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Abstract— The widespread use of positioning devices and
cameras has given rise to a deluge of trajectory data (e.g., vehicle
passage records and check-in data), offering great opportunities
for location prediction. One problem that has received much
attention recently is predicting next locations for an object
given previous locations. Several location prediction methods
based on embedding learning have been proposed to tackle this
issue. They usually focus on check-in trajectories and model
sequential locations using an average of the embedding vectors.
In this paper, we have proposed a Convolutional Embedding
Model (CEM) to predict next locations using traffic trajectory
data, via modeling the relative ordering of locations with a
one-dimensional convolution. CEM is further augmented by
considering constraints posed by road networks in the traffic
trajectory data, learning a double-prototype representation for
each location to eliminate the incorrect location transitions as
well as modeling the combination of factors (such as sequential,
personal, and temporal) that affect the human mobility patterns,
and thus offers a more accurate prediction than just accounting
for sequential patterns. Experimental results on two real-world
trajectory datasets show that CEM is effective and outperforms
the state-of-the-art methods.

Index Terms— Trajectory embedding model, next location
prediction, sequential patterns, traffic trajectory data.

I. INTRODUCTION

THE increasing prevalence of positioning devices and
surveillance cameras makes it possible to collect mas-

sive human mobility data. For example, the points-of-interest
(POIs) that users have checked-in can be extracted when
they share such information via online social networks
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(e.g., Foursquare) [1]; passing vehicles are photographed
by the surveillance cameras, and structured vehicle passage
records (VPRs) can be subsequently extracted from the pic-
tures using optical character recognition (OCR) [2]. Such
human mobility data are comprised of records with at least
three attributes: object IDs, location IDs, and time-stamps.
A consecutive sequence of such records generated by the same
object ID constitutes a trajectory. While new technologies
have made it easy to see objects’ past locations, predicting
their movement is nontrivial. Next location prediction is of
great significance in many location-based services [3]–[9].
First, predictions may be used for providing personalized
content, for example, in location-based advertising, places
where users will go are important because they determine
which kinds of ads to be posted. Second, aggregated pre-
dictions can be used for traffic management and long-term
strategic planning, for instance, traffic management authorities
may use the prediction on where the vehicle will go next to
dynamically adjust traffic signals to alleviate traffic congestion.
Finally, predictions could help traffic simulation, for example,
we could generate a large number of vehicle trajectories
given different variables based on a location predictor, and
make what-if analysis in some tasks, e.g., traffic planing and
signal timing.

The problem of next location prediction has been exten-
sively studied. Existing methods can be roughly split into two
categories based on the types of trajectory generation. One
pays attention to next location prediction via the positioning
data mostly generated by vehicles [2], [10]. The other focuses
on the successive POI prediction and POI recommendation
with check-in data on social networks, whereby they do not
consider the constraints posed by road networks in the trans-
portation systems [11], [12]. As the two kinds of trajectory
data have different characteristics, one location prediction
method cannot work well for both. In this paper, we aim to
predict next locations using traffic trajectory data generated
by vehicles. For example, as shown in Figure 1, an object
moves from l1 to l4 and then to l5 at around 7 a.m., and another
moves from l7 to l8 and then to l5 at around 9 a.m. Given the
collection of trajectories of different objects, we predict the
next location that an object will visit.

As multiple factors (e.g., object, preceding locations,
and current time) affect the prediction of next locations,
it is highly desirable to develop a unified framework that
is able to model these factors and their relationships in
a principled manner. We choose to use embedding tech-
niques to map these different factors into the same vector
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Fig. 1. An illustration of next location prediction.

space of real numbers (i.e., the embedded space), such
that closely related objects/time slots/locations have simi-
lar representations in the embedded space. Some embed-
ding methods [9], [11]–[13] have been proposed to mine the
sequential context (i.e., the preceding locations) to predict next
locations. They assume that locations in a sequential-context
window are orderless (i.e., as in “bag-of-words” model), and
represent the sequential context with an average of the vectors
of locations within it. Furthermore, other methods [8], [14]
deal with the sequential context based on Recurrent Neural
Networks (RNN) or Long-Short Term Memory (LSTM). How-
ever, next location is mainly affected by its immediately
preceding locations and each is not equally useful for accurate
next location prediction.

Further, the constraints of the road networks should be
seriously considered in the traffic trajectory data. For example,
as shown in Figure 1, given two transitions l1 → l4 and
l4 → l5, where li (i = 1, 2, . . . , 9) is a location, it is
impossible for a vehicle to move directly from l1 to l5
(without passing any other locations) because of road network
constraints. We call the transition l1 → l5 a phantom transition
because it may never happen in practice. Further, when
an object arrives at location l5, only four locations (l2, l4, l6
and l8) are the candidate next locations due to the constraints
posed by road networks. Indeed, we do not need detailed
road networks, as they can be generated using large number
of trajectories [15]. In the best cases, if the underlying map
topology is available, it can help refine prediction by pruning
infeasible transitions.

Personal and temporal contexts are key factors in next
location prediction but are not utilized in many existing
methods. On one hand, people have personal preferences
driven by their individual interests, habits and behaviors, which
dominates their choices of where to go next. On the other
hand, (as reported by [9], [12],) people tend to exhibit periodic
moving behaviors, e.g., people usually leave home in the
morning and return in the evening on weekdays. Furthermore,
people may have different moving patterns at different time
due to temporal constraints. For instance, as shown in Figure 1,
turning right is forbidden on the road segment l8 → l5 during
morning rush hours, and people cannot arrive at l6 directly
from l8, l5. Hence, personal and temporal data can be used for
improved prediction if used properly.

In order to address the above problems, we present a Con-
volutional Embedding Model (CEM) to predict next locations,

via jointly using sequential, personal and temporal data as well
as the constraints for road networks. In CEM, we first apply a
one-dimensional convolution to the sequential data, modeling
the relative ordering of locations. Furthermore, to consider
the constraints of road networks, we distinguish between the
roles of target locations and preceding locations, and learn a
double-prototype representation per location to eliminate the
phantom transitions from the trajectories. Finally, to model
personal preferences and temporal factors, we represent the
object and the time slot with different vectors, and embed the
object ID, location ID, and time slot into a shared latent space,
where a pair of more related attributes should be projected
into closer embedding vectors. Based on the relations encoded
in the latent representations, we are able to make successive
location predictions.

Our major contributions are summarized as follows.

• We propose a Convolutional Embedding Model based on
embedding learning to predict next locations using traffic
trajectory data, which jointly models sequential patterns,
personal preferences and temporal factors. Constraints of
road networks as implicitly reflected by traffic trajectories
are also taken into account by mapping each location to
two different points in the embedding space.

• We learn the embedding vectors for objects, locations
and time slots, and model the sequential context via
a one-dimensional convolution, considering the relative
ordering of locations in a context and learning the impor-
tance of each dimension of the sequential context to next
location prediction.

• We conduct extensive experiments with real vehicle pas-
sage records and taxi trajectory data, and the experimental
results confirm the superiority of CEM over alternative
methods. Further, we create visualizations for the embed-
ding vectors of objects and time slots, demonstrating the
higher effectiveness of CEM.

II. RELATED WORK

Trajectory data mining has become a hot research topic
recently, and Zheng [16] conducted a systematic survey on this
topic. As we focused on predicting next locations, we mainly
discussed the recent progress in this field.

Most conventional methods adopt Markov models or fre-
quent patterns mining models to mine human mobility patterns
for location prediction. For example, Monreale et al. [17]
considered the historical movements of all moving objects to
build a T-pattern tree for prediction. Chen et al. [18] proposed
to mine individual and collective movement patterns with an
integrated variable-order Markov model to predict the succes-
sive locations. However, due to the high complexity of space
and time, they usually model the first-order or second-order
sequential transitions, because modeling the longer sequential
context by standard counting methods is infeasible.

Recently, some new methods have been proposed that
use recurrent neural networks to model sequential pat-
terns in trajectory data for location prediction. For instance,
Liu et al. [14] proposed a method called Spatial Temporal
Recurrent Neural Networks (ST-RNN) to model the local
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temporal and spatial contexts in each layer for mining mobil-
ity patterns. Yang et al. [19] presented a neural network
by modeling social networks and mobile trajectories, where
they employed RNN to capture the sequential relatedness in
mobile trajectories. Yao et al. [20] proposed a method named
Semantics-Enriched Recurrent Model (SERM) for location
prediction using semantic trajectory data. SERM jointly learns
embeddings of multiple factors (e.g., location, keyword) and
transition parameters of a recurrent neural network in a uni-
fied framework. Kong and Wu [8] proposed a Hierarchical
Spatial-Temporal LSTM model, which leverages historical
visit information and spatial-temporal factors for location pre-
diction. However, these RNN-based (or LSTM-based) methods
focus on storing statistical weights for long-term transitions
in a trajectory, and use the side features (e.g., geographical
information, friendship network, semantic keywords) that do
not exist in the traffic trajectory data.

Embedding objects from high-dimensional vectors into
a lower-dimensional space is an important operation in
machine learning, and has been successfully utilized for
location prediction. Feng et al. [21] proposed a Personalized
Ranking Metric Embedding method (PRME) to embed the
POI transitions and user preferences in two latent spaces.
Zhao et al. [13] proposed a Geo-Temporal sequential embed-
ding rank (Geo-Teaser) that first encodes POIs in word2vec,
treating check-ins in a day as a “sentence” and each POI as
a “word”. Zhou et al. [11] proposed a Multi-Context Trajec-
tory Embedding Model (MC-TEM), considering various data
types including user-level, location-level and temporal data.
Chang et al. [22] proposed a content-aware POI embedding
model to utilize the text content of a POI to improve pre-
diction. Chen et al. [9] proposed a Mobility Pattern Embed-
ding (MPE) method to embed the time slots, current locations
and next locations together as points in a latent space.
However, these embedding methods represent the sequential
context with an average of the vectors of locations within it
and ignore the relative ordering of locations.

In order to highlight our contribution, we summarized the
main difference between our CEM and the aforementioned
methods. First, to model the sequential context, we applied a
one-dimensional convolution to the vectors of the preceding
locations, learning how important each dimension is for loca-
tion prediction. Second, we distinguished between the roles
of “next locations” and “preceding locations”, and learned a
double-prototype representation per location to eliminate the
phantom transitions from the trajectories. Finally, the sequen-
tial, personal and temporal data are modeled jointly to predict
next locations.

III. THE CONVOLUTIONAL EMBEDDING MODEL

To better demonstrate the proposed CEM model, we first
introduce some relevant definitions. Then we list the notations
and their descriptions in Table I.

Definition 1 (Record): Each record is represented as a
triplet 〈o, l, t〉, where o, l, t refer to the object ID, the location
ID and the timestamp where o arrives at l, respectively.

TABLE I

NOTATIONS AND DESCRIPTIONS

An example of triplet 〈101, 3006, 2016− 01 − 14 08 : 18〉
tells that an object with the ID of 101 visits a location with
the ID of 3006 at 8:18 a.m. on January 14, 2016.

Definition 2 (Trajectory): For an object o, its trajectory
T is defined as a time-ordered sequence of records:
〈o, l1, t1〉, . . . , 〈o, li , ti 〉, . . . , 〈o, lN , tN 〉, where N is the length
of trajectory T and ti < ti+1 for i < N .

Definition 3 (Target and Contextual Location): Given a
trajectory, the K locations li−K , . . . , li−1 visited before one
target location li are defined as the contextual locations.
K is the pre-defined sequential context window size.

Note that, the target/contextual locations have the same
meaning as next/preceding locations, and we will use tar-
get/contextual locations in the following sections.

Definition 4 (Contexts): Given a trajectory, the contexts
of one target location li contain the contextual locations
li−K , . . . , li−1, the object o and the recent timestamp ti−1.

A. Overview of CEM

Inspired by the recent progress of deep learning and neural
networks [23], we propose to use a distributed representation
method to model the generation of the given traffic trajectories.
During the modeling process, we need to consider multiple
kinds of contexts for a target location.

• An object’s movement exhibits strong spatial-temporal
regularity - the contextual locations and time slot can
have strong influence on deciding the target location.

• The object’s personal preference often plays an important
role in choosing the target location.

• The constraints of road networks could help refine the
target location.

Figure 2 illustrates our model, where object o1 has visited
locations l6, l5, l4 between 8 a.m. and 9 a.m., and object o2
has visited locations l4, l5, l6, l3 between 9 a.m. and 10 a.m.
As multiple factors affect the prediction of next locations,
we project objects, contextual locations, target locations and
time slots into an embedding space, where closely related
objects/time slots/locations should be projected into closer
embedding vectors. For example, object o1 visits locations
between 8 a.m. and 9 a.m. (represented by time index t8),
while o2 arrives at locations between 9 a.m. and 10 a.m.
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Fig. 2. An illustration of our method CEM. We respectively represent objects
o1 and o2 with the embedding vectors vo1 and vo2 (denoted by circles with
orange background), locations l4, l5 and l6 taking the role of “contextual
locations” with the embedding vectors vl4 , vl5 and vl6 (denoted by circles
with blue background), locations l3, l4, l5 and l6 taking the role of “target
locations” with the embedding vectors v′

l3
, v′

l4
, v′

l5
and v′

l6
(denoted by circles

with white background). We use the hour index in a day to represent the
time. The time duration between 8 a.m. and 9 a.m. is represented by t8,
corresponding to the embedding vector vt8 (denoted by the circle with purple
background), and the same with the duration between 9 a.m. and 10 a.m. Note
that the distance in the embedding space is expected to capture the relatedness
among locations, objects or time slots.

(represented by t9). Therefore, the corresponding embedding
vector vt8 is closer to vo1 than to vo2 . In the trajectory of o2,
l4 and l5 are two consecutive locations, and l6 and l3 are two
consecutive locations; hence, vl4 and v′

l5
tend to be closer,

while vl6 and v′
l3

tend to be closer, where vl is the vector
of the preceding location and v′

l is the vector of the target
location. Since location l3 is only visited by o2, the location
embedding v′

l3
is closer to vo2 than to the embedding vo1 .

Formally, given a trajectory T generated by object o with N
records: 〈o, l1, t1〉, . . . , 〈o, li , ti 〉, . . . , 〈o, lN , tN 〉, the objective
function is to maximize the average log probability for each
target location li given its contexts v̄li :

1

NT

NT∑
i=1

log Pr(li |v̄li ), (1)

where v̄li is a real-valued contextual vector consisting of all
the contexts for the target location li and NT is the length
of trajectory T . We model each target location l ∈ Lt with
a D-dimensional vector v′

l , where Lt is the set of target
locations, and assume that the generation of a target location
is associated with its contexts. We then apply a multi-class
classifier to generate a target location li based on its contextual
vector via a softmax function as follows:

Pr(li |v̄li ) = exp(v̄T
li

· v′
li
)∑

l∈Lt exp(v̄T
li

· v′
l)

. (2)

Such a model connects the target location and its contexts
via the embedding representations, and regards next location
prediction as a multi-classification task.

B. Modeling the Contexts

With the above general model, we now study how to model
these contexts.

1) Modeling the Sequential Context: As we know,
an object’s next movement is influenced by its contextual
locations in a trajectory [18], which can be caused by factors
such as personal navigation habits and traffic. We reserve a
D-dimensional embedding vector vl for every raw contextual
location l ∈ Lc, where Lc is the set of contextual locations.
To eliminate phantom transitions in each trajectory, we dis-
tinguish between the roles of target locations and contextual
locations, and represent the same locations (e.g., l5) via
different vectors (e.g., v′

l5
for a target location and vl5 for

a contextual location as shown in Figure 2) in the same latent
space depending on which role it takes. To illustrate why this
is necessary, let us assume that location l5 is mapped to a
single point in the embedding space, irrespective of its role
(contextual or target location). Given l6 → l5 and l5 → l4,
if we knew that both l6 and l4 are close to l5 in the space, then
the transition l6 → l4 could also exist with a high probability.
However, it is very unlikely to observe l6 → l4 due to the
restriction of road networks or regulations, unless there is a
direct route between l6 and l4.

Further, the target location is mainly affected by its imme-
diately contextual locations, and each location does not con-
tribute equally to the target location. However, most existing
embedding methods [11]–[13] assume the preceding locations
in a sequential-context window are orderless and represent
these contexts with an average of the vectors of contextual
locations. For example, given a trajectory sequence l5 → l6 →
l3 as shown in Figure 2, if we knew that the vector v′

l3
is close

to the average of vector vl5 and vl6 in the embedding space,
then it would be of high probability to acquire the sequence
l6 → l5 → l3. But it is impossible to observe l6 → l5 → l3 in
real traffic data, as there is not a direct road between l5 and l3.
Therefore, we should consider the relative order of contextual
locations and model the vectors of contextual locations with
weights.

We represent the contextual locations with D-dimensional
vectors, where each dimension could be regarded as a feature
to decide which target location to visit. Hence we need to
assign a separate weight to each feature. We introduce a
one-dimensional convolution to model the weight of each
feature for every contextual location, and produce a convo-
lutional feature vector for the contextual locations. Given a
trajectory T , we use a windowing approach that assumes that
the target location li depends mainly on its K contextual
locations. Formally, given the target location li , we build a
matrix Ui ∈ R

D×K via a lookup operation on the vectors
of the K contextual locations. Each column of the matrix
Ui is the vector vli−k of a contextual location li−k , k =
1, 2, · · · , K . Then a one-dimensional convolution is used to
yield a convolutional feature vector by taking the Hadamard
product of the filter matrix W ∈ R

K×D with the matrix
Ui at the same dimension. After each row of Ui is con-
volved with the corresponding column of the filter matrix,
the new D-dimensional convolutional feature vector v f is
as follows,

v f =
K∑

k=1

vli−k ◦ Wk, (3)
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where ◦ is the Hadamard product. For two matrices A and B
of the same dimension, the Hadamard product A◦B is a matrix
of the same dimension as the operands, with elements given by
(A ◦ B)i j = (A)i j (B)i j . The trained weights in W are viewed
as feature detectors learning the importance of each feature to
the target location.

2) Modeling the Personal Context: Intuitively, the personal
preferences are decisive in next location choices. For instance,
as shown in Figure 1, two objects have arrived at location l5,
and they may visit different successive locations based on their
preferences. Hence we need to capture each object’s preference
instead of treating them as equals. We reserve a D-dimensional
vector vo for every object o ∈ O, where O is the set of objects.
The distance between the object o (vo) and the target location
l (v′

l ) in the latent space indicates the general preference of o
over l.

3) Modeling the Temporal Context: Generally, an object is
likely to have some regular activities, such as going to work in
the morning and back home in the evening. Further, different
movement patterns exist at different times. For example,
as shown in Figure 1, if turning right is forbidden on the
segment l8 → l5 during rush hour (e.g., 8 a.m.-10 a.m.),
objects will not choose location l6 as next visit from l8, l5.
Thus, the generation of a target location is likely to be
influenced by the corresponding temporal information, such
as a specific hour in a day. The original time in each record
is a real-value timestamp. It is infeasible to embed every
timestamp because time is continuous. We thus discretize a
day into intervals of the same time duration and represent
every timestamp with the time slot it belongs to. The duration
of the slots can be determined experimentally.

We then consider each time slot t as a basic embedding unit,
and reserve a D-dimensional vector vt for each slot. When an
object is to make next visit, the behavior is often influenced
by the current time, and we choose the latest slot vti−1 as the
temporal context of the target location li .

C. The Complete Model

To integrate the above three kinds of contexts, we maximize
the objective function � as follows,

� =
∑
o∈O

∑
T ∈T o

1

NT

NT∑
i=1

log Pr(li |li−K : li−1, o, ti−1), (4)

where O is the set of objects, T o is the set of trajectories
generated by object o and NT is the length of trajectory T .
We model each kind of context with a D-dimensional embed-
ding vector. Given a target location li , the additivity assump-
tion [9], [11] can be applied to multiple contexts. Then we
derive its contextual embedding vector as follows,

v̄li = 1

3

(
vo + vti−1 +

K∑
k=1

vli−k ◦ Wk

)
. (5)

We directly use the simple sum aggregation method. There
can be other aggregation methods to integrate different kinds
of context information, e.g., max pooling.

Fig. 3. The architecture of CEM. Orange, blue, purple and red boxes denote
the embedding vectors for objects, contextual locations, target locations and
time slots, respectively.

Finally, we apply a multi-class classifier to generate a target
location l j conditioned on v̄l j based on Equation (2). The
architecture of our CEM is shown in Figure 3. The input
to CEM is the contexts of a target location li , including the
D-dimensional vectors of its corresponding object o, time ti−1,
and K contextual locations li−k , k = 1, 2, · · · , K . CEM mod-
els the ordering of contextual locations via a one-dimensional
convolution and yields a convolutional feature vector v f .
Then the contextual vector v̄li is generated by an average
of the convolutional vector and the vectors of object and
time. Finally, a multi-class classifier is employed to generate
a target location li conditioned on v̄li based on Equation (2).
We consider all the personal, temporal, and sequential contexts
in CEM, and other available contexts can also be incorporated
into this model by the average operation.

D. Parameter Learning

Our parameters include the vectors of objects {vo}, contex-
tual locations {vl}, target locations {v′

l}, time slots {vt }, and
the filter matrix W. For parameter learning, our CEM needs
to maximize the objective defined in Equation (4). However,
directly optimizing this objective is impractical because the
cost of computing the full softmax for the multi-classifier is
extremely high. In what follows, we derive how to update the
parameters in CEM with hierarchical softmax.

The hierarchical softmax uses a binary tree representation
for each target location as its leaves, and each node is explicitly
associated with a vector for computing the relative probability
to take one branch. Each leaf can be reached by an appropriate
path from the root of the tree. In this way, instead of evaluating
all the |Lt | output nodes to obtain the probability distribution,
only about log2(|Lt |) nodes need to be evaluated.

All parameters are trained using Stochastic Gradient
Descent (SGD). During the training process, the algorithm
iterates over the target locations of the trajectories of all
objects. At each time, a target location l j with its contexts
is used for update. After computing the hierarchical softmax,
the error gradient is obtained via backpropagation and we use
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the gradient to update the parameters in our model. Readers
can refer to [11] for the details of gradient derivation and
update. We iterate this procedure until the value of � remains
stable. Given the size of embedding vector (D) and the number
of preceding locations in a context (K ), the time complexity
for an iteration is O(W · D · K · log2(|Lt |)), where W is the
total number of training instances (l j−K : l j−1, o, t j−1, l j )
considered in an iteration and the log term comes from the
binary tree to determine the target location from the |Lt | leaf
nodes in the binary tree.

IV. EXPERIMENTS

We first present experimental results on two real datasets to
evaluate CEM on next location prediction, and then visualize
the embedding vectors to confirm the effectiveness of CEM.

A. Datasets and Settings

1) Data: Two datasets are used in the experiments, the vehi-
cle passage records (VPR) data and the publicly available taxi
trajectory data.1

VPR data: We collected four-week (04/01/2016 -
31/01/2016) VPRs over the traffic surveillance system in
the City of Jinan, China. For VPR data, passing vehicles
are photographed by the surveillance cameras at fixed loca-
tions, and the cameras in the traffic surveillance system
are considered as the sampling locations. To generate tra-
jectories, for each vehicle, we first gathered all its records
(〈vehicleI D : o, locationI D : l, timestamp : t〉)
and then sorted them according to the timestamp, and
finally obtained a time-ordered sequence 〈o, l1, t1〉, · · · ,
〈o, li , ti 〉, 〈o, li+1, ti+1〉, · · · . We segmented the sequence into
multiple trajectories using the time difference (�t = ti+1 − ti )
between two consecutive visited locations. That is, if �t
exceeds 30 minutes, we could safely assume that the driver
must have stopped somewhere in-between. In this paper,
we set the time threshold at 30 minutes as the average
distance between a neighboring pair of camera locations is
approximately 3 km. Therefore, we regarded location li as the
destination of a trajectory, and location li+1 as the start point
of another new trajectory. To make the model more robust,
we included only the trajectories containing at least three loca-
tions. This results in 1,017,688 trajectories of 18,005 vehicles
in the dataset.

Taxi data: The taxi data consists of all the complete
trajectories of 442 taxis running in the city of Porto (Portugal)
for a whole year (from 01/07/2013 to 30/06/2014). For Taxi
dataset, each datapoint represents a complete taxi ride (which
is considered as a trajectory): a sequence of GPS positions
(latitude and longitude) measured every 15 seconds and the
time of the beginning of the ride. The last position repre-
sents the destination and different trajectories have different
GPS sequence lengths. As the number of GPS positions
is enormous, we processed them with a mapping method.
We discretized the region of interest into 200×100 grids with

1Detailed information about the data can be found at
https://www.kaggle.com/c/pkdd-15-predict-taxi-
service-trajectory-i/data

TABLE II

DATA STATISTICS

equal-sized cells (about 55 m × 53 m), and assigned a cell
index for each GPS position. Then the cell index is regarded
as the location ID. We also only kept the trajectories that have
at least three locations, and obtained 410,803 trajectories in
total.

The statistical properties on both datasets are shown
in Table II. �objects represents the count of objects, and
avg. �locations is the average count of locations for each
trajectory. From Table II we know that 1) VPR data contains
more objects and Taxi data has more locations; 2) the average
distance between a pair of neighboring locations of Taxi data
is smaller than that of VPR data, and the average travel time
(20.1 seconds) between two consecutive locations of Taxi data
is also smaller; 3) each object from the Taxi data has more
trajectories and each trajectory contains more locations; 4) the
Taxi dataset contains denser records than the VPR dataset.

2) Evaluation Metrics: Given a trajectory
〈o, l1, t1〉, . . . , 〈o, li , ti 〉, . . . , 〈o, lN , tN 〉 generated by object
o with N records in the test set, we first built a trajectory
sequence 〈o, l1, t1〉, . . . , 〈o, li , ti 〉, . . . , 〈o, lm , tm〉, where m
is a random integer between 1 and (N − 1). The task of
next location prediction is to predict the most likely next
location lm+1. We first built the contextual vector v̄l based on
Equation (5), and then computed Pr(l|v̄l) for each candidate
target location l ∈ Lt based on the following function:

Pr(l|v̄l) ∝ (vo + vtm +
K∑

k=1

vlm+1−k ◦ Wk)
T · v′

l . (6)

Finally, we choosed the top r locations with the highest
probabilities as the predicted next locations.

We utilized two well known metrics: accuracy and average
precision (denoted by acc and ap respectively), to evaluate the
prediction performance. accuracy is defined as the frequency
of the true next location occurring in the list of predicted
next locations. Let P(l) be 1 it does and 0 otherwise. Then

acc = 1

|Ct |
∑

P(l), where |Ct | is the trajectory count in the

test set. Given a list of top-r predicted next locations, average

precision is defined as ap = 1

|Ct |
∑ P(l)

n
, where n is the rank

of the actual next location in the predicted list and P(l) takes
the value of 1 if the predicted location at the n-th position in
the list is the true next location. Average precision puts larger
weight to the top-ranked actual next location.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 15,2020 at 12:36:46 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: CEM: A CEM FOR PREDICTING NEXT LOCATIONS 7

Fig. 4. Performance comparison for next location prediction on VPR data.

Fig. 5. Performance comparison for next location prediction on Taxi data.

3) Baselines: We compared with the following methods for
predicting next locations to evaluate performance.

• MM: the Markov model [18], mining the mobility pat-
terns of each object with its trajectories to predict next
locations.

• Bayes: it computes the transition probability from the
trajectory sequence to next location using Bayes’ rules
under the assumption that the attributes (object, location,
and time) in the trajectory are independent.

• RNN: a recurrent neural network [14], [19], [20], mod-
eling the long-term sequential context in a trajectory for
predicting next locations.

• PRME: the personalized ranking metric embedding
method [21], considering both the sequential information
and user preference in training embedding vectors.

• Geo-Teaser: the geo-temporal sequential embedding rank
model [13], incorporating the personal and temporal
information into word2vec.

• MC-TEM: the multi-context trajectory embedding
model [11], taking the user-level, location-level and tem-
poral contexts into consideration.

• MPE: the mobility pattern embedding method [9], mainly
modeling the transitions from the current locations to
next.

In the task of next location prediction, we used 10-fold
cross-validation and reported the average results. All the
experiments are done on a 3.4GHz Intel Core i7 PC with 16GB
main memory. For these embedding models, we searched the
optimal hyper-parameters, and set the vector size and context

window size at 100 and 5. For our CEM, we adopted the
hierarchical softmax algorithm and set the number of embed-
ding dimensions (D), the sequential context window size (K ),
and the learning rate at 100, 2, and 10−3, respectively. In the
following, we evaluated the effect of these hyper-parameters.

B. Experimental Results

We predicted top-r next locations and compared CEM with
the baselines on VPR data and Taxi data. The prediction
performance is shown in Figure 4 and Figure 5. The improve-
ments from our CEM over all the baselines are statistically
significant in terms of paired t-test [24] with p value < 0.01.

1) All the methods perform better on the VPR data than
on the Taxi data, as the routes taken by taxis are more
diverse/random.

2) MM considers the historical trajectories of each object,
and gets decent accuracy and average precision on the
VPR data and Taxi data. Bayes considers all the objects,
contextual locations and time slots and outperforms
MM. RNN focuses on capturing the long-term sequential
transitions in trajectories, and it performs worse than
MM and Bayes, as the choice of next location is
usually affected by the recently visited locations. Our
CEM considers the ordering of contextual locations and
models the contextual locations, objects and time slots
jointly instead of treating them independently, and gains
an obvious improvement. For example, compared with
Bayes, our CEM achieves an improvement of 19.6% on
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Fig. 6. Effects of varying the number of contextual locations K .

Fig. 7. Effects of varying the number of embedding dimensions D.

average in terms of top-1 accuracy on the VPR data, and
29.1% on average on the Taxi data.

3) PRME, Geo-Teaser and MC-TEM do not perform well,
and the reasons are two-fold. On one hand, they repre-
sent both the contextual locations and the target locations
with the same vector set, which is not applicable to the
traffic trajectory data; on the other hand, they neglect the
ordering of contextual locations, limiting their prediction
performance. For instance, according to top-3 average
precision, our CEM improves by 48.5% on the VPR data
and 88.1% on the Taxi data compared with MC-TEM.
MPE only considers the current location instead of the
sequential context in the prediction, and it performs
worse than our CEM.

C. Hyper-Parameter Optimization

As we needed to map the time-stamp of each record to
the time slot it belongs to, we first set the size of the time
slot at 1, 5, 10, 15, 30, 60 and 120 minutes respectively.
The optimal size of the slot is 30 minutes for the VPR data,
and 15 minutes for the Taxi data. There are two important
hyper-parameters to tune in CEM: the sequential context win-
dow size (K ) and the number of embedding dimensions (D).
To measure their effect, we tuned them one by one on the
validation set. The default values for K and D are 2 and 100,
respectively. The tuning results on both datasets with top-3
accuracy and average precision are reported in Figure 6 and
Figure 7, and the impacts of varying these parameters are
discussed below.

We first varied K from 1 to 5, and found that the per-
formance has an obvious improvement when K increases
from 1 to 2 for both datasets. When we increased K fur-
ther, the prediction performance starts to decline, because it
takes some unrelated contextual locations into consideration.
Further, we varied D from 10 to 300 and observed that the
prediction performance improves evidently when we increased
D from 10 to 100, and then remains flat when D is larger
than 100.

TABLE III

RUNTIME OF ONE ITERATION (UNIT: SECOND)

D. Efficiency Analysis

In this part, we analyze the efficiency of the learning
algorithm in our CEM with a hierarchical softmax. The time
complexity for per-iteration training is O(W ·D·K ·log2(|Lt |)),
where W is the total number of training instances considered
in an iteration and the log term from the binary tree is
used to determine the target location from the |Lt | leaf
nodes in the binary tree. In the experiments, 100,000 training
instances are used in one iteration, and CEM converges after
about 200 iterations on the VPR data and 350 iterations on
the Taxi data. When the dataset is given, the embedding’s
dimensionality D and the sequential context window size K
are two hyper-parameters affecting the algorithm’s efficiency.
As K is set to a relatively small value, e.g., K ≤ 5, we only
studied how the time varies with the increasing D.

Table III shows the runtime of one iteration for both datasets
with different D. On one hand, the runtime increases gradually
when we raised D; on the other hand, because the Taxi dataset
has more locations, its runtime is longer compared with the
VPR dataset for the same D. Note that, we could train CEM
offline in advance, and use the learned embeddings to support
real-time applications.

E. Qualitative Analysis With Embedding Vectors

A major merit of our proposed CEM is that various kinds
of contextual information (e.g., object, time) are projected into
the same low-dimensional space, which allows us to visually
explore the relations among objects or time slots.

1) Object Visualization: As we know, there are differences
between the mobility patterns of private vehicles and those
of taxis. To validate whether the private vehicles and taxis are
visually distinguished in the learned latent space, we randomly
selected 2000 private vehicles and 2000 taxis from our VPR
data. We obtained the embedding vectors of the corresponding
objects and projected them into a two-dimensional space
with a 2D t-SNE [25] projection. As shown in Figure 8 (a),
we observed two obvious classes, where the private vehi-
cles are colored blue and the taxis are red, demonstrating
that the embedding vectors are effective features for object
classification.

2) Time Visualization: In our CEM model, we embedded
the time slots into the latent space and measured the rela-
tionship between slots with their corresponding vectors. Here
we took the Taxi data as an example, and visualized the rela-
tionship among these time slots. Figure 8 (b) shows the 2D
t-SNE projection for the vectors of 96 time slots (the size of
slots is 15 minutes for the Taxi data), where the time slots
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Fig. 8. Visualization of embedding vectors.

are labeled with gradient colors. Some interesting phenomena
can be observed in this figure. First, the time slots roughly
scatter in a ring form and the temporal adjacent ones are
still close to each other in the space. Second, the distances
between “opposite” time slots in the ring are pretty large. For
example, the positions of time slots in the morning are far
from those in the afternoon. One likely reason is that there
are different functional regions in a city [26], and people
often move in opposite directions in the morning and in the
afternoon (e.g., going to work vs. going home).

V. CONCLUSION

In this paper, we have proposed a Convolutional Embed-
ding Model (CEM) to predict next locations with the traffic
trajectory data. CEM models the sequential, personal and
temporal contexts simultaneously and has two advantages.
First, it models the ordering of contextual locations and learns
the importance of each dimension of the sequential context to
the target location via a one-dimensional convolution. Second,
it accounts for restrictions of road networks by distinguishing
between the roles of a target location and a contextual location.
We evaluated the performance of CEM on two real datasets,
and experimental results show that CEM outperforms the
baselines.

In the future, we aim to consider more types of traffic
data (e.g., Uber ride data) and incorporate some side features
(e.g., semantic labels of locations) into our embedding model,
and explore other potential applications (e.g., user clustering
and location category prediction) with these embeddings.
In addition, as the trajectory data is a typical streaming data,
we will consider how to update these embedding vectors
effectively with the new trajector
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