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Abstract—Numerous applications such as data integration, protein detection, and article copy detection share a similar core problem:

given a string as the query, how to efficiently find all the similar answers from a large scale string collection. Many existing methods

adopt a prefix-filter-based framework to solve this problem, and a number of recent works aim to use advanced filters to improve the

overall search performance. In this paper, we propose a gram-based framework to achieve near maximum filter performance. The main

idea is to judiciously choose the high-quality grams as the prefix of query according to their estimated ability to filter candidates. As this

selection process is proved to be NP-hard problem, we give a cost model to measure the filter ability of grams and develop efficient

heuristic algorithms to find high-quality grams. Extensive experiments on real datasets demonstrate the superiority of the proposed

framework in comparison with the state-of-art approaches.

Index Terms—Data integration, similarity search, gram-based framework
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1 INTRODUCTION

SIMILARITY search has attracted considerable attention
from database community recently, due to its broad

range of applications in data cleaning, near-duplicate
detection, natural language processing and so on. For
example, data records that represent the identical real-
world entities may have minor differences in their repre-
sentations when they are merged from different data
sources. In this case the similar records need to be
detected and correlated. A common task in protein detec-
tion is to find all protein sequences with base similar
sequences to a given template. Modern search engines
often apply similarity search to suggest relevant query
keywords to fix the typos in user queries. All such prob-
lems can be addressed by similarity search: given a collec-
tion of strings and a query string, find all strings similar
to the query string. There are many distance measures to
calculate the similarity, such as Jaccard, cosine and edit
distance. Because edit distance is widely used, in this
paper we adopt edit distance.

Existing literatures usually adopt a gram-based filter-
and-verification framework for string similarity search.
After the query string is decomposed into grams, an effi-
cient and critical type of filter can utilize the grams and
inverted index (from grams to strings) of the string collec-
tion to generate candidates. Other advanced filters can be
also used after this elementary type of filter. Then in

verification step, the similarity function is evaluated for the
surviving candidates to produce the final results. Prefix fil-
ter [5] is a dominant technique in the gram-based similarity
search problem. The intuition is that if two strings are simi-
lar they must share some common parts. Counter filter [1] is
another important filter, which uses all the grams of a string
as the prefix. Hence counter filter can also be regarded as a
special case of general prefix filtering. Traditional prefix fil-
ters focus on minimizing the filtering cost, whereas counter
filter aims at reducing the verification cost. Existing frame-
works usually use only one of such filters, which misses the
chance to seek a better filter case by case. Thus, a dilemma
of choosing filters is encountered.

Generally, filtering time cost and verification time cost
are a tradeoff in filter-and-verification framework. Actu-
ally, traditional prefix filter can be also generalized by
extending the prefix. In recent study, Wang et al. [7] dem-
onstrate that adding extra grams can decrease the candi-
date size by sacrificing a little estimation and filtering
time. They formulate a tradeoff between filtering cost and
verification cost, which is the basic principle used in the
prefix-extending algorithm. However, our analysis shows
this scheme may not be high quality combination of grams
for a given query.

Now two questions arise naturally: 1) does an optimal com-
bination of grams used by filters for a given query exist, which can
achieve the least total cost? And if so, 2) how can we find these
high quality gram sets efficiently? This paper presents our
findings when trying to answer the two questions. First a
general gram filter is proposed. We formulate the instantia-
tion of general gram filter as an optimization problem. This
problem is NP-hard by any exact algorithm. Then we pro-
pose efficient algorithm to find a sub-optimum solution.
Our proposed method consists of two steps: (a) choosing
high quality grams as the base query-gram set; (b) extend-
ing the prefix by choosing more grams until no benefit can
be gained from the new gram. A series of heuristics are pro-
posed to achieve efficiency and effectiveness of our
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algorithms. To sum up, we make the following major contri-
butions in this paper:

1) We develop a general gram filter. This generalization
provides a chance to select optimized combination of
grams from q-gram set of a query. Theoretical analy-
sis is conducted on the complexity of the problem,
which is NP-hard.

2) We present a choose-and-extend framework to effi-
ciently find the high quality grams in the query pro-
cess. Under this framework, different strategies can
be extended.

3) We propose a new measure of analyzing the overlap
between inverted lists. This is the key of synthetic
criterion to help generate better ordering for the
grams of query. With the help of synthetic criterion,
grams can be selected efficiently and effectively.

4) Extensive experiments based on real data sets are
conducted, which shows that our method can
achieve better performance than existing state-of-art
methods, especially when edit distance increases.

The rest of this paper is organized as follows. The prob-
lem is formally defined in Section 2. We analyze the former
work and give the motivation in Section 3. Section 4 intro-
duces the general gram filter and provides theoretical analy-
sis. A choose-and-extend framework to obtain high quality
query grams is presented in Section 5. A new rank based
method is proposed in Section 6. The experimental results
are explained in Section 7. A brief review of the related
work is introduced in Section 8, followed by conclusion of
this paper in Section 9.

2 PRELIMINARIES

2.1 Problem Definition

Given two strings r and s, a distance function dðr; sÞ is
defined to quantify the difference between r and s. Two
strings are considered similar if dðr; sÞ � t. Despite the large
number of distance functions proposed, we adopt the edit
distance in this paper, as it is the most widely-used distance
function in string similarity search. The problem of similar-
ity search can be formally defined as follows.

Definition 1 (Similarity Search). Given a string collection S,
a query string Q and a distance threshold t, the problem of
similarity search is to find all the strings S 2 S, such that
dðQ;SÞ � t.

Obviously it is not efficient to directly calculate the dis-
tance between each string in S and the query, due to the
large size of string collection. Therefore many indexing and
searching techniques have been proposed to improve the
efficiency of the query processing, among which the gram-
based approach is the most popular one.

In the sequel, we will review the framework of this
method.

2.2 Gram Based Filter-and-Verification Framework

Gram based filter-and-verification framework is widely
studied in many papers [1], [5], [6], [7], [8], [9], [4].

Definition 2 (qq-gram). Given a string s and a positive integer q,
q-grams of s are obtained by sliding a window of length q over

s. If the q-gram at the end of string are fewer than q, we append
q � ðjsjmod qÞ ‘$’ as complements, if necessary.1 The set con-
taining all the q-grams of s is q-gram set of s, denote it by
GqðsÞ.

Definition 3 (qq-chunk). Given a string s and a positive integer
q, q-chunks are just substrings of length q that starts at
1þ i � q positions in the string. The set contains all the
q-chunks of s is q-chunk set of s, denote it by CqðsÞ.
For example, consider string abcdef and q ¼ 3, the

3-gram set and 3-chunk set are {abc, bcd, cde, def , ef$, f$$}
and {abc, def} respectively. Note that q-chunk set is a subset
of q-gram set. The idea of using chunk in [6] can further
improve the query process efficiency, since it accesses less
inverted lists.

Gram-based approaches usually consist of three steps:

� Indexing step. In this step, an inverted index is built
on the string collection, which takes all the grams as
the keys and the strings that contain the gram as the
values.

� Candidate generation step. This step probes the
inverted index by using the grams in the query string
and in the meantime counts the occurrences of the
strings in the chosen lists. A string will be a candi-
date if its occurrences are above a lower bound.
Some filter technologies such as length filter [1] can
be used in this step to reduce the number of
candidates.

� Verification step. The actual distance between the
query and candidates is calculated and a candidate
will be added to the final results, if the distance is no
larger than the given threshold t.

The last two steps correspond to the filter-and-
verification framework, which is widely adopted in most
gram-based query process. In state-of-the-art approaches,
the most two important types of filters—counter filter
and prefix filter, are widely used in the candidates gen-
eration step to decide the grams to be used. The basic
idea of these filters is that if two strings are similar, they
must share some common grams.

Counter filter. Given the distance threshold t, if
dðs1; s2Þ � t, then they share at least the following number
of common grams maxðjGqðs1Þj; jGqðs2ÞjÞ � t � q in Gqðs1Þ
and Gqðs2Þ, denoted by LB, where q represents the gram
length and Gqðs1Þ represents the q-gram set of string s1. If
only the query string s1 is considered, the lower bound of
the number of common grams LB is jGqðs1Þj � t � q, where
jGqðs1Þj is the number of q-grams. If we partition the query
string into non-overlap segments with fixed length, called
q-chunk, the common chunks lower bound [6] becomes
jCqðs1Þj � t, where jCqðs1Þj is the number of q-chunks.

Consider an example, as illustrated in Fig. 1, a query
string abcde, a data string abde, which is indexed, and t ¼ 1.
By decomposing both of them into 2-gram, {ab; bc; cd; de; e$}
and {ab; bd; de; e$}, the least common grams lower bound

1. If the query is decomposed by q-chunk and collection strings are
decomposed by q-gram, $ is necessary. In our paper, only query string
can be decomposed by either q-gram or q-chunk, string collection uses
q-gram.
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is 3. Obviously, they share 3 common grams {ab; de; e$}. So
query string abcde can access abde through inverted list of
grams {ab; de; e$}. Since abde occurs in 3 gram lists and
LB ¼ 3, it is a candidate similar to abcde. If we partition the
query string into chunk set {ab; cd; e$}, the analysis is
similar.

Prefix filter. Given a global order @ for all the appeared
grams,2 and the distance threshold t, if dðs1; s2Þ � t, then
the ðt � q þ 1Þ-prefix of s1 and s2 must share at least one
gram. l-prefix represents the first l grams of q-gram set
sorted by @. For q-chunk, we just need to consider the
ðt þ 1Þ-prefix for query s1. The common grams lower bound
LB is always 1.

A global order can guarantee correctness of removing
some grams to be indexed. However, this is based on an
assumption knowing maximum t. The assumption can’t be
usually held in query situation, since t is a part of query
which can’t be known in advance.

Continuing with the previous example shown in Fig. 1,
and assuming the grams are already sorted by global order,
we only need to consider the 3-prefix of both strings, i.e.,
{ab; bc; cd} and {ab; bd; de}. Since query and data string are
similar, they must share at least 1 gram in prefixes. Obvi-
ously, gram ab occurs in both prefixes.

In order to distinguish with q-gram set, we use query-
gram set to denote the grams used to access inverted index,
the actual grams used as filter, though counter filter and
prefix filter use different grams to access the inverted index.
Consider string abcde, whose 2-gram set is {ab; bc; cd; de; e$},
and t ¼ 1, prefix filter just uses gram set {ab; bc; cd} as
query-gram set while counter filter uses {ab; bc; cd; de; e$}.

In the following, inadequacies of existing framework is
illustrated first. Then to solve this problems, a general gram
filter is introduced.

3 MOTIVATION

3.1 Dilemma of Choosing Filters

Traditionally, the filtering step will choose either counter fil-
ter or prefix filter as the base filter to generate candidates. In
the next we will show an example that, the impact of differ-
ent filters on the search performance may vary depending
on the queries. In other words, it is difficult to choose the
suitable filter before the query is given.

Consider the inverted index3 in Fig. 2 and a query string
bcbdcdef , where the 2-chunk set of the query is
fbc; bd; cd; efg. Gram bd will never be used since there is no
entry for it in the inverted index, which means the list
length is 0. If t is equal to 1, a prefix filter just needs to access

t þ 1 ¼ 2 inverted list, including bc and bd, resulting in only
four elements accessed and four candidates generated, i.e.,
f1; 3; 9; 11g. However, a counter filter will access more
inverted lists of cd and ef , where 10 more elements will be
accessed and the candidate set is f1; 3; 9g, in which each ele-
ment appears in at least LB ¼ jC2ðsÞj � t ¼ 4� 1 ¼ 3 lists.
Although counter filter reduces the candidate size by 1, a
prefix filter will benefit from less accessed elements.

However, the situation will be completely different, if we
change t from 1 to 2 and use another query string abbcdefg,
in which case the 2-chunk set of the query is fab; bc; de; fgg.
Now a prefix filter will access the inverted lists of ab, bc, and
de that probe 13 elements and generate the candidates
f1; 3; 4; 5; 7; 9; 10; 11; 15g, whereas a counter filter just needs
to access six more elements in gram list fg. But the new can-
didate set is f1; 3; 4; 9; 10g, where four more candidates are
removed. In this case, the counter filter will obtain a much
smaller candidate set, thus reducing the verification cost
significantly. Generally speaking, prefix filters need to
access less elements at the price of large candidate set, while
counter filters usually produce less candidates by probing
more inverted lists.

Since the query string and t can never be known in
advance, it is hard to decide which filter should be adopted
in the similarity search before query process. The essential
reason for this dilemma is that, both prefix filter and counter
filter only consider a single factor: prefix filter only aims at access-
ing the least number of elements and counter filter just focuses on
generating the least number of candidates.

3.2 Problem of Predefined Gram Sort

Existing frameworks select grams just considering the gram
inverted list length. Traditional prefix filter only choose
Dþ 1 grams as filter scheme, where D is the number of
destroyed gram.4 Adaptive-Search algorithm [7] adds extra
grams to further improve the performance. Notwithstand-
ing, all the existing work sort the GqðQÞ, defined in advance,
based on the length of gram inverted list.

In Adaptive-Search algorithm, more grams can be
appended to the prefix while increasing the lower bound of
common grams between a candidate pair. However, when
a gram of a query chosen by Adaptive-Search algorithm is
contained by most of the candidate strings generated based
on other selected grams, it should be discarded since there
are few benefits of reducing candidate size. In other words,

Fig. 1. Example of counter filter and prefix filter.

Fig. 2. Inverted lists of string id.

2. Grams are sorted in ascending based on list length of gram.
3. The second element of ef is 3 in this section. In Section 6, it is 4.

List length increases from top to down.

4. An edit operation can destroy at most q grams under q-gram seg-
mentation and destroy at most 1 grams under q-chunk segmentation.
Destroyed grams represent the maximal number of grams that can be
destroyed by a given edit distance. D is q � t and t for q-gram and
q-chunk respectively.
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their approach does not try to optimize the selectivity of the
whole gram set.

Consider Fig. 2 as an example. All the grams are sorted in
ascending order based on corresponding inverted lists
length from top to bottom. Assuming destroyed gram
D ¼ 1, grams ab and bc have been selected as base prefix
scheme for given query. All the strings occurring at least
once in ab and bc lists’ will enter candidate set. Then candi-
date set f1; 3; 5; 7; 9; 11g is generated. If another new gram
cd is added to prefix, the new prefix generates candidates
f1; 3; 7; 9; 11g. Only one string is pruned. However, if we
add gram de instead of cd, the new prefix generates candi-
dates f1; 3; 5g. Two more strings can be pruned. Sort based
upon list length is not appropriate. Distinguished with all
existing methods, in this paper we take a novel perspective
to try to optimize the total time cost of similarity search by
strategically selecting a gram set for a query that is expected
to achieve a better balance between filtering and verification
costs. Specifically, we aim to build a gram set that has small
size but great capability to prune candidates, so that both fil-
tering and verification cost can be small.

In fact, different combination of grams will lead to differ-
ent filters. In the following, we will propose a general filter
that treats all the above-mentioned filters as special cases,
and develop novel approaches to automatically find the
nearly optimal filter with the aim of reducing the costs of fil-
tering and verification simultaneously.

4 GENERAL GRAM FILTER

In this section, we propose a general gram filter to resolve
inadequacies in the existing framework. Before that, a lemma
on which existing filters are all based is given first. The basic
idea of Lemma 1 is that enough grams can prevent all the
grams from being destroyed by edit operations so that the
survived grams can be used to obtain the similar strings.

Lemma 1. LetSqðs1Þ be segment set (q-gram or q-chunk) for string
s1 and Gqðs2Þ be q-gram set for string s2. Consider any subset

Ŝqðs1Þ of Sqðs1Þ of size Dþ LB, where D represents for the
maximal number of grams destroyed by t edit operations and
1 � LB � jSqðs1Þj �D. If jSqðs1Þ \Gqðs2Þj � jSqðs1Þj �D,

jŜqðs1Þ \Gqðs2Þj � LB. The contraposition of this statement
can be used as the condition to remove dissimilar strings safely.

Proof. Assuming jŜqðs1Þ \Gqðs2Þj ¼ m < LB, then Ŝqðs1Þ
contains Dþ LB�m grams that never appear in Gqðs2Þ.
jSqðs1Þ \Gqðs2Þj will be at most jSqðs1Þj �D � LBþm,
which is less than jSqðs1Þj �D. That conflicts with the
given condition. Combine statement “if
jSqðs1Þ \Gqðs2Þj < jSqðs1Þj �D s1 and s2 must be dissim-

ilar” with statement “if jŜqðs1Þ \Gqðs2Þj < LB, then
jSqðs1Þ \Gqðs2Þj < jSqðs1Þj �D”, dissimilar strings can be
detected. tu
Lemma 1 formally describes any subset whose size is no

less thanDþ 1 can be used as query-gram set. Based on this
lemma, general gram filter is defined as follows.

Definition 4 (General Gram Filter). By using any subset

Ĝqðs1Þ whose size is Dþ LB of query string q-gram set

Gqðs1Þ, Ĝqðs1Þ can be used as query-gram set of a gram filter f
̎

in the candidate generation phase. Gram filter f
̎
is an instance

of general gram filter. The corresponding lower bound is LB.

Denote this query-gram set as Gj
LBðs1Þ, where the j represents

different combination grams for a given LB.

In the above definition, f is variable. And only the query-
gram set is fixed, the lower bound LB can be decided. To
show general gram filter results in complete answers, we
give the proof of completeness.

Completeness. Assuming s1 is query and s2 is string in
database, based on the pigeonhole principle, since t edit
operations can at most destroy D grams of s1, any Dþ LB
grams will guarantee at least LB gram of s1 survive. The
survived grams can be used to access s2 through inverted
index. s2 occurs in at least LB lists, which meet the condi-
tion reserved by filter.

The value of D correlates with the chosen subset. Non-
overlap subset can make D minimal [6], in which D ¼ t.5

The value of LB will be decided automatically during the
process of finding efficient gram filter. The exact value
affects the efficiency. Note that for a given LB ,there are

CLB
jGqðs1Þj different gram combinations. Prefix filters and

counter filters can be seen as the special case by setting
LB ¼ 1 and LB ¼ jSqðs1Þj �D respectively.

For example, consider a query string abcdefg and thresh-
old t ¼ 1. G2ðabcdefgÞ is fab; bc; cd; de; ef; fgg. Let LB ¼ 1,
since an edit operation affects at most 2 grams, then any
3 grams in G2ðabcdefgÞ can be used as the filter grams. The
first 2 � 1þ 1 ¼ 3 grams in global order is the case of prefix
filter. Consider t ¼ 2 and LB ¼ 2, the general gram filter
size 2 � 2þ 2 ¼ 6 is equal to jG2ðabcdefgÞj that means all the
grams are used which is the same as counter filter.

The number of general gram filters for a given query is
huge. So a question is which gram filter is the best filter? In
order to answer this question, we conduct an analysis on
the performance of similarity query process in the sequel.

Theoretical analysis. The query process consists of candi-
dates generation and verification.

� Candidates generation. Let IðgÞ be the element set con-
taining all the strings in inverted list of entry g. For
each gram g 2 GLBðs1Þ, existing framework needs to
scan all elements in IðgÞ, the total cost isP

g2Gj
LB

ðs1Þ jIðgÞj.
� Verification. Let Cj

LBðs1Þ denote the candidate set of
query s1 which consists of strings that appear in at

least LB lists of elements in Gj
LBðs1Þ. And costvðcÞ

denotes the average cost to verify an element

c 2 Cj
LBðs1Þ. The total cost is

P
c2Cj

LB
ðs1Þ costvðcÞ.

By summing up the above two costs, we obtain the total
cost of filter-and-verification framework using query-gram
set GLBðs1Þ, i.e.,

Qj
LB ¼

X
g2Gj

LB
ðs1Þ

jIðgÞj þ
X

c2Cj
LB

ðs1Þ
costvðcÞ: (1)

5. Grams in non-overlap set will share no position among them.
Since an edit operation can occur in at most single non-overlap gram, t
operations result in t grams destruction.
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The total cost of query process is dependent with the
number of strings to be accessed and the number of candi-
dates to be verified, both of which are affected by the grams
chosen in the candidates generation step. Actually, for each

LB there are LB þ D
jGqðs1Þj

� �
query-gram sets as the candidate

filters to be chosen. Let gi 2 Gqðs1Þ. The objective function to
optimize the choice of query-gram set is:

arg min
gi2Gqðs1Þ;LB

X
gi2Gqðs1Þ

jIðgÞj þ
X

c2Cj
LB

ðs1Þ
costvðcÞ; (2)

where:

1 � j � LB þ D
jGqðs1Þj

� �
P

gi2Gqðs1Þ gi ¼ LB
gi ¼ 0; 1:

8><
>:

(3)

gi ¼ 1means gram gi is chosen, otherwise gi ¼ 0.

Lemma 2. Optimizing the objective function (2) is an NP-hard.

Proof. We consider the special case of the problem, where
costvðcÞ �

P
g2Gj

LB
ðs1Þ jIðgÞj, which means the verification

cost dominates the total cost. If the special case is NP-
hard, so is original problem. This problem can be stated
as follows.

Special case problem. Given N inverted lists, corre-
sponding to the query’s q-gram set, and a constant D,
pick up Dþ LB grams that make the candidate set mini-
mum, where a string will be a candidate if it appears in
at least LB chosen inverted lists.

We will reduce the minimum set-cover problem to our
special case problem. Let S be the solution of minimum
set-cover problem. Before the proof, we introduce a
lemma which will be used in reducing process. tu

Lemma 3.
T

s2S s ¼ ;, where the s denotes the complement of
set s.

Proof of Lemma 3. Assuming the
T

s2S s ¼ d 6¼ ;, then ele-
ment in d will never be covered by the S, which is a con-
flict with the fact that S is a solution.

For convenience to prove NP-hard, we can treat
each inverted list as a set naturally. Constructing a
solution O to a minimum set-cover problem that con-
sists of LB sets. And let all the complements of sets in
the minimum set-cover problem be the sets in our
problem. Setting D ¼ 0, then all the complements of
set oi 2 Oð1 � i � LB) constitute a solution to our spe-
cial problem. The reason is the intersection among
these sets is empty (Lemma 3) and no candidate set
size can be less than 0. That meets the minimal number
of candidates, so this solution is correct to our special
problem. We can also use this solution to solve mini-
mal set-cover problem. tu
Lemma 2 implies that getting the optimal query-gram set

efficiently during the query process is impossible. Although
this cost model can not be directly used to select grams, it
enlightens us to develop heuristics. In the sequel, we will
first develop a framework to choose the grams quickly,
avoiding searching in enormous combinations of grams.

Then, under the new framework, we propose a new crite-
rion to help choose high quality grams, which proximately
reach the goal of cost model.

5 GRAM SET SELECTION FRAMEWORK

Enumeration of all the possible gram combinations is time-
consuming. In order to avoid searching in enormous combi-
nations of grams, we propose a gram-set-selection frame-
work to select gram one by one. Although different
approaches can be proposed in this framework, two key
problems that are critical to the overall performance need to
be addressed: how to measure the gain of adding a new gram in
query-gram set and when to stop the selection process. Inspired
by the minimum set cover problem, in this section we pro-
pose a greedy algorithm as a baseline method to address
the above problems.

5.1 Choose-and-Extend Framework

In Algorithm 1, we develop gram set selection framework to
deal with similarity search. First, Dþ 1 grams are selected
as base query-gram set (Line 1). Then new gram is added in
query-gram set one by one until no benefit can be obtained
(Lines 2-5). At last, all the candidates surviving at filter step
will be verified (Line 6).

Algorithm 1. Choose-and-Extend Framework

Input: The q-gram set of query Q, GðQÞ;
The number of grams destroyed by t edit operations, D;
The inverted lists, I;
Output: The similar string set Re according to query
1: Choose Dþ 1 grams as the base query-gram set and gener-

ate the candidate set C1;
2: for i ¼ 2; i <¼ jGðQÞj �D; þþ i do
3: if No benefits can be obtained from adding new grams

then
4: break;
5: Add gi with largest benefit into the query-gram set and

merge its inverted list with Ci�1 to generate the candidate
set Ci;

6: Verify the Cfinally set to generate the result set Re;
7: return Re;

5.2 Greedy Algorithm

Set cover problem can be approximately solved by using
greedy algorithm. In this section, we propose a similar
greedy algorithm. Since adding a gram is to sacrifice the
accessing cost and benefit from verification cost, the greedy
strategy is to find grams one by one until no benefit obtained.
In order to measure the benefit, a ratio between the reduction
cost in the size of the candidate set and new gram list length
is used to quantify the gain of adding a new gram.

5.2.1 Effect on Cost Model by Adding Gram

in Query-Gram Set

Assuming a base query-gram set is obtained, which con-
tains Dþ 1 grams and common gram lower bound is 1. Let
Ci denote the candidate set whose common gram lower
bound is i and C¼

i denote the subset, whose elements’
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frequency is equal to the common gram lower bound, of Ci.
Based on the total cost in Equation (1), absorbing new gram
gn may increase the access time but can reduce the candi-
date size that saves the verification time. Let B denote the
reduction in the size of the candidate set and IðgnÞ denote
new added gram gn in inverted list. The Gain of a newly
added gram is evaluated by the following equation:

GainðgnÞ ¼ jBj � costvðQÞ � jIðgnÞj; (4)

where the costvðQÞ represents the average verification time
between a query string and a candidate. And it can be esti-
mated by real cost of calculating edit distance between
query string and itself. jIðgnÞj refers to accessed list length.
Gain is the difference between benefit of candidates reduc-
tion and cost of accessing inverted list. If the Gain is larger
than 0, it means this gram can be added to query-gram set,
since it bring more benefit than cost. However, to directly
compute this gain should access all the elements in the lists,
which is time-consuming and not appropriate. Besides, it is
unnecessary to access the inverted lists before the corre-
sponding gram is selected as element of query-gram set.
This calculation need a more efficient implementation.

Lemma 4. jBj ¼ jC¼
i
j

1 þ JS ðC¼
i
;IðgnÞÞ �

jIðgnÞj
1

JS ðC¼
i
;IðgnÞÞ þ 1

.

Proof. By the set exclusion principle, we have

jC¼
i [ IðgnÞj ¼ jC¼

i j þ jIðgnÞj � jC¼
i \ IðgnÞj; (5)

dividing both side of Equation (5) by jC¼
i [ IðgnÞj and

using

JSðC¼
i ; IðgnÞÞ ¼

jC¼
i \ IðgnÞj

jC¼
i [ IðgnÞj ; (6)

we can obtain

jC¼
i [ IðgnÞj ¼ jC¼

i j þ jIðgnÞj
1þ JSðC¼

i ; IðgnÞÞ
: (7)

Since the reduced candidate set is:

B ¼ jC¼
i j � jC¼

i [ IðgnÞj � JSðC¼
i ; IðgnÞÞ; (8)

by using Equations (4), (7) and (8), Lemma 4 can be
obtained. tu
We can make an observations from Lemma 4. B can be

calculated by using jC¼
i j, jIðgnÞj and JSðC¼

i ; IðgnÞÞ. jC¼
i j and

jIðgnÞj can be easily gotten so that we just need to calculate
the JSðC¼

i ; IðgnÞÞ.
By generating the Min-Hash [11] signature for C¼

i and
IðgnÞ, JSðC¼

i ; IðgnÞÞ can be estimated by Min-Hash signa-
ture, which avoids access of inverted list. In an inverted list,
all the strings in different length are grouped into different
parts. And in each group, the strings are in the same length.
Each group is given a Min-Hash signature. Take Fig. 4 as an
example. In inverted list of gram ab, string ids in group 1-8
are in the same length and given signature “4, 0”. Since
there is no string id in the group 9-16, the signature is “null,
null”. After using length filter, the cost of estimating B is
Oðt � n � jC¼

i jÞ, in which h is the number of hash function.

In our experiments, we only use five hash functions. To
reduce the maintenance cost, we can use v-signature intro-
duced in next section.

Since there is no candidate before base query-gram set
is decided, the benefit for gram adding in base query-
gram set is different. Recall, our goal is to choose grams
that generate less candidates. The basic idea is gram lists
having low overlap between each other result in small
candidate set. The benefit can be measure through the sim-
ilarity between selected merged gram lists and new gram
list, which just replaces C1 in Lemma 4 with MergeList,
where the MergeList represents merge list of selected
gram lists. Two lists are merged into a single list by union
their elements. To distinguish it from GainðgnÞ, we denote
it as BenefitðgnÞ.

5.2.2 Algorithm

The greedy algorithm revises framework in Algorithm 1
and is illustrated in Algorithm 2. SelectGramByBenefit() is
to select gram with the largest BenefitðgnÞ in the left q-gram
set. After the base query-gram set is fixed, new grams are
appended until the largest GainðgnÞ has no benefit, which is
check in CheckLargestGain(). The worst cost of greedy algo-

rithm is Oðn2Þ, where n is the number of query’s q-grams.

Algorithm 2. Greedy Algorithm

1: Add initial step “Add gram list of the smallest length in ini-
tial query-gram set”;

2: Change Line 1 in Algorithm 1 to SelectGramByBenefit();
3: Change Line 3 in Algorithm 1 to CheckLargestGain();
4: Use GainðgnÞ as the measure of gain in Line 5 in

Algorithm 1;

Greedy is not good. The greedy algorithm can be easily
trapped within local optimum result, since the first selected
gram contains few information about candidate set. More-
over, Oðn2Þ is expensive for online processing, where n is
the number of grams of the query. In addition, the size of
C¼

i is also not small in the beginning, which can cause extra
cost in filter step. In the next section, we propose a rank
based method with two-step stop condition, which can han-
dle these issues.

6 A GRAM-RANKED BASED METHOD

Gram set selection framework can reduce the cost of
selection and the gain can help decide when to stop selec-
tion. Nevertheless, we still need more efficient and effec-
tive strategies to find high quality grams. In this section,
we improve this framework by introducing a ranking
method for better grams selection and a two-step stop
condition with less extra checking cost. Since the string
elements shared among gram lists decide the candidate
size, we should preserve the comparison among gram
lists to find lists with small intersection. Besides, compari-
son is also necessary to reflect the relative value of list
length among a group of gram lists. Therefore, compari-
son sort is an appropriate method to help find the grams,
achieving the goal of the cost function. And the time cost
is just Oðn log nÞ. In this section, we also propose a new
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perspective to quantify the quality of grams for ranking.
Compared with existing method, our new criterion can
measure both access cost and filter ability of grams.

6.1 Problem of Existing Approaches

All approaches based on the prefix filter need a global
ordering for the grams. The state-of-art method is to sort all
the grams based on the inverse document frequency (IDF) of a
gram. Let N denotes the number of strings in the string col-
lection and n denotes the number of strings in a given
gram’s inverted list. Then the idf is N

n . Since N is a constant
when the string collection is given, the idf is just dependent
with the length of the whole inverted list. A global ascend-
ing order based on the length is used to help choose the top
Dþ LB grams. The intuition of this approach lies in that
shorter lists result in less access time, so it mainly focuses
on optimizing the cost in candidates generation phrase.6

Fig. 3a is the candidate size distribution for 200 randomly
chosen queries on DBLP data set, in which threshold t ¼ 5
and LB ¼ 2 are set for all the queries. We compare the
grams selected based on idf and the optimal grams which
are found by brute force method. Optimal grams can signifi-
cantly reduce the candidate size, but the gram chosen based
on the length of list will easily result in a large candidate
set. Since the time cost for evaluating the real edit distance
is expensive, less candidates will bring more benefit than
the extra list access cost. What’s more, a global statistical
length doesn’t represent the real length used in query pro-
cess after apply length filter, leaving a chance to reduce
access cost.

6.2 Motivating Example

We still use the inverted list shown in Fig. 2 as the example.
The second element of ef is 4 now. Suppose a query Q ¼
“abcdefg” generate grams fab; bc; cd; de; ef; fgg, and D ¼ 1,
LB ¼ 2. For the traditional prefix filter, query-gram set
fab; bc; cdg will be chosen as the query-gram set. Then the
candidates are f1; 3; 7; 9; 11g, since all of them have at least
two occurrences in the inverted list. However, if we choose
another three grams fab; ef; fgg as the query-gram set, the
candidates are f1; 7g, where the number of candidates is
reduced due to the small list overlap among the lists associ-
ated with the query grams. Although the operation time
increases for extra three elements, the candidate size is
reduced by more than a half, by which we can save

3 � ðt þ 1Þ � jQjÞ ¼ 3 � 2 � 7 ¼ 42 operations in the verifica-
tion step (We use verification method proposed in [29]).

We observe through analysis based on real dataset that
short gram inverted lists dominate the gram set of a string
collection. Fig. 3b shows that 3-gram lists length in DBLP
follows a power law distribution, which means the majority
of gram lists is not very long. There is potential to select lon-
ger lists without sacrificing a lot of access cost, even though
they are not optimized. If we can choose the a little longer
gram lists that just generate a few candidates, the total cost
is expected to decrease. Inspired by this observation, we
may improve the quality of the constructed prefix by pro-
posing a new ranking criterion for grams based on the
potential number of candidates that it may generate. How-
ever, we are faced with several challenges for developing
this new criterion:

� The number of candidates is related to the list over-
lap among several grams. But the number of combi-
nations of grams is huge, rendering the way to
examine all the combinations infeasible.

� We need to calculate the overlap between gram lists
efficiently. The overlap between two sets can be esti-
mated by using similarity-based estimation meth-
ods. But it is not straightforward to extend them to
multi-grams, since the accumulated errors will affect
the effectiveness of estimation.

� After all, the list overlap is a measure based on mul-
tiple grams’ list, but the rank is a measure for indi-
vidual gram.

6.3 Discrimination of Grams

Considering these issues, we propose a quantification on
individual gram which involves the information among
grams to measure the filter ability of grams. In order to deal
with the efficiency, Min-Hash signature is used as the sum-
mary for each gram list.

6.3.1 Definition

List overlap is a measure on multiple gram lists, which can
only be calculated after the grams are selected and fixed. In
order to quantify each individual gram on how it will con-
tribute to the list overlap, we develop the concept of discrim-
ination of gram as follows.

Definition 5. Given the gram set G and the corresponding gram
inverted list set I, for each gram gi 2 G, the discrimination of
gi on G is defined as

X
sj2IðgiÞ

FrequencyIðsjÞ � 1; (9)

where sj is a string element in the inverted list IðgiÞ, and
FrequencyIðsjÞ is the occurrence frequency of sj in the
inverted list set I.

The rationale of using discrimination to choose gram is
that gram lists consisting of less frequent elements usually
have higher filtering power.We reduce the frequency by 1 in
the above equation to eliminate the effect of list length. Since
longer list with more elements also results in high value dis-
crimination, it is hard to tell whether discrimination come

Fig. 3. Statistic in DBLP.

6. The global shortest is not the real shortest after the length filter.
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from overlap information. Taking Fig. 2 as an example, the
discrimination of gram fg is calculated by
ð6� 1Þðs1Þ þ ð1� 1Þðs2Þ þ ð3� 1Þðs7Þ þ ð1� 1Þðs8Þ þ ð1�
1Þðs13Þ þ ð1� 1Þðs14Þ ¼ 7, where ð6� 1Þðs1Þ means there are
5 s1 in these lists except the one contain in fg. All the discrimi-
nation of this gram set are 10, 10, 12, 8, 9, 7 from top to bottom.
Obviously, gram fg is the most discriminative which means
it has very small list overlap with the other grams and thus
higher selectivity if added into the query-gram set.

However, it is not feasible to calculate the true dis-
crimination value for each gram, since it needs the access
of all the elements in the inverted lists. It conflicts with
the goal to avoid access. Next we propose to use the
Min-Hash signature for efficient estimation for the
discrimination.

6.3.2 Relative Discrimination

Calculate real discrimination need to access inverted list,
which is time-consuming. Since this process is extra to
query process, we should consume time as small as
possible.

Recall that discrimination is a relative quantity, the rela-
tion among grams is key. To model the relation and reduce
the computation, we can use Min-Hash signature. The intui-
tion of using Min-Hash to estimate discrimination is that
Min-Hash is a similarity-preserving signature, so we can
use it to calculate the intersection among different inverted
lists. Since the discrimination is to reflect the difference of a
list towards a set of lists, the less intersection a list can share
with other lists, the more discriminative it is. So we use the
Min-Hash to estimate discrimination. The calculation of rel-
ative discrimination is similar to real discrimination while it
counts elements of Min-Hash signature.

For example, consider inverted index in Fig. 2, by using
teo hash functions h1ðxÞ ¼ ðxþ 3Þ Mod 11 and h2ðxÞ ¼
ð3xþ 2Þ Mod 11, we can generate Min-Hash signature in
Fig. 4. Assuming strings in id range [1], [2], [3], [4], [5], [6],
[7], [8] and [9], [10], [11], [12], [13], [14], [15], [16] are the
same length respectively, there are two signatures for each
gram list. Relative discrimination for each range is calcu-
lated first and then merged into an integrated value. To cal-
culate the relative discrimination of gram fg, we count the
frequency of Min-Hash values that occur in this gram set,
i.e., FrequencyIð0Þ ¼ 4 and FrequencyIð1Þ ¼ 1 for the first
range and FrequencyIð5Þ ¼ 1 and FrequencyIð0Þ ¼ 1 for the
second one. Then the integrated relative discrimination of
gram fg is calculated as ð4� 1þ 1� 1Þ=2þ ð1� 1 þ
1� 1Þ=2 ¼ 1:5. The relative discrimination of other grams is
also showed in column 1-sig DIS of Fig. 4. Recall the query
Q = “abcdefg”, which generates grams fab; bc; cd; de; ef; fgg,
D ¼ 1 and LB ¼ 2. If we choose the 3 grams with least rela-
tive discrimination, fde; ef; fgg, the candidate set is f1; 4; 10g,
which is smaller than f1; 3; 7; 9; 11g which is the result of
using fab; bc; cdg.

The purpose of using Min-Hash is to approximate the

intersection size of large gram lists with fewer hash values.

Therefore the number of hash functions is a tradeoff

between time cost and accuracy: the more hash function,

more accurate discrimination values but higher time cost,

and vice versa. Theoretically there has proved to be an

expected approximation error of Oð 1ffiffi
k

p Þ, where k is the num-

ber of hash function used. It implies that, in order to achieve

an expected error �, we need to use Oð 1
�2
Þ hash functions. We

conduct more empirical study in Section 7.2 to evaluate the

effect of the number of hash functions.

6.4 V-Signature

With the help of Min-Hash signature, we can estimate the
discrimination by avoiding accessing the inverted lists
directly. However, even though Min-Hash signature can be
pre-computed, this technology still introduces extra hash
values to access. In order to minimize the cost of estimating
discrimination, the number of hash values should be as less
as possible.

Instead of just grouping strings of certain length into a
range, we can build multi-version signature for each list.
We call this method v-signature. After grouping the strings
by their length, a set of groups, denoted by ðg1; . . . ;
gi; . . . ; gnÞ, can obtained, where gi denote the group whose
strings’ length are i. Similar to the definition of q-gram, v-
signature is to build a Min-Hash signature for strings in a
range which consists of v groups starting from i ði � n �
vþ 1Þ. If a query come, we choose a non-overlap combina-
tion with the least number from these multi-version signa-
ture as the query-signature. For example, in Fig. 4,
1-signature is the case of building a Min-Hash signature for
each group. To build 2-signature, we combine strings in
[1], [2], [3], [4], [5], [6], [7], [8] and [9], [10], [11], [12], [13],
[14], [15], [16]. Still using the same hash functions men-
tioned in last section, we can calculate 2-signature for [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16]. Among 1-signature and 2-signature, only using a sig-
nature for [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16] from 2-signature can result in the least
number of combination. Two-signature can also help us
pick up gram like 1-signature, which only needs access half
of the hash values. For different t, we use different version
of v-signature so that the access time of Min-Hash signa-
ture can be reduced. The complexity of using v-signature
to estimate the relative discrimination is Oðt � n � jQjÞ,
where the n is the number of hash functions and jQj is the
length of query string.

6.5 Synthetic Criterion

Although discrimination can help reducing candidate set, it
still ignores filtering cost and long list may be introduced.
Gram list length should be considered as well. Besides,
global list length information can not predict the real length

Fig. 4. Signature of inverted index.
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used in query process, since length filter will affect the real
used strings in list. Consider query string s, length filter will
ignore all the strings whose length exceed the range
½jsj � t; jsj þ t	. To solve these problems, a synthetic rank is
illustrated in Algorithm 3. First, the normalization for list
length and discrimination are calculated respectively
(Lines 1-2). UðgÞ stands for the discrimination of gram g,
and jItGðgÞj stands for the strings that survive in length filter

under the edit distance t. The discrimination and list length
are combined into the total rank of gram after normalization
(Lines 3-4), which is sorted in ascending order (Line 5). The
time complexity of this algorithm is OðN þN � log NÞ, in
which the N is the number of grams.

Recall the calculation of the Gain in Equation (4) and
Lemma 4, another observation is Gain /�jIðgnÞj and

Gain / 1
JSðCi;IðgnÞÞ. It suggests gram with smaller length and

lower list overlap with others can have large Gain. This is
similar to synthetic criterion, which aims to rank shorter
and more discriminative grams in the front of order.
Inspired by this observation, we can simply select grams,
which will be used in next section, in turn.

Algorithm 3. RankGram()

Input:
The discrimination set of gram set, U ;
The gram set corresponding inverted lists of GðQÞ, IG;
The edit distance t;

1: for each g 2 GðQÞ do
2: Normdiscriminationþ ¼ UðgÞ;

Normlengthþ ¼ jItGðgÞj;
3: for each g 2 GðQÞ do
4: rankðgÞ ¼ ð1� �Þ � UðgÞ

Normdiscrimination
þ � � jIt

G
ðgÞj

Normlength
;

5: Sort grams based on rank;

6.6 Gram-Ranked Based Method with Two-Step
Stop Condition

To this end, we analyze the rationale to use synthetic crite-
rion select high quality query-gram set for a given query
and quantify the gain of new appended gram.

Based on analysis above, we develop gram set selection
framework to dealwith similarity search inAlgorithm 4. First,
discrimination of grams is calculated (Line 1). Then gram is
sorted based on synthetic criterion in RankGramðGðQÞ;
tÞ(Line 2). In order to choose high quality query-gram set, a
base query-gram set consisting of top minimal Dþ 1 grams
are first chosen (Line 3). New grams in the ranked list are
added in query-gram set one by one until gram gain is less
than 0 (Lines 4-8). In order to reduce the cost of maintaining
signature of C¼

i , we propose a light-weight stop condition in
Line 5. This condition is the lower bound of the gain. By sim-
ply assuming that all the elements in the new added gram’s
list are shared by C¼

i , we can get the minimal gain jC¼
i j�

jIijÞ � costvðQÞ � jIij. After that condition, the size of C¼
i is

small andwe can use theGainðgiÞ to calculate a more precise
gain efficiently in Line 6. Since gain is also calculate by length
range so that the algorithm stops. At last, all the candidates
surviving at filter stepwill be verified (Line 9).

Finally it is worth to note that many existing advanced
filters and optimization, such as those mentioned in [4], [6],
can still be used under our framework.

Algorithm 4. Gram-Ranked Based Framework

Input:
The q-gram set of query Q, GðQÞ;
The number of grams destroyed by t edit
operations, D;
The Min-Hash signature set of gram lists, S;
The inverted lists, I;
Output:
The similar string set Re according to query

1: CalculateDiscriminationOfGrams(G(Q));
2: RankGram(G(Q),t);
3: Choose the topDþ 1 grams as the base query-gram set and

generate the candidate set C1;
4: for i ¼ Dþ 2; i < jGðQÞj; þþ i do

5: if ðjC¼
i j � jIijÞ � costvðQÞ � jIij < 0 then

6: if GainðgiÞ < 0 then

7: break;
8: Add ith gram gi in the ranked lists into the

query-gram set and merge its inverted list with
Ci � 1 to generate the candidate set Ci;

9: Verify the Cfinally set to generate the result set Re;
10: return Re;

7 EXPERIMENTAL EVALUATION

In this section, we present our experimental results of the
proposed techniques. The effect of different factors on the
performance of our framework is evaluated.

7.1 Experimental Setup

We implement our method to support similarity search, and
compare it with other state-of-the-art algorithms. All the
experiments are conducted in the main memory. In particu-
lar, Adaptive-search [7] is a prefix-filter based method. It
extends the prefix length of the classic prefix filter. We
implement this method without the delta inverted index,
since the threshold t is a part of query and cannot be known
as a priori in the similarity search problem. ChunkGram [6]
is also a prefix-filter based method with advanced filters.
We also use advanced filter in Pass-Join [29] to improve
ChunkGram. We use inverse document frequency as the
global order when necessary. Although there are many

other methods such as VGram [8], PartEnum [16], Bed-Tree
[17], Trie-join [23], and ED-Join [4], prior works [6], [10], [7]
have shown that none of them can outperform the above-
mentioned algorithms.

We adopt three commonly-used, real data sets to evalu-
ate the performance in our experiments.

� DBLP strings are obtained from the DBLP Bibliogra-
phy.7 Each string is a concatenation of authors’
names and article title.

� Uniref is the Uniref50 protein sequence data from
UniProt project.8 Each protein sequence is treated as
a string.

7. http://www.informatik.uni-trier.de/
ley/db
8. http://www.uniprot.org/

HU ET AL.: GFILTER: A GENERAL GRAM FILTER FOR STRING SIMILARITY SEARCH 1013



� TREC is the data set used for TREC-9 Filtering
Track.9 We remove the strings with less than 100
letters.

Fig. 5 provides more details about the data sets. Queries
are randomly selected from the corresponding data set.

Parameter. Parameters q and � should be set. To make
q-gram-based method have pruning power, the threshold

cannot exceed bjsj�q
q c. Since we can’t predicate the threshold

in advance, we set the q ¼ 3 to support large edit distance
threshold. We specify � as follows: if t < 5, � ¼ 0:2; if
5 � t < 10, � ¼ 0:5; if t � 10, � ¼ 0.8. When t is small, the
candidate is small, then the filter cost dominant the total cost;
with the increase of the t, the candidate increase exponen-
tially, hencewe should focus on reducing the verify cost.

Implementation of v-signature. In order to save the storage
of Min-Hash signature, we only use four version of
v-signature, where v 2 f1; 2; 4; 8g. To support different t, we
can use the combination of the four level v-signature. For
example, the t ¼ 20, we can use two signature in 8-signature
and one signature in 4-signature. To minimize the estima-
tion cost, the combination of the least number of signature
is picked up.

All the algorithms were implemented in C++ and com-
piled by Microsoft Visual Studio 2010. All the experiments
were run on a Windows 7 machine with an Intel Core 2 Duo
T6570 2.10 GHz processor and 8 GB main memory.

7.2 Effect of the Number of Hash Functions

The Min-Hash signatures of inverted lists are generated by
N hash functions. In fact, the number of hash functions is a
trade-off. If N is too large, the estimation is more accurate,
but the cost of estimation will increase. Otherwise, if the N
is too small, the estimation cost decreases, but the accuracy
will be low and result in large candidate size. We test both
the accuracy and the efficiency. Since the relative discrimi-
native just records the relative rank of gram, we use the
NDCG to measure the distance that the relative discrimina-
tive rank deviate from the real discriminative rank. In the
result, the NDCG increase with the number of hash func-
tions. The reason is that the more hash function we use, the
higher accuracy we obtain. Since this factor affects
the whole query process, the efficiency is also measured on
the query-gram set selection framework. We vary N under
different query threshold t. Fig. 6 shows the results. The
correlation between the cost and the number of hash func-
tions is different on the three datasets. For example, the
number of hash functions do not influence the running time
much on DBLP dataset, whereas the choice of five hash
functions can lead to a better performance in general for the
Uniref50 and TREC datasets. It implies the hash function

number should not be either too small or too large. Based
on the result, we set N in our experiment to be 5, in which
the time cost is small and the NDCG is high.

7.3 Similarity Search Performance

In this section, we compare our query-gram set selection
framework with the state-of-art methods for similarity
search problem.

We compared our approach with Adaptive-Search and
ChunkGram. Greedy algorithm is also illustrated.

� Greedy. Greedy algorithm described in Section 5.2 is
implemented. V-signature is used to speed up simi-
larity calculation. Length filter and position filter are
used.

� Adaptive-search. We implement Adaptive-Search[7]
with delta inverted index whose first part store 1-
prefix, since delta inverted index should know
the query threshold in advance. Adaptive-Search
use the same inverted index like other approaches.
The sort is based on the global list length. The sam-
ple ratio of Adaptive-Search is set to 1 percent, as
recommended by [7].

� ChunkGram. We use the source code provided by the
author of ChunkGram [6]. ChunkGram is a prefix fil-
ter based similarity search method.

� CF-select. We implement our method called chunk-
based-filter with selection (CF-Select). The query
string is partitioned into q-chunks. The sort is based
on the hybrid function considering both list length
and discrimination described in Section 6.5. Length
filter and position filter are used.

� GF-select. Different from CF-Select, gram-based-filter
with selection (GF-Select) partitions the query string
into q-grams. The sort is also based on the hybrid
function considering both list length and discrimina-
tion. Length filter and position filter are used.

Fig. 7 shows the average query cost, fromwhich we made
some conclusions: (1) CF-Select and GF-Select outperform
other algorithms in general. GF-Select achieves better perfor-
mance than CF-Select, when the query threshold is large in
DBLP and TREC. We believe the reason is GF-Select can find
higher quality query-gram set, since the chunk set is just a
subset of gram set. However, in Uniref50 data set CF-Select
is better than GF-Select. The causality is that small alphabet
of protein sequence leads to small gram space and a protein
sequence is usually very long so that each list will get high
probability to sharing many strings with others. Grams in
gram set are not better than that in chunk set significantly
and gram set need more time in estimation step. (2) Greedy
algorithm can achieve the similar performance to CF-Select
andGF-Selectwhen t is large, due to the side effect of the first
chosen gram disappears when most of grams are selected.
However, in small t case, it will spend more time on estima-
tion. (3) Our approach is a little worse than Adaptive-Search
in DBLP when t is 4 (CF-Select/GF-Select/Adaptive-
Search,1.53/1.65/1.24), due to DBLP set just produce a few
candidates when t is small. Adaptive-Search can save more
time in filter step. But most of time, CF-Select and GF-Select
are outperform Adaptive-Search since our method can use
less gram than Adaptive-Search. (4) With query threshold

Fig. 5. Statistics of datasets.

9. http://trec.nist.gov/data/t9 filtering.html
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increasing, our approach achieves the smallest marginal cost
since it can remove more candidates. (5) Adaptive-Search
turns to be the worst in the Uniref50 dataset while CF-Select
and GF-Select perform quite stable. The reason is that long list
will introduce much sampling cost with the increase of query
threshold. But our approach will never suffer from this, since
the estimation cost is linear with respect to a constant t. (6)
The performance of ChunkGram is not competitive, due to
the 1-prefix scheme used in candidate generation, which will
produce a large number of candidates.

Effect of query string length on efficiency. For different
length of query string, we need to use different t to achieve
the same similarity. In order to investigate how the length
of string can affect the efficiency, we compare our methods
with the state-of-art methods under a fixed similarity. And
we set t to 20 percent of the query length. The experiment is
conducted on data set DBLP-author name dataset. We cal-
culate the average cost of randomly selected 300 query
strings for each length and the result is illustrated in Fig. 8.
When the query is short, the estimation cost is also reduced.

Our method can still outperform other methods, since we
only sacrifice a little cost and save more cost for quickly
finding small candidates.

7.4 Effectiveness of Using Query-Gram Set
Selection

Adding grams properly can improve the query efficiency
significantly. In order to verify the effectiveness of our
query-gram set selection technique, we compare it with a
fixed-length-extend prefix filter. A fixed-length-extend pre-
fix filter is constructed by giving Dþ r length prefix to the
filter, where r is a constant. The hybrid ranking criterion
considering both IDF and discrimination is applied to both
methods. As shown in Fig. 9, we observe that the selection
method always incurs less time cost than the fix-length pre-
fix scheme. For example, on the DBLP data set, when the
query threshold is 30, even the best scheme was 8-prefix
scheme, its cost (204.12 ms) is still large than selection
scheme (203.15 ms). Since all the hybrid criterion was used,
the fix-length prefix scheme can also achieve good perfor-
mance, if a proper prefix length is chosen. The results also
shows for different query threshold t the best prefix length
changes differently. But when query threshold changes to
25, the best is 4-prefix scheme. By using our query-gram set
selection method, the best scheme can always be found.
However, when the query threshold is very small regarding
the query length, query-gram set selection will cost extra
time. For example, on the Uniref50 data set, when the query
threshold is 10, 4-prefix scheme achieved the best perfor-
mance, since it never take extra cost to test whether the pre-
fix should be extended.

To explicitly show effectiveness, trends of average candi-
dates and average accessed list elements with varying

Fig. 7. Comparison of general gram filter with query-gram set selection similarity-search algorithms and existing methods.

Fig. 6. Effectiveness of hash function.

Fig. 8. Effect of the length of query on performance.
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adding extra grams for a single query is also shown in
Fig. 10 under the t ¼ 10. By selecting grams based on syn-
thetic criterion, the candidates are reduced significantly and
quickly. Even though extra elements are accessed, com-
pared with advanced filter cost and verification cost to for
each string in a large candidate, we can still benefit from
this operation.

7.5 Effectiveness of Discrimination on Candidate

In this section, we evaluate the effectiveness of the proposed
discrimination concept to reduce the number of candidates.
If the candidate size cannot be significantly reduced by
choosing grams based on the discrimination, it will be
impossible for us to choose better gram filters. In this experi-
ment, we choose the same number of grams based on dis-
crimination and IDF respectively and compare their
performance. The hybrid method considers both discrimi-
nation and IDF.

� IDF. Sort the grams of query by the gram list’s global
length in ascending order.

� DIS. Sort the grams of query by the gram discrimina-
tion in ascending order.

� Hybrid. Sort the grams of query by linear function
that combines real used list length and
discrimination.

We set the t to 10, and vary k from 2 to 5, where k is the
value of LB. Fig. 11 shows that the total candidate size
decreases with the increase of k of 1,000 randomly selected
queries. Besides, both DIS andHybrid can generatemuch less
candidates than IDF does, which demonstrates the discrimi-
nation can reduce the candidate size effectively. The hybrid
approach always generates the least number of candidates.

7.6 Cost of Discrimination Estimate

In this experiment, we evaluate the extra cost of estima-
tion. If the cost to estimation is expensive, this operation
introduces more extra cost than the benefits to the query

process. Fig. 12 shows the comparison results between the
estimate cost of discrimination and the total query process
cost. We can see that the estimation cost is much smaller
(i.e., orders of magnitudes lower) than the total query cost.
With the query threshold increasing, the query process
cost increases significantly but the estimation cost remains
quite stable. This means the discrimination estimation
only incurs a little extra time, and verifies our assumption
that the estimation cost is limited. For example, on the
DBLP set, when query threshold is 25, the query process
takes totally 89.76 ms while only 1.18 ms is used for the
discrimination estimate.

8 RELATED WORK

The problem solved in this paper is defined that: finding
strings those similar to a given single query string from a
string collection. We refer our problem as “string similarity
search”, which is widely studied in [1], [5], [6], [8], [9]. Please
note we focus on processing exact similarity search query
which is different from approaches introduced in [28].

Similarity join is to find all the similar pairs whose ele-
ments are from different sets. It can be solved in two differ-
ent ways. One way is to generate signatures or data
structures for set, then process based on set signatures is
used to remove dissimilar pairs. Literatures [16], [23] belong
to this aspect. [23] perform . Another method treat similarity
join as a batch of similarity searches. All the existing
approaches to process in this way can be classified into
three categories. Fixed-length substring based method is the
most common way. Query string is first segmented into q-
grams then prefix filter [5] or counter filter [1] is used to
prune irrelevant strings. Together with those elementary fil-
ters, advanced orthogonal filters [4] based on mismatching
q-grams are proposed to further prune candidates. Qin’s
approach [6] proposes an improved approach based on pre-
fix filtering. His main idea is to minimize the number of sig-
natures by introducing chunk to gram matching. Pass-join
[29] is also a prefix filter based method, which involves
advanced filter using substring position matching informa-
tion. Variable-length substring based method is another cat-
egory. Different from fixed-length substring based
methods, variable-length substring methods always calls
for extra efforts in generating high quality variable-length
substrings. VGRAM [8] [9] is proposed that generates less
grams and reduce inverted list merging in filtering step.
Tree-based method is from different perspective to handle
this problem. Zhang et al. [17] uses a Bþ-tree to store

Fig. 9. Comparison of query-gram set selection scheme and fixed-length scheme.

Fig. 10. Trend of candidate number and inverted list access.
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projected integers of strings to support edit distance similar-
ity search efficiently. A main difference between similarity
join and similarity search is that inverted index must be
built before query process in similarity search, which means
many optimizations and filters in similarity join by using
the t information can’t be used in similarity search.

Our method can be used in fixed-length substring based
and variable-length substring based approaches, and
advanced filters in [6], [10], [29] can also cooperate with
our filter. Different from previous studies, our approach
focuses on optimizing the filter power by exploiting the
inverted lists information, which can significantly enhance
the performance of the candidates generation in existing
frameworks, especially when the edit distance threshold
increases. Although [4] proposes a technology to integrate
prefix filter and counter filter and [31] develop a frame-
work to better combine different types of filters, our work
focus on using less filter and achieve better performance.
Besides, it is the first attempt to maximize prefix filter’s
performance.

Different similarity or distance functions used for string
similar searches have been studied, such as overlap, Jaccard
similarity, cosine similarity, edit distance metrics, Bregman
Divergence, and Earth Mover’s Distance [1], [5], [13], [14],
[15]. Edit distance is the most common way to measure the
difference between two strings.

A variant, top-k string similarity search, is also studied in
[30]. Another related problem, Approximate string match,
refers to the problem of matching a string or sub-string to a
given pattern in a text. There have also been a lot of studies
on this problem [21], [24], and Navarro gives a detailed
analysis on the existing approaches in his survey [12]. The
selectivity estimation of similarity search and similarity join
in [3], [25].

9 CONCLUSIONS

In this paper, we have studied the problem of efficient proc-
essing of string similarity search. A general gram filter is
proposed, which is a novel generalization of existing filters.
We first conduct a theoretical analysis for this filter model
and prove that it is NP-hard problem to obtain optimal
gram filter. Greedy algorithm is not good when t is not
large. We then devise an effective criterion to sort grams
based on their potential capability to reduce candidate
size, which is used to select better grams efficiently and
effectively. Based on this, a new selection algorithm is also
developed to construct the high quality query-gram set.
Finally we conduct extensive experiments based on multi-
ple real datasets and results demonstrate that our proposed
framework can outperform the state-of-art methods
significantly.
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