
Destination-Aware Task Assignment in Spatial
Crowdsourcing: A Worker Decomposition

Approach
Yan Zhao , Kai Zheng ,Member, IEEE, Yang Li, Han Su,

Jiajun Liu , and Xiaofang Zhou , Fellow, IEEE

Abstract—With the proliferation of GPS-enabled smart devices and increased availability of wireless network, spatial crowdsourcing

(SC) has been recently proposed as a framework to automatically request workers (i.e., smart device carriers) to perform location-

sensitive tasks (e.g., taking scenic photos, reporting events). In this paper, we study a destination-aware task assignment problem that

concerns the optimal strategy of assigning each task to proper worker such that the total number of completed tasks can be maximized

whilst all workers can reach their destinations before deadlines after performing assigned tasks. Finding the global optimal assignment

turns out to be an intractable problem since it does not imply optimal assignment for individual worker. Observing that the task

assignment dependency only exists amongst subsets of workers, we utilize tree-decomposition technique to separate workers into

independent clusters and develop an efficient depth-first search algorithm with progressive bounds to prune non-promising

assignments. In order to make our proposed framework applicable to more scenarios, we further optimize the original framework by

proposing strategies to reduce the overall travel cost and allow each task to be assigned to multiple workers. Extensive empirical

studies verify that the proposed technique and optimization strategies perform effectively and settle the problem nicely.

Index Terms—Spatial crowdsourcing, spatial task assignment, algorithm

Ç

1 INTRODUCTION

THE increased popularity of GPS-equipped smart devices
and decreased cost of wireless mobile network (e.g., 4G

network) have enabled people to move as sensors and par-
ticipate some location-based tasks. Spatial crowdsourcing
is a recently proposed concept and framework, which
employs smart device carriers as workers to physically
move to some specified locations and accomplish
these tasks.

One of the main research problems in spatial crowd-
sourcing is how to assign tasks to workers strategically.
Existing works focused on assigning tasks to workers to
maximize the total number of completed tasks [13], the
number of performed tasks for a worker with an optimal

schedule [7], or the reliability and diversity score of
assignments [5]. An implicit assumption shared by these
work is that a worker can only or is willing to perform
tasks that are close to her currently location (e.g., within
a circle with given radius). While this is indeed realistic
for many applications, we also observe some other sce-
narios where it is feasible for workers to perform tasks
beyond her spatial vicinity. For instance, a worker who
is driving on road towards a certain destination might
not mind performing some tasks along the route as long
as the extra travel cost (e.g., detour cost) does not affect
her scheduled deadline at the destination. Note that,
these tasks are not necessarily close to her original loca-
tion so a specific valid range cannot be defined for each
worker.

In this paper, we investigate the task assignment of
spatial crowdsourcing under such a problem setting,
namely Destination-aware Task Assignment (DATA).
Specifically, given a user’s current location, destination
and deadline, before which she needs to arrive at the des-
tination, it aims at finding an optimal assignment of tasks
to workers such that the total number of task assignments
is maximized. Note it actually consists of two sub-prob-
lems: 1) for each task, we need to assign it to the suitable
workers; and 2) for each worker, we need to schedule a
sequence by which a worker performs her assigned tasks.
Compared to the previous work, the hardness of our
problem lies in that, once the travel costs associated with
moving to tasks’ locations and the expiration time of tasks
are taken into account, local optimal assignment does not

� Y. Zhao is with the Institute of Artificial Intelligence, School of Computer
Science and Technology, Soochow University, Suzhou, Jiangsu 215168,
China, and also with the Zhejiang Lab, Hangzhou, Zhejiang 310025,
China. E-mail: zhaoyan@suda.edu.cn.

� K. Zheng and H. Su are with the University of Electronic Science and
Technology of China, Chengdu, Sichuan 610054, China.
E-mail: {zhengkai, hansu}@uestc.edu.cn.

� Y. Li is with the School of Computer Science and Technology, Soochow
University, Suzhou, Jiangsu 215168, China. E-mail: graberial@outlook.com.

� J. Liu is with the Renmin University of China, Beijing 100872, China.
E-mail: jiajunliu@ruc.edu.cn.

� X. Zhou is with the University of Queensland, Brisbane, QLD 4072,
Australia, and also with the Zhejiang Lab, Hangzhou, Zhejiang 310025,
China. E-mail: zxf@itee.uq.edu.au.

Manuscript received 8 Apr. 2018; revised 1 May 2019; accepted 6 June 2019.
Date of publication 12 June 2019; date of current version 5 Nov. 2020.
(Corresponding author: Kai Zheng.)
Recommended for acceptance by H. Lee.
Digital Object Identifier no. 10.1109/TKDE.2019.2922604

2336 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 12, DECEMBER 2020

1041-4347� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0002-0242-3707
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0003-1996-1699
https://orcid.org/0000-0002-5301-8314
https://orcid.org/0000-0002-5301-8314
https://orcid.org/0000-0002-5301-8314
https://orcid.org/0000-0002-5301-8314
https://orcid.org/0000-0002-5301-8314
https://orcid.org/0000-0001-6343-1455
https://orcid.org/0000-0001-6343-1455
https://orcid.org/0000-0001-6343-1455
https://orcid.org/0000-0001-6343-1455
https://orcid.org/0000-0001-6343-1455
mailto:
mailto:
mailto:
mailto:
mailto:

lead to global optimal result, that is assigning the most
tasks to each worker does not necessarily imply the maxi-
mum number of accomplished tasks by all workers. The
only existing work that considers task assignment and
scheduling at the same time is [8], in which an approxi-
mate approach is developed that iteratively improves the
assignment and scheduling to achieve more completed
tasks. The second challenge is that the tasks reachable by
each worker highly depend on the distance between ori-
gin and destination as well as the tightness of deadline.
This makes pruning infeasible tasks more difficult than
the conventional settings, which specify a valid range for
each worker [8], [13].

We propose an exact solution that finds the optimal
assignment result in terms of the total number of task
assignments. The main idea of our approach is that, observ-
ing each worker only shares common tasks with a small
portion of the entire worker set, we utilize a graph to repre-
sent the task dependency among workers (i.e., two workers
sharing the same tasks have an edge in-between them) and
apply a tree-decomposition procedure to divide all the
workers into independent clusters. A top-down recursive
search algorithm is then developed to traverse the tree in
depth-first manner. In the meantime, dynamic upper and
lower bounds are maintained during traversal in order to
prune the tree nodes that cannot lead to optimal results.
Compared to the iterative approach [8], our method finds
the final and optimal assignment upon the completion of
the search procedure, i.e., there is no re-matching and re-
scheduling phase.

Although our previous work [27] has already achieved
the optimization goal of maximizing the overall task
assignments, it fails to consider the travel cost (i.e., in time
or distance) of the workers during the assignment process,
which is another critical factor since workers must physi-
cally go to the designated locations in order to perform
the assigned tasks on spatial crowdsourcing platforms.
However, the goals of maximizing the task assignment
and minimizing the travel cost are often conflicting, which
means optimizing both simultaneously could be difficult.
To address this issue, in Section 4.1 of this extension, we
incorporate a travel cost optimization strategy into the
task assignment framework proposed in [27], which tries
to minimize the overall travel cost of workers while keep-
ing the number of task assignments unchanged by giving
more priority to the performable task set with lower travel
cost for each worker.

The second limitation of our previous study [27] is that it
can only assign each task to a single worker. Nevertheless,
some applications require each task to be assigned to multi-
ple workers due to quality control purposes. Since allowing
multiple workers to perform the same task (i.e., redundant
task assignment mode) can affect the dependency relation-
ship between workers during the independent worker par-
tition phase, we carefully re-design our previous DATA
solution in Section 4.2 to adapt it to the redundant task
assignment mode by introducing new algorithms for both
worker partition strategy and task assignment search
strategy.

To summarize, our new technical contributions in this
extension are five folds.

1) We identify and study in depth two limitations in
our previous DATA framework, which includes fail-
ing to consider travel cost factor and failing to sup-
port redundant task assignment.

2) We prove that the problems of Maximal Valid Task
Set calculation and DATA are both NP-hard.

3) We incorporate a travel cost optimization strategy
into the task assignment process, which tries to re-
assign workers the performable tasks with less travel
cost whenever possible as long as the overall number
of task assignment remains optimized.

4) We carefully re-design the worker partition algo-
rithm and task assignment algorithm to make the
DATA framework applicable to scenarios where
each task should be assigned to multiple workers.

5) Extensive experiments are conducted to study the
impact of the key parameters and effectiveness of
our newly proposed algorithms. In particular,
compared with the original exact task assignment
approach, the travel cost optimization strategy can
reduce the total travel cost by up to 24.35 percent,
while the redundant task assignment strategy can
improve the overall task assignments, which guaran-
tees at least 41.3 percent tasks can be assigned to
multiple workers in order to enhance the accuracy of
task completion.

The remainder of this paper is organized as follows.
Section 2 introduces the preliminary concepts and formu-
lates the destination-aware task assignment problem. The
proposed algorithms and related techniques are presented
in Section 3, followed by the extension in Section 4. We
report the results from empirical study in Section 5. Section 6
surveys the related work under different problem settings
and Section 7 concludes this paper.

2 PROBLEM DEFINITION

In this section, we define a set of preliminaries in the context
of self-incentivised single task assignment (i.e., a task can
only be assigned to a worker) in spatial crowdsourcing with
Server Assigned Tasks (SAT) mode [13]. Table 1 lists the
major notations used throughout the paper.

TABLE 1
Summary of Notations

Notation Definition

s Spatial task
ls Location of spatial task s
es Expiration time of spatial task s
maxWs Maximum acceptable workers for task s
w Worker
lw Current location of worker w
dw Destination of worker w
tw Deadline of worker w
speedw Movement speed of worker w
R A task sequence
Sw A task set for w
VTSðwÞ A valid task set of w
tðlÞ The arrival time of particular location l
cða; bÞ Travel distance from a to b
A A spatial task assignment

ZHAO ET AL.: DESTINATION-AWARE TASK ASSIGNMENT IN SPATIAL CROWDSOURCING: A WORKER DECOMPOSITION APPROACH 2337

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

Definition 1 (Spatial Task). A spatial task, denoted by
s ¼< ls; es > , is a task to be answered at location ls, and will
expire at es, where ls : ðx; yÞ is a point in the 2D space.

For simplicity and without loss of generality, we assume
the processing time of each task is 0, which means that a
worker will go to the next task upon finishing the current
task.

Definition 2 (Worker). A worker, w ¼< lw; dw; tw; speedw
>, is a carrier of a mobile device who volunteers to perform spa-
tial tasks. A worker can be in an either online or offline mode. A
worker is offline when she is unable to perform tasks and is
online when she is ready to accept tasks. An online worker is
associated with her current location lw, her destination location
dw, the deadline before when she must arrive at destination tw,
and her movement speed speedw.

Fig. 1 shows an example of several workers W ¼
fw1; w2; . . . ; w8g and all tasks S (for simplicity, we just use
the index to denote a specific task, i.e., S ¼ f1; 2; . . . ; 22g)
along and near the routes from lwi

to wi:d. Each worker with
her current location, such as w1 located at (2,12), starts from
time zero; each task is associated with a location and dead-
line: Task 1 located at (4,14) will expire after 3 time units.
For the sake of simplicity, we set the movement speed of
each worker to 1 in this running example.

Definition 3 (Task Sequence). Given an online worker w and
a set of tasks assigned to her Sw, a task sequence on Sw, denoted
as RðSwÞ, represents the order by which w visits each task in
Sw. The arrival time of w at task si 2 Sw (the time of complet-
ing task si) can be computed as follows:

tw;RðlsiÞ ¼
tw;Rðlsi�1Þ þ cðlsi�1 ; lsiÞ=speedw if i 6¼ 1

cðlw; lsiÞ=speedw if i ¼ 1;

�

(1)

where cða; bÞ is the travel distance from location a to location b.
The arrival time at destination after completing all tasks in Sw

with the task sequence R is

tw;RðdwÞ ¼ tw;RðlsjSw j Þ þ cðlsjSw j ; dwÞ=speedw: (2)

When the context of w and R is clear, we use tðlsiÞ (tðdwÞ)
to denote tw;RðlsiÞ (tw;RðdwÞ).

Definition 4 (Valid Task Set (VTS)). A task set Sw is called
a valid task set (VTS) for a worker w, if there exists a task
sequence RðSwÞ, such that,

1) all the tasks of Sw can be completed before their respec-
tive expiration time, i.e., 8si 2 Sw, tðlsiÞ � esi , and

2) the worker w can arrive at destination on time after
completing all tasks in Sw, i.e., tðdwÞ � tw.

Definition 5 (Maximal Valid Task Set (MaxVTS)). A
Valid Task Set Sw is maximal if none of its super sets is still
valid for a worker w.

Note that there may exist more than one maximal VTS
for a given worker w. In Fig. 1, f4; 13g, f14; 13g and
f4; 14; 13g are valid task sets for worker w2, but f2; 4g is not
a valid task set since w2 cannot arrive at w2:d on time after
finishing task 2 and 4. Note that neither f4; 13g nor f14; 13g
is a maximal VTS since it is contained by f4; 14; 13g.

The MaxVTS calculation problem can be proved to be
NP-hard by reduction from a Destination-aware Traveling
Salesman Problem (DTSP). In the following, we give the
definition of DTSP and prove it as NP-Complete.

Definition 6 (Destination-aware Traveling Salesman
Problem (DTSP)). Given a complete graph GðV;EÞ with
weight function c: V � V ! Z, a source vertex a, a destination
vertex b and cost k 2 Z, where k � cða; xÞ þ cðx; bÞ for any
x 6¼ a and x 6¼ b, the DTSP problem < G; c; a; b; k > is to
determine whether there exists a tour which visits each vertex
exactly once, starting from the source vertex a and finishing at
the destination vertex b with the cost of at most k.

Lemma 1. The DTSP problem is NP-Complete.

Proof 1. The proof is shown in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/TKDE.2019.2922604. tu

Lemma 2. Given a worker w (with her current location lw, desti-
nation location dw and deadline tw), s set of n tasks S and num-
berm, deciding whether there exists a valid task sequence R (by
which worker w has to start from lw and end at dw before tw),
st. jRj ¼ m, is NP-Complete. That is, the decision problem of
MaxVTS calculation is NP-Complete.

Proof 2. The proof is shown in Appendix B, available in the
online supplemental material. tu

Since we have proved that the decision version of
MaxVTS calculation problem is NP-Complete, we can con-
clude that the MaxVTS calculation problem is NP-hard.

Definition 7 (Spatial Task Assignment). Given a set of
workers W and a set of tasks S, a spatial task assignment,
denoted by A, consists of a set of < worker; VTS > pairs in
the form of <w1; VTSðw1Þ> , <w2; VTSðw2Þ> ,..., <wjW j;
VTSðwjW jÞ> , where VTSðw1Þ \ VTSðw2Þ::: \ VTSðwjW jÞ ¼
;.

Let A:S denote the set of tasks that are assigned to all
workers, i.e., A:S ¼ [w2WSw and A denote all possible ways
of assignments. The problem investigated in our paper can
be formally stated as follows.

Problem Statement: Given a set of workersW and a set of
tasks S, the Destination-aware Task Assignment (DATA)

Fig. 1. Running example.

2338 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/TKDE.2019.2922604
http://doi.ieeecomputersociety.org/TKDE.2019.2922604

problem aims to find the global optimal assignment Aopti,
such that 8 Ai 2 A, jAi:S j � jAopti: j .

Lemma 3. The DATA problem is NP-hard.

Proof 3. The proof is shown in Appendix C, available in the
online supplemental material. tu

3 ALGORITHM

Since the DATA problem is NP-hard, a simple greedy algo-
rithm is to use the maximum valid task set for each worker
as the assignment result. This can hardly be a satisfying
result since multiple workers may be assigned the same set
of tasks that may leave more tasks unassigned. In this
paper, we develop an exact solution with three steps. First,
we devise a dynamic programming algorithm to find the set
of maximal valid task sequences for each worker. It can be
shown that the global optimal result is the union of one pos-
sible valid task sequence of all workers. Second, to avoid
exhaustive search through all the possible combination of
valid task sequences, we utilize a tree-decomposition tech-
nique to separate all workers into independent clusters and
organize them into a tree structure, such that the workers in
sibling nodes of the tree do not share the same valid tasks.
In the final step, the tree is traversed in depth-first manner
to find the optimal assignment. During the traversal, a
lower bound that indicates the minimal number of required
tasks for each sub-tree is dynamically maintained and com-
pared against its upper bound (i.e., the maximum number
of tasks that can be assigned to the sub-tree). If the lower
bound is greater than the upper bound, the sub-tree can be
eliminated without further exploration.

3.1 Valid Task Set Generation

3.1.1 Finding Reachable Tasks

Due to the constraint of workers’ deadlines and tasks’ expi-
ration time, each worker can only complete a small subset
of tasks. Therefore, we first find the set of tasks that can be
reached by each worker without violating the constraints.
The reachable task subset for a worker w, denoted as RSw,
should satisfy the following two conditions: 8s 2 RSw,

(1) cðlw; lsÞ � es and
(2) cðlw; lsÞ þ cðls; dwÞ � tw.
The above two conditions guarantee that a worker can

travel from her origin to the location of task s directly before
it expires and still have sufficient time to arrive her destina-
tion before deadline. From computational perspective, the
reachable tasks (satisfying the condition 1) fall inside an
ellipse with the worker’s origin and destination as focus
and the maximum travel distance (i.e., tw � speedw) as the
length of major axis. It is easy to see the time complexity is
OðjW j � jSjÞ, where jW j and jSj are the numbers of workers
and tasks respectively. In Fig. 1, the blue numbered circles
denote all the reachable tasks and the grey ones represent
the unreachable tasks.

3.1.2 Finding Maximal Valid Task Set

Given the reachable task set for each worker, we next find
the set of MaxVTS, which is shown to be an NP-hard

problem in Lemma 2. However, the reachable task set for
each worker is usually not large, which means this problem
can still be solved by an efficient algorithm in practice. More-
over, finding the MaxVTSs for each worker is completely
independent and can be easily parallelized.

In the sequel, we present a dynamic programming algo-
rithm that iteratively expands the sets of tasks in the ascend-
ing order of set size and find all MaxVTSs in each iteration.
For each task in one set, we consider the scenario that it is
finished in the end, and find all completed task sequences.
Specifically, given a worker w, and a set of tasks Q � RSw.
We define optðQ; sjÞ as the maximum number of tasks com-
pleted by scheduling all the tasks in Q with constraints
starting from lw and ending at lsj , and R as the correspond-
ing task sequence on Q to achieve this optimum value. We
also use si to denote the second-to-last task before arriving
at sj in R, and R0 to denote the corresponding task sequence
for optðQ� fsjg; siÞ. Then optðQ; sjÞ can be calculated by

optðQ; sjÞ ¼
1 if jQj ¼ 1
maxsi 2Q;si 6¼sj optðQ� fsjg; siÞ þ dij otherwise;

�

(3)

dij ¼
1 if tðlsjÞ � esj ; and tðlsjÞ þ cðlsj ; dwÞ � tw
0 otherwise;

�
;

where dij is an indication function, in which dij ¼ 1means sj
can be finished after appending sj to R0 and the worker can
arrive the destination before her deadline.

Algorithm 1.MaxVTS

1 Input: w;RSw

Output: Qw

2 Qw null;
3 for each task si in RSw ¼ fs1; s2; . . . ; sng do
4 optðfsig; siÞ 1;
5 Qw Qw [ffsigg;
6 preðfsig; siÞ null;
7 for len 2 to n do
8 for each subset Q � RSw of size len do
9 for each sj 2 Q do
10 optðQ; sjÞ maxsi2Q;si 6¼sjoptðQ� fsjg; siÞ þ dij;
11 preðQ; sjÞ argmaxsi2Q;si 6¼sjoptðQ� fsjg; siÞ þ dij;
12 if dij ¼ 1 then
13 Qw Qw [fQg;
14 for each Q0 2 Qw do
15 if Q0 	 Q then
16 Remove Q0;
17 compute R
 based on opt and pre;
18 return Qw

When Q contains only one task si, the problem is trivial
and opt(fsig; si) is set to 1. When jQj > 1, we need to search
through Q to examine all possibilities of valid task sets and
find the particular si that achieves the optimum value of
optðQ; sjÞ. Algorithm 1 outlines the structure of this proce-
dure. Note that we use preðQ; sjÞ to record the last-to-sec-
ond task si before achieving optðQ; sjÞ to facilitate the
reconstruction of the optimal valid task sequence R. After
initialization, the algorithm generates and processes sets in
the increasing order of their size from 2 to n (lines 7-8). For

ZHAO ET AL.: DESTINATION-AWARE TASK ASSIGNMENT IN SPATIAL CROWDSOURCING: A WORKER DECOMPOSITION APPROACH 2339

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

each task sj 2 Q, it computes optðQ; sjÞ and preðQ; sjÞ
according to Equation (3) (lines 10-11). Finally, whenever Q
can be added to Qw, we remove its proper subsets that
already exist in Qw (lines 14-16). To save space, the proce-
dure of constructing R
 from tables opt and pre is omitted
here.

Algorithm 1 correctly computes MaxVTS set with

Oð2jRSwj � jRSwj3Þ time complexity, where jRSwj is the num-
ber of reachable tasks for worker w. Table 2 shows the
MaxVTSs of workers based on Equation (3) and their maxi-
mum number of completable tasks jmaxSj.

3.2 Worker Partition

The main computational challenge lies in huge search space
when enumerating all possible combinations of the valid
task sets of each worker, which increases exponentially
with respect to the number of workers. However, in practice
a worker shares the same tasks with only a few other work-
ers who have similar or intersected travel routes.

Definition 8 (Worker Dependency). Given two workers wi,
wj, and their respective reachable task sets, RSwi

; RSwj
, they

are independent with each other if RSwi
\RSwj

¼ ;. Other-

wise, they are dependent with each other.

For instance, in Fig. 1, w1 has dependency with w2 and
w3, but is independent with the rest of workers. In our
work, we aim to leverage the independency amongst work-
ers and partition the worker set into independent groups,
such that the optimal assignment can be found more effi-
ciently in each groups.

3.2.1 Worker Dependency Graph

Given a worker set W and task set S, we can construct
a Worker Dependency Graph (WDG) GðV; EÞ, where
each node v 2 V represents a worker wv 2W . An edge
eðu; vÞ 2 E exists between u and v if the two workers

wu and wv are dependent with each other. The time
complexity of WDG construction is OðjW j2 � jRSjÞ, where
jRSj is the average number of reachable takes for
each worker. Fig. 2a illustrates the WDG for worker set
shown in Fig. 1.

3.2.2 Graph Partition

In this part, we need to decompose the dependency rela-
tionship by partitioning WDG. To this end, we utilize the
notion of tree-decomposition [16], which transforms a graph
into a tree structure.

Definition 9 (Tree Decomposition). Given an undirected
graph G ¼ ðV;EÞ composed of a set V of vertices and a set E of
edges. A tree-decomposition of G is a pair ðX; T Þ, where
X ¼ fX1; . . . ; Xng is a family of subsets of V , and T is a tree
whose nodes are the subsets Xi, satisfying the following
properties [16]:

1) [i 2nXi ¼ V , and

2) 8ðv; wÞ 2 E; 9Xi 2 X containing both v and w, and
3) if Xi, Xj and Xk are nodes, and Xk is on the path from

Xi toXj, thenXi \Xj � Xk.

The tree decomposition of a graph is far from unique.
Next, we briefly introduce some related concepts and then
describe the maximum cardinality search (MCS) algo-
rithm [20] to find the tree-decomposition.

Definition 10 (Chordal Graph). A graph is a chordal graph if
every cycle of length > 3 has a chord, i.e., edge joining two
non-consecutive vertices of a cycle [1].

Definition 11 (Maximal Clique). Every maximal clique of a
chordal graph G ¼ ðV;EÞ is of the form fvg [CðvÞ, for some

vertex v 2 V where CðvÞ ¼ fwjðv; wÞ 2 E; dðvÞ < dðwÞg. d
is a perfect elimination ordering of vertices in a graph such
that, for each vertex v, v and the neighbors of v that occur later
than v in the order form a clique [17].

Property 1. A tree-decomposition of a chordal graph consists of
the set of its maximal cliques [20].

The MCS algorithm consists of following steps.

1) Given a WDG, construct the corresponding chordal
graph by adding suitable new edges.

2) Find d on the derived chordal graph.
3) Identify the maximal cliques in the chordal graph.

For each vertex v of d, the maximal clique containing
v is a graph with the nodes fvg [CðvÞ.

4) The maximal cliques will be the nodes (i.e., X) of the
tree-decomposition result.

TABLE 2
Maximal Valid Task Sets

W Maximal Valid Task Sets jmaxSj
w1 fs1; s2g; fs2; s3g; fs3; s4g 2
w2 fs2g; fs4; s13; s14g 3
w3 fs14g; fs6; s8g; fs5; s6g; fs4; s6g, fs4; s5g; fs3; s4g 2
w4 fs10; s17g; fs11; s17g; fs13; s14; s17g 3
w5 fs6; s8g; fs7; s9g; fs8; s9g; fs8; s10g; fs9; s10g 2
w6 fs10; s16g; fs9; s10; s18g; fs9; s12; s16g, fs12; s16; s18g 3
w7 fs10g; fs11g; fs12g 1
w8 fs18; s19g 2

Fig. 2. Worker partition.

2340 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

The time complexity for the above algorithm is OðjV j
þjE0jÞ, where E0 is the number of edges in the chordal graph
obtained. Take the WDG shown in Fig. 2a as an example.
Since it is already a chordal graph according to its defini-
tion, we do not need to take any actions in the first step. In
the second step, we find the perfect elimination ordering of
graph G and sort all the nodes by d in ascending order:
fw8; w1; w2; w7; w3; w5; w6; w4g. Lastly, the maximal cliques
of the graph can be found and output as the nodes of tree-
decomposition: X ¼ ffw1; w2; w3g, fw2; w3; w4g, fw3; w4; w5g,
fw4; w5; w6; w7g, fw6; w8gg, as shown in Fig. 2b.

3.2.3 Tree Construction

According to the definition of tree-decomposition, if two
nodes do not share the same vertexes, the workers belong-
ing to the two nodes are independent with each other. In
this step, our goal is to organize the subsets of workers in a
tree structure such that the sibling nodes are independent
with each other. Facilitated by such a tree structure, we can
solve the optimal assignment sub-problem on each sibling
node independently. Since the search cost is largely affected
by the number of workers, we would like to make the tree
as balanced as possible, i.e., to avoid any node with signifi-
cantly more workers than the others. To this end, we devise
the following Recursive Tree Construction (RTC) algorithm:

1) Try to remove the vertices in each node Xi 2 X (out-
put in the graph partition step) from the WDG G. G
will be separated into a few components, of which
the largest one is recorded as Gmax. jGmaxj is the
number of vertices in Gmax.

2) Pick the nodeXmin that leads to the least jGmaxj upon
the completion of the previous loop (pick the small-
est Xi as Xmin when there is a tie on jGmaxj and ran-
domly pick a Xi as Xmin when their cardinalities are
same). Set Xmin as the parent node for each output of
the recursive procedure in step 3.

3) Apply the MCS algorithm on each sub graph by
removing workers of Xmin and recursively perform
this algorithm on the output of MCS algorithm.

4) Return N ¼ Xmin as the root node of this sub-tree.
We can derive from the RTC algorithm that the balanced

tree (constructed from GðV;EÞ), denoted by T (with a set of
nodes NT ¼ fn1; n2; . . . ; njNT jg), satisfies the following
properties:

1) [i2jNT jni ¼ V , and
2) for each node ni 2 NT , removing ni from GT i

leads
to the least jGmax

T i
j, where T i is the subtree rooted

with node ni, GT i
is the WDG for workers in the sub-

tree T i andGmax
T i

is the largest subgraph by removing
ni from GT i

, and
3) workers in the subtrees rooted with sibling nodes are

independent with each other.
The time complexity of RTC in the ith recursion is

OðjXij þ jGi
subj � ðjV ij þ jE0ijÞÞ (including finding node Xi

min

from Xi and applying MCS algorithm in each subgraph),
where Gi

sub is the subgraph set by performing step 1 in the
ith recursion. Thus the total time complexity of RTC is
Oð

Pm
i¼1ðjXij þ jGi

subj � ðjV ij þ jE0ijÞÞÞ, wherem is the number
of recursions. Constructing the tree with nodes in Fig. 2b by

RTC algorithm, we get the final tree structure, which is illus-
trated in Fig. 2c.

3.3 Search

In this section, we present our search algorithm framework
for using a tree-decompositon to solve theDATA problem.

Once the worker dependency graph has been trans-
formed to a tree structure, the optimal assignment can be
found by a depth-first search through the tree. First of all,
we give an overview of whole process including the previ-
ous steps in Algorithm 2.

Given the worker setW and task set S, the reachable task
set RSw and maximal valid task sets Qw are computed for
each worker w (line 2-4), and the corresponding worker
dependency graph G is constructed (line 5). Then for each
connected component g 2 G, we decompose g into a set of
vertex clusters with MCS algorithm (line 7) and organize
them into a tree with RTC algorithm (line 8). Lastly the
depth-first search algorithm (DFSearch) is invoked on each
tree to find the optimal assignment in each sub problem.
Since each component of G is independent with each other,
the final result is to simply sum up the optimal assignment
of each component g (line 9).

Algorithm 2. Solution Overview

Input:W;S
Output: Opt

1 Opt 0; Q0 ;; S0 S;
2 for each worker w 2W do
3 RSw compute the reachable tasks for w;
4 Qw MaxVTSðw;RSwÞ;
5 G construct worker dependency graph;
6 for each connected component g 2 G do
7 Xg decompose g into vertex clusters;
8 Ng organize Xg into a tree;
9 Opt OptþDFSearchðNg; S;WNg ; LBðNgÞÞ;
10 return Opt;

Next we elaborate the details of DFSearch procedure in
Algorithm 3. The procedure takes four parameters: the root
node N of the sub-tree to be traversed, the remaining unas-
signed task set S, the remaining available workers WN in
node N and a heuristic h indicating the minimum required
number of tasks yet to be assigned in order to beat the cur-
rent optimal assignment.

The algorithm starts with computing an upper bound
UBðNÞ of the number of tasks that can be assigned to the
workers contained in the sub-tree rooted with N (line 2),
and compares it against with the heuristic h that represents
a lower bound LBðNÞ of the number of tasks that need to
be assigned to this sub-tree in order to beat the optimal
assignment Opt found so far (line 3). Obviously, if UB
< LB, this sub-tree can be safely pruned since it cannot
lead to a better assignment. The ways to derive UBðNÞ and
LBðNÞwill be discussed in Sections 3.3.1 and 3.3.2.

Then the algorithm branches depending on WN , the
worker set contained by current node N . If there are still
workers to be probed (line 5), we will sequentially examine
each available worker in WN (line 6), get a new maximal
VTS (Qw) by eliminating the assigned tasks (Q0) from the the
existing maximal VTS (line 7), and then recursively call the

ZHAO ET AL.: DESTINATION-AWARE TASK ASSIGNMENT IN SPATIAL CROWDSOURCING: A WORKER DECOMPOSITION APPROACH 2341

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

DFSearch procedure by passing in the updated remaining
task set (S �Q), updated worker set (WN � w) and the
updated heuristic (h� jQj). The optimal assignment is
updated if the returned assignment plus jQj (i.e., the num-
ber of tasks assigned to current examined worker) is greater
(line 10). The heuristic value h is updated accordingly since
a better assignment is just found (line 11). On the other
hand, if all the workers have been enumerated (line 13), the
algorithm will invoke DFSearch procedure on each child
node of N . Since each child node (and their sub-tree) is
independent with each other as guaranteed by our tree-
decomposition algorithm in previous phase, the problem of
finding optimal assignment for each sub-tree can be solved
independently, and then summed up to obtain the global
optimal assignment (line 14-15). The time complexity of
Algorithm 3 is Oð

Pr
i¼1ðjWi

N j � jQi
wj þ jNi

childjÞÞ, where r is the

number of recursions, jWi
N j is the number of workers in the

node Wi
N in the ith recursion, jQi

wj is the number of
MaxVTSs of worker w in the ith recursion, and jNi

childj is the
number of child nodes ofN in the ith recursion.

Accuracy. In the worker partition phase, we separate all
workers into independent clusters and organize them into a
tree structure, where workers in sibling nodes of the tree do
not share the same valid tasks. Algorithm 3 illustrates that,
given any non-empty node N of the tree, we check all the
task assignments for all the workers (contained in the sub-
tree whose root is N) and their valid task sets, thus the opti-
mal task assignment with maximal number of assigned
tasks can be found in this subtree rooted with N (line 5-12).
Since workers in sibling nodes do not share the same valid
tasks, we can simply sum up the task assignment results in
the subtrees rooted with sibling nodes in order to get the
global optimal task assignment (line 14-15).

Algorithm 3. DFSearch

Input: N;S;WN; h
Output: Opt

1 Opt 0;
2 UBðNÞ compute the upper bound of assigned tasks for

the sub-tree rooted with N ;
3 if UBðNÞ < h then
4 return0;
5 ifWN 6¼ ; then
6 for each worker w 2WN do
7 Qw Qw �Q0;
8 for each maximal valid task set Q 2 Qw do
9 Q0 ¼ Q0 [Q;
10 Opt maxfDFSearchðN;S �Q;WN � w; h�

jQjÞ þ jQj; Optg;
11 h Opt;
12 Q0 ;;
13 else
14 for each child node Ni ofN do
15 Optþ DFSearchðNi; S;WNi

; LBðNiÞÞ;
16 return Opt;

3.3.1 Upper Bound Estimation

The upper bound of a node N , denoted as UBðNÞ, repre-
sents the maximum number of tasks that can be finished by
the sub-tree rooted at N . A simple estimation of UBðNÞ is to

sum up the cardinality of the maximum valid task set of
each worker in this sub-tree, i.e.,

UBðNÞ ¼
XjW j
i¼1
ðjmaxSwi

jÞ; (4)

where W denotes all the workers in the current sub-tree,
andmaxSwi

denotes the maximum valid task set that can be
finished by wi. maxSwi

can be obtained by choosing the
maximal valid task set of wi with the greatest cardinality,
i.e.,maxSwi

¼ maxfQjQ 2MaxVTSðwi; SÞg.
For example, when the search algorithm reaches N3 in

Fig. 2c, UBðN3Þ can be estimated as follows:

UBðN3Þ ¼ jmaxSw6
j þ jmaxSw7

j þ jmaxSw8
j ¼ 3þ 1þ 2 ¼ 6;

where the jmaxSj can be looked up from Table 2.

Lemma 4. UBðNÞ upper bounds the optimal assignment of the
sub-tree rooted atN , and the bound is tight.

Proof 4. Since in any task assignmentA, including the optimal
one, the number of tasks completed by each worker w can-
not exceed jmaxSwj, the following inequality always holds:

jA:Sj ¼ j [w2W Swj �
X
w2W
jSwj �

X
w2W
jmaxSwj ¼ UBðNÞ:

When all the workers in N are independent with each
other, i.e., they do not share any task, the optimal assign-
ment will be equal to UBðNÞ since the above inequality
becomes

j [w2W Swj ¼
X
w2W
jSwj ¼

X
w2W
jmaxSwj:

Therefore the upper bound is tight. tu

3.3.2 Lower Bound Estimation

In order to prune the unpromising branch as early as possi-
ble, we also calculate an lower bound heuristic LBðNÞ and
pass it as a parameter h to the recursive procedure on the
child node. LBðNÞ implies the minimal number of tasks that
must be completed by the workers in the subtree rooted atN
in order to find a better assignment than the current best one.
Obviously, whenever the upper bound of one node is less
than the lower bound, its sub-tree can be discarded safely
since none of the possible assignment on the workers in this
sub-tree can lead to better global assignment.

Now let us describe how to estimate the lower bound of
Ni as the child node of N . Suppose N has m child nodes,
i.e., N1; N2; . . . ; Nm. The DFSearch algorithm will invoke
the procedure on each child node and try to get a better
assignment Opt for each node before returning to its parent
node N (line 14). We can estimate the lower bound of Ni by
the following formula,

LBðNiÞ ¼ h�
Xi�1
j¼1

OptðNjÞ �
Xm
j¼iþ1

UBðNjÞ; (5)

where (1) h is the minimal number of tasks required for the
workers in all child nodes of N (i.e., N1; N2; . . . ; Nm); (2)Pi�1

j¼1 OptðNjÞ represents the optimal assignment of the sub-

2342 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

trees that have already been traversed by the procedure; (3)Pm
j¼iþ1 UBðNjÞ represents the upper bound of the optimal

assignment of the sub-trees that are yet to be probed.

Lemma 5. LBðNiÞ is the minimal number of tasks to be com-
pleted by workers in the sub-tree rooted atNi.

Proof 5. If the optimal number of tasks assigned toNi is less
than LBðNiÞ, then the maximum number of tasks that can
be completed by workers in all child nodes of N will be
less than h:

Xm
j¼1

OptðNjÞ ¼ OptðNiÞ þ
Xi�1
j¼1

OptðNjÞ þ
Xm
j¼iþ1

OptðNjÞ

< LBðNiÞ þ
Xi�1
j¼1

OptðNjÞ þ
Xm
j¼iþ1

UBðNjÞ

¼ h:

Therefore in order to complete at least h tasks, the opti-
mal assignment ofNi must satisfy OptðNiÞ � LBðNiÞ. tu

When invoking theDFSearch procedure for the first time
(line 10 of Algorithm 2), the lower bound of the entire tree
can be estimated by the assignment of a greedy algorithm,
i.e., the union of maximal valid task sets of all workers.

3.3.3 Optimization

In this part we briefly discuss some optimization schemes to
further reduce the search cost.

1) Re-ordering sub-tree traversal: before invoking the
DFSearch procedure on the sub-trees of a node, we
first sort all the sub-trees in the ascending order of
the number of their associated workers. The rational-
ity behind this optimization is that, the impact of
loose pruning bounds in the very beginning to
search performance can be reduced when applying
on a sub-tree with less workers, while the tighter
bounds can make the search on larger sub-trees
more efficient. We update DFSearch algorithm by
sorting all the sub-trees in the ascending order of the
number of their associated workers before line 14 of
Algorithm 3.

2) Optimization of UB: we can further improve the
upper bound of each sub-tree by applying a modi-
fied version of DFSearch on the whole tree in bot-
tom-up manner. The only difference lies in that,
when searching the sub-trees, the input task set S is
always the entire task set. Essentially this process
finds the optimal assignment for workers in each
sub-tree by assuming they can access all tasks (while
they cannot in fact due to existence of other depen-
dent workers). It is worth noting that the extra over-
head incurred by this optimization is minimal, since
the “optimal result” of a sub-tree is now indepen-
dent with its parent node. Therefore when invoking
DFSearch from leaf nodes all the way up to the root,
we can record the return value as UB on each node,
and its parent node can simply use this record to
derive its upper bound without recursively applying
this procedure again. We can update DFSearch

algorithm by using “Optþ DFSearchðNi; S
0;WNi

;
LBðNiÞÞ” to replace line 15 of Algorithm 3, where S0

is the entire task set initialized in line 1 of Algo-
rithm 2. The return value is the upper bound of
assigned tasks for the sub-tree rooted with N .
We compute the upper bound for each node N from
bottom up.

3.4 Limitation of DATA

Our DATA problem requires each worker to specify her
destination and deadline when she is ready to perform
tasks. As its name (i.e., Destination-aware Task Assignment)
suggests, this problem can only be applied in the destina-
tion-aware scenarios. In this work, we assume the process-
ing time of each task is 0, which is a common assumption in
spatial crowdsourcing studies [7], [8] due to the fact that
most existing spatial tasks (e.g., taking photos/videos) are
simple enough to be completed instantaneously. However,
our proposed algorithms can be extended to handle more
complex spatial tasks. To this end, we can modify the arrival
time in Equations (1) and 2 by adding the processing time of
each task in the corresponding task sequence.

Though our algorithm can provide an exact solution, the
calculation is relatively inefficient. Table 3 summarizes the
cost of each operation of our algorithms. Clearly the cost is
dominated by the MaxVTS generation phase with an expo-
nential time complexity, which is computationally expen-
sive when jRSj is large. Therefore, our algorithm is not
suitable for a task-dense area, i.e., each worker has a large
number of reachable tasks. However, in practice, the algo-
rithm is still efficient because the number (i.e., jRSj) of
reachable tasks for each worker is a relatively small value.
Moreover, since the MaxVTS generation of each worker is
independent with each other, we can calculate the MaxVTSs
for each worker in parallel to improve efficiency.

4 EXTENSION

As the extension of our previous work [27], we will present
in this section two optimizations that will reduce the
overall travel cost and support redundant task assignment
respectively.

4.1 Travel Cost Optimization Strategy

The problem with the original framework is that it only
maximizes the number of task assignments, without consid-
ering the travel cost (e.g., in time or distance) of the workers
during the assignment process. In the problem settings of
spatial crowdsourcing, travel cost is also critical issue since
workers must physically go to the location of the spatial
task in order to perform it. To address this issue, we pro-
pose a strategy, referred to as Travel Cost Optimization

TABLE 3
Time Complexity of the DATA Algorithm

Operation Complexity

Valid Task Set
Generation

OðjW j � jSj þ jW j � 2jRSj � jRSj3ÞÞ

Worker Partition OðjW j2 � jRSj þ
Pm

i ðjXij þ jGi
subj � ðjV ij þ jE0ijÞÞÞ

Search Oð
Pr

i ðjWi
N j � jQi

wj þ jNi
childjÞÞ

ZHAO ET AL.: DESTINATION-AWARE TASK ASSIGNMENT IN SPATIAL CROWDSOURCING: A WORKER DECOMPOSITION APPROACH 2343

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

Strategy, to improve the overall task assignment by giving
higher priority to the valid task sets with lower travel cost.

We first introduce the notion of valid route, by which a
worker can travel from her original location to her destina-
tion passing a set of valid tasks. More formally,

Definition 12 (Valid Route). Given a worker w and a valid
task set assigned to her, VTS, there may exist more than one
task sequences in VTS for w. Let RiðVTSÞ denote a task
sequence on VTS, representing the order by which w visits each
task in VTS, and RðVTSÞ ¼ fR1ðVTSÞ; R2ðVTSÞ; :::g denote
all possible task sequences on VTS. A route from the worker’s
original location to her destination passing all the tasks of VTS,
lw ! VTS ! dw, is called a valid route for w, if there exists a
task sequence RiðVTSÞ, such that,

1) all the tasks of VTS can be completed before their
respective expiration time, e.g., 8si 2 VTS,
tw;RiðVTSÞðlsiÞ � esi , and

2) the worker w can arrive destination on time after com-
pleting all tasks in VTS, e.g., tw;RiðVTSÞðdwÞ � tw, and

3) the arrival time at destination by following the task
sequence RiðVTSÞ is minimal, e.g., 8RjðVTSÞ 2 R

ðVTSÞ, tw;RiðVTSÞðdwÞ � tw;RjðVTSÞðdwÞ.

Intuitively, tasks which are closer to a worker have
smaller travel costs. Therefore, we define the travel cost
from a worker’s location lw to her destination dw passing a
valid task set VTS, in terms of the Euclidean distance of the
corresponding valid route, denoted by cðlw; dw; VTSÞ. Conse-
quently, by computing the distance among every worker,
her performable spatial tasks (i.e., those in a valid task set),
and her destination, we can associate higher priorities to the
closer valid task sets. Moreover, given a set of workers W
and a set of tasks S, we define the aggregate travel cost,
denoted by acðW;SÞ, as the sum of the Euclidean distances
of the valid routes for all workers in W while satisfying the
spatio-temporal constraints of workers and tasks.

Taking the worker w8 and her valid task set fs18; s19g in
Fig. 1 as a case, worker w8 can perform task s18 and s19 in
turn, or she can successively perform task s19 and s18 before
arriving at her destination. However, the valid route for w8

based on the valid task set fs18; s19g is the route from the
location of w8 to her destination passing task s19 and s18 in
turn, since tw8;ðs19;s18Þðdw8Þ is less than tw8;ðs18;s19Þðdw8

Þ. Corre-
spondingly, the travel cost for fs18; s19g is the arrival time at
the destination of w8 by following the task sequence
ðs19; s18Þ, i.e., cðlw8

; dw8
; fs18; s19gÞ ¼ tw8;ðs19;s18Þðdw8

Þ.
With the knowledge of the travel cost of valid routes for

all the workers, we incorporate the travel cost in the search
process to maximize the task assignments while minimizing
the travel cost of the workers whenever possible (line 13, 19
and 22 of Algorithm 4).

4.2 Redundant Task Assignment Strategy

Another problem with the proposed DATA solution is that it
can just be applied for the single task assignment in spatial
crowdsourcing, in which each spatial task is only assigned to
one worker. The assumption here is that all the workers are
trusted, and thus they complete the spatial tasks correctly
without any malicious intentions [6], [12]. In practice,

however, there inevitably exist some workers who either
intentionally (e.g., malicious workers) or unintentionally (i.e.,
makingmistakes) perform the tasks incorrectly (i.e., being dis-
honest about physically going to the locations of the spatial
tasks), which cannot guarantee the quality of task completion.
To tackle this problem, we improve the DATA solution by
changing the single task assignment to the redundant task
assignment [13], in which each spatial task can be completed
by a few available workers in proximity of the task, such that
majority voting can be applied to improve the quality of task
completion. The intuitive assumption shared by the redun-
dant task assignment is based on the idea of the wisdom of
crowds [19] that the majority of the workers can be trusted
and thus the validity of task results provided by a group of
workers can be verified bymajority voting.

In detail, a task s, associated with its maximum capacity
(e.g., maximum acceptance workers, maxWs), can be per-
formed by at most maxWs workers instead of being com-
pleted by a particular worker, where maxWs is specified by
the requester who issues the task s. Clearly, the higher the
maxWs value is, the more chance that the task is completed
correctly. To apply the DATA solution to the redundant
task assignment problem, for each task s, we first calculate
theworkers who are allowed to perform it, namelyAvailable
Worker Set (AWS), and correspondingly jAWSj denotes the
number of available workers for s. Then we re-define the
worker dependence based onAWS.

To obtain the available workers for each task, we employ
the inverted file to improve the retrieval speed. The Avail-
able Worker Set of each task in our running example is illus-
trated in Table 2.

Based on the AWS for each task, we now re-define the
notion of worker dependency.

Definition 13 (Worker Dependency). Given two workers
wi, wj, and their respective reachable task sets, RSwi

; RSwj
,

they are independent with each other if either of the following
conditions is satisfied:

1) RSwi
\RSwj

¼ ;, or
2) 8s 2 fRSwi

\RSwj
g; jAWSðsÞj � maxWs.

Otherwise, they are dependent with each other.

Consider the running example in Fig. 1 and set the maxi-
mum number of acceptance workers of s18 to 3, i.e.,
maxWs18 ¼ 3. w8 is independent with w6 since the available
workers’ number of their shared task (i.e., s18) is 2, which is
less thanmaxWs18 . w8 also has independency with the rest of
workers becausew8 shares no reachable taskswith them.

TABLE 4
Available Worker Set

S Available Worker Set S Available Worker Set

s1 w1 s10 w4, w5, w6, w7

s2 w1, w2 s11 w4, w7

s3 w1, w3 s12 w6, w7

s4 w1, w2, w3 s13 w2, w4

s5 w3 s14 w2, w3, w4

s6 w3, w6 s16 w5

s7 w5 s17 w6

s8 w3, w5 s18 w6, w8

s9 w5, w6 s19 w8

2344 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

After constructing the balanced tree by MCS algorithm (in
Section 3.2.2) and RTC algorithm (in Section 3.2.3) based on
the new worker dependency relationship, the search algo-
rithm has to be modified to achieve the goal of maximizing
the overall task assignments when dealing with the redun-
dant task assignment problem. Algorithm 4 depicts the
improved DFSearch process. Once the search algorithm
assigns each maximal valid task set for each available worker
inWN (line 9 and 11), it finds the task set Q00 from the current
maximal valid task set Q, in which the tasks have already
used their capacity, i.e., for any task s in Q00, it has already
been assigned to maxWs workers (line 14-18). Then the algo-
rithm recursively calls the Improved DFSearch procedure
by passing in the updated remaining task set ðS �Q00Þ,
updated worker set ðWN � wÞ and the updated heuristic
ðh� jQ0jÞ (line 20).

Algorithm 4. Improved_DFSearch

Input: N;S;WN; h
Output: Opt

1 Opt 0;
2 S:n 0;
3 t 0;
4 ac þ1;
5 UBðNÞ compute the upper bound of assigned tasks for

the sub-tree rooted with N ;
6 if UBðNÞ < h then
7 return 0;
8 ifWN 6¼ ; then
9 for each worker w 2WN do
10 Qw ¼ Qw �Q0;
11 for each maximal valid task set Q 2 Qw do
12 Q0 Q0 [Q;
13 cðlw; dw;QÞ compute the travel cost from lw to dw

passing Qwith the corresponding valid route;
14 Q00 ;;
15 for each task s 2 Q do
16 s:nþ 1;
17 if s:n ¼ maxWs then
18 Q00þ s;
19 tþ cðlw; dw;QÞ;
20 Opt maxfImproved DFSearchðN;S �Q00;WN�

w; h� jQjÞ þ jQj; Optg;
21 h Opt;
22 ac minft; acg;
23 Q0 ;;
24 else
25 for each child node Ni ofN do
26 Optþ Improved DFSearchðNi; S;WNi

; LBðNiÞÞ;
27 return Opt;

5 EXPERIMENT

5.1 Experiment Setup

Due to the lack of benchmark for spatial crowdsourcing
algorithms, we use a real trajectory dataset generated by
taxis in a big city to simulate the travel behaviors of work-
ers, in which the lengths (i.e., travel distances) of these tra-
jectories vary from 1 km to 30 km and the travel times vary
from 105s to 2723s. The average speed of each worker can
be easily computed based on the travel distance and time
of each trajectory. For each test we randomly choose 1000
trajectories from the dataset with similar (Euclidean)
travel distance controlled by travel distance coefficient tc,
which is defined as the ratio between the origin-destina-
tion distance and the maximum travel distance in the
dataset. Each worker’s deadline is set by multiplying her
actual travel time with a deadline coefficient dc. Then we
uniformly generate jSj=jW j tasks inside the workers’ ellip-
tic reachable region and set each task’s expiration time as
ec
 cðlw; lsÞ=speedw, where cðlw; lsÞ is the travel distance
from origin to the location of task and speedw is the work-
er’s average speed. The default values of all the parame-
ters used in our experiments are summarized in Table 5.
For each experiment, we run 50 test cases and report the
average results. All the algorithms are implemented on an
Intel Core i5-2400 CPU @ 3.10G HZ with 8 GB RAM.

5.2 Experiment Results

5.2.1 Performance of Worker Partition

In this part we evaluate the performance of worker partition
phase and its impact to subsequent search. While applying
the same graph partitioning algorithm (Section 3.2.2), we
introduce a baseline algorithm for tree construction, Ran-
dom Tree Construction algorithm (RTA), which randomly
selects a worker cluster as the root node of sub-tree. Two
metrics are compared between RTA and our proposed bal-
anced tree-construction algorithm (BTA): 1) search depth:
the maximum number of workers enumerated when search-
ing from the root node to leaf nodes within one depth-first
traversal; 2) CPU time: the CPU time cost for finding the
optimal assignment with the resulting tree.

Effect of jSj. First, we investigate how the number of tasks
affects the resulting trees. As shown in Fig. 3a, though the
search depths of both tree construction algorithms increase
with jSj, BTA can generate a much more balanced tree,
which in turn leads to more efficient search than RTA as
confirmed in Fig. 3b.

Effect of tc. As illustrated in Fig. 4, the performances of
both algorithms deteriorate as the worker travel distance
coefficient increases. This is because the dependency among
workers increases when there are more reachable tasks for

TABLE 5
Experiment Parameters

Parameter Default value

Number of tasks jSj 4000
Worker travel distance coefficient tc 0.1
Worker deadline coefficient dc 1.5
Task expiration time coefficient ec 2.5
Maximum acceptable workersmaxW 1

Fig. 3. Performance of worker partition: Effect of jSj.

ZHAO ET AL.: DESTINATION-AWARE TASK ASSIGNMENT IN SPATIAL CROWDSOURCING: A WORKER DECOMPOSITION APPROACH 2345

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

each worker. Another observation is that, the performance
gap of both approaches in terms of search cost is also
increasing. This is due to the fact, when the tree is unbal-
anced, the search cost is more sensitive to the average num-
ber of valid task sets of each worker that increases with tc.
In such circumstances, the benefits of a more balanced tree
become more significant.

Effect of dc. Evidently, the effect of workers’ travel dis-
tance coefficient tc and deadline coefficient dc are strongly
correlated, which explains why the impact of dc shares the
similar trend with that of tc (see Fig. 5a). While the search
cost of both algorithms increases quickly with dc, RTA dete-
riorates much faster and cannot even return a result within
tolerated time when dc > 1:6, which demonstrates the
importance of tree structure to the search performance.

Effect of ec. As shown in Fig. 6a, the search depth is not
affected by the expiration time. This is because the depen-
dency among workers does not change much as long as the
reachable task set remains stable for each worker. However,
as noted in Fig. 6b, the search cost of RTA increases much
faster than BTA since a greater ec results in more valid task
sets hence more VTS enumeration during the search. This
again confirms the superiority of a tree with more balanced
sub-trees.

5.2.2 Performance of Task Assignment Algorithm

In this part, we compare the efficiency (i.e., CPU time) of fol-
lowing algorithms:

1) DFS: our proposed DFSearch algorithm based on
the balanced tree.

2) DFS þW : DFS with optimization of re-ordering
sub-tree traversal based on the number of workers.

3) DFS þW&U : DFS þW with optimization of UB
computation.

4) DFS þW&U þ TCopt: DFS þW&U with travel cost
optimization.

5) GALS: Global Assignment and Local Scheduling
algorithm that iteratively assigns tasks for workers
based on maximum flow method and schedules the
suitable tasks for each worker [8], where the capacity

of worker w is set to the number (i.e., jRSwj) of her
reachable tasks. When scheduling tasks, GALS has
to ensure the worker can arrive her destination
before deadline after completing all the scheduled
tasks.

For effectiveness of task assignment, we first compare the
number of task assignments in the following methods:

1) DFS þW&U .
2) DFS þW&U þ TCopt.
3) GALS.
4) GA: Greedy Algorithm that assigns each worker

with the maximal valid task sets from the unas-
signed tasks, until all the tasks are assigned or all the
workers are exhausted.

5) IGA: Iteratively Greedy Algorithm that repeats GA
procedure multiple times with every worker as the
first one to be assigned and choose the best assign-
ment as the final result.

Moreover, we compare the travel cost among DFS þ
W&U , DFS þW&U þ TCopt and GALS algorithms. The
effectiveness is measured as the aggregate travel cost, which
is the sum of the Euclidean distances of the valid routes for
all workers while satisfying the spatio-temporal constraints
of workers and tasks.

Effect of jSj. In this set of experiments, we evaluate the scal-
ability of all the approaches by varying the number jSj of
tasks from 2k to 7k. As we can see from Fig. 7a, all our pro-
posed algorithms have similar performance when the num-
ber of tasks is low, which means there are not many benefits
gained from the optimizations. However, the benefits of re-
ordering sub-tree traversal and tighter upper bound become
more obvious when jSj > 3000. Another observation is that,

the CPU cost of DFS þW&U þ TCopt is a little bit higher

than that of DFS þW&U , but it saves huge travel cost (see
Fig. 7c), which demonstrates the benefits of our proposed
travel cost optimization strategy. Although GALS is fastest
among all the methods, it assigns less tasks than our
proposed methods (i.e., DFS þW&U and DFS þW&U þ
TCopt), shown in Fig. 7b. Fig. 7b also depicts that the greedy
algorithms are more disadvantaged than others with the

Fig. 4. Performance of worker partition: Effect of tc.

Fig. 5. Performance of worker partition: Effect of dc.

Fig. 6. Performance of worker partition: Effect of ec.

Fig. 7. Performance of search: Effect of jSj.

2346 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

growth of task numbers. From Fig. 7c we can see GALS
obtains lower travel cost than both DFS þW&U and
DFS þW&U þ TCopt. This is because, DFS þW&U and
DFS þW&U þ TCopt have more assigned tasks and work-
ers need to take more travel cost to perform such assigned
tasks.

Effect of tc. Fig. 8 illustrates the effect of tc on the perfor-
mance of all algorithms. As expected in Fig. 8a, increasing
the travel distance will incur more CPU time for all algo-
rithms. This may be due to the fact that, more valid tasks
need to be searched when worker’s travel distance is getting
longer. With the increase of travel distance, search space
increases explosively that explains the more benefits of our
optimized approaches. Fig. 8b shows that the optimality of
greedy algorithms deteriorate as each worker has more
valid task sets. Furthermore, we notice that DFS þW&U þ
TCopt outperforms DFS þW&U a large margin (up to
24.3 percent) in terms of travel cost, which shows the effec-
tiveness of the proposed travel cost optimization strategy
again (see Fig. 8c).

Effect of dc. In this set of experiments, we study the
effect of worker’s deadline. Not surprisingly, as we can
see in Fig. 9a, the performance gaps among the search
algorithms (i.e., DFS, DFS þW and DFS þW&U) become
larger when the deadlines are more relaxed. Fig. 9b dem-
onstrates that the greedy algorithms’ utilization of work-
ers’ increased capability to perform more tasks is marginal
compared to our exact algorithm. The worker deadline has
similar effect on the aggregate travel cost with worker
travel distance, as demonstrated in Fig. 9c. The intrinsic
reason lies in the more valid task sets generated as the inc-
reasing deadline.

Effect of ec. Fig. 10 illustrates the effect of task expiration
time. As expected, longer expiration time means on average
each worker has more freedom to schedule the tasks, which
results in greater search space. However, this performance
deterioration can be greatly relieved by the proposed opti-
mizations. On the other hand, as shown in Fig. 10b, the
number of assigned tasks is not heavily affected since the
reachable task set of each worker is unchanged. When
comes to the travel time, we notice that the increase of

aggregate travel cost of our proposed algorithms (i.e.,
DFS þW&U and DFS þW&U þ TCopt) becomes slower
when ec � 2:5 since with longer task expiration time there is
increasing chance that most of the tasks have already been
added into the valid task sets and thus few tasks need to be
added into the valid task sets.

5.2.3 Performance of Redundant Task Assignment

Strategy

Finally, we test the performance of the redundant task
assignment strategy proposed in Section 4.2. In particular,
we evaluate both efficiency and effectiveness of the three
strategies, i.e., a task can only be assigned to 1 worker
(maxW ¼ 1), a task can be assigned to at most 2 workers
(maxW ¼ 2) and a task can be assigned to at most 3 workers
(maxW ¼ 3). Each set of experiments measure the CPU time
and the number of task assignments.

Effect of jSj. As demonstrated in Fig. 11a, all the methods
becomemore time consuming when jSj increases since more
valid task sets that need to be traversed are generated. It is
worth noting that the strategy ofmaxW ¼ 1 ismost time con-
suming. This is because that workers tend to be dependent
with fewer other workers when the maximum number of
acceptable workers for tasks gets larger, which generates a
simpler tree and thus makes the search procedure simpler
and more effectual. Regarding their effectiveness (see
Fig. 11b), naturally the number of task assignments gener-
ated from all strategies increases when more tasks are
involved. In addition, the strategy of maxW ¼ 3 performs
the best followed by that ofmaxW ¼ 2 and thenmaxW ¼ 1.
It is interesting to see that at least 71.4 percent tasks can
be assigned to 2 workers when maxW ¼ 2 and at least
41.3 percent tasks can be assigned to 3 workers when
maxW ¼ 3, which can improve the accuracy of task results.

Effect of tc. Fig. 12 shows the performance of travel cost
optimization by changing over the length of workers’ travel
distance. A longer travel distance is more likely to make
more tasks valid for a worker, which takes more search
time and provides more task assignments, which is indi-
cated in Figs. 12a and 12b.

Fig. 8. Performance of search: Effect of tc.

Fig. 9. Performance of search: Effect of dc.

Fig. 10. Performance of search: Effect of ec.

Fig. 11. Performance of redundant task assignment: Effect of jSj.

ZHAO ET AL.: DESTINATION-AWARE TASK ASSIGNMENT IN SPATIAL CROWDSOURCING: A WORKER DECOMPOSITION APPROACH 2347

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

Effect of dc. We also study the effects of the worker dead-
line coefficient by varying it from 1.1 to 1.9. As expressed in
Fig. 13a, all the methods have the trend of a growth in both
the CPU time and the number of task assignments, whose
reason is similar with the effect of worker travel cost, i.e., as
dc gets larger, the search procedure needs to check and
assign more valid tasks for workers.

Effect of ec. In this set of experiment, we change the task
expiration time coefficient ec from 1.5 to 3.5. Obviously, as
illustrated in Fig. 14a, the CPU time of all the methods are
growing when ec is enlarged. Another observation is that
the strategy is most efficient when maxW ¼ 3, which is
approximately 33 percent slower than that of maxW ¼ 2
and 55 percent slower than that of maxW ¼ 1. The reason
behind it is that the larger maxW in redundant task assign-
ment mode leads to a simpler tree to be searched with sim-
pler dependence among workers. In terms of the number of
task assignments, more task assignments are generated as
maxW grows, which is clearly demonstrated in Fig. 14b.

6 RELATED WORK

Spatial Crowdsourcing (SC) is a new class of crowdsourc-
ing, which employs smart device carriers as workers to
physically move to some specified locations and perform
spatial tasks [11], [18]. Based on the task publish mode, SC
can be classified into Server Assigned Tasks (SAT) mode and
Worker Selected Tasks (WST) mode [13]. In SAT mode, the
server assigns each task to nearby workers based on the sys-
tem optimization goals such as maximizing the number of
assigned tasks after collecting all the locations of workers [4],
[8], [13], [14], [23], [25], maximizing the total payoff from
assigned tasks [2], maximizing the expected total utility
achieved by all workers [3], [21], [24], maximizing task reli-
ability for dynamic task assignment [10], maximizing the
expected quality of results from workers by a real-time bud-
get-aware task package allocation [26], or maximizing the
spatial/tempral coverage where/when workers perform
tasks [11]. For instance, [8] considers task assignment and
scheduling at the same time, in which an approximate
approach is developed that iteratively improves the

assignment and scheduling to achieve more completed
tasks. However, their paper assumes that each worker can
only perform tasks in a specific spatial region, so the search
space in their problem settings is much smaller than ours.
Moreover, their work proposes an approximate algorithm
while we offer an exact solution. In WST mode, the server
publishes various spatial tasks online, and workers can
select any tasks without the coordination with the server [7].
For example, Deng et al. [7] formulate SC as a scheduling
problem by reducing it into a specialized Traveling Salesman
Problem. The exact and approximation algorithms are pro-
posed to find a schedule to maximize the number of tasks
that can be completed by a worker when both travel cost
of workers and expiration time of tasks are taken into
consideration.

Moveover, with spatial crowdsourcing, tasks can be
assigned in two different modes: Single Task Assignment
(STA) mode and Redundant Task Assignment (RTA) mode [13].
STAmode assumes that all workers are trusted and can per-
form the tasks correctly without any malicious intentions, so
that each task is only assigned to one worker in STA mode.
However, there inevitably exist some malicious workers
that might intentionally complete tasks incorrectly (i.e.,
being dishonest about physically moving to the locations of
tasks). Therefore, RTA mode is proposed to improve the
validity of task completion by assigning each task to several
nearby workers. In RTA mode, the task completion result
with the majority vote is regarded as correct.

Among the above studies in SC, travel cost plays a cru-
cial role, due to the fact that SC workers have to physically
move to the locations of spatial tasks in order to perform
them [9], [15], [22]. For instance, considering task localness,
which refers to workers’ preferences based on their travel
cost (i.e., workers are more likely to accept nearby tasks), [9]
proposes an effective task assignment framework by model-
ling task acceptance rate as a decreasing function of travel
distance. Cheung et al. [15] formulate the interactions
among users as a non-cooperative Task Selection Game
(TSG), and propose an Asynchronous and Distributed Task
Selection (ADTS) algorithm, which balances the rewards
and travel costs of the workers for completing tasks.

7 CONCLUSION

In this paperwe study the problem of finding the optimal task
assignment for destination-aware spatial crowdsourcing,
where each worker can complete all the assigned tasks before
their expiration time and reach her destination before a given
deadline. To settle the intractable complexity of this problem,
we propose a graph partitioning based approach to decom-
pose the complex worker dependency graph into smaller

Fig. 12. Performance of redundant task assignment: Effect of tc.

Fig. 13. Performance of redundant task assignment: Effect of dc.

Fig. 14. Performance of redundant task assignment: Effect of ec.

2348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

independent worker clusters, and a tree construction algo-
rithm to organize the clusters into balanced tree structure.
Then a depth-first search strategy is devised with effective
lower and upper bounds to avoid unpromising traversals.
Finally, we further optimizing the original algorithm by pro-
posing strategies to reduce the overall travel cost and allow
each task to be assigned tomultipleworkers in order to gener-
alize the applicability of the proposed framework. Extensive
empirical study demonstrates our proposed solution is effi-
cient enough to deliver the maximum number of assignment
within reasonably small amount of time, and the optimization
strategies can also result in less overall travel cost and
increased total task assignment when redundant task assign-
ment is requested.

ACKNOWLEDGMENTS

This work is partially supported by the Natural Science
Foundation of China (No. 61532018, 61836007, and
61832017), the Australian Research Council (Grants No.
DP170101172), and the Major Project of Zhejiang Lab (No.
2019DH0ZX01).

REFERENCES

[1] J. Blair and B. Peyton, “An introduction to chordal graphs and
clique trees,” in Proc. Graph Theory Sparse Matrix Comput., 1993,
pp. 1–29.

[2] C. Chen, S. F. Cheng, A. Gunawan, A. Misra, K. Dasgupta, and
D. Chander, “Traccs: A framework for trajectory-aware coordi-
nated urban crowd-sourcing,” in Proc. AAAI Conf. Human Comput.
Crowdsourcing, 2014, pp. 30–40.

[3] C. Chen, S. F. Cheng, H. C. Lau, and A. Misra, “Towards city-scale
mobile crowdsourcing: Task recommendations under trajectory
uncertainties,” inProc. 24th Int. Conf. Artif. Intell., 2015, pp. 1113–1119.

[4] P. Cheng, X. Lian, L. Chen, and C. Shahabi, “Prediction-based task
assignment in spatial crowdsourcing,” in Proc. IEEE 33rd Int. Conf.
Data Eng., 2017, pp. 997–1008.

[5] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, J. Han, and J. Zhao,
“Reliable diversity-based spatial crowdsourcing by moving work-
ers,” VLDB Endowment, vol. 8, no. 10, pp. 1022–1033, 2015.

[6] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and
N. Triandopoulos, “Anonysense: Privacy-aware people-centric
sensing,” in Proc. 6th Int. Conf. Mobile Syst. Appl. Services, 2008,
pp. 211–224.

[7] D. Deng, C. Shahabi, and U. Demiryurek, “Maximizing the num-
ber of worker’s self-selected tasks in spatial crowdsourcing,” in
Proc. 21st ACM SIGSPATIAL Int. Conf. Advances Geographic Inf.
Syst., 2013, pp. 324–333.

[8] D. Deng, C. Shahabi, and L. Zhu, “Task matching and scheduling
for multiple workers in spatial crowdsourcing,” in Proc. 23rd SIG-
SPATIAL Int. Conf. Advances Geographic Inf. Syst., 2015, Art. no. 21.

[9] G. Ghinita, G. Ghinita, and C. Shahabi, “A framework for protect-
ing worker location privacy in spatial crowdsourcing,” VLDB
Endowment, vol. 7, pp. 919–930, 2014.

[10] U. U. Hassan and E. Curry, “Efficient task assignment for spatial
crowdsourcing: A combinatorial fractional optimization approach
with semi-bandit learning,” Expert Syst. Appl., vol. 58. pp. 36–56,
2016.

[11] Z. He, J. Cao, and X. Liu, “High quality participant recruitment in
vehicle-based crowdsourcing using predictable mobility,” in Proc.
Conf. Comput. Commun., 2015, pp. 2542–2550.

[12] L. Kazemi and C. Shahabi, “A privacy-aware framework for par-
ticipatory sensing,” SIGKDD Explorations Newslett., vol. 13, no. 1,
pp. 43–51, 2011.

[13] L. Kazemi and C. Shahabi, “Geocrowd: Enabling query answering
with spatial crowdsourcing,” in Proc. 20th Int. Conf. Advances Geo-
graphic Inf. Syst., 2012, pp. 189–198.

[14] L. Kazemi, C. Shahabi, and L. Chen, “Geotrucrowd: Trustworthy
query answering with spatial crowdsourcing,” in Proc. 21st ACM
SIGSPATIAL Int. Conf. Advances Geographic Inf. Syst., 2013,
pp. 314–323.

[15] H. C. Man, R. Southwell, F. Hou, and J. Huang, “Distributed time-
sensitive task selection in mobile crowdsensing,” in Proc. 16th
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2015, pp. 157–166.

[16] N. Robertson and P. Seymour, “Graph minors. II. algorithmic
aspects of tree-width,” J. Algorithms, vol. 7, no. 3, pp. 309–322, 1986.

[17] D. Rose, “Triangulated graphs and the elimination process,” J.
Math. Anal. Appl., vol. 32, no. 3, pp. 597–609, 1970.

[18] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu,
“Trichromatic online matching in real-time spatial crowdsourcing,”
in Proc. IEEE 33rd Int. Conf. Data Eng., 2017, pp. 1009–1020.

[19] J. Surowiecki, “The wisdom of crowds: Why the many are smarter
than the few and how collective wisdom shapes business, econo-
mies, societies, and nations,” Personnel Psychology, vol. 59, no. 4,
pp. 982–985, 2006.

[20] R. Tarjan and M. Yannakakis, “Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selec-
tively reduce acyclic hypergraphs,” SIAM J. Comput., vol. 13,
no. 3, pp. 566–579, 1984.

[21] Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou, and W. Lv,
“SLADE: A smart large-scale task decomposer in crowdsourcing,”
IEEE Trans. Knowl. Data Eng., vol. 30, no. 8, pp. 1588–1601,
Aug. 2018.

[22] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online mini-
mum matching in real-time spatial data: Experiments and analy-
sis,” VLDB Endowment, vol. 9, no. 12, pp. 1053–1064, 2016.

[23] Y. Tong, J. She, B. Ding, and L. Wang, “Online mobile micro-task
allocation in spatial crowdsourcing,” in Proc. IEEE 32nd Int. Conf.
Data Eng., 2016, pp. 49–60.

[24] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic
pricing in spatial crowdsourcing: A matching-based approach,”
in Proc. Int. Con. Manage. Data, 2018, pp. 773–788.

[25] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu,
“Flexible online task assignment in real-time spatial data,” Proc.
VLDB Endowment, vol. 10, no. 11, pp. 1334–1345, 2017.

[26] P. Wu, E. W. Ngai, and Y. Wu, “Toward a real-time and budget-
aware task package allocation in spatial crowdsourcing,” Decision
Support Syst., vol. 110, 107–117, 2018.

[27] Y. Zhao, Y. Li, Y. Wang, H. Su, and K. Zheng, “Destination-aware
task assignment in spatial crowdsourcing,” in Proc. ACM Conf. Inf.
Knowl. Manage., pp. 297–306, 2017.

Yan Zhao received the master’s degree in geo-
graphic information system from the University of
Chinese Academy of Sciences, in 2015. She is
currently working toward the PhD degree in Soo-
chow University. Her research interests include
spatial database and trajectory computing.

Kai Zheng received the PhD degree in computer
science from the University of Queensland, in
2012. He is a professor of computer science with
University of Electronic Science and Technology
of China. He has been working in the area of
spatial-temporal databases, uncertain databases,
social-media analysis, in-memory computing, and
blockchain technologies. He has published more
than 100 papers in prestigious journals and confer-
ences in datamanagement field such asSIGMOD,
ICDE, VLDB Journal, ACM transactions and IEEE
transactions. He is amember of the IEEE.

Yang Li received the bachelor’s degree in com-
puter science and technology at Soochow Uni-
versity, in 2015. He is currently working toward
the master’s degree at Soochow University. His
research interests include data mining and spatial
crowdsourcing.

ZHAO ET AL.: DESTINATION-AWARE TASK ASSIGNMENT IN SPATIAL CROWDSOURCING: A WORKER DECOMPOSITION APPROACH 2349

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

Han Su received the BS degree in software engi-
neering from Nanjing University, in 2011, and
the PhD degree in computer science from the
University of Queensland, in 2015. She is cur-
rently an associate professor with the Big Data
Research Center, University of Electronic Sci-
ence and Technology of China. Her research
interests include trajectory querying and mining.

Jiajun Liu received the BEng degree fromNanjing
University, China, in 2006, and the PhD degree
from the University of Queensland, Australia, in
2012. He is an associate professor at Renmin Uni-
versity of China. Before joining Renmin University
he was a postdoctoral fellow with the CSIRO of
Australia from 2012 to 2015. From 2006 to 2008,
he also worked as a researcher/software engineer
for the IBM China Research/Development Labs.
His main research interests include in multimedia
and spatio-temporal datamanagement andmining.

He serves as a reviewer for multiple journals such as the VLDB Journal,
the IEEE Transactions on Knowledge and Data Engineering, the IEEE
Transactions on Multimedia, and as a PC member for ACM MM and
CCFBig Data.

Xiaofang Zhou received the bachelor’s and mas-
ter’s degrees in computer science from Nanjing
University, in 1984 and 1987, respectively, and the
PhD degree in computer science from the Univer-
sity of Queensland, in 1994. He is a professor of
computer science with the University of Queens-
land. He is the head of the Data and Knowledge
Engineering Research Division, School of Informa-
tion Technology and Electrical Engineering. He
is also a specially appointed adjunct professor
with Soochow University, China. His research is

focused on finding effective and efficient solutions tomanaging integrating,
and analyzing very large amounts of complex data for business and scien-
tific applications. His research interests include spatial and multimedia
databases, high performance query processing, web information systems,
datamining, and data quality management. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2350 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

