only. All these calibration strate-
gies and their abbreviations are listed in Table 3, in which SP stands
for the method of using the raw trajectories without any calibration.

Table 3: Calibration Methods
Anchor points

Calibration
Method

Geometry-based Model-based

sample points N/A SP

grid centroids
√

GC

archived samples
√

AS

POI clusters
√

POI+G

POI clusters
√

POI+M

turning points
√

TP+G

turning points
√

TP+M

5.2.2 Parameters
Table 4 lists all the parameters we used throughout the experi-

ments, that all the parameters are assigned the default values unless
specified explicitly.

Table 4: Parameter settings
Notation Explanation Default value

ηdist range of tolerance 50m

ηconfi confidence threshold of model-based
complementing

0.8

σ standard deviation of the distribution of
anchor points

10m

λ maximum number of steps in transition
matrix

10

5.3 Performance Evaluation

5.3.1 Visualization of calibration effect
Before conducting the quantitative performance evaluation, we

give an intuitive illustration for the calibration effect by visualiz-
ing the results. Figure 7(a) shows two trajectories with different
sampling rates but referring to the same route. It can be imagined
that conducting similarity analysis on them directly will result in a
poor quality answer. Figure 7(b) illustrates their calibration result
by using POI-based anchor points (represented by solid squares).
For the high sampled trajectory, geometry-based and model-based
approaches produce the same result (only POI+M calibration result
is shown for the sake of conciseness). But they make difference on
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(a) High and low sampled trajectories from
the same route

(b) Calibration with POI-based anchors (c) Calibration with turning point based an-
chors

Figure 7: Visualization of Calibration Effect
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Figure 8: Distance between the trajectories referring to the same original route

how to choose the complementary anchor points for the low sam-
pled trajectory. Specifically, geometry-based approach can only
complement the anchor points that are spatially “around” the tra-
jectory segments (e.g., a6, a8, a10, a14, a17), whereas the model-
based method can choose more anchor points that are actually on
the original route, and thus gain better calibration result (i.e., the
blue dashed line is more similar with the red solid line). Figure 7(c)
demonstrates the calibration effects by using turning points as the
reference system. We can see that turning points can give more
precise and concise representation for both high sampled and low
sampled trajectories. Besides, the advantage of the model-based
method is more obvious as we can see it fully recovers the original
route for the low sampled trajectory.

5.3.2 Effect on Similarity Measures: Self Compari-
son

In the first set of experiments, we evaluate how the calibration
methods can improve the effectiveness of trajectory similarity mea-
sures. For each trajectory T of the test dataset, we use Euclidean
distance (ED), DTW, LCSS and EDR to calculate the distances be-
tween T and its three low-sampling-rate counterparts, i.e., d(T,
T50), d(T, T100) and d(T, T150). Analogously, we use these four
measures to calculate the distances between T and their calibrated
low-sampling-rate counterparts, i.e., d(T , T 50), d(T , T 100) and
d(T , T 100). Since each pair of trajectories in comparison refers
to the same original route, a smaller distance value means better
effectiveness of the similarity measure. Figure 8 shows the results
of the normalized distances (i.e., distance over the size of trajec-
tory) based on the raw trajectories (denoted by SP) and trajectories
with different calibration schemes. Not surprisingly, all distances
gradually increase with the drop of sampling rate since more sam-
ple points characterizing the major shapes of trajectories are lost.
However, raw trajectories have considerably greater distances than
the calibrated trajectories do at all sampling rates, which demon-
strates the ability of the proposed calibration methods to improve
the accuracy of the common similarity measures. A general phe-
nomenon from this figure is that, the POI and TP based methods
achieve better effectiveness since the corresponding distance val-

ues are very close to the ground truth (zero), especially for ED and
DTW distance. Besides, by learning the knowledge hidden in the
historical data, model-based approaches (i.e., POI+M, TP+M) lead
to even better performance compared to the geometry-based ap-
proaches (i.e., POI+G, TP+G). Consequently, the combination of
turning points as the reference system and model-based calibra-
tion procedure (i.e., TP+M) turns to be the most robust approach in
terms of the capability of recognizing the trajectories of the same
route, as we can see that the distance based on it is always the
smallest among all the methods.

5.3.3 Effect on Similarity Measures: Cross Compar-
ison

A good calibration method should not only improve the ability
to recognize the trajectory variants of the same route, but can also
preserve the distance between any trajectories regardless of their
sampling strategies. In this experiment we randomly select 5,000
trajectory pairs from the test dataset, and for each pair (TA, TB)
we use the four distance measures to calculate the distances be-
tween them, denoted as d(TA, TB). d(TA, TB) is regarded as the
ground truth of the distance between the routes of TA and TB . Then
we calculate the distances between TA and different variants of
TB , i.e., d(TA, TB50), d(TA, TB100) and d(TA, TB150). Finally,
we put TA, TB and its variants through the calibration system,
and re-calculate the distances between them, i.e., d(TA, TB50),
d(TA, TB100) and d(TA, TB150). In order to illustrate how well
these distances resemble their ground truth in a more intuitive way,
we show in the results the distance deviation (dev) calculated by
the following equation instead of the original distances:

dev(V (TA), V (TB)) =
|d(V (TA), V (TB)− d(TA, TB)|

d(TA, TB)

where V (T ) denotes the variance of T (e.g., with different sam-
pling rates and/or calibration). The results are shown in Figure 9,
where smaller deviation means that the evaluated distance is closer
to the ground truth. As we can see that most average deviations
of the raw trajectories are over 50%, and increase quickly with
the drop of sampling rate. To the contrary, all the distance devi-
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Figure 9: Distance deviation of calibrated trajectories from the ground truth

ations between calibrated trajectories are smaller compared to the
raw trajectories, which demonstrates the usefulness of our calibra-
tion methods in preserving the distances when the sampling strate-
gies vary. Consistent with the previous experiment, POI and TP
based approaches obtain much better performance as their dev are
all below 0.3, and even less than 0.1 for DTW distance. Again,
the model-based approaches outperform the geometry-based ap-
proaches for all distance measures, and TP+M approach achieve
the best calibration results for most distance measures.

5.3.4 Resynchronization Capability
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Figure 10: Evaluation of resynchronization capability

In this set of experiments, we evaluate the resynchronization ca-
pability of our calibration system. Intuitively, an effective cali-
bration system should transform a specific trajectory into the one
with similar sampling rate regardless of its original sampling rate.
Thus for each trajectory in the test dataset, we calibrate its low-
sampling-rate counterparts and obtain the calibrated trajectories,
i.e., T 50, T 100,T 150, and then compare the size between T (T )
and T50 (T 50), T100 (T 100), T150 (T 150). Figure 10 shows how the
average sizes of the raw trajectories and the calibrated trajectories
change with the sampling rate (10s, 50s, 100s and 150s). As we
can see from this figure, the sizes of the raw trajectories decrease
significantly with the drop of sampling rate. To the contrary, the
average sizes of calibrated trajectories much more stable with the
variation of sampling rates, which verifies our expectation that the
reference systems are effective in resynchronizing all the trajecto-
ries with more unified sampling rates.

5.3.5 Effect of Confidence Threshold
Next we test how the confidence threshold ηconfi used in the

model-based approach (i.e., POI+M and TP+M) affects the calibra-
tion performance. Recall that a higher ηconfi results in fewer but
more accurate anchor points inserted into the calibrated trajectory.
In order to work out a good trade-off between the completeness
and correctness of the complementary points, we tune the confi-
dence threshold ηconfi from 0.5 to 1 with the step of 0.1. Mean-
while we calculate the edit distance between the calibrated trajecto-
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Figure 11: Edit distance of high rate trajectories and low rate
trajectories with different confidence
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ries and their low-sampling-rate counterparts using the POI+M and
TP+M methods with different ηconfi. As shown in Figure 11, gen-
erally all the distance values decrease when the confidence thresh-
old rises, since a lot of incorrect insertions are avoided. However,
when the threshold goes too high (≥ 0.8), the distances start to in-
crease, which means the calibration effectiveness gets worse. The
reason is that (almost) no anchor points can have high enough con-
fidence to be complemented into the trajectories, thus leaving the
low-sampling-rate trajectories largely incomplete. Based on the ob-
servations of this experiment, we recommend the threshold with the
value between 0.8 and 0.9 to be appropriate.

5.3.6 Calibration Time Cost
We also evaluate the calibration time cost, which is especially

important for online calibration systems. The average time cost for
calibrating a single trajectory is shown in Figure 12, from which
we observe that all the methods can calibrate a trajectory within
tens of milliseconds. GC turns out to be the most inefficient ap-
proach, because the cardinality of grid centroids is too large, which
increases the search space in geometry-based alignment and com-
plement. Besides, the order of time costs for GC, AS, POI+G and
TP+G is consistent with the number of anchor points in respec-
tive reference systems. This implies that the efficiency of calibra-
tion is heavily dependent on the cardinality of anchor points. The
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Figure 13: Effect of transition matrix optimization

geometry-based approach constantly runs faster than the model-
based approach, since the model-based approach involves expen-
sive inference on the reference map.

5.3.7 Effect of Transition Matrix Optimization
Recall that we have used the pre-computed transition matrix M1:λ

to accelerate the model-based calibration in both alignment and
complement phases. In this experiment, we evaluate the effect of
this optimization by comparing the running time of the POI+M and
TP+M approaches with and without using the transition matrix.
Figure 13(a) and Figure 13(b) demonstrate the average time cost
and the number of probed anchor points for calibrating a single tra-
jectory. As expected the pre-computation in the transition matrix
brings significant speed-up to both approaches.

5.3.8 Effect on Similarity Queries
The ultimate purpose of calibration is to improve the robustness

and effectiveness of similarity-based analysis for trajectories. The
last set of experiments is conducted to verify if the K-nearest neigh-
bor search – the most important type of similarity query – can ben-
efit from our proposals. We first randomly choose 500 query tra-
jectories from the test dataset and find their 20 NNs, which are
considered as the ground truth of this kNN query. Then we keep
the query trajectories unchanged and transform all the trajectories
in the test dataset by dropping sampling rates and applying cali-
bration methods. Finally the same kNN queries are issued against
the transformed datasets and the query precision is defined as the
proportion of the correct results (the one existing in ground truth)
in the new kNN result set. As shown in Figure 14, though the pre-
cisions based on all distance measures reduce with the decrease
of sampling rate, calibration methods can improve the accuracy of
kNN search results. This benefit is especially obvious for turning
point based approaches as their precisions are constantly improved
by around 20 percent compared to the ones without any calibration.

6. RELATED WORK
To our knowledge, there is no existing work on trajectory cali-

bration or trajectory rewriting. In our model-based calibration ap-
proach, we leverage the historical trajectory data to find the best
alignment and infer the possible intermediate anchor points to com-
plement the trajectory, which share similar inspiration and tech-
niques with the work on uncertainty management of trajectories
and hot route discovery. Therefore in this section, we will firstly
review these two lines of related work. As the goal of this work is
to improve the effectiveness of similarity-based analysis, the dis-
tance measures studied in this paper are also reviewed at last.

Managing Uncertainty of Trajectories. Several works have
addressed the uncertainty issues of moving objects. [34, 33] pro-
posed an information cost model which captures uncertainty and
deviation in the moving objects updating problem. Proser et al. [27]
models moving objects with a concept of spatial zones that define

an object’s whereabouts during two consecutive sampling positions
as an ellipse under constraint maximum velocity. Trajcevski et al.
proposes a three-dimensional cylinder to measure a new concept of
uncertain trajectory in order to limit errors that could occur while
capturing the movement of an object. Based on the model, a set of
spatiotemporal operators and algorithms are proposed for continu-
ous range queries [31] and nearest neighbour queries [30]. Cheng et
al [7] proposes a new model, which shows that the location uncer-
tainties are updated at every time instant and range queries are is-
sued at a current time point. Zhang et al. [35] designs an integrated
indexing structure for inferring the future location of uncertainty
moving objects. An intuitive model for an uncertain trajectory is
proposed in [36] to represent object movement along a road net-
work, providing a unified probability distribution function (pdf) for
the possible locations of a moving object at a given time-instant.
[37] is the most relevant work in completing trajectories, but it ap-
plies its methods on the road network and does not give a concrete
existing probability of a certain point.

Hot Route Discovery. [21] extracts hot routes by using a density-
based algorithm FlowScan based on a concept called “traffic density-
reachable”. [29] investigates efficient ways to find and monitor hot
motion paths that are defined as those visited by a certain number
of moving objects. Nevertheless these two works are limited to
mine frequently visited paths only. The focus of [23, 11, 12, 38] is
on mining trajectory patterns to help find the popular routes from
a start location to a destination. [11] proposes to mine a sequence
of temporally annotated points called T-pattern, in order to find all
T-patterns with sufficiently high support. Similarly, in [23, 12, 38],
frequent paths or sequences are explored by existing sequential pat-
tern mining algorithms. However, not every pair of start and end
locations is able to match patterns given by these works. Chen et
al. [6] evaluates the probability from a start point to the destina-
tion, but they only consider the forward probability from one place
to another without considering the backward probability.

Trajectory Distance Measures. There are a large number of tra-
jectory distance measures, among which Euclidean distance, DTW,
LCSS and EDR are the most representative. DTW [19] is origi-
nally introduced for signal processing, which allows time-shifting
in comparison. LCSS [18] is proposed based on the concept of the
longest common subsequence, which is robust to noise by allow-
ing skip of some sample points. EDR [5], which is based on edit
distance, is also robust to noise and addresses some deficiencies
in LCSS.

7. CONCLUSIONS
In this paper we have taken an important step towards effective

calibration of trajectories with different sampling strategies to make
them compatible when using many existing trajectory similarity
measures. After studying the impact of trajectory heterogeneity
on similarity measures, we have proposed a framework of trajec-
tory calibration. We have examined four different types of anchor
points which can be used to build stable reference systems. On top
of that, two calibration approaches, the geometry-based approach
and the model-based approach, are designed to align and comple-
ment trajectory data using the anchor points in the reference sys-
tem. Extensive experiments have been conducted using a real tra-
jectory dataset and a range of commonly used trajectory similarity
measures. We have demonstrated that the calibration process can
significantly improve the effectiveness of most popular trajectory
similarity measures. The model-based calibration approach, which
is based on using turning points to build the reference system, is
shown to be particularly effective. This calibration process and its
algorithms can be easily integrated with most existing works on
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Figure 14: Effect of calibration methods on the accuracy of K-nearest neighbor search

trajectory processing and mining, to reduce their reliance on high
quality (densely sampled) trajectory data and to improve their sim-
ilarity measure effectiveness. The ideas from this work open a new
direction for future research, such as incorporating the temporal
information in calibration, and novel indexing methods and query
processing algorithms with calibrated trajectories based on the un-
derlying reference system.
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