
A-DSP: An Adaptive Join Algorithm for Dynamic
Data Stream on Cloud System

Junhua Fang, Rong Zhang , Yan Zhao , Kai Zheng ,Member, IEEE,

Xiaofang Zhou , Fellow, IEEE, and Aoying Zhou

Abstract—The join operations, including both equi and non-equi joins, are essential to the complex data analytics in the big data era.

However, they are not inherently supported by existing DSPEs (Distributed Stream Processing Engines). The state-of-the-art join

solutions on DSPEs rely on either complicated routing strategies or resource-inefficient processing structures, which are susceptible to

dynamic workload, especially when the DSPEs face various join predicate operations and skewed data distribution. In this paper, we

propose a new cost-effective stream join framework, named A-DSP (Adaptive Dimensional Space Processing), which enhances the

adaptability of real-time join model and minimizes the resource used over the dynamic workloads. Our proposal includes: 1) a join

model generation algorithm devised to adaptively switch between different join schemes so as to minimize the number of processing

task required; 2) a load-balancing mechanism which maximizes the processing throughput; and 3) a lightweight algorithm designed for

cutting down unnecessary migration cost. Extensive experiments are conducted to compare our proposal against state-of-the-art

solutions on both benchmark and real-world workloads. The experimental results verify the effectiveness of our method, especially on

reducing the operational cost under pay-as-you-go pricing scheme.

Index Terms—Distributed stream join, theta-join, cost effective

Ç

1 INTRODUCTION

THE big data era has urged the techniques for real-time
data processing in various domains, such as stock

trading analysis, traffic monitoring and network mea-
surement. Introduction of distributed and parallel proc-
essing frameworks enables the efficient processing of
massive streams. However, the load balancing issue [1],
[2], [3], [4], [5] is emerging as a common problem to those
parallel processing frameworks, which deteriorates the
performance of the distributed platform on big data
processing. Extensive efforts are devoted to tackle the
load balancing issue for different operators, including
summarization [6], aggregation [7], join [3], [8], [9], [10],
etc. Among these operations, u-join [11], [12], [13] is rec-
ognized as the most challenging one, due to its large
variety in join predicate options f> ;�; <;�;¼; 6¼g.

In practice, u-join should be supported as a basic opera-
tion. For instance, band-joins are common in spatial

applications [14], and similarity joins between data sets are
also necessary in correlation analysis [13]. There are a hand-
ful of approaches designed for join operator over fast and
continuous streams, which falls into two categories:1-DSP

(1-dimensional space processing) model [7], [15], [16], [17],

[18] and 2-DSP (2-dimensional space processing) model

[10], [11], [12], [13]. We use m to denote the task instance in
DSPE. For 1-DSP, we map the key space K in any stream to
m tasks by a dividing function F (e.g., range function, con-
sistent hashing, etc.), which is defined as F ðkiÞ) mk, with
ki 2 K and 0 � mk � m� 1. As shown in Fig. 1a, it has three
tasks numbered bym0�2. Any key from either stream R or S
is supposed to be assigned to one of the tasks. On the other
hand, 2-DSP arranges tasks into two dimensional space,
where each dimension represents the division of one
stream. As in Fig. 1b, it organizes the tasks as a matrix,
represented as mij, with 0 � i � 1 and 0 � j � 1. And
stream S and R are divided along the horizontal and verti-
cal dimension respectively. More specifically, the process-
ing mode of these two models are explained as follows:

1-DSP. In Fig. 1a, stream R (S) is split into three sub-

streams ri (si) for join processing and stored locally in mi,

with 0 � i � 2. However, for non-equi join, a join tuple may

get involved in multiple local join tasks according to join

predicates (u). In addition to the locally stored sub-stream ri
in taskmi, additional sub-stream r0i is sent tomi for join pur-

pose with locally stored tuples si, which contain tuples to be

joined but not included in ri. Therefore, 1-DSP has two rout-

ing methods, one for local storage (Storage routing, i.e., RL)

and the other one for join routing (Join routing, i.e., RJ)

defined by the join predicate as shown in Fig. 1a. During the

� J. Fang and Y. Zhao are with the Institute of Artificial Intelligence, School
of Computer Science and Technology, Soochow University, Suzhou,
Jiangsu, China. E-mail: {jhfang, zhaoy}@suda.edu.cn.

� R. Zhang and A. Zhou are with the School of Data Science and Engineering,
East China Normal University, Shanghai 3663, China.
E-mail: rzhang@sei.ecnu.edu.cn, ayzhou@dase.ecnu.edu.cn.

� K. Zheng is with the University of Electronic Science and Technology of
China, Chengdu, Sichuan 610054, China. E-mail: zhengkai@uestc.edu.cn.

� X. Zhou is with the School of Information Technology and Electrical
Engineering, The University of Queensland, Brisbane, QLD 4072,
Australia. E-mail: zxf@itee.uq.edu.au.

Manuscript received 24 Nov. 2018; revised 29 Aug. 2019; accepted 2 Oct.
2019. Date of publication 14 Oct. 2019; date of current version 1 Apr. 2021.
(Corresponding author: Kai Zheng.)
Recommended for acceptance by K. Daudjee.
Digital Object Identifier no. 10.1109/TKDE.2019.2947055

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021 1861

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5182-2093
https://orcid.org/0000-0002-5182-2093
https://orcid.org/0000-0002-5182-2093
https://orcid.org/0000-0002-5182-2093
https://orcid.org/0000-0002-5182-2093
https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0001-6343-1455
https://orcid.org/0000-0001-6343-1455
https://orcid.org/0000-0001-6343-1455
https://orcid.org/0000-0001-6343-1455
https://orcid.org/0000-0001-6343-1455
mailto:jhfang@suda.edu.cn
mailto:zhaoy@suda.edu.cn
mailto:rzhang@sei.ecnu.edu.cn
mailto:ayzhou@dase.ecnu.edu.cn
mailto:zhengkai@uestc.edu.cn
mailto:zxf@itee.uq.edu.au

join process, the destination of the incoming tuple, e.g., ri, is
determined by two different routing strategies: storage rout-
ing RL decides its storage task, while join routing RJ deter-
mines to which task(s) ri shall be assigned to produce join
results. In other words, the RJðSJ) acts only when RLðSL)
can not make the complete results for any join predicate;
otherwise, join routing is useless where RJ ¼ ; (SJ ¼ ;)

2-DSP. Join-matrix model is a typical represent for 2-
DSP, in which a partitioning scheme is employed on each
dimension to split the incoming stream data randomly into
a set of mutually exclusive sub-streams to promise the bal-
ance requirement. As shown in Fig. 1b, stream R is ran-
domly split into two sub-streams r0 and r1 along the
vertical side, with r0 \ r1 ¼ ; (s0 and s1 for S respectively).
Therefore, R fflu S is decomposed into four sub-tasks, each
of which mij (0 � i; j � 1) takes a pair of sub-streams from
R and S. The join-matrix model can always return complete
results for any join predicate as it can promise each pair of
tuples from two data streams meet once.

In fact, different processing models have their respective
performance characteristics. Table 1 exhibits the advantages
and disadvantages of 1-DSP and 2-DSP from perspectives of
resource consumption, application scope, and operational sta-
tus. In accordance to the routing strategies in Fig. 1, it is not
difficult to find that 1-DSP is a content-sensitive partitioning
scheme, while 2-DSP uses the random partition strategy
determining it is a content-insensitive one. This also explains
the fundamental differences exhibited in Table 1. Specifically,
1-DSP is a resource-saving join model because it is unneces-
sary to maintain a specific processing architecture. Instead, it
consumes resources on demand. However, having a content-
sensitive distribution strategy decides that 1-DSP is only bet-
ter for the small-scale join (e.g., equal-join) and clumsy in a
dynamic distribution and skewed environment. For 2-DSP,
although its content-insensitive partition strategy enables it to
support for the arbitrary join predicate and handle data skew-
ness perfectly, this is at the high cost of task consumption
because this model must maintain a two-dimensional proc-
essing architecture.

In this paper, we propose a flexible and adaptive model,
named A-DSP (Adaptive Dimensional Space Processing), for
parallel stream join. By integrating the processing strategies of
1-DSP and 2-DSP. In other words, we break the limit of proc-
essing scheme in 1-DSP and 2-DSP with a new solution for
parallel u-join to explore a much larger optimization space:
maximizing the resource utilization, supporting various join
predicates and guaranteeingworkload balance amongparallel
tasks. In contrast to up-to-date studies, A-DSP has several

advantages as follows. First, this scheme achieves high flexibil-
ity by easily redirecting the keys to new worker threads
with simple editing on the routing function. Second, it is
highly efficient when the system faces u-join and dynamic
incoming workload, by providing a general strategy to gener-
ate the partition function for data balance under dynamic
stream.Moreover, workload redistribution with the scheme is
scalable and effective, by allowing the system to respond
promptly to the short-term workload fluctuation even when
there are heavy traffic of tuples present in the incoming
data stream.

Although our preliminary work in [19] has already opti-
mized the join performance by designing a varietal matrix
join model based on 2-DSP, it is still fails to get rid of the
inherent and insurmountable disadvantages of regular
matrix model. To fully unleash the power of our A-DSP
model for minimizing the operational cost while maximiz-
ing the processing throughput over various join predicate
requirement, a suite of optimization techniques are intro-
duced for our syncretic processing scheme to fully exploit
the benefits of 1-DSP and 2-DSP. In summary, the major
contributions of this work are summarized as:

� Wepropose theA-DSP joinmodel to reduce the opera-
tional costwith full support of arbitrary join predicates
while guaranteeing the correctness of join results.

� We devise the scheme generation algorithms for our
A-DSP model. Moreover, we present a detailed theo-
retical analysis for proposed algorithms, and prove
their usability and correctness.

� Wedesign a lightweight computationmodel to support
rapidmigration plan generation, which incursminimal
data transmission overhead and processing latency.

� We empirically evaluate our model against the state-
of-the-art solutions on both standard benchmarks
and real-world stream data workloads with detailed
explanations on experimental results.

The remainder of this paper is organized as follows.
Section 2 introduces the preliminaries. Section 3 describes
how to generate the processing scheme. Section 4 explains
the detailed implementation of our proposed method.
Section 5 shows the experimental results. Section 6 reviews
the existing studies on stream join processing in distributed
systems. Section 7 finally concludes the paper and discusses
future research directions.

2 PRELIMINARIES

2.1 Definitions

Join matrix model organizes the parallel processing tasks as
a matrix to handle the join operation between two incoming
streams, where each side of which corresponds to one

Fig. 1. Two typical paradigms of existing stream join models.

TABLE 1
Summary of the Advantages and Disadvantages

of Different Models

Resource saving Arbitrary join Workload balance

1-DSP @ � �
2-DSP � @ @
A-DSP(Our) @ @ @

1862 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

stream. In order to describe our work more intuitively, we
define the universal set of tuples arranged by join matrix
model as tuple matrix, denoted by C. The tuple matrix enu-
merates all tuple pairs of the different streams, that is,
assigning the Cartesian product of R and S (R� S) as a
tuple matrix. We use cell cði;jÞ to denote the tuple pair of the
ith row and jth column of tuple matrix. Table 2 lists the
notations commonly used in the rest of the paper.

Definition 1. Given the streams R and S, if their tuple matrix
orders its two side tuples both by their join key, then the matrix
is defined as Ordered tuple matrix, denoted by eC.

Definition 2. In tuple matrix C/ eC, we refer to the set of cells
that covered by a rectangle as Coverage area, denoted by
ca/ eca. The rectangle is represented by dcði;jÞ; cði0;j0Þc, meaning
its upper left corner is cði;jÞ and lower right is cði0;j0Þ.

Definition 3. In eC, we define the set of cells comprised by a series
of 1) no-interval, 2) non-overlapping, and 3) results completionecas as Complete information area, denoted by gCA. The con-
straints of ecas are defined as:
(1) No-interval. This property requires that the complete set

of ecas is able to cover all incoming tuples in both the hori-
zontal and vertical directions, which can be expressed asS eca2eC ecar ¼ R and

S eca2eC ecas ¼ S.

(2) Non-overlapping. This property requires that each cell ingCA should be covered by the complete set of ecas at most
once, which can be expressed as 8 ecai; ecaj 2 gCA, i 6¼ j;
then ecai \ ecaj ¼ ;.

(3) Results completion. This property requires that all join
results in eC should be covered by gCA, which can be
expressed as

S eca2eC eca ¼ eC.

Definition 4. In tuple matrix, we call the coverage area that
assigned to single one task instance as Task area, denoted by
TaskA.

Fig. 2 shows a toy example of join operation using tuple
matrix. Each stream (R/S) has 12 tuples and their join key is
denoted by R.k/S.k. Its join condition is jR:k� S:kj � 2, and
cells which produce join results are marked in grey. Then,
the tuple matrix in Fig. 2a can be seen as a eC according to
Definition 1, and in Fig. 2c, the union of ca1 and ca2 can be
regarded as a gCA according to Def.3. Furthermore, based on
Definition 3, C will be treated as a complete information area,

since its out-of-order tuples make each cell in C become a
potential result (CA ¼ C), which can be reflected by Fig. 2b.

2.2 Models

Based on the above definitions, the essence of parallel process-
ing of those different methods is partitioning the whole tuple
matrix into multi-TaskA s. As shown in Table 3, 1-DSP and 2-
DSP can be expressed as splitting gCA and CA into multi-
TaskA s, respectively. Figs. 2a and 2b show their data partition
results. They also reflect the characteristics of the twomethods
shown in Table 1, that is, 1-DSP uses less resources, but exists
workload imbalance, while 2-DSP is the opposite. Specifically,
the workload of each task instance includes input workload
and output workload, which can be measured by the number
of tuples flowing in and out [10]. For example in Fig. 3, we
assume the maximum input workload is 8 and the maximum
output workload is 5. Then, 4 tasks in Fig. 2a set an imbalance
statuswhile 9 tasks in Fig. 2b provide a prefect balance both in
input and output workload. In fact, only the balance of input
workload needs to be taken into account while using 2-DSP,
for its tuple-based random routing strategy can ensure the
output results being evenly distributed in tasks. Our subse-
quent approach inherits this advantage.

The partitioning process of A-DSPmodel mainly consists
of two phases: partition gCA into ecas and partition eca into
TaskA s, denoted by PfCA and Pca, respectively. For each eca
generated by PfCA, Pca takes it as an unordered ca, and then,

partitions it into multi-TaskA s using 2-DSP. Intuitively,
using 1-DSP to generate ecas in PfCA may cause a workload

TABLE 2
Table of Notations

Notations Description

R; S R, S stream

C / eC tuple matrix without/with ordered join key

CA /gCA complete information area of C/ eC
ca / eca coverage area without/with ordered join key

TaskA the area that is feasible to a single task

cði;jÞ the cell located in the ith row and jth column

dcði;jÞ; cði0 ;j0 Þc the rectangle from cði;jÞ to cði0 ;j0 Þecax the xth eca
TaskAijðTaskAcax

ij) the TaskA in the ith row, jth column of caðcax)
a=bðacax =bcax Þ the TaskA number of rows/columns in caðcax)ecar= ecas= eca the tuple set of rows/columns/output set in area eca
V ðVhÞ memory size of task (half size Vh ¼ V

2)

Fig. 2. A toy example of different join models.

TABLE 3
Summary of Methods

Methods Partition way Example

1-DSP gCA! TaskA s Fig. 2a
2-DSP CA! TaskA s Fig. 2b

A-DSP(Our) gCAP ~CA��! ca s! Pca TaskA s Figs. 2c and 2d

FANG ET AL.: A-DSP: AN ADAPTIVE JOIN ALGORITHM FOR DYNAMIC DATA STREAM ON CLOUD SYSTEM 1863

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

imbalance status. However, those ecas in our A-DSP model
are usually carried by multiple tasks, which can smooth the
workload imbalance. In other words, eca in A-DSP can act as
a cushioning layer for workload imbalance. This character-
istic is similar to that of task grouping in [12]. Fig. 2c shows

that PfCA takes fca1 and fca2 as gCA. Then, Pca in Fig. 2d takesfca1 as ca1 and splits it into four TaskA s, takes fca2 as ca2 and
splits it into two TaskA s. Compared with 2-DSP, this scheme
consumes less resources (6 task instances) while ensuring
each task workload no excess the ideal workload. However,
there may be another partition manner which consumes 4
tasks, i.e., Fig. 5, and that is what we are after. Next, we are
ready to define the optimization goal of ourA-DSP.

2.3 Optimization Goal

For ca, its resource cost includes Memory, Network and CPU,
which can be modeled as follows:

Memory. Since tuples are duplicated along rows or columns
in Pca, values of aca and bca in ca determine the memory
consumptionCm considering the join operation, defined as

Cm ¼ jcarj 	 bca 	Rstate
size þ jcasj 	 a

ca 	 Sstate
size ; (1)

where Rstate
size and Sstate

size are the state sizes in stream R and S,
respectively.

Network.When we duplicate the tuples along rows or col-
umns, it consumes the network bandwidth Cn, which is the
total communication cost of data transmission among tasks.
Cn is defined as

Cn ¼ jcarj 	 bca 	Rtuple
size þ jcasj 	 a

ca 	 Stuple
size ; (2)

where Rtuple
size and Stuple

size are the tuple sizes in stream R and
stream S, respectively.

CPU. For theta-join,wedefine its computation complexity as

Cc ¼ jcarj 	 jcasj: (3)

In general, it satisfies Rtuple
size / Rstate

size and Stuple
size / Sstate

size

[15]. Then we get Cn / Cm based the above discussion and
analysis. In other words, minimizing memory usage is
equivalent to optimizing network cost. Furthermore, Cc is a
constant value which is jcarj 	 jcasj and is independent of aca

and bca. Based on this, we can conclude that optimizing
memory is a representative choice.

Suppose the maximum memory size for each task is V
and the whole tuple matrix is split into � cas. We formulate
our objective as an optimization problem defined as follows:

min
X
x2½1;�

acax 	 bcax ; (4)

s.t. Constrains in Def:3; (5)

8x 2 ½1; �
; 8i 2 ½1;acax
; 8j 2 ½1;bcax
;
jðTaskAcax

ij Þrj þ jðTaskAcax
ij Þsj � V:

(6)

As the shown in above formulations, our optimization objec-
tive is (Exp. 4) minimizing the resource cost, while (Exp. 5)
guaranteeing the correctness of processing and (Exp. 6) load
balance among all task instances. In fact, under the premise of
workload constraint, how to determine gCA to ensure the

minimum task consumption is a combinatorial NP-hard prob-
lem, as it can be reduced to the Subset-sumproblem [20].

3 SCHEME GENERATION

3.1 Partition ca into TaskA s

Before discussing how to partition ca into TaskA s, we first
introduce a theorem for guiding the formulation of partition
plan.

Theorem 1. Assuming we use matrix model to handle stream join
operation, if there exist a and b in ca with jca

rj
a
¼ jcasj

b
¼ Vh, then

the processing cost for car fflu ca
s is minimum.

Proof. Assuming the length and width of TaskA are a
ða> 0Þ and b ðb> 0Þ, respectively, we have the following
expression:

a 	 b � ðaþ bÞ2
4

: (7)

Equ. (7) can be modified as the following expression:

aþ b � 2 	
ffiffiffiffiffiffiffiffi
a 	 b
p

: (8)

In the above Equs. (7) and (8), a + b can be seen as the
memory volume of TaskA and a 	 b represents the calcula-
tion amount. Each task has the predefined CPU and
memory resources. According to Equ. (8), for the given
CPU resource Cc (represented by the calculation area
a 	 b), square (a ¼ b) has the least memory usage Cm. For
the given memory Cm, square (a ¼ b) will produce the
least cells and maximize the computation ability accord-
ing to Equ. (7). The network cost Cn can be represented
by memory usage Cm as declared in Section 2.3. Based on
the above, we can conclude that if the length (jca

rj
a
) and

the width (jca
sj

b
) of the subrange derived from ca partition

are equal, that is, equal to half of the memory size (Vh),

then the system consumes the least resources including

CPU, memory and network. tu
According to Theorem 1, the numbers of row and col-

umn should be djcarjVh
e and djcasjVh

e, respectively. Then the total

number of tasks used in ca can be expressed as

N ¼ djca
rj

Vh
e 	 djca

sj
Vh
e: (9)

Fig. 3 shows a ca partition example with the stream volumes
for R and S are jcarj ¼ 6GB and jcasj ¼ 6GB. Given taskmem-
ory V ¼ 10GB and Vh ¼ 5GB, ca can be divided as shown in
Fig. 3b. The generated scheme in Fig. 3b takes up 4 tasks with
two rows and two columns (4 divisions: s0, s1, r0 and r1).

Fig. 3. A toy example of scheme partition at jcarj=6 and jcasj=6.

1864 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

Among those TaskA s, we load data to rows and columns by
Vh in a top-down manner. In the last row and column of ca,
the TaskA s may have less data divisions compared to previ-
ous TaskA s and are called fragment tasks filledwith fragment
data. In this example, TaskA00 is first fed by Vh for both car

and cas streams and then TaskA00 ¼ ð5GB; 5GBÞ. However
the last column and row can not be filled up. According to
Equ. (9), though we can calculate the number of tasks needed
for joining processing, workload are not evenly distributed
among tasks because of the fragment data. Then tasks for frag-
ment data may have free resources compared to other tasks,
and itwill bemore obvious for the largematrix.

In order to facilitate the subsequent description, we name
the two join streams as a primary stream P and a secondary
stream D. Then we take the primary stream P as the basis
volume to calculate how much memory should be assigned
for it in each task and accordingly, the secondary stream D
gets the remaining portion of memory in each cell. Specifi-
cally, we use Pg to represent the number of divisions gener-
ated by primary stream, and then for the secondary stream,
its division numberDc

g can be calculated as

Dc
g ¼

jDj
V � jP jPg

2666
3777: (10)

P may be either stream R or S. We use Nc to represent the
number of tasks for processing join between P and D in ca
which is calculated as:

Nc ¼ Pg 	Dc
g ¼ Pg 	 jDj

V � jP jPg

2666
3777: (11)

In Fig. 3, if we take R as the primary stream P and the num-
ber of divisions generated by primary stream is Pg ¼ djca

rj
Vh
e,

then the matrix scheme of example in Fig. 3a should have
only one column with two cells. However, Dc

g calculated in
Equ. (10) will have fragment tasks if its rounding up value
is not equal to the rounding down value. For example in
Fig. 4a, given V ¼ 10GB; jcarj ¼ 9GB; and jcasj ¼ 7GB, a ca
with a ¼ 2 and b ¼ 2 will be generated. Sine S is the pri-
mary stream, each task first gets data assignment from S by
jcasj
b
¼ 3:5GB and the remaining space 6:5GB can be used for

divisions from car. The memory utilization percentage of

the two tasks in the last row is 60 percent.
An optimizedpartition schemeof Fig. 4a is shown as Fig. 4b,

which takes up only 3 tasks for car fflu ca
s. In Fig. 4b, the replica

jTaskAs
01j ¼ 3:5GB of cas in TaskA01 are sent to TaskA10 to join

with subset jTaskAr
10j ¼ 2:5GB of car to promise the

correctness and completeness of join results. It is feasible to
move tuples in TaskAs

01 to TaskA10 to complete the join work
for thememory threshold V ¼ 10GB remains satisfied.

Compared to the regular matrix scheme in Fig. 4a, the
optimal workload assignment in Fig. 4b can make better use
of resource among tasks. Let’s take Fig. 4b to explain the gen-
eration of the irregular line, which is the last row. Given the
divisions for primary stream S, which is b ¼ Pg ¼ 2 in
Fig. 4a, we divide those a rows for secondary stream R into
two types: regular ones (the first row) and adjustive ones
(the second row). For regular ones, we have af ¼ Df

g lines of

segments (labeled as regular in Fig. 4a), where Df
g ¼ b jDj

V�jP jPg

c.

By using these regular division, we may not manage all the

workload for secondary stream R, since Df
g 	 ðV � jP jPg

Þ � jDj.
For the remaining loadsDL fromD calculated as Equ. (12), it
is expected to add additional Pd (as in Equ. (12)) number of
columns along the last rowwith Pd < Pg .

DL ¼ jDj �Df
g 	 V � jP j

Pg

� �
Pd ¼ jP j

V �DL

� �
:

(12)

The difference from previous regular matrix is that we
will not add one whole row (column) of tasks for the join
work with the purpose of making full use of system resour-
ces. Accordingly, the optimal number of tasks No for
R fflu S can be calculated as:

No ¼ Pg 	Df
g ; jDj ¼ Df

g 	 ðV � jP jPg
Þ;

Pg 	Df
g þ Pd; otherwise:

(
(13)

Asdescribed inTheorem1,weuseVh as thedivisor to findPg

for generating an optimal scheme by probing all four cases. Spe-

cifically,wemakePg 2 fdjca
rj

Vh
e; bjcarjVh

c; djcasjVh
e; bjcasjVh

cg in Equ. (13).

The algorithm of finding an optimal partition scheme is
described in Algorithm 1. First, theminimal number of tasks is
determined in line 1 according to Equ. (13), by enumerating all
the case of round up and down; then in line 2 � 5, the number
of rows a and columns b can be calculated according to values
of P and Pg . If Pg 2 fdjca

rj
Vh
e; bjcarjVh

cg,R is the primary stream, or
else S is the primary one. The scheme of varietal matrix gener-
ated from Algorithm 1 can be expressed as <a;b; Pd;þ>
which means that the varietal matrix has a rows, b columns
and hasPd additional cell inþ (þ 2 row; column).

Algorithm 1. Partition ca to TaskA s

input: Stream car, Stream cas, Memory size V
output: Row number a, Column number b, additional cells Pd,

additional position þ
1: No Get the minimum task consumption according to

Equ. (13) where Pg 2 fdjca
r j

Vh
e; bjcarjVh

c; djcasjVh
e; bjcasjVh

cg.
2: if Pg 2 fdjca

rj
Vh
e; bjcarjVh

cg then
3: a Pg , b Df

g , Pd No � Pg 	Df
g , þ column

4: else
5: a Df

g ;b Pg , Pd No � Pg 	Df
g , þ row

6: return a;b; Pd;þ

Fig. 4. Example with the optimized scheme.

FANG ET AL.: A-DSP: AN ADAPTIVE JOIN ALGORITHM FOR DYNAMIC DATA STREAM ON CLOUD SYSTEM 1865

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

We still use Fig. 4b to explain Algorithm 1. According to
Equ. (12) , Equ. (13) and line 1 in Algorithm 1, S is the primary
stream and R is the secondary one, in which b ¼ 2,

Df
g ¼ b 9

10�7=2c ¼ 1. TaskA00 and TaskA01 are supposed to have

regular workload assignments with 3:5GB from cas, and the
remaining memory is used for car, which will be
10� 3:5 ¼ 6:5GB. Since car has load more than 6:5GB, we
add one more row which is the adjustive division for the
remaining data of car that DL ¼ 9� 6:5 ¼ 2:5GB. In such a
case, the TaskA s in regular division lines have full usage to
memory 6:5þ 3:5 ¼ 10GB as in TaskA00 and TaskA01. For
adjustive purpose, we add Pd ¼ 1 TaskA to join the remaining
data DL in R with S, which belongs to TaskA TaskA10 and
TaskA11 in Fig. 4a. In this adjustive row, DL will join with the
subset of cas for TaskA10 and TaskA11 (3.5GB) and then the
workload in TaskA10 comes to be 9:5GB. The varietal matrix
scheme shown in Fig. 4b can be expressed as <1; 2; 1; row> .

Theorem 2. Algorithm 1 will consume less tasks than using
Theorem 1 directly and ensure the correctness of operation
when using matrix model for car fflu ca

s with the memory size
of each task V .

Proof. Assume that there exists another varietal matrix M 0

with scheme <a0;b0; P 0d;þ0> , and the number of tasks N 0

used in M 0 is smaller than No. To find the smaller No,
Algorithm 1 tries all possible values that make jP jPg

nearest
to Vh according to Equ. (12), Equ. (13) and line 1. In other

words, it is impossible for jca
rj

a0 and jca
sj

b0 to get closer to Vh

than jca
rj

a
and jcasj

b
. According to Theorem 1 that squared

cell shape consumes the minimal resources, the assump-

tion of existing regular matrixM 0 does not hold. tu

3.2 Partition eC into fca s (ca s)

In this subsection, we introduce a heuristics algorithm to
accomplish the optimization problem with theoretical per-
spectives. Specifically, here we present how A-DSP pro-
vides a theoretical guarantee upper-bound for task
consumption to partition eC into eca s (ca s) . Using tuple
matrix model to handle u-join, a key observation is that the
distribution ofgCA has the feature ofMonotonicity. Themono-
tonicity can be expressed as if cði;jÞ is not a result cell, then
either all cells ðk; lÞ with k � i and l � j, or all cells ðk; lÞ
with k � i and l � j are also not result cells [10], [13]. It
should be pointed out that the ” 6¼” operation is not mono-
tonic, for its operation semantic making each cell in eC
become a potential result. In such cases, our A-DSP model
will adaptively adopt the 2-DSP architecture, which can be
reflected from Algorithm 2 later. Next, we define a partition
way for gCA as follows.

Definition 5. Splitting the area eca into two sub-areas: ecad andecad, if ecad [ecad ¼ eca and ecad \ ecad ¼ ;, we call this area par-
tition action as eca’s area dichotomy, denoted as ADð ecaÞ.
Based on the above Definition 5, we call d as the split

point and the minimum task consumption of gCA based on
area dichotomy can be expressed as:

NADðfCAÞ ¼Min
d2fCAD

fNADðfCAdÞ þNADðfCAdÞg; (14)

where gCAD is the universal set of split point in gCA. Equ. (14)
is an iteration expression to enumerate all split scheme to
find the minimal task consumption. Thus, we have the
following theorem.

Theorem 3. Among all schemes generated by gCA’s area dichot-
omy, Equ. (14) can denote the one which with minimum task
consumption.

Proof. Assume there is a partition scheme with the set of
split point fdig, where di is the split point of the ith itera-
tion partition, and Nmin is the task consumption by this

partition scheme. If Nmin <NADðfCAÞ, then we have

fdig~gCAD, which contradicts to the assumption that gCAD

is the universal set of split point in gCA in Equ. (14). tu
Essentially, Equ. (14) is a combinatorial mathematics

problem and its iteration times is a Catalan number [21].
Directly adopting a exhaustive enumeration method to
obtain the partition scheme will undoubtedly incurs the

high computational complexity, reaching up to Oð 4j eCAD j

jfCADj
3
2	 ffiffiffipp Þ.

Therefore, we define an iteration termination condition as
follows.

Definition 6. Using area dichotomy to split the coverage area eca
into two sub-areas ecad and ecad, the iteration termination condi-

tion is 8d 2 ecaD, N ~ca � N ~cad þN ~cad .

Algorithm 2 lists the steps of gCA partition based on the
above discussions. At the initialization stage of Algorithm 2,
the matrix is generated by the Cartesian produce of the two
join streams. First, it finds the split point according to Defi-
nition 5 in line 4. Second, Algorithm 2 judges whether to
stop the iterative process, and gathers the corresponding
split results in lines 5 � 10. Finally, it picks out the partition
result which with the minimal task consumption as its out-
put in line 11. We continue using the example in Fig. 2 to
illustrate Algorithm 2, and the partition result is shown in
Fig. 5. Algorithm 2 takes the whole tuple matrix eC as itera-
tive entry and splits it into two areas: ca1ðdcð1;1Þ; cð5;5Þc) and
ca2ðdcð6;6Þ; cð12;12Þc), using area dichotomy. For ca1, Algorithm
2 stops splitting it because the continuing split action
can not reduce task consumption. Due to Nca2 ¼ 4 and
NADðca2Þ ¼ 2, Algorithm 2 picks the fewer tasks consump-
tion scheme by splitting dcð6;6Þ; cð12;12Þc into two sub-areas.
Finally, Algorithm 2 generates a scheme that consumes 4
tasks.

Fig. 5. Partition the example in Fig. 2 using Algorithm 2.

1866 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2. Partition eC to ca s

input: eC
output: ca s
1: eca gCA
2: function PARTITIONAREA(eca)

/*cðb;bÞ=cðe;eÞ : the beginning/ending cell of eca*/
3: foreach cði;jÞ, cði0;j0Þ in eca do
4: if dcðb;bÞ; cði;jÞc [dcði0;j0Þ; cðe;eÞc ¼ eca and dcðb;bÞ; cði;jÞc \
dcði0 ;j0Þ; cðe;eÞc ¼ ; then

/*According to Definition 5*/
5: ifNdcðb;bÞ ;cði;jÞc +Ndcði0 ;j0Þ ;cðe;eÞc <N ~ca then

/* According to Definition 6*/
6: PARTITIONAREA(dcðb;bÞ; cði;jÞc)
7: PARTITIONAREA(dcði0 ;j0Þ; cðe;eÞc)
8: else
9: casði;jÞ dcðb;bÞ; cðe;eÞc
10: CAs casði;jÞ

/* casði;jÞ : the set of coverage area be derived from the
first iteration, CAs: the set of casði;jÞ*/

11: get ca s (cas 2 CAs) with the minimal
P

ca2cas N
ca

/* According to Theorem 3*/
12: return ca s

Next, we discuss the task consumption upper-bound of
Algorithm 2.

Definition 7. Given area eca, suppose there is a minimum task
consumption N ~ca

1 , and the task consumption by Algorithm 2 is

N ~ca
2 , we refer to the ratio of

N ~ca
1

N ~ca
2

as consumption coefficient,
denoted by �.

Lemma 1. For the area eca with a ~ca � 2 and b ~ca � 2, if Algo-
rithm 2 stops splitting it, then the cell set RCc in eca, where

RCc ¼ fcðk;lÞjða ~ca � 1Þ 	 Vh þ 1 � k � Vh; ðb ~ca � 1Þ 	 Vh

þ 1 � l � Vhg � cða ~ca�1Þ	Vhþ1;b ~ca�1Þ	Vhþ1Þ;

should be all the result.

Proof. To verify in theworst case, we use the naivemethod to
measure the task consumption according to Equ. (9), where

N ~ca ¼ a ~ca 	 b ~ca ¼ djecarjVh
e 	 djecasjVh

e. The formation ofRCc can be

accumulated in three steps:
Step-1 (According to Definition 6): The precondition of

Lemma 1 that Algorithm 2 stops splitting area eca means

8d 2 ecaD, N ~ca <N ~cad þN ~cad . Then, the cells fcðk;lÞjk%Vh ¼
0; l%Vh ¼ 0; k 6¼ j ecarj; l 6¼ j ecasjg (e.g., the red cells in Fig. 6)

are definitely not split points, otherwise, the scheme cannot

be the worst case among all partition schemes. They should

be contained byRCc.
Step-2 (According to Definition 5): Due to the fact that

area dichotomy splits the area eca into two sub-areas and cði;jÞ
in eca is not a split point, then, existing cells cði;j0Þ2ecaði <i0)
and cði0;jÞ 2 ecaðj <j0) are both result. Based on this, the cells

inRCc are expanded to

fcðk;lÞ; cðk;lþ1Þ; cðkþ1;lÞjk%Vh ¼ 0; l%Vh ¼ 0; k 6¼ j ecarj;
l 6¼ j ecasjg:

Step-3 (According to monotonicity): The monotonicity
defines that the cell(s) between result cells are also results.

Combining this, the result cellsRCc can be expressed as

fcðk;lÞjða ~ca � 1Þ 	 Vh þ 1 � k � Vh; ðb ~ca � 1Þ 	 Vh þ 1

� l � Vhg � cða ~ca�1Þ	Vhþ1;b ~ca�1Þ	Vhþ1Þ;

which equivalents to the description of Lemma 1
(surrounded by blue dotted line in Fig. 6). tu
Then, the upper-bound of � can be expressed as follows:

Theorem 4. Using Algorithm 2 to partition C can ensure an

upper-bound of its task consumption: � � aC 	bC
aC 	bC�aC�bCþ3, where

aC � 2 and bC � 2.

Proof. According to Lemma 1, theminimal task consumption
is consisted of three parts: dcð1;1Þ; cðVh;VhÞc consumes 1 task,

dcðVhþ1;Vhþ1Þ; cðða ~ca�1Þ	Vh;ðb ~ca�1Þ	VhÞc consumes ða ~ca � 1Þ	 ðb ~ca �
1Þ task(s) and dcðða ~ca�1Þ	Vhþ1;ðb ~ca�1Þ	Vhþ1Þ; cðjRj;jSjÞc consumes 1

task. Then, we have N ~ca
2 � 1þ ða ~ca � 1Þ 	 ðb ~ca � 1Þ þ 1.

Since � ¼ N ~ca
1

N ~ca
2

and N ~ca
1 ¼ a ~ca 	 b ~ca, we have � �

a ~ca	b ~ca

1þða ~ca�1Þ	ðb ~ca�1Þþ1 . MakingC as eca, Theorem 4 is verified. tu
The statement of Theorem 4 gives an estimation or hint on

the worst case of task consumption. However, just as the
unique distribution shown in Fig. 6, the probability of a worst
case scenario is negligible, which can be validated by the
experimental results in Section 5. Algorithm 2 uses area dichot-
omy to split the coverage area eca into two sub-areas ecad andecad, and its iteration termination condition is 8d 2 ecaD,
N ~ca � N ~cad þN ~cad , its computational complexity is not more
than T(j ecarj 	 j ecasj), where T(j ecarj 	 j ecasj)= k	 T(j ecarj 	 j ecasj/2)
+Oðj ecarj 	 j ecasj). As illustrated in Fig. 6 and Theorem 4, the
cells fcðk;lÞjk%Vh ¼ 0; l%Vh ¼ 0; k 6¼ j ecarj; l 6¼ j ecasjg (the four
red cells in Fig. 6) are definitely not split points, then k ¼ 4
and T(j ecarj 	 j ecasj) =Oððj ecarj 	 j ecasjÞ2Þ.
4 IMPLEMENTATION

The adaptive processing architecture is shown in Fig. 7 and
can be decomposed into the following five steps: Step-1:
Monitoring workload. It collects information about the tuple
matrix and the space occupied by the two join streams, and
the task consumption of the existing processing scheme. On
receiving the reporting information, the controller first eval-
uates the number of task consummation according to Algo-
rithm 1 and Algorithm 2. Step-2: Generating processing
scheme. It produces a new scheme according to workload

Fig. 6. Illustration of the worst case of using area dichotomy.

FANG ET AL.: A-DSP: AN ADAPTIVE JOIN ALGORITHM FOR DYNAMIC DATA STREAM ON CLOUD SYSTEM 1867

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

and resource information, as presented in Section 3; Step-3:
Making task-load mapping. It expects to find the task-load
mapping function so as to maximize non-moving data vol-
ume when transforming from the old scheme to the new
scheme. This step will be described in Section 4.2. Step-4:
Generating migration plan. It schedules the data migration
among tasks according to task-load mapping scheme. This
step will be described in detail in Section 4.3. Step-5: Defining
consistent protocol according to migration plan. This step
defines consistent protocols to ensure the correctness of
system.

We omit the detailed description of step-5 in this paper
since it is same as [11]. Moreover, the implementation pro-
cess of our model should include two phases: PfCA (partitiongCA into eca s) and Pca (partition ecaðca) into TaskA s). After
the final scheme generated by Algorithms 1 and 2, the work-
load adjustment strategy among ca s is a key-based issue
which has been explored in our previous work [22], so that
will not be reiterated in this paper. Due to the fact that the
routing strategy is the essential step for the incoming
stream, we first introduce it in the following subsection.

4.1 Routing Strategy

In view of our A-DSP model is a composite structure, its
routing strategy includes two layers as listed in Algorithm 3.

Algorithm 3. Routing Strategy Algorithm

input: Input tuple: t, Mapping function: F
output: Routing destination RD: fðca, z, thÞg
1: k EðtÞ /* extract the key of tuple t*/

2: = � ��Step-1: Routing tuples in eC � � �=.
3: Ca ROUTINGINeC(eC, k, F) /* Ca is the set of ca*/
4: = � ��Step-2: Routing tuples in ca � � �=.
5: RD ROUTINGINCA(Ca; t)
6: return RD
7: function ROUTINGINeC(eC, k, F)
8: K� F ðkÞ
9: foreach k� 2K� do
10: x BasicPartitionðk�Þ, Ca cax

11: return Ca
12: function ROUTINGINCA(Ca; t)
13: foreach ca� 2 Ca do
14: if t 2 R then
15: z row, th RandomInt½0 � ðaca� � 1Þ

16: else
17: z column, th RandomInt½0 � ðbca� � 1Þ

18: RD ðca�; z; thÞ
19: return RD

Step-1: Routing tuples in eC. This step is responsible for
routing tuples into ca(s). To ensure that one tuple could
be sent to various destinations, here using a content-
sensitive manner, which according to a basic mapping
function F ðkÞ. To this end, Algorithm 3 first extracts the
join key from each incoming tuple in line 1. Then it
figures out which key(s) the tuple should pair in line 8.
According to the pair key, Algorithm 3 generates the
destination(s) for the incoming tuple, based on a basic
routing function (e.g., consistent hash) in lines 9�11.

Step-2: Routing tuples in ca. This step is responsible for
determining which task(s) in ca is(are) destination(s). Algo-
rithm 3 first identifies which stream the inputting tuple
comes from in lines 14 � 17. Accordingly, all task(s) in the
row or column are selected as destination(s) in line 18. In
Algorithm 3, the destination is denoted by ðca; z; th), means
the input tuple should be send to all tasks located at
zthðz 2 ðrow; columnÞ; th 2 N) in ca.

In example of Fig. 2d, for the tuple from stream S
and with join key 18, Algorithm 3 first determines the
first ca(ca1) is its direction, which according to the join
predicate expression(jR:k� S:kj � 2) and storage strategy
(i.e.,fk1 � k20g) ca1, fk21 � k40g) ca2). Since ca1 has two
columns, Algorithm 3 randomly selects the 0th column as
its destination line (i.e., destination is ðca1; column; 0Þ in
Algorithm 3).

4.2 Scheme Changing

There are two criteria which should be guaranteed during
the process of ca’s scheme changing. The first one is to
ensure the correctness of process and the second one is to
lower migration cost during the process of scheme changing
as far as possible. To simplify our description, some addi-
tional notations used in the following sections are summa-
rized in Table 4.

We now use m and M to denote task instance and
task matrix respectively, and mij corresponding to calcu-
lation area TaskAij in ca. Furthermore, we use mij and
mkl to represent the task instance in Mo and Mn respec-
tively, where i(k) and j(l) are the row number and col-
umn number of Mo (Mn). We define the correlation
coefficient �ij

kl to reflect the volume of data overlap
between mij and mkl, which can be calculated as

�ij
kl ¼ jhR

ij \ sRklj þ jhS
ij \ sSklj.

Fig. 7. Architecture of adaptive processing.

TABLE 4
Table of Additional Notations

Notations Description

mij task instance corresponding to TaskAij

hxR
ij =hxS

ij the sub-stream R=S that has been stored inmx
ij,

represented as a range ½b; e

Mo=Mn old task matrix and new task matrix for ca
k=l kth row and lth column in new scheme
hR
ij=h

S
ij data has been stored inmij in ca

sRkl=s
S
kl data formkl in new schemeMn in ca, represented as a

range ½b; e
 on stream car=cas

tpi the mapping of tasks between old and now scheme
mp the migration plan
TP/MP the set of tpi/mp

1868 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4. Task Mapping TP Generation

input: Old task matrix schemeMo, New task matrix schemeMn

output: Task mapping set TP
1: foreachmij in Old schemeMo do
2: foreachmkl in New schemeMn do
3: �ij

kl ðhR
ij \ sRklÞ 	 jcarj þ ðhS

ij \ sSklÞ 	 jcasj
4: TPI <mij;mkl; �

ij
kl > = � TPI is a temp set �=

5: Initialize TP =Null
6: foreach tpi in TPI in descending order based on �ij

kl do
7: ifmij ormkl in tpi has been appeared in TP then
8: Continue
9: <mij;mkl >! TP
10: return TP

Algorithm 4 shows the task mapping method, which
aims to minimize the states migration when using the new
scheme Mn. Specifically, Algorithm 4 first enumerates all
the possible mappings in form of tpi ¼<mij;mkl; �

ij
kl > as

shown in lines ð1 � 4Þ; then it selects the optimal mappings
which have larger �ij

kl among all mapping sets in lines
ð6 � 10Þ. Task mapping TP generated by Algorithm 4 gath-
ers the largest cumulative values of �ij

kl. Because each mij or
mkl appears in TP only once at most, then the correlation
coefficient �ij

kl is independent of others. Our algorithm
always selects the mapping pair with biggest �ij

kl, and then it
will generate the maximum cumulative value of �ij

kl. In other
words, Algorithm 4 finally produces the minimal migration
cost during the process of scheme changing.

Considering scheme generation in Section 3 and task map-
ping generation discussed above, we design an advanced
scheme mapping for reducing migration cost. In order to
make it easy for explanation, we take a one dimension scheme
division as an example and treat its total volume as unit ”1”,
shown in Fig. 8, where hiðsiÞ represents the range processed
by task i.

A naive method is to divide the stream into even ranges
and assign each range to one task as shown in Fig. 8a. In old
scheme, there are 4 tasks (No.0�3) and each task manages
25 percent percentage of the whole stream, represented as
hi (i � 3). When it is scaled out to 5 tasks, 5 ranges are gen-
erated evenly and each range sj (j � 4) maps to one task.
Based on Algorithm 4, we can figure out the best mapping
from fhig to fsjg shown in Fig. 8a, represented by the dot-
ted line. The shadowed range in old scheme will be
migrated among tasks, and the newly added task will be
assigned the data in range ½2=5; 3=5
 labeled as s4. The total
volume of data migration is 1

20þ 1
5þ 1

20 ¼ 3
10.

Given that join correctness is independent of the order of
tuples as long as we can guarantee that the same row (col-
umn) has the same states as described in Section 2. In this
context, we can conduct an optimization based on start-
point-alignment method for task mapping as follows. We
first align the same range start points for fsjg in new scheme
to those from fhig in old scheme, if any. In Fig. 8b, the old
scheme is scaled out to 5 tasks. We align the same start
range points between 4 tasks such as s0 � s3 from the new
scheme and h0 � h3 from the old scheme. Each hi cuts
down the shadowed 1=20(=1=4� 1=5) of the range and
moves them to the newly inserted task that is s4. In such a
case, the total migration volume is 1

20þ 1
20þ 1

20þ 1
20 ¼ 1

5,
which is less than the migration cost generated by

Algorithm 4. For scaling down, it is almost the same. We
align the start points of new tasks with some of the old
ones, and split ranges managed by the removing nodes (to
be deleted) to the tasks kept in the new scheme.

4.3 Migration Plan Generation

Figuring out the part of data which should be migrated
among tasks is a necessary information in the process of
scheme changing. We use ^ to represent the join stream
that^ 2 fcar; casg and n^

kl means the data that are lacked in
mkl, and then the range of data n^

kl is:

n^
kl ¼ s^kl � ðs^kl \ h^

kl Þ; (15)

Then we define the migration plan as mp ¼<mij;mkl; n
^>

that can be read as: for stream^, the data n^ should be copied
formij in old schemeMo tomkl in new schemeMn, where n^

is:

n^ ¼ h^
ij \ n^

kl (16)

For each mkl, we use d^kl to represent the data which are no
longer needed and should be moved out, and d^kl can be cal-
culated as:

d^kl ¼ h^
kl � ðs^kl \ h^

kl Þ (17)

In this case, the migration plan can be represented as
mp ¼<�;mkl; d

^
kl > . The migration plan with mark � can

be read as: for stream^, delete data d^kl frommkl.
The generation of migration plan is described in Algo-

rithm 5 and can be divided into four steps as follows: Step-1:
Discarding states that are no longer needed in Mn. As shown in
line 1 of Algorithm 5, this step is used to clean useless states
generated by old scheme Mo. Specifically, some states will
be discarded when scheme change happens. Step-2: Filling
stream data for task instances in the new scheme. We can get the
whole data set in stream R or S by combining the data from
the first row or the first column in Mo. As in line (2 � 11),
we can fill each task instance with data in Mn using tuples
which are stored in the first row or column in Mo. Step-3:
Handling the last row or column with irregular scheme. This
step plays the role that making scheme full use of resources.
It redistributes the subset of data of primary stream located
in task instances Pd � Pg in lines (12 � 18). Step-4: Deleting
useless tuples. It deletes data with � mark in mp under the
new schemeMn in lines (19 � 21).

In above steps, step-1will be triggeredwhen the old scheme
Mo is an irregularmatrix and step-3will be triggeredwhen the
new scheme Mn is irregular. To make it comprehensible, we
first walk through an example with regular scheme transfor-
mation (just use step-2 and step-4 in Algorithm 5) and then dis-
cuss the details of the irregular scheme generation.

Fig. 8. Advanced scheme generation and task mapping.

FANG ET AL.: A-DSP: AN ADAPTIVE JOIN ALGORITHM FOR DYNAMIC DATA STREAM ON CLOUD SYSTEM 1869

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5.Migration Plan Generation

input: Old schemeMo, New schemeMn, Task mapping TP
output:Migration planMP
1: Discard states with mark * state for each task in new

scheme
2: foreach row iwith column 0 in old schemeMo do
3: foreach taskmkl in new schemeMn do
4: if hR

i0 \ nR
kl 6¼ ? then = �According to Equ:ð15Þ&16 � =

5: <mi0;mkl; h
R
i0 \ nR

kl >!MP
6: Update nR

kl

7: foreach column jwith row 0 in old schemeMo do
8: foreach taskmkl in new schemeMn do
9: if hS

0j \ nS
kl 6¼ ? then

10: <m0j;mkl; h
S
0j \ nS

kl >!MP
11: Update nS

kl

12: foreach task x located between Pd and Pg do
13: if P ¼ R then = � y 2 ½0; Pd � 1
 � =
14: <*;m

xD
f
g
;m

yD
f
g
; sR

xD
f
g

>!MP

15: Set task inm
xD

f
g
inMn as inactive

16: else if P ¼ S then
17: <*;m

D
f
gx
;m

D
f
gy
; sS

D
f
gx
>!MP

18: Set task inm
D
f
gx

inMn as inactive

19: foreach taskmkl in new schemeMn do
20: <�;mkl; d

R
kl >!MP = � According to Equ:ð17Þ � =

21: <�;mkl; d
S
kl >!MP

22: returnMP

A scheme changes from 2� 2 to 2� 3 as depicted in
Fig. 9 and we also treat the total volume of car=cas as unit
”1”. In old schemeMo, each task manages half size of stream
data from car and cas shown in Fig. 9a: each row manages
half size of car with hR

00 ¼ hR
01 ¼ ½0; 12
 and hR

10 ¼ hR
11 ¼ ½12 ; 1
;

each column manages half size of cas with hS
00 ¼ hS

10 ¼ ½0; 12

and hS

10 ¼ hS
11 ¼ ½12 ; 1
. When the workload of stream cas

increases, system may scale out by adding one more column
with two tasks using a 2� 3 scheme as shown in Fig. 9b. In
this case, data partitions to car are unchanged where tasks
in the first row still manage half size of volume (
sR0j ¼ ½0; 12
; j 2 f0; 1; 2g) and tasks in the second row manage
the other half (sR1j ¼ ½12 ; 1
; j 2 f0; 1; 2g). Stream cas should be
split into three partitions for three columns, each of which
manages 1

3 range of data, that is sSi0 ¼ ½0; 13
, sSi1 ¼ ½13 ; 23
 and
sSi2 ¼ ½23 ; 1
, with i 2 f0; 1g.

According to the discussion in Section 4.2, if we have the
optimal partitioning scheme with minimal migration cost,
TP is f<mo

00;m
n
00> ; <mo

01;m
n
02> ; <mo

10;m
n
10> ; <mo

11;m
n
12> g.

In Fig. 9b, we pair the relevant tasks between Mo andMn by
assigning the same numbers for tasks. The tasks tagged with
red numbers5 and6 in m01 and m11 are not paired. m01 is
supposed to manage data nR

01 ¼ ½0; 12
 and nS
01 ¼ ½13 ; 23
; m11 is

supposed to manage data nR
11 ¼ ½12 ; 1
 and nS

11 ¼ ½13 ; 23
. Accor-

ding to Algorithm 5, in m01, s
R
01 is generated by duplicating

car data from m00. Since ca
s is reallocated by splitting into 3

parts for the insertion of a new column, it first generates the
complete data set by combining hS

00 and hS
01 in scheme Mo,

and then sS01 is generated by replicating cas data from mS
00

with hS
00 by range ½13 ; 12
 and from mS

01 with hS
01 by range ½12 ; 23
.

Then the data for sS01 is deleted from these task instances.m11

inMn will be assigned data in the sameway asm01 does.

5 EVALUATION

5.1 Experimental Setup

Environment. We implement the approaches and conduct all
the experiments on top of Apache Storm [23]. The Storm sys-
tem is deployed on a cluster of 21 HP blade instances, each
of which runs CentOS 6.5 operating system and is equipped
with two Intel Xeon processors (E5335 at 2.00GHz) with
four cores and 32GB RAM. Overall, there are 300 virtual
machines available exclusively for our experiments, each
with dedicated memory resources of 2GB.

Data Sets. We test the proposed algorithms using two
types of data sets. The first TPC-H data sets is generated by
the dbgen tool shipped with TPC-H benchmark [24]. Before
feeding the data to the stream system, we pre-generate and
pre-process all the input data sets. We adjust the data sets
with different degrees of skew on the join attributes under
Zipf distribution by choosing a value for skew parameter z.
By default, we set z ¼ 1. The second data set is 10GB social
data1 (coming from Weibo which is the biggest Chinese
social media data) which consists of 20,000,000 real feed
tuples. We run self-join on social data to find the correlation
degree among tuples.

Queries. We experiment on four join queries, namely one
equi-join from the TPC-H benchmark and three synthetic
band-joins. The equi-join,EQ5

, represents themost expensive
operation in query Q5 from the benchmark. BNCI , BMR and
Social data query are all band-joins, which are different in
the range of join. Specifically, BNCI is the u-join query that
corresponds to a small range, while BMR is the theta-join
query that represents a big range.BMR and Social data query
are full band-joins which require each tuple from one stream
meets all the tuples from the other stream. TheEQ5

andBNCI

are used in [11], [12].

Fig. 9. Stream distribution example.

1. http://open.weibo.com/wiki/2/statuses/user_timeline

1870 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

http://open.weibo.com/wiki/2/statuses/user_timeline

Baseline Approaches. In A-DSP, we compress the tuple
matrix in our experiments using a matrix compression
method proposed in [10], which generates the sample matrix
having amuch smaller size than the original matrix and guar-
antees the sample tuple matrix being high fidelity. For the
purpose of comparison, we evaluate four different distributed
stream join algorithms as follows.

Square [19] figures out the number of tasks through a
simple and easy way defined Equ. (9).

Dynamic [11] takes join matrix as its processing model
and assumes that the number of tasks in a matrix must
be a power of 2. Since the model needs to maintain its
matrix structure, if the workload of one stream increases
twofold, Dynamic will double cells along the side corre-
sponding to this stream. Meanwhile, cells along the other
side will get reduced by half. In addition, during system
scaling out, Dynamic splits the states of every node into
4 nodes if storage of any task exceeds half of specified
memory capacity.

Readj [15] is designed to minimize the load of restoring the
keys based on the hash function, implemented by key rerout-
ing over the keyswithmaximal workload. Themigration plan
of keys for load balance is generated by pairing tasks and
keys. For each task-key pair, their algorithm considers all pos-
sible swaps to find the best move alleviating the workload
imbalance. In Readj, s is a configurable parameter, deciding
which keys should take part in action of swap and move.
Given a smaller s, Readj tends to track more candidate keys
and thus finds better migration plans. In order to make fair
comparison, in each of the experiment, we run Readjwith dif-
ferent s0s and only report the best result from all attempts.

Bi6 and Bi [12] handle u-join using a complete bipartite
graph. On one side of the bipartite graph, a data stream R is
decomposed into substreams by a key-based hash function,
each partition of which is stored and maintained by a com-
putation node. In the following part of this paper, we use Bi
to represent there is only one subgroup for each side of join-
biclique and Bi6 to denote there are six subgroups for each
side. For routing the incoming tuple, they use a two-tier
architecture of the router, consisting of shuffler and dis-
patcher. The shuffler, implemented as a spout, ingests the
input streams and forwards every incoming tuple to the dis-
patcher. The dispatcher, implemented as a bolt, forwards
every received tuple from the shuffler to the corresponding
units in the joiner to store and join.

Performance Metrics. We evaluate resource utilization and
system performance through the following metrics:

Tasknumber is the total number of tasks consumed by
system and each task is assigned with a specified quota of
memory space V .

ExecutionTime is consumption time taken to deal with a
certain amount of data.

Thoughtput is the average number of tuples that proc-
essed by system per second (time unit).

Average join request account is the average number of
tuples which should be joined within each task.

Migration volume is the total number of tuples which
should be moved to other tasks during scheme changing.

ResurceCost ðRCÞ is the cumulative usage volume of a
certain resource which can be expressed as RC ¼P

r2R r 	 tr,
where r is the measurement of resource consumption, which

may bememory, network or CPU,R is the set of r and tr is the
duration time for those resource r.

5.2 Full History Stream Joins

Fig. 10 demonstrates the trend on task consumption and
execution time during loading all 16GB data into Storm sys-
tem. The maximum input rate can be set to consume all the
computing power of each task, using enough parallelism
for spout in Storm.

During data loading as in Fig. 10a, our algorithm A-DSP
has stable performance while Dynamic meets sharp
increase in task number. This is because Dynamic has a
strict requirement that the number of tasks must be a power
of two, and then, Dynamic must quadruple its tasks and
may waste resources when system scales out. Contrarily,
our algorithm A-DSP generates the processing scheme
based on current workload. Square limits the TaskA must be
square shape and the divides CA directly makes it use more
computing resources. Since Bi is designed for memory opti-
mization, it is obvious that Bi uses the minimal number of
tasks. Specifically, Bi6 sets up 6 subgroups for each stream
and every subgroup contains one task initially. As data
flows in, tasks inside subgroups will scale out dynamically.
Figs. 10b, 10c, and 10d depict processing efficiency under
different data skewness executing EQ5

, BNCI and BMR.
A-DSP and matrix-join methods including Square and
Dynamic, can process join stably since data are distributed
to tasks randomly. Although Bi takes up fewer tasks, its
efficiency is almost three times lower than others due to its
lack of computing resources. Specifically, when z ¼ 2,
severer skewness may cause tuple broadcast among groups.
BMR is a wide range of band-join, the advantages of sub-
grouping in Bi6 completely disappear as shown in Fig. 10d.
Due to the random tuples distribution on join-matrix mod-
els, the execution time of Square andDynamic is immune to
data skewness. Furthermore, our A-DSP uses a hybrid rout-
ing strategy which also can be benefited from the random
distribution manner.

Fig. 10. Task consumption and execution time of full history join.

FANG ET AL.: A-DSP: AN ADAPTIVE JOIN ALGORITHM FOR DYNAMIC DATA STREAM ON CLOUD SYSTEM 1871

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

In Fig. 10, the execution time of Dynamic is similar with
our methods, but it is at the expense of more tasks. Since Bi
and Bi6 take minimizing memory usage as the optimization
goal, it may decrease processing efficiency when it is lack of
CPU resources as shown in Fig. 10d. From Fig. 10 we can
conclude that our algorithms are more scalable and efficient.

5.3 Window-based Stream Joins

For this group of experiments, we have 64GB data with win-
dow size 180 seconds and slide size 60 seconds. We set
stream flow-in rate at about 3 	 105 tuples per second to
make full use of CPU resources. To facilitate the description,
we define the tuple that is distributed to the storage side for
join as join request. To further validate the effects of differ-
ent band-joins and data skewness on system performance,
we run window-based joins to testify throughput under dif-
ferent models.

Fig. 11 shows system throughput and average number of
join requests received by task in different processing
schemes for queries EQ5

, BNCI and BMR under different
data skewness. Figs. 11a, 11c, and 11e compare throughput
of each algorithm. Throughput of matrix-based algorithms
is obviously higher than those of bipartite-graph-based ones
which result from data broadcasting among groups and
are lacking of CPU resources. While executing EQ5

under

low-skew data, Bi6 can route join requests more selectively
to subgroups, guaranteeing the execution efficiency within
each task. With severer skewness, however, the amount of
data broadcasting among subgroups lows down system
performance greatly. While executing BNCI and BMR, the
band-join operations incur more broadcasts among sub-
groups and aggravate the CPU loads compared to EQ5

. It is
obvious in Fig. 11f, where the large range band-join requests
make Bi6 lose advantages of selection operation on group-
ing data. Because Bi has only one subgroup for each stream
and it broadcasts the same amount of data for these three
kinds of queries as shown in Figs. 11b, 11d, and 11f. Further-
more, the reason that Bi6 is unaffected by BMR is that BMR is
a big range band-join. Matrix-based algorithms share the
CPU load equally among tasks, but suffer from consuming
more tasks. In this group of experiments, the task usages of
A-DSP,Square;Dynamic;Bi6 and Bi are 13, 16, 64, 12 and 6,
respectively.

5.4 Adaptivity

In order to validate the adaptivity of our processing scheme,
we simulate two scenarios as follows: 1) we do selectivity
transmission for join operation by altering the calculation
range of join predicate; 2) we keep on varying stream vol-
ume ratio by % ¼ jRjjSj under the specified total stream volume
of 40 GB. Both those experiments are run based on window
and all settings are similar to Section 5.3. For the threshold
controlling scales out or down, Dynamic uses its own set-
ting in [11] and other algorithms change scheme when
memory load is higher than eighty or lower than fifty per-
cent of configured for each task.

5.4.1 Adaptivity on Selectivity Transmission

To better understand our A-DSP can adaptively change the
dimensions of its processing architecture to satisfy various
operation requirements, we disrupt the time series of Social
data and run the Social data querywith various selectivity. The
different selectivity scenarios are generated by changing the
correlative days, i.e., ds, where ds ¼ jS1:date� S2:datej.
Specifically, we use ds ¼ 0, ds ¼ 3 and ds ¼ 1 to denote the
equivalent, range and full join operation, respectively.
Fig. 12a shows the task consumption of different approaches
under above settings. Regardless of the join types, Square and
Dynamic always consume the most tasks. This is because
they are both based on the fixed matrix architecture. Con-
versely, both Bi and ReadJ consume the least tasks, for they
do not need to store copies of the incoming stream. However,
their complicated routing strategies and broadcast action
inevitably be an obstacle to the throughput performance, as
shown in Fig. 12b. Fig. 12a shows that our A-DSP model can
consume resource on-demand, which based on the specific
join operation. Furthermore, Fig. 12b reflects A-DSP can
enable the system to provide stable high throughput although
it consumes less tasks.

5.4.2 Adaptivity on Relative Stream Volume Change

In Fig. 13a, we adjust % every three minutes. Accordingly,
the migration volumes of each approach are displayed in
Fig. 13b. Both Bi and Bi6 incur less migration cost because
they contain the lesser redundant data. However, this is at

Fig. 11. Throughput and tuple account of window-based join for different
queries.

1872 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

the cost of a higher CPU consumption, which inevitably
decreases the throughput. Dynamic suffers from high
migration cost because this model requires its task number
must be a power of two. Our A-DSP algorithm explores the
most appropriate processing scheme which takes relatively
small migration cost.

5.5 Throughput and Latency

Our synthetic workload generator creates snapshots of
tuples for discrete time intervals from an integer key
domain K. The tuples follow Zipf distributions controlled
by skewness parameter z, by using the popular generation
tool available in Apache project. We use parameter f to con-
trol the rate of distribution fluctuation across time intervals.
At the beginning of a new interval, our generator keeps
swapping frequencies between keys from different task
instances until the change on workload is significant
enough. i.e., LiðdÞ�Li�1ðdÞ

�L
� f . In the above expression, LiðdÞ

and Li�1ðdÞ mean the total workload of task instance d in
the ith and (i-1)th time interval (window), respectively. �Li

means the average load of all tasks in the ith time interval.
Then, f can be used to denote the workload rangeability of
task d between now and the last time interval.

Fig. 14 shows the throughput and latency with varying
distribution change frequency running on EQ5

(Figs. 14a
and 14b) and BMR (Figs. 14c and 14d), respectively. In
Fig. 14, we draw the theoretical limit of the performance
with the line labeled as Ideal, which processing correspond-
ing query using Square in the condition of adequate resour-
ces are available. Obviously, Ideal always generates a better
throughput and lower processing latency than any others,
but cannot be used in real-world application, for its resource
waste. When varying the distribution change frequency f ,
both the throughput and latency of Bi6 change dramatically
in Figs. 14a and 14b. In particular, Bi6 works well only in
the case with less distribution variance (smaller f) in
Figs. 14a and 14b. In the meantime, both Bi and Dynamic

alway have a low throughput and high processing latency
in Fig. 14, this is because the broadcast action in Bi and the
limit number of task using in Dynamic. On the other hand,
our A-DSP algorithm always performs well, with perfor-
mance very close to the optimal bound set by Ideal.

To expose the cost of our approach in finding the right
processing scheme, Fig. 15 shows the adjustment times and
migration latency of each approach under varying distribu-
tion change frequency. We run this group experiments on
BMR and the relative stream volume change parameter is
configured as Fig. 13a. Fig. 15a shows A-DSP incurs more
scheme adjustment during the data distribution change.
However, its migration latency is still acceptable to the sys-
tem as shown in Fig. 15b. This is because we have designed
a lightweight computation model (Algorithm 4 and Algo-
rithm 5) to support rapid migration plan generation, which
incurs minimal data transmission overhead and processing
latency. Square uses the same migration plan generation
strategies, and it has a similar performance. Dynamic incurs
a smaller adjustment time since it adjusts its processing
scheme only after the relative stream volume changed. Due
to the face that Dynamic needs to maintain a large amount
of copy data, its migration latency is the one biggest as
shown in Fig. 15b. Bi and Bi6 using the fewest processing
tasks make them generate a smaller migration volume and
latency.

Fig. 12. Performance under various selectivity.

Fig. 13. Performance with relative stream volume change.

Fig. 14. Throughput and latency with varying distribution change
frequency, where (a) and (b) Run on a EQ5

, and (c) and (d) on BMR.

Fig. 15. Adjustment times and migration latency with varying distribution
change frequency.

FANG ET AL.: A-DSP: AN ADAPTIVE JOIN ALGORITHM FOR DYNAMIC DATA STREAM ON CLOUD SYSTEM 1873

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

5.6 Performance on Real Data

5.6.1 Throughput under Limited Resources

To better understand the performance of the approaches in
action, we present the dynamics of the throughput on two
real workloads, especially when the system is limited the
using number of tasks. On Social data, we implement a
band-join topology on Storm, with distributing tuples to
tasks for store and join on keywords. On Stock data, a self-
join on the data over sliding window is implemented,
which maintains the recent tuples based on the size of the
window over intervals. The results are available in Fig. 16,
showing that our method A-DSP always produce a higher
throughput. Though Dynamic is content-insensitive, it pro-
duces a lower throughput than A-DSP, for the available
resources always cannot meet its demand. On both Social
data and Stock data with different available tasks, Bi and
Bi6 have little change in the performance of throughput,
this is because the biggest obstacle to their performance is
the huge broadcast tuples for this queries. The throughput
of Dynamic only be one-third of A-DSP when the limitation
task number is 32, which leads to huge resource waste and
is definitely undesirable to cloud-based streaming process-
ing applications.

5.6.2 Resource Utilization Efficiency

To prove the usability of our algorithm, we do band-join
Social data query on 10GB Weibo datasets with the settings
introduced in Section 5.2. We load the 10GB dataset contin-
uously, and measure resource consumption by different
algorithms. In Fig. 17a, bipartite-graph-based models Bi
and Bi6 use less tasks for it is mainly designed for memory
optimization as explained in Fig. 10. Our method A-DSP
provides a flexible matrix scheme which applies for new
tasks according to its real load while Dynamic scales out in
a generous way. Our algorithm is efficient in completing all
the work while the bipartite-graph-based models are the
slowest for its lack of CPU resources, shown in Fig. 17b.

Fig. 17c shows the bandwidth usage for each algorithm
when loading data into Storm system. Though Bi uses less
tasks than A-DSP as shown in Fig. 17a, its bandwidth usage
is more than ours for it broadcasts the same amount of
incoming tuples to all tasks in the other side of bipartite-
graph. Dynamic costs the most bandwidth. Fig. 17d
provides the overall resource cost (Task and Bandwidth)
by time duration, as computed by RC ¼P

r2R r 	 tr and
we consider cost by continuing occupation to resources. It
confirms that A-DSP can deal with the band-join more
economically.

6 RELATED WORK

In the early 21st century, considerable researches have been
unfolded on designing efficient stream join operators in a
distributed environment with a cluster of machines. Asmen-
tioned in Section 1, there are two categories model for join
operation in distributed stream processing systems, namely
1-DSP and 2-DSP.

1-DSP. Photon [25] is designed by Google to join data
streams such as web search queries and user clicks on adver-
tisements. It utilizes a central coordinator to implement fault-
tolerant and scalable joining through key-value matching, but
cannot handle u-join. D-Streams [26] adopts mini-batch on
continuous data streams in a blocking way on Spark. Though
it upholds u-join well, under the constraint of window size,
some tuples may miss each other and such batch-mode com-
puting can only give approximate results. TimeStream [27]
equippedwith resilient substitution and dependency tracking
mechanisms provides both MapReduce-like batch processing
and non-blocking stream processing. However, it suffers from
the excessive communication cost due to maintenance of dis-
tributed join state. Join-Biclique [12] based on bipartite-graph
model supports full-history and window-based stream joins.
Compare to the join-matrix model used in DYNAMIC [11], it
reduces data backup redundancy and improves resource utili-
zation. In themeantime, considerable efforts have been put on
the elasticity feature of the distributed stream processing sys-
tems [28], [29], [30], [31], [32], dealing with when and how to
efficiently scale in or out computing resources.

2-DSP. In recent years, join-matrix model for parallel and
distributed joins has been restudied. Intuitively, it models a
join between two data sets R and S as a matrix, where each
side of which corresponds to one relation. Stamos et al. [33]
proposed a symmetric fragment and replicate method to sup-
port parallel u-joins. This method relies on replicating input
tuples to ensure result completeness and extending the frag-
ment and replicate algorithm [34], which suffers from high
communication and computation cost. Okcan [13] proposed
techniques in MapReduce that adopts join-matrix model and

Fig. 16. Performance under limit tasks.

Fig. 17. Performance on real data.

1874 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

supports parallel u-joins. He designed two partitioning
scheme, that is 1-Bucket and M-Bucket. 1-Bucket scheme is
content-insensitive but incurs high data replication; M-Bucket
scheme is content-sensitive in that it maps a tuple to a region
based on the join key. Because of the inherent nature of Map-
Reduce, these two algorithms are offline and require that all
the data statistics must be available beforehand, which are not
suitable for stream join processing. In data stream processing,
Elseidy et al. [11] presented a (n,m)- mapping scheme partition-
ing the matrix into J(J ¼ n�m) equal regions and propose
algorithms which adjust the scheme adaptively to data char-
acteristics in real time. However, [11] assumes that the num-
ber of partitions J must be powers of two. What’s more, the
the matrix structure suffers from bad flexibility because when
the matrix needs to scale out(down), it must add(remove) the
entire row or column cells.

Due to the characteristics of data streams, e.g., infinite-
ness and instantaneity, conventional join algorithms using
blocking operations, e.g., sorting, cannot work any more.
For stream join processing, much effort has been put into
designing non-blocking algorithms. Wilschut presents the
symmetric hash join SHJ [35]. It is a special type of hash join
and assumes that the entire relations can be kept in main
memory. For each incoming tuple, SHJ progressively creates
two hash tables, one for each relation, and probes them
mutually to identify joining tuples. XJoin [36] and DPHJ
[37] both extend SHJ by allowing parts of the hash tables to
be spilled out to the disk for later processing, greatly
enhancing the applicability of the algorithm. Dittrich [38]
designed a non-blocking algorithm called PMJ that inherits
the advantages of sorting-based algorithms and also sup-
ports inequality predicates. The organic combination of
XJoin and PMJ is conductive to the realization of HMJ [39],
presented by Mokbel. However, all the previous algorithms
belong to centralized algorithms and rely on a central entity
doing join computation, which cannot be applied in distrib-
uted computing directly.

7 CONCLUSION

This paper presents a new parallel stream join mechanism for
u- join in distributed stream processing engines. Inspired by 1-
DPS and 2-DPSmodel,we propose aA-DSPmodel to promise
processing correctness togetherwith efficient resource usages.
A-DSP can handle parallel stream joins in a more flexible and
adaptivemanner, especially to address the demands on opera-
tional cost minimization over the cloud platform. Addition-
ally, we design algorithms with moderate complexity to
generate task mapping schemes and migration plans to fulfill
the objective on operational cost reduction. Empirical studies
show that our proposal incurs the smallest cost when the
stream join operator is run under the pay-as-you-go scheme.
In the future, we will explore the possibility on more flexible
and scalable mapping and migration strategies with sampled
matrix in pursuit of a smaller migration cost. We will also try
to design a newmechanism, to ensure the correctness of proc-
essing resultswhen there exist(s) extremely dynamic key(s).

ACKNOWLEDGMENTS

Rong Zhang and Aoying Zhou are supported by the Key Pro-
gram of National Natural Science Foundation of China

(No. 2018YFB1003402) and NSFC (No. 61672233). Kai Zheng
is supported by NSFC (No. 61972069, 61836007, 61832017,
61532018). Junhua Fang is supported by NSFC (No.61802273),
the Postdoctoral Science Foundation of China under Grant
(No. 2017M621813), the Postdoctoral Science Foundation of
Jiangsu Province of China under Grant (No. 2018K029C), and
the Natural Science Foundation for Colleges and Universities
in Jiangsu Province of China under Grant (No. 18KJB520044).
Xiaofang Zhou is supported by NSFC (No.61772356). This
work is also partially supported by the Major Program of
Natural Science Foundation, Educational Commission of
Jiangsu Province (No. 19KJA610002).

REFERENCES

[1] B. Liu, Y. Zhu, M. Jbantova, et al., “A dynamically adaptive
distributed system for processing complex continuous queries,”
in Proc. 31st Int. Conf. Very Large Data Bases, 2005, pp. 1338–1341.

[2] Y. Xing, J. Hwang, U. Cetintemel, and S. Zdonik, “Providing resil-
iency to load variations in distributed stream processing,” in Proc.
31st Int. Conf. Very Large Data Bases, 2006, pp. 775–786.

[3] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, “Handling data
skew in parallel joins in shared-nothing systems,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2008, pp. 1043–1052.

[4] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Load balancing
in MapReduce based on scalable cardinality estimates,” in Proc.
IEEE 28th Int. Conf. Data Eng., 2012, pp. 522–533.

[5] Y. Kwon, M. Balazinska, et al., “SkewTune: Mitigating skew in
MapReduce applications,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2012, pp. 25–36.

[6] G. Cormode and S. Muthukrishnan, “An improved data
stream summary: The count-min sketch and its applications,”
J. Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[7] M. A. U. Nasir, M. Serafini, et al., “When two choices are not
enough: Balancing at scale in distributed stream processing,” in
Proc. IEEE 32nd Int. Conf. Data Eng., 2016, pp. 589–600.

[8] Y. Zhou, Y. Yan, B. C. Ooi, K.-L. Tan, and A. Zhou, “Optimizing
continuous multijoin queries over distributed streams,” in Proc.
14th ACM Int. Conf. Inf. Knowl. Manage., 2005, pp. 221–222.

[9] Y. Zhou, Y. Yan, F. Yu, and A. Zhou, “Pmjoin: Optimizing distrib-
uted multi-way stream joins by stream partitioning,” in Proc. Int.
Conf. Database Syst. Advanced Appl., 2006, pp. 325–341.

[10] A. Vitorovic, M. Elseidy, and C. Koch, “Load balancing and skew
resilience for parallel joins,” in Proc. IEEE 32nd Int. Conf. Data
Eng., 2016, pp. 313–324.

[11] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch, “Scalable and
adaptive online joins,” in Proc. 31st Int. Conf. Very Large Data Bases,
2014, pp. 441–452.

[12] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu, “Scalable distributed stream
join processing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2015, pp. 811–825.

[13] A. Okcan and M. Riedewald, “Processing theta-joins using
MapReduce,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011,
pp. 949–960.

[14] K. Zheng, Y. Zheng, N. J. Yuan, S. Shang, and X. Zhou, “Online
discovery of gathering patterns over trajectories,” IEEE Trans.
Knowl. Data Eng., vol. 26, no. 8, pp. 1974–1988, Aug. 2014.

[15] B. Gedik, “Partitioning functions for stateful data parallelism in
stream processing,” Int. J. Very Large Data Bases, vol. 23, no. 4,
pp. 517–539, 2014.

[16] R. Huebsch, M. Garofalakis, J. Hellerstein, and I. Stoica, “Advanced
join strategies for large-scale distributed computation,” in Proc. 31st
Int. Conf. Very Large Data Bases, VLDB Endowment, vol. 7, no. 13,
2014, pp. 1484–1495.

[17] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos,
“Robust and skew-resistant parallel joins in shared-nothing sys-
tems,” in Proc. 23rd ACM Int. Conf. Conf. Inf. Knowl. Manage., 2014,
pp. 1399–1408.

[18] M. A. U. Nasir, G. D. F. Morales, et al., “The power of both choices:
Practical load balancing for distributed stream processing engines,”
in Proc. Int. Conf. Data Eng., 2015, pp. 137–148.

[19] J. Fang, R. Zhang, X. Wang, T. Z. Fu, Z. Zhang, and A. Zhou,
“Cost-effective stream join algorithm on cloud system,” in Proc.
25th ACM Int. Conf. Inf. Knowl. Manage., 2016, pp. 1773–1782.

FANG ET AL.: A-DSP: AN ADAPTIVE JOIN ALGORITHM FOR DYNAMIC DATA STREAM ON CLOUD SYSTEM 1875

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

[20] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Math.
Program., vol. 66, no. 1–3, pp. 181–199, 1994.

[21] P. Hilton and J. Pedersen, “Catalan numbers, their generalization,
and their uses,”Math. Intelligencer, Springer, vol. 13, no. 2, pp. 64–75,
1991.

[22] J. Fang, R. Zhang, T. Z. Fu, Z. Zhang, A. Zhou, and X. Zhou,
“Distributed stream rebalance for stateful operator under work-
load variance,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 10,
pp. 2223–2240, Oct. 2018.

[23] “Apache storm,” 2018. [Online]. Available: http://storm.apache.org/
[24] “The TPC-H benchmark,” 2018. [Online]. Available: http://www.

tpc.org/tpch
[25] R. Ananthanarayanan, V. Basker, S. Das, et al., “Photon: Fault-

tolerant and scalable joining of continuous data streams,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 577–588.

[26] M. Zaharia, T. Das, et al., “Discretized streams: Fault-tolerant
streaming computation at scale,” in Proc. 24th ACM Symp. Operat-
ing Syst. Principles, 2013, pp. 423–438.

[27] Z. Qian, Y. He, C. Su, et al., “Timestream: Reliable stream compu-
tation in the cloud,” in Proc. 8th ACM Eur. Conf. Comput. Syst.,
2013, pp. 1–14.

[28] J. Ding et al., “Optimal operator state migration for elastic data
stream processing,” 2015, arXiv:1501.03619.

[29] C. Jin, A. Zhou, J. X. Yu, J. Z. Huang, and F. Cao, “Adaptive sched-
uling for shared window joins over data streams,” Frontiers
Comput. Sci. China, vol. 1, no. 4, pp. 468–477, 2007.

[30] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang,
“DRS: Dynamic resource scheduling for real-time analytics over
fast streams,” in Proc. IEEE 35th Int. Conf. Distrib. Comput. Syst.,
2015, pp. 411–420.

[31] L. Wang, M. Zhou, Z. Zhang, Y. Yang, A. Zhou, and D. Bitton,
“Elastic pipelining in an in-memory database cluster,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2016, pp. 1279–1294.

[32] L. Gu, M. Zhou, Z. Zhang, M.-C. Shan, A. Zhou, and M. Winslett,
“Chronos: An elastic parallel framework for stream benchmark
generation and simulation,” in Proc. IEEE 31st Int. Conf. Data Eng.,
2015, pp. 101–112.

[33] J. W. Stamos and H. C. Young, “A symmetric and replicate
algorithm for distributed joins,” IEEE Trans. Parallel Distrib. Syst.,
vol. 4, no. 12, pp. 1345–1354, Dec. 1993.

[34] R. S. Epstein, M. Stonebraker, and E. Wong, “Distributed query
processing in a relational data base system,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 1978, pp. 169–180.

[35] A. Wilschut and P. Apers, “Dataflow query execution in a aarallel
main-memory environment,” Distrib. Parallel Databases, vol. 1,
no. 1, pp. 103–128, 1993.

[36] T. Urhan and M. Franklin, “Dynamic pipeline scheduling for
improving interactive query performance,” in Proc. 31st Int. Conf.
Very Large Data Bases, 2001, pp. 501–510.

[37] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld, “An
adaptive query execution system for data integration,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 1999, pp. 299–310.

[38] J.-P. Dittrich, B. Seeger, et al., “Progressive merge join: A genetic
and non-blocking sort-based join algorithm,” in Proc. 31st Int.
Conf. Very Large Data Bases, 2002, pp. 299–310.

[39] M. Mokbel, M. Lu, and W. Aref, “Hash-merge join: A non-block-
ing join algorithm for producing fast and early join results,” in
Proc. 20th Int. Conf. Data Eng., 2004, pp. 251–263.

Junhua Fang received the PhD degree in com-
puter science from East China Normal University,
Shanghai, in 2017. He is a lecturer in the Advanced
Data Analytics Group at the School of Computer
Science and Technology, Soochow University,
Suzhou. He is a member of CCF. His research
interests include distributed database and parallel
streaming analytics.

RongZhang received thePhDdegree in computer
science fromFudanUniversity, Shanghai, China, in
2007. She is a member of the China Computer
Federation. She joined East China Normal Univer-
sity in 2011 and is currently a professor. From
2007 to 2010, she worked as an expert researcher
at NICT, Japan. Her current research interests
include knowledge management, distributed data
management, and database benchmarking.

Yan Zhao received the master’s degree in
geographic information system from the University
of Chinese Academy of Sciences, Beijing, China,
in 2015. She is currently working toward the PhD
degree at Soochow University, Suzhou, China.
Her research interests include spatial database
and trajectory computing.

Kai Zheng received the PhD degree in computer
science from theUniversity ofQueensland, Brisbane,
Australia, in 2012. He is a professor of computer
science with the University of Electronic Science and
Technology of China, China. He has been working in
the area of spatial-temporal databases, uncertain
databases, social-media analysis, in memory com-
puting, and block chain technologies. He has pub-
lished more than 100 papers in prestigious journals
and conferences in data management field such as
SIGMOD, ICDE, the VLDB Journal, ACM Transac-
tions, and IEEE Transactions. He is a member of
the IEEE.

Xiaofang Zhou received the BSc and MSc
degrees in computer science from Nanjing Uni-
versity, China, in 1984 and 1987, respectively,
and the PhD degree in computer science from
the University of Queensland, Australia, in 1994.
He is a professor of computer science with the
University of Queensland and adjunct professor
in the School of Computer Science and Technol-
ogy, Soochow University, China. His research
interests include spatial and multimedia data-
bases, high performance query processing, web
information systems, data mining, bioinformatics,
and e-research. He is a fellow of the IEEE.

Aoying Zhou is a professor of computer science
at East China Normal University (ECNU), where
he is heading the School of Data Science & Engi-
neering. Before joining ECNU in 2008, he worked
for Fudan University in the Computer Science
Department for 15 years. He is the winner of the
National Science Fund for Distinguished Young
Scholars supported by NSFC and the professor-
ship appointment under the Changjiang Scholars
Program of Ministry of Education. He is now act-
ing as a vice-director of ACM SIGMOD China

and the Database Technology Committee of China Computer Federa-
tion. He is serving as a member of the editorial boards of the VLDB
Journal, WWW Journal, and etc. His research interests include data
management, in-memory cluster computing, big data benchmarking,
and performance optimization.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1876 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:53:36 UTC from IEEE Xplore. Restrictions apply.

http://storm.apache.org/
http://www.tpc.org/tpch
http://www.tpc.org/tpch

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

