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Abstract—The pervasiveness of GPS-enabled devices and wireless communication technologies results in massive trajectory data,

incurring expensive cost for storage, transmission, and query processing. To relieve this problem, in this paper we propose a novel

framework for compressing trajectory data, REST (Reference-based Spatio-temporal trajectory compression), by which a raw trajectory

is represented by concatenation of a series of historical (sub-)trajectories (called reference trajectories) that form the compressed

trajectory within a given spatio-temporal deviation threshold. In order to construct a reference trajectory set that canmost benefit the

subsequent compression, we propose three kinds of techniques to select reference trajectories wisely from a large dataset such that the

resulting reference set is more compact yet coveringmost footprints of trajectories in the area of interest. To address the computational

issue caused by the large number of combinations of reference trajectories that may exist for resembling a given trajectory, we propose

efficient greedy algorithms that run in the blink of an eye and dynamic programming algorithms that can achieve the optimal compression

ratio. Compared to existing work on trajectory compression, our framework has few assumptions about data such asmovingwithin a road

network or moving with constant direction and speed, and better compression performancewith fairly small spatio-temporal loss. In

addition, by indexing the reference trajectories directly with an in-memory R-tree and building connections to the raw trajectories with

inverted index, we develop an extremely efficient algorithm that can answer spatio-temporal range queries over trajectories in their

compressed form. Extensive experiments on a real taxi trajectory dataset demonstrate the superiority of our framework over existing

representative approaches in terms of both compression ratio and efficiency.

Index Terms—Reference trajectory, spatio-temporal trajectory, compression

Ç

1 INTRODUCTION

THE prevalent use of various mobile devices, such as
smart-phones, on-board diagnostics, personal navigation

devices, and wearable smart devices, has resulted in massive
amount of trajectory data. While they contain a wealth of
mobility information and offer great opportunities for height-
ening our understanding about human mobilities,

transmitting and storing raw trajectory data consumes too
much network bandwidth and storage capacity [1]. This is
calling for effective trajectory compression techniques that
can remove redundant and inessential samples from raw tra-
jectory data to reduce the storage cost while preserving the
utility of data.

Trajectory data compression approaches can be generally
divided into two categories: spatial and spatio-temporal com-
pression. Treating trajectories as polylines, spatial compres-
sionmethods are also known as line simplification algorithms
(e.g., Douglas-Peucker (DP) [2] and Bellman’s algorithm [3]),
which discard some samples within a given spatial deviation
threshold from its original locations. However, trajectories are
spatio-temporal records of moving objects, in which temporal
information is also critical in many applications such as tra-
jectory monitoring [4] and location tracking [5]. Ignoring
temporal information during compression may produce
unbounded erroneous results when querying the decom-
pressed data. Therefore, recent studies focus on spatio-
temporal compression algorithms [1], [6], [7], [8], [9], which
adopt spatio-temporal criteria to bound the compression loss.
The common feature of the above approaches is that they just
exploit the spatio-temporal characteristics of the single trajec-
tory to be compressed and assume moving objects do not
change speed and/or direction frequently while traveling.
However, this is quite an optimistic assumption for objects
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moving with complicated traffic condition, which is why
those algorithms cannot achieve high compression ratio on
real-world trajectory data. Recently, Song et al [10] propose a
data-driven approach, called PRESS, that leverages shortest
path and frequent trajectory pattern to compress trajectories
in a road network. Nevertheless, there are two key prerequi-
sites for PRESS to work properly. First, object movements
must be constrained by a network, which does not apply for a
wide range of free-space moving objects such as animals, fly-
ing objects, handwriting trajectories and so on. Second, the
network should be relatively stable so that the compressed
trajectories can be used properly. However, it is not uncom-
mon the topology of road network changes frequently in
developing areas (e.g., major cities of China).1 Since PRESS
relies on precomputed all-pair shortest paths, it has to recom-
pute a large number of shortest paths every time the network
updates, which is a time consuming process. Moreover, it
takes tremendous space to store the all-pair shortest paths for
each version of road network.2

In this paper, we propose a completely data-driven
framework, called REST (Reference-based Spatio-temporal
trajectory compression), for trajectory compression. There
are a few advantages for REST compared to existing work.
First, trajectories can originate from any kind of space
(either constrained or non-constrained space). Second, it
includes both spatial-only and spatio-temporal compression
algorithms. Third, it only takes small amount of memory to
store the auxiliary information (i.e., reference set). Fourth,
the trajectory data are indexable and usable in their com-
pressed form. This framework is based on some prior stud-
ies that find human mobilities have inherent high-level
spatial and temporal regularity [11] (i.e., people have high
probability to repeat similar travel patterns) and highly
skewed travel distribution [12] (i.e., different people often
take similar routes when traveling between certain loca-
tions). Therefore it is feasible to extract a relatively small
collection of trajectories, named reference trajectories, which
“covers” most trajectories in the region of interest. Then
given a new trajectory in the same area, there is high chance
we can use a proper concatenation of reference (sub-)trajec-
tories to resemble, at least partially, the given one. Com-
pared with the raw format that keeps every location
sample, this representation saves significant space since
only a series of identifiers and offsets of the reference (sub-)
trajectories need to be recorded.

As shown in Fig. 1, theREST framework is comprised of two
components: reference set construction and reference-based
compression. The first component aims to build a reference
system,where the challenge is how to trade off high coverage
and low redundancy in the reference set such that subse-
quent compression can be performed more effectively and
efficiently. To this end, we present three kinds of approaches
including Frequent Pattern-based Approach, Redundancy
Reduction Approach and Compression-based Approach,
which use different strategies to select a compact yet expres-
sive reference set from a much larger but more redundant
training dataset. The the second component needs to tackle
the computational issue in the great number of reference tra-
jectories we can use to represent a given trajectory. For the
sake of efficiency, we propose greedy algorithms that try
to represent the longest possible sequence of samples with a
single reference trajectory. We also develop optimal
algorithms to calculate the minimal storage cost of the com-
pressed trajectory and obtain the corresponding optimal
combination of reference trajectories.

Though our preliminary work [13] has already optimally
compressed the spatio-temporal information of trajectory
data with reference trajectories, it fails to demonstrate the
key utility of compressed trajectory data. Trajectory utility
mainly depends on the effective and efficient trajectory
query processing in trajectory databases, which aims to
evaluate the spatio-temporal relationships among spatial
data objects. However, it is a challenging task to answer the
trajectory queries efficiently due to the inherent difficulties
in indexing trajectories as well as the new complexity intro-
duced by the compressed trajectories, which are in the form
of sequence of reference trajectories. To tackle this problem,
we develop an effective hybrid index structure to support
efficient query processing over compressed trajectories
without fully decompressing the data and then present the
query processing based on the index structure in Section 6.

As a summary, the major value-added extension over our
preliminary work [13] in REST framework are four folds.

1) We demonstrate REST can support the classical
spatio-temporal queries (e.g., range queries) in tra-
jectory databases without fully recovering the com-
pressed trajectories.

2) We design an effective hybrid index structure, con-
sisting of both R-tree and inverted index, to support
efficient query processing over the compressed
trajectories.

3) We give more justifications about the custom defined
error metrics and discussions on the applicability of
our REST framework to other trajectory similarity
measures.

4) An extensive experimental study is conducted on
two real taxi trajectory datasets to validate the effec-
tiveness and efficiency of the query processing on
the compressed trajectories.

The remainder of this paper is organized as follows.
Section 2 introduces preliminary concepts, error metric and
reference-based compression problem. We then present the
construction of reference trajectory set in Section 3. The
algorithms for spatial-only compression and spatio-temporal
compression are presented in Section 4 and Section 5

Fig. 1. REST framework overview.

1. TomTom claims their digital maps have fixes and updates every
week. https://www.tomtom.com/en_au/mydrive-connect/

2. Keeping all-pair shortest path requires OðjV j2Þ space where V
represents the vertex set in a road network.
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respectively, followed by the extension of query processing
for the compressed trajectories in Section 6. We report the
results from empirical study in Section 7 and survey the
related work in Section 8. Section 9 concludes this paper.

2 PROBLEM STATEMENT

In this section, we will present a set of preliminary concepts,
introduce the error metric between raw and compressed tra-
jectories, and finally state our problem and goal.

2.1 Preliminary

Definition 1 (Raw Trajectory). A raw trajectory of a moving
object in 2D euclidean plane, denoted as T , is a finite sequence
of timestamped locations with the form of ððx1; y1; t1Þ; ðx2; y2;
t2Þ; :::; ðxn; yn; tnÞÞ, where ðxi; yiÞ stands for the longitude and
latitude information of a sampled location at time stamp ti.

Definition 2 (Sub-Trajectory). A sub-trajectory, denoted by
T ði;jÞ, is made of consecutive sample points of T from the ith to
jth triplet, i.e., T ði;jÞ : ððxi; yi; tiÞ, ..., ðxj; yj; tjÞÞ.

Trajectory compression is a process to reduce storage cost
while keeping utility of a trajectory. Normally there are two
measures when comparing trajectory compression methods:

1) Compression Ratiomeasures howmuch space has been
saved by compressing raw trajectories. It is usually
defined as the ratio between space costs of raw trajec-

tories and compressed trajectories, i.e.,CR ¼ spaceðT Þ
spaceðT 0Þ.

2) Compression Loss measures to what extent a com-
pressed trajectory can be reconstructed to its corre-
sponding raw format. It is usually quantified by a
distance between raw trajectory and decompressed
trajectory based on some predefineddistance function.

These two factors are often trade-off: high compression
ratio usually leads to greater compression loss and vice
versa. Based on compression loss, trajectory compression
can be classified into lossless compression and lossy com-
pression. Due to the extremely fine granularity (hence
almost infinite cardinality) of spatio-temporal dimensions
in free space, lossless compression algorithms either are
not practical or have extremely low compression ratio.
Thus in this paper we resort to bounded lossy compression
algorithm.

Definition 3 (Bounded Lossy Compression). Given a devi-
ation threshold �, an �-Bounded Lossy Compression algorithm
transforms a raw trajectory T into a compressed trajectory T 0,
such that the distance between the reconstructed trajectory T �

and T does not exceed �, i.e., dðT; T �Þ � �, where d is some pre-
defined distance function for trajectories.

2.2 Error Metric

In this paper, we propose a simple but effective variant
of Dynamic Time Warping (DTW) [14] distance, called
MaxDTW, to serve the error metric. It works exactly the
same way as DTW in looking for the best alignment between
two unsynchronized trajectories, with the only exception
that it just needs to record the maximum distance among all
matched pairs instead of the sum.More formally,

Definition 4 (MaxDTW). Given two trajectories Ta ¼ ðp1;
p2; :::; pnÞ and Tb ¼ ðq1; q2; :::; qmÞ, the MaxDTW distance
between them is defined as follows:

MaxDTWðTa; TbÞ ¼
0; if Ta ¼ Tb ¼ ;
þ1; if Ta ¼ ; or Tb ¼ ;
maxfdðpn; qmÞ; Qðpn; qmÞg; otherwise

8<
:

Qðpn; qmÞ ¼ min

MaxDTWðT ð1;n�1Þa ; T
ð1;m�1Þ
b Þ

MaxDTWðT ð1;n�1Þa ; T
ð1;mÞ
b Þ

MaxDTWðT ð1;nÞa ; T
ð1;m�1Þ
b Þ

8><
>: ;

where dða; bÞ is a given distance between point a and b.

Similar to DTW, we can use a dynamic programming
algorithm [14] to compute MaxDTW.

While our framework can be applied to both conventional
DTW and the newly defined MaxDTW (will be discussed in
Section 4.1), we chose to define a custom metric MaxDTW
because this is easier for user to set the error threshold. To
see the reason, DTW is calculated based on distance aggrega-
tion (sum of distance), so it is dependent on not only the
closeness between two trajectories but also their size (i.e.,
number of sample points). Therefore, when a user wants to
compress a set of trajectories, she needs to set a different
error threshold for each individual trajectory as they are of
different sizes. For instance, we should set a lower error
threshold for a trajectory with 10 points and higher error
threshold for another trajectory with 100 points if we expect
them to be compressed with similar quality. Of course, this
problem can be solved by using the average DTW, i.e.,
DTW/(size of trajectory), which is essentially the same as
our proposed MaxDTW. The rational behind MaxDTW is
the furthest pair-wise distance between two trajectories in
their best DTW alignment, which is independent of the size.
This also gives the user an intuitive view of the closeness
they should expect to see between the decompressed trajec-
tory and its corresponding raw trajectory.

2.3 Reference-Based Compression

As observed in previous studies [12], there is strong biaswhen
most drivers plan their routes, which means given a new tra-
jectory it is very likely to find from a historical trajectory data-
set a few trajectories that resemble, at least partially, the given
one. We name these trajectory set as reference trajectory set,
denoted byR, which can be generated from a historical trajec-
tory dataset in the region of interest (e.g., where the trajecto-
ries to be compressed also reside). While it is difficult to
define the optimality ofR, there are two qualitative measures
for a good one—high coverage and low redundancy. Here
high coverage means it has enough power to represent a given
trajectory in the same area of interest, which heavily affects
the compression ratio. Low redundancymeansmost trajectories
in R are quite unique in terms of their geographical locations
since overlapping reference trajectories do not increase the
expressive power and make the compression inefficient. In
the rest of the paper we use reference trajectory set and reference
set interchangeablywhen no ambiguity is caused.

Problem Statement. Given a reference trajectory set R, a
trajectory T to be compressed and an error threshold �, a
reference-based compression algorithm uses a selected
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subset of R, or their sub-trajectories whenever possible, to
represent T , denoted as T 0, and guarantees that the distance
between T 0 and T does not exceed �.

3 REFERENCE SET CONSTRUCTION

In this section, we propose three methods to build a compact
and expressive reference set, which is relatively stable and
do not require frequent updates to compress new data. Fig. 2
shows a training trajectory set, in which each trajectory sam-

ple is labeled by T
ðjÞ
i indicating the jth sample of trajectory

Ti. Besides, the first sample of each trajectory is companied
by a number that indicates the start time stamp. We assume
the sampling interval is 1 time unit. For instance, T

ð2Þ
2 is the

second sample of T2 whose time stamp is 3.

3.1 Frequent Pattern-Based Approach (FPA)

Previous studies have shown that trajectories of moving
objects often follow certain patterns, such as commuter pat-
terns, peak/off peak patterns, weekend patterns, etc. There-
fore a natural thought is to leverage these frequent patterns
for building a reference set. Given a trajectory dataset, its
frequent pattern is a set of sub-trajectories of which the occur-
rence frequencies exceed a certain support threshold. Inspired
by [15], we first introduce calculating point and calculating tra-
jectory to discretize trajectories into sequential data and then
apply Sequential Pattern Mining algorithms [16] to find fre-
quent sub-trajectories. Specifically, given a sample point set
P ¼ fp1; p2; :::; png, pi is called a calculating point a if jpj:x�
pi:xj � �s and jpj:y� pi:yj � �s. Then all pj can be represented
by a. A calculating trajectory is a sequence formed by the cal-
culating points chronologically. The following steps are per-
formed to find all of the frequent sub-trajectories:

1) Find all calculating points and calculating trajectories.
2) Given the minimum support threshold, the frequent

calculating points are obtained by scanning all calcu-
lating points.

3) Remove non-frequent calculating points, and obtain
frequent calculating sub-trajectories.

4) Remove the frequent calculating sub-trajectories
who is sub-trajectories of another frequent calculat-
ing trajectories.

5) Return all the frequent sub-trajectories.

3.2 Redundancy Reduction Approach

Since only using frequent patternsmay result in low coverage,
we next present two variant methods to achieve higher cover-
age and reduce redundancy (to some extent) simultaneously.

3.2.1 Segment Redundancy Reduction (SRR)

Given a training trajectory set, we aim to extract a set of non-
redundant sub-trajectories. First we define redundant seg-
ment in below,

Definition 5 (Redundant Segment). Given a minimum
length threshold h and a distance threshold �s, two sub-trajectories

(segments) with the same number of samples, i.e., T ði;iþmÞa and

T
ðj;jþmÞ
b , are said to overlap with each other if m � h and their

maximum pairwise distance dmax = max0 �k �m dðTa:piþk;
Tb:pjþkÞ � �s. If a sub-trajectory s overlaps with any existing
sub-trajectory in a reference set R, s is called a redundant
segment.

h is to avoid the existence of too many short segments.
The basic idea of our approach is to eliminate all the redun-
dant segments of training trajectories and use remaining
segments as the reference set.

3.2.2 Trajectory Redundancy Reduction (TRR)

The reference set constructed by SRR algorithm may end up
with too many short segments if h is too small, or too many
whole trajectories otherwise (since it gets harder to identify
long segment overlap). We present an alternative approach
to reduce redundancy by treating each trajectory as atomic,
i.e., either use the entire one or nothing. The redundant tra-
jectory is defined as follows:

Definition 6 (Redundant Trajectory). Given an overlap
threshold u, a distance threshold �s, a trajectory T is called
redundant if the overlap portion between T and R, denoted as
LðT;RÞ, exceeds u, where LðT;RÞ is calculated as the portion of
samples in T that are sufficiently close to any samples inR, i.e.,

LðT;RÞ ¼ jp 2 T j9q 2 R; dðp; qÞ � �sj
jT j > u: (1)

The TRR algorithm checks every training trajectory T
and calculates the overlap portion with R. If the value is
below u, T is added into R as a reference trajectory.

3.3 Compression-Based Approach (CA)

As the ultimate goal of building a reference set is to achieve
high compression ratio, we can compress a training trajec-
tory against the current reference set with the spatial com-
pression algorithm proposed in the following section and
record the compression ratio. If the ratio is high enough,
that means the training trajectory can be well described by
existing reference trajectories, i.e., it is redundant; other-
wise, it is non-redundant. The non-redundant training tra-
jectory will be added into the current reference set.

4 SPATIAL COMPRESSION

In this section, ignoring the time information, we compress
a given trajectory using as few reference trajectories as pos-
sible to minimize the space cost.

Fig. 2. Running example.
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4.1 Matchable Reference Trajectory

We will first introduce matchable reference trajectory – a basic
concept that will be used throughout our algorithms.

Definition 7 (Matchable Reference Trajectory (MRT)).
Given a sub-trajectory T ði;jÞ and a spatial deviation threshold
�s, its matchable reference trajectory set, denoted as MðT ði;jÞÞ,
includes all the reference sub-trajectories with less-than-�s
MaxDTW distance with T ði;jÞ, i.e.,

MðT ði;jÞÞ ¼
n
Tðk;gÞ

���T 2 R; 1 � k � g � jTj;

MaxDTWðT ði;jÞ;Tðk;gÞÞ � �s

o
:

(2)

Here each MRT Tðk;gÞ is recorded as a triplet ðT:id; k; gÞ
(costing 8 bytes). To retrieve the MRTs, we propose an effi-
cient method based on the following observation.

Lemma 1. Any sub-trajectory of the MRT of T ði;jÞ is also an
MRT of sub-trajectory of T ði;jÞ.

The proof is directly from the property that MaxDTWdis-
tance between longer sequences upper bounds their sub-
sequences. Therefore the MRT set of T ði;jÞ can be more easily
derived by joining the MRT sets of its sub-trajectories.
Algorithm 1 is proposed based on this intuition. First, the
MRT sets of all the length-2 sub-trajectories is obtained and
added to a hash setMðT ði;jÞÞ (lines 1-2). Then for each length-
n (2 < n � jT j) sub-trajectory T ði;jÞ, we check if existing
MRT of T ði;j�1Þ and T ðj�1;jÞ can also be the MRT of T ði;jÞ (lines
6-9), and verify if a longerMRT can be formed for T ði;jÞ by
joining MðT ði;j�1ÞÞ and MðT ðj�1;jÞÞ (lines 10-11). The
algorithm can be terminated early if we find the MRT sets of
all length-n sub-trajectories are empty since all longer sub-
trajectories will not have MRT based on Lemma 1. Given
�s ¼ 0:9; h ¼ 1 and the reference set generated by SRR
algorithm previously, i.e., R ¼ fT1; T2; T

ð3;15Þ
3 ; T4; T5; T6; T7g,

Fig. 3 illustrates the MRTs for T , to name a few,
MðT ð2;9ÞÞ ¼ fT ð1;8Þ2 g,MðT ð10;15ÞÞ ¼ fT ð6;14Þ4 ; T

ð7;12Þ
5 g.

Algorithm 1.Matchable Reference Trajectory Search

Input: T , R, �s
Output:M

1 for each T ði;iþ1Þ 2 T do
2 MðT ði;iþ1ÞÞ  MRT set for segment T ði;iþ1Þ;
3 for n 3 to jT jdo
4 for each length-n sub-trajectory T ði;jÞ 2 T do
5 for Tðm;nÞ

a ;T
ðs;tÞ
b 2MðT ði;j�1ÞÞ;MðT ðj�1;jÞÞ do

6 ifMaxDTW ðT ði;jÞ;Tðm;nÞ
a Þ � �s then

7 Add Tðm;nÞ
a intoMðT ði;jÞÞ;

8 ifMaxDTW ðT ði;jÞ;Tðs;tÞb Þ � �s then
9 Add T

ðs;tÞ
b intoMðT ði;jÞÞ;

10 if a ¼ b and n ¼ sthen
11 Add Tðm;tÞ

a intoMðT ði;jÞÞ;
12 if no length-n sub-trajectory has MRT then
13 Break;
14 returnM ;

Discussion. here we briefly discuss the applicability of our
framework to other trajectory similarity measure. Since the
correctness of our following algorithms rely on Lemma 1,
which states the sub-structure optimality in MRT, we only
need to examinewhether the derivedMRT (fromDefinition 7)

based on a given trajectory similarity measure satisfies
Lemma 1 or not. Obviously, our framework can be easily
adapted to those distance aggregation based trajectory simi-
larity measure such as euclidean Distance (ED), Edit Distance
with Projections (EDwP) [17], Dynamic Time Warping [14]
and its variants as they all satisfy Lemma 1.However, the gen-
eralization to Longest CommonSubsequence (LCSS) [18], Edit
distance with Real Penalty (ERP) [19] and Edit Distance on
Real sequences (EDR) [20] is not straightforward since they
are count-based similarity measure, which means a sub-
trajectory of MRT may not meet the similarity threshold
anymore.

4.2 Greedy Spatial Compression

Once the MRT set is obtained, a natural thought is to process
the given trajectory in its chronological order and compress
the longest possible sub-trajectory with its MRT (selecting an
arbitrary MRT if multiple longest MRTs exist), until the last
sample point has been reached. This approach is called
Greedy Spatial Compression (GSC) algorithm since it seems
not a global strategy to combine MRTs in order to achieve
the minimal storage cost. However, we will prove later it
also yields space optimal compressed trajectory.

Consider the example in Fig. 3. With GSC algorithm, we

first compress T ð1;3Þ with T
ð12;14Þ
1 since it is the first longest

sub-trajectory with non-empty MRT set. Then the remaining

part of T are represented by T
ð3;8Þ
2 , T

ð6;15Þ
4 , T ð17Þ, T

ð8;10Þ
7

respectively, resulting in the space cost of 40 bytes, i.e.,
25 percent of its original space (160 bytes).

4.3 Optimal Spatial Compression

In the sequel, we propose a dynamic programming algo-
rithm, called Optimal Spatial Compression (OSC), that aims
to minimize the required storage size for T 0. Specifically,
given a trajectory T and its MRT setMðT Þ, we define FT ½i� as
theminimum storage size needed for compressing T ð1;iÞ, and
T 0ð1;iÞ as the corresponding compressed sub-trajectory to
achieve this optimum storage. FT ½i� can be derived by the fol-
lowing recursive formula shown in Equation (3).

FT ½i� ¼
0 if i ¼ 0
min1�j�i^MðT ðj;iÞÞ6¼;fFT ½j� 1� þ 8g otherwise

�
;

(3)

where the MRT set of single sample point, i.e., MðT ði;iÞÞ, is
manually set to non empty.

It is trivial FT ½0� ¼ 0 when T ¼ ;, i.e., i ¼ 0. When i > 0,
FT ½i� is computed by picking the minimum of: 1) the opti-
mal storage cost of sub-trajectory T 0ð1;j�1Þ, i.e., FT ½j� 1�, plus
the storage (8 bytes) for an MRT of sub-trajectory T ðj;iÞ if
MðT ðj;iÞÞ 6¼ ; when 1 � j < i; and 2) the optimal storage
cost of sub-trajectory T 0ð1;i�1Þ, i.e., FT ½i� 1�, plus the storage
(8 bytes) of original sample point pi 2 T when j ¼ i.

With Equation (3), now we can compute the minimum
storage size of compressed trajectory, which is presented in
Algorithm 2. Note that we introduce another notation pre½i�
for recording the last-to-first sample points having been com-
pressed before achieving FT ½i� to facilitate the reconstruction
of the compressed trajectory T 0 with minimum storage size.
It first initializes T 0 ¼ null and FT ½0� ¼ 0 (lines 1-2). Then the
algorithm processes all points of T in the sampling order
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from 1 to jT j, where each recursion starts with initializing the
minimal storage size to the whole storage of T , i.e., 8jT j, and
computes FT ½i�, pre½i� according to Equation (3) (lines 3-9).
Finally, it presents the procedure of construction T 0 from
table pre (lines 10-17). It is easy to analyze the complexity of
Algorithm 2 is OðjT j2Þ. Taking Fig. 3 as a case, we can finally

get FT ½20� ¼ 40 with T ð1Þ, T ð1;8Þ2 , T
ð7;12Þ
5 , T

ð13;14Þ
6 , T

ð8;10Þ
7 com-

pressing T based on Equation (3). It is worth noting that there
may be more than one combination of reference trajectories
and original sample points of T to get the minimum storage
size of T 0.

Recall the previous example that the compressed trajec-
tory based on GSC algorithm also costs the same space. We
show by Lemma 2 that it turns out not to be a coincidence.
The proof is omitted due to space limit.

Lemma 2. The compressed trajectory T 0 generated by GSC is
also space optimal.

5 SPATIO-TEMPORAL COMPRESSION

In this section, we extend spatial compression algorithms
into spatio-temporal compression algorithms considering
both spatial and temporal information.

5.1 Time Correction Cost

Intuitively, given a spatial deviation threshold �s and a tem-
poral deviation threshold �t, if the MaxDTW distance
between two trajectories Ta and Tb is smaller than �s, we also
need to modify some timestamps of either Ta or Tb such that
the maximum time difference between the matching sample
pairs (along the optimal alignment path) does not exceed �t
as well. Each correction of time will incur some extra space,
denoted by c, to record the position where this correction
takes place and the new timestamp. Here we set c ¼ 4 bytes
to record the index (15 bits) of corrected samples and time
(e.g., seconds) of day (17 bits). However, c can be reconfig-
ured to suit different application requirement. The total extra
space incurred by rectifying the timestamps of Tb to match Ta

is called Time Correction Cost, denoted asC�t
Ta
ðTbÞ.

Suppose the matched sample pairs between Ta and Tb

when calculating theirMaxDTWdistance are ða1; b1Þ, ða2; b2Þ,
..., ðan; bnÞ (n � jTa þ Tb � 1j). Note that this representation

contains replication of original samples, i.e., :::; ai; ::: may
refer to the same sample in Ta, since a sample in TaðTb) can
match multiple samples in TbðTa). Then the time correction
cost C�t

Ta
ðTbÞ can be derived by sequentially processing each

ðai; biÞð1 � i � nÞ, and performing the following actions:

1) Initialize t ¼ 0 to record the most recent correct time-
stamp of Tb and set b0:t ¼ 0, C�t

Ta
ðTbÞ ¼ 0;

2) If jtþ bi:t� bi�1:t� ai:tj � �t, update t ¼ tþ bi:t� bi�1:t;
3) Otherwise update t ¼ maxfai:t; bi�1:tg, C�t

Ta
ðTbÞ ¼ C�t

Ta

ðTbÞ þ c, and record the actual index of bi in Tb and

the corrected timestamp t.
When applying the above procedure to our spatio-temporal

compression, Ta is the given trajectory to be compressed and
Tb is a MRT of Ta. Reconstruction of Ta’s temporal informa-
tion with Tb is also straightforward. Scanning from the first
point of Tb, we will replace bi’s timestamp with the corrected
timestamp if a correction record can be found; otherwise set
bnewi :t ¼ bnewi�1 :tþ boldi :t� boldi�1:t.

Algorithm 2. Optimal Spatial Compression

Input: T ,MðT Þ
Output: T 0

1 T 0  null;
2 FT ½0�  0;
3 for i 1 to jT j do
4 min 8jT j;
5 for j 1 to i do
6 ifMðT ðj;iÞÞ 6¼ ; and FT ½j� 1� þ 8 < min then
7 min FT ½j� 1� þ 8;
8 pre½i�  j� 1;
9 FT ½i�  min;
10 i jT j;
11 while 0 < i � jT j do
12 if pre½i�  i� 1 then
13 Add pi into T 0;
14 i i� 1;
15 else
16 Add arbitrary Tðk;gÞ 2MðT ðpre½i�þ1;iÞÞ into T 0;
17 i pre½i�;
18 returnT 0;

5.2 Greedy Spatio-Temporal Compression

Similar with GSC algorithm, Greedy Spatio-temporal
Compression (GSTC) algorithm also iteratively replaces
the longest sub-trajectory (i.e., T ði;jÞ) with its MRT. How-
ever, instead of choosing an arbitrary MRT for this longest
sub-trajectory, GSTC finds the one with least time correc-
tion cost in order to minimize the storage for compressed
trajectory.

Applying GSTC algorithm on the running example in
Fig. 3, the selected MRTs and time correction cost are
detailed in Table 1. Since each original sample point costs 12
bytes now (with timestamp), the storage cost of T 0 is 76 bytes,
which is 31.67 percent of the original space cost (240 bytes).

5.3 Optimal Spatio-Temporal Compression

In this part we extend OSC algorithm to Optimal Spatio-
temporal (OSTC) algorithm in below.

Fig. 3. Matchable reference trajectories.
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FT ½i� ¼
0 if i ¼ 0
min

n
FT ½i� 1� þ 12; min

1�j< i^MðT ðj;iÞÞ6¼;

fFT ½j� 1� þ CT ðj;iÞ ðMoptðT ðj;iÞÞÞg þ 8
o

otherwise

8>><
>>:

;

FT ½i� records the minimal space needed for compressing
sub-trajectory T ð1;iÞ. FT ½0� ¼ 0 defines the termination condi-
tion. For i � 1, the algorithm either 1) keeps the original
sample pi 2 T ; or 2) compresses T ðj;iÞ withMoptðT ðj;iÞÞ. In the
first case, the final space cost is simply the compressed
space of T ð1;i�1Þ plus 12 bytes (for storing pi). In the second
case, the space cost is the minimal sum of compressed space
for T ð1;j�1Þ, time correction cost of MoptðT ðj;iÞÞ and space for
MoptðT ðj;iÞÞ (8 bytes). The process of calculating FT ½jT j� and
construction of T 0 is similar to Algorithm 2 and thus omitted
here due to space limitation. The time complexity of this
algorithm is also OðjT j2Þ.

Taking the example in Fig. 3, we employ OSTC algorithm
to calculate the proper MRTs and time correction shown in
Table 2, and achieve the minimal storage size of T 0 (i.e.,
64 bytes), resulting in an approximately 15.79 percent
reduction compared to GSTC algorithm.

6 QUERYING COMPRESSED TRAJECTORIES

The utility of trajectory compression depends on the space
storage reduction as well as the effective and efficient trajec-
tory query processing in trajectory databases. The proposed
OSTC algorithm can compress the raw trajectories in such a
way that the spatial and temporal information loss can be
boundedwith a deviation threshold, � (i.e., �s and �t), where �
can be set as a very small value. This means the spatial paths
and timestamps of a raw trajectory can be captured almost
exactly when being compressed. Therefore we can not only
directly decompress the compressed trajectories for location
based service applications, but also use the compressed
trajectories for various queries without fully decompressing
the data, in which the error of every point in the partially

decompressed trajectories is less than �. In this section, we
focus on demonstrating that the compressed trajectories can
support the range query, a typical trajectory query aiming to
evaluate spatio-temporal relationships among spatial data
objects. Informally, in Fig. 4, given a raw trajectory set (i.e.,
fT1; T2; T3; T4g) and reference trajectory set (i.e., R ¼ fT1;T2;
T3g) generated by SRR algorithm previously, range query
searches for raw trajectories that belong to the specified
spatio-temporal region.

The query processing is to extract qualitative information
from trajectory databases that contain very large numbers
of trajectories, whose efficiency depends crucially upon an
appropriate index of trajectories. Due to the unique data
characteristics of the compressed trajectories (e.g., containing
sequence of both reference (sub-)trajectories and original
samples of raw trajectories) and the unique query character-
istics (e.g., often querying data in an instantaneous/continu-
ous time window), we design a hybrid spatio-temporal
index structure by enhancing R-tree [21] with inverted files.
The index structure is presented in Section 6.1, followed by
the detailed query processing in Section 6.2.

6.1 Hybrid Index

In this section, we introduce a hybrid index structure, called
IR-tree [22], based on R-tree with each node enhanced with
reference to an inverted file for the reference (sub-)trajectories
contained in the sub-tree rooted at the node. Compared with
the query processing over original trajectories (i.e., process
on original data with R-tree), the query processing over com-
pressed trajectories has several non-negligible advantages.
First, since the volume of reference trajectories is much less
(several orders of magnitude less) than the raw trajectories,
there will be less dead space in the IR-tree, which in turn is
more efficient for search. Moreover, the R-tree built using ref-
erence trajectories is small and compact enough to fully fit
intomemory to avoid physical I/Ooperations, so that search-
ing on such an in-memory R-tree is comparatively faster. Our
experimental studywill also verify these advantages.

In our index structure, a leaf nodeN contains a number of
entries in the form of (T:id;MBR; ifile), in which T:id is an
identifier that points to the reference (sub-)trajectories or the
uncompressed part of compressed trajectory,MBR is a rect-
angle with two spatial dimensions, and ifile is a pointer to
an inverted file for the reference (sub-)trajectories being
indexed. Note that for the uncompressed segments of a
compressed trajectory, we regard them as new reference

TABLE 1
Compressed Trajectory from GSTC

T MoptðT ði;jÞÞ Time Correction C�t
T

T ð1;3Þ T
ð12;14Þ
1 T

ð12Þ
1 :t ¼ 1 4

T ð4;9Þ T
ð3;8Þ
2 T

ð4Þ
2 :t ¼ 6, T

ð7Þ
2 :t ¼ 8 8

T ð10;16Þ T
ð6;15Þ
4 T

ð6Þ
4 :t ¼ 10, T

ð9Þ
4 :t ¼ 12, T

ð11Þ
4 :t ¼ 13, T

ð13Þ
4 :t ¼ 14 16

T ð17Þ T ð17Þ 0

T ð18;20Þ T
ð8;10Þ
7 T

ð8Þ
7 :t ¼ 18 4

TABLE 2
Compressed Trajectory from OSTC

T MoptðT ði;jÞÞ Time Correction C�t
T

T ð1Þ T ð1Þ 0

T ð2;9Þ T
ð1;8Þ
2 T

ð4Þ
2 :t ¼ 6, T

ð7Þ
2 :t ¼ 8 8

T ð10;15Þ T
ð7;12Þ
5 T

ð7Þ
5 :t ¼ 10 4

T ð16;17Þ T
ð13;14Þ
6 T

ð13Þ
6 :t ¼ 16 4

T ð18;20Þ T
ð8;10Þ
7 T

ð8Þ
7 :t ¼ 18 4

Fig. 4. A set of raw trajectories and reference trajectories.
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trajectories and organize them in the index structurewith the
same way as reference trajectories. In this way, a single top-
down traversal in this unified IR-tree can cover both com-
pressed and uncompressed parts simultaneously. Taking T4

in Fig. 4 as an example, T4 can be represented by ðTð1;4Þ3 ;

T
ð9;14Þ
1 ; T

ð11;13Þ
4 Þ, where T

ð11;13Þ
4 is the uncompressed part of T4

that is regarded as a new reference trajectory when building
the index. The inverted file consists of a hash table and a set
of posting lists, wherein the hash table is used to index all the
distinct reference (sub-)trajectories in N with a lookup time
complexity of Oð1Þ. For each reference (sub-)trajectory Tði;jÞ

in the hash table, we maintain a list of ðT ðm;nÞ; T ðmÞ:t; T ðnÞ:tÞ
triples for the raw trajectories relevant with Tði;jÞ, which are
sorted by their start timestamp (i.e., T ðmÞ:t). Note that the
timestamps of the compressed part (consisting of a set of
reference trajectories) in compressed trajectories may not be
the actual timestamps. Therefore, before constructing the
inverted lists, we recover the timestamps of the compressed
part by scanning from the first point of each compressed

sub-trajectory T 0sub. In particular, the timestamp of T
0ðiÞ
sub will

be replaced with the corrected timestamp when a correction

record can be found; otherwise it will be set to T
0ði�1Þ
sub :tþ

TðiÞ:t� Tði�1Þ:t, where T is the reference trajectory used to
compress T 0sub.

On the other hand, the entries in a non-leaf node N are of
form (ptr;MBR; ifile), in which ptr is the pointer to the child
nodes ofN ,MBR is theminimumbounding rectangle cover-
ing all the child nodes, and ifile denotes an inverted file that
indexes all the distinct reference (sub-)trajectories within N
in a hash table. The IR-tree can be constructed in the similar
way of R-tree (i.e., insertion operation) with an exception
that the inverted files have to be updated from the leaf to the
root when a new reference (sub-)trajectory is added.‘

Fig. 5 presents the illustration of the whole hybrid index
structure. Given several raw trajectories, fT1; T2; T3; T4g,
which can be totally represented by a set of reference trajec-
tories (see Fig. 4), we first need to obtain the MBRs of these
reference trajectories, as shown in Fig. 5a. Subsequently, the
R-tree is constructed based on the distribution of these refer-
ence (sub-)trajectories and MBRs in Fig. 5b. The root of the
R-tree contains three data entries E1, E2 and E3 referring to
the children nodes N8, N9 and N10 separately. N8 represents
the minimum bounding rectangle of its children nodes N1

and N2, and the information of the bounding region is con-
tained in E1, as with N9 and N10. The spatial objects (i.e., the
segments of the reference trajectories) are referred by the
entries of the leaf nodes in R-tree. In Fig. 5c, the invert lists
are given for each reference (sub-)trajectories that are used
to compress the given raw trajectories.

6.2 Query Processing

After constructing the hybrid index, we next detail the query
processing based on the index structure. Since it is expensive
to calculate the spatial relationship (e.g., distance, contain-
ments, etc) between spatial objects (i.e., a query region and a
trajectory in the range query), a query processing algorithm
typically adopts a filter-and-refinement approach [23]. In
particular, the filter step takes relatively cheap computation
cost to find a small set of candidate trajectories that are likely
to be the results, which is a super set of the result for the orig-
inal query. Then these candidate trajectories are further proc-
essed using geometric algorithms (e.g., distance calculation)
to obtain an actural result at the refinement step.

Subsequently, we discuss how to efficiently process range
query based on the IR-tree. The range query aims to retrieve
all the raw trajectories within a specified spatio-temporal

Fig. 5. Illustration of index structure.
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window, e.g., a sphere of 10 km radius around a location (see
the circular query region in Fig. 5a) in the time interval,
f8; 9; 10g. In the filter step, IR-tree is traversed from the root
and examines the query region against the MBR in each
entry visited to check if they are relevant (i.e., contained/
overlapped) with each other. The range query processing
finally finds all the relevant leaf nodes. Considering the case
in Fig. 5a and 5b, N10 is visited since its MBR overlaps with

the Query Region (QR). Then for the same reason N7 is vis-

ited, and T
ð5;10Þ
3 is found fromN7. Finally, we can easily iden-

tify the candidate trajectory T2 in the specific time interval
with the inverted lists in Fig. 5c, and examine whether the
candidate actually overlaps with the query region in the
refinement step.

For other kinds of queries like Trajectory-based query (T-
query), we can first simply convert the queries into range
query and then apply the filter-and-refinement approach.
For instance, given a query trajectory (e.g., T4 in Fig. 4) and a
spatial threshold �0, a T-query aims to find trajectories that
satisfy a given distance function to the query trajectory (e.g.,
the MaxDTW distance between the result trajectory and the
query trajectory is less than �0). Specifically, we can first con-
struct several �0-MBRs, each of which extends the original
MBR’s length and width by 2�0 respectively (as shown in
Fig. 6). These �0-MBRs can be regarded as the query regions,
and then we can process range query based on the IR-tree to
identify the result trajectories.

7 EXPERIMENT

In this section, we conduct extensive experiments to vali-
date the effectiveness of our proposed algorithms. All the
algorithms are implemented on an Intel(R) Xeon(R) CPU
E5-2630 v2 @ 2.60 GHZ with 256 GB RAM.

7.1 Experiment Setup

We use two real trajectory datasets generated by taxis in
Beijing andChengdu respectively over oneweek. The Beijing

dataset, denoted by BJ, contains about 2 million trajectories,
and the Chengdu dataset, denoted by CD, contains about 1.4
million trajectories. In both datasets, trajectories in one day
are used as training dataset to construct the reference set,
and the rest are used to test the performance of different
compression algorithms under various parameter settings
with the average performance for one day recorded. The
ranges and default values (underlined) of all the parameters
are summarized in Table 3.

7.2 Experiment Results

7.2.1 Performance of Reference Set Construction

We first evaluate the performance of reference set construc-
tion and its impact to spatial compression on BJ dataset. Two
metrics, Size of Reference Set (the number of sample points in
the reference set) and Compression Ratio (CR), are compared
in this set of experiments, wherein CR measures how much
space has been saved by compressing raw trajectories. Specif-
ically, CR is defined as the ratio between space costs of raw

trajectories and compressed trajectories, i.e., CR ¼ spaceðT Þ
spaceðT 0Þ,

where an original sample point contains its longitude, lati-
tude and timestamp (costing 12 bytes), an MRT Tðk;gÞ used to
represent the raw trajectories is recorded as a triplet
ðT:id; k; gÞ (costing 8 bytes), and a time correction costs 4
bytes. We compare these two metrics among the following
methods (specified in Section 3) by varying jDRj, �s.
1) FPA: FPA with minimum support 100.
2) SRR-5: SRR with minimum sub-trajectory length 5.
3) SRR-20: SRR with minimum sub-trajectory length 20.
4) TRR-40: TRR with overlap threshold 40 percent.
5) TRR-70: TRR with overlap threshold 70 percent.
6) CA-3: CA with compression ratio threshold 3.
7) CA-5: CA with compression ratio threshold 5.
Effect of jDRj. In this set of experiment, we study the effect

of jDRj. As shown in Fig. 7a, naturally the sizes of reference
sets generated from all approaches increase when more
training trajectories are used. However, we also notice that
the increase becomes slower when jDRj > 150k since with
more reference trajectories accumulated there is increasing
chance that subsequently added trajectories are redundant.
Among those competing methods, FPA generates the small-
est reference set while TRR-70 results the largest followed by
CA-5, SRR-20, TRR-40, CA-3 and SRR-5. It is found that
the size of reference set almost stops growing beyond 400k,
which only takes a few megabytes memory space. From
Fig. 7b, the compression effectiveness heavily depends on
the size of reference set since a larger reference set normally
means greater coverage hence better compression ratio.
Compression algorithm performs the worst on the reference
set generated by FPA, which aims at capturing the major
traveling patterns of training trajectories. Even though CA-5

Fig. 6. A query trajectory and its �0-MBRs.

TABLE 3
Experiment Parameters

Parameters Values

No. of trajectories to construct
reference set jDRj

50k, 100k, 150k, 200k, 250k

No. of trajectories to be
compressed/queried jDj

200k, 400k, 600k, 800k

Spatial deviation threshold �s 200m, 400m, 600m, 800m, 1000m
Temporal deviation threshold �t 30s, 60s, 90s, 120s, 150s
Length of trajectory jT j 50, 100, 150, 200, 250
Size of query windowQw 2km, 4km, 6km, 8km, 10km
Compression ratio CR 2, 4, 6, 8, 10

Fig. 7. Performance of reference set construction: Effect of jDRj.
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generates a smaller reference set than TRR-70, it has the best
compression ratio, which implies that the reference set gen-
erated by CA-5 is of high coverage and low redundancy.
This is due to the fact that CA directly optimizes the com-
pression ratio during the construction of reference set while
SRR and TRR try tominimize the redundancy.

Effect of �s. Next we study the effect of �s. In Fig. 8a, the
sizes of reference sets decrease with the increase of �s, since
�s affects the granularity of patterns for FPA and the judg-
ment of redundant trajectories for other approaches. Greater
�s means more trajectories become redundant, which in turn
results in smaller reference set. On the compression ratio
aspect, Fig. 8b demonstrates that as �s increases the com-
pression performance improves in spite of smaller reference
set since a given trajectory has more chance to match fewer
but longer reference trajectories.

7.2.2 Performance of Compression Algorithms

In this part we evaluate the effectiveness (compression ratio)
and efficiency (running time) of the proposed compression
algorithms, namely GSC, OSC, GSTC and OSTC, based
on the same reference set generated by compress-based
approach on both trajectory datasets (i.e., BJ and CD data-
sets). Moreover, we also implement two representative
spatio-temporal compression algorithms, namely Normal
Douglas-Peucker (NDP) algorithm based on SED [1] (a spa-
tial trajectory simplification algorithm with synchronous
euclidean distance) and PRESS [10] (a spatial-temporal tra-
jectory compression algorithm with the constraint of road
network), as our competitors. For NDP, we define �s as the
maximal allowed SED between a raw trajectory and its com-
pressed trajectory. Since the spatial compression component
of PRESS is lossless, we use �s and �t to represent the error
metrics, TSND and NSTD, in the temporal compression
component, respectively.

Effect of �s. As expected, compression ratio of all algo-
rithms gradually increases as �s grows (see Fig. 10a and 10c).

Naturally, GSC and OSC achieve the best compression ratio,
since they do not consider temporal information. The result
also verifies our previous lemma that GSC and OSC have the
same power in terms of compression ratio. Moremore, the
compression ratio of OSTC and GSTC grows faster than that
of PRESS and NDP, showing more benefits as �s increases.
OSTC achieves the best compression ratio amongst all
spatio-temporal compression methods, confirming the opti-
mality of our proposed algorithm. In terms of running time
in Fig. 10b and 10d, NDP is fastest and almost not affected by
�s, while OSTC is most time-consuming. The running time of
our proposed algorithms increase since a greater j�sj results
in more MRT enumerations during the compression. PRESS
is also affected by j�sj since it is related to the angular search
region during bounded temporal compression. Moreover,
GSTC (OSTC) runs slower than GSC (OSC) because of the
extra time cost for obtaining the optimalMRT.

Effect of �t. Obviously, as depicted by Fig. 10a and 10c,
NDP, GSC and OSC are not affected by �t since they do not
consider temporal information at all. For GSTC and OSTC, a
smaller �t means more time stamps of the MRTs are likely to
violate the temporal constraint, leading to more time correc-
tion cost, which explains the increasing trend of compression
ratio as �t grows. In addition, the compression ratios of OSTC
and GSTC are very close and both outperform PRESS and
NDP constantly by a large margin. When it comes to effi-
ciency in Fig. 10b and 10d, none of the approaches except
PRESS is affected by �t, which is natural for GSC, OSC and
NDP. As to GSTC and OSTC, �t affects the number of time
stamps to be rectified but the total number of time stamps to
be checked remains the same. The efficiency of PRESS slightly
decreases with �t as its angular search region increases.

Effect of jT j. To study the effect of the length of trajectory,
we select five groups of trajectories from the test dataset,
each including 10000 trajectories with about 50, 100, 150,
200, 250 samples respectively and record the average com-
pression ratio and running time for each group. In Fig. 11a
and 11c, the compression ratios of all methods increase
with jT j, as longer trajectories tend to have more redundant
samples hence there are more room to improve the com-
pression ratio. Regardless of jT j, proposed methods of
REST framework well outperform their competitors con-
stantly. As illustrated in Fig. 11b and 11d, the running time
of all methods increase with the length of trajectory, while
the growth of computational cost for OSTC and OSC is rel-
atively faster due to the quadratic complexity with respect

Fig. 8. Performance of Reference Set Construction: Effect of �s.

Fig. 10. Performance of compression algorithms: Effect of �t.

Fig. 9. Performance of compression algorithms: Effect of �s.
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to jT j when deriving the optimal storage cost based on
dynamic programming.

Reconstruction Error Analysis. Furthermore, to evaluate
the accuracy of trajectory compression, we adopt two meas-
ures, MaxDTW-based and Average Synchronous euclidean
Distance [1] (ASED)-based spatial error, which are respec-
tively quantified by the MaxDTW distance and average
euclidean distance between a raw trajectory and its corre-
sponding decompressed trajectory. The reason we adopt
ASED is that the decompressed trajectory may have differ-
ent length with its raw correspondence. Due to space limit,
we only show the experimental results of BJ dataset. Since
PRESS is spatially lossless, we only compare our compres-
sion algorithms and NDP by varying �s and jT j. Fig. 12a
shows that all our methods have the similar performances
with respect to �s. This is expected as these methods apply
the same error metric (i.e., MaxDTW) during spatial com-
pression. Besides, the spatial error of NDP is higher than
that of our methods, demonstrating the superiority of our
methods. In terms of ASED-based spatial error in Fig. 12b,
NDP performs better than our methods because it adopts
synchronous euclidean distance when compressing trajecto-
ries. From Fig. 12c and 12d we can see that the spatial errors
of all approaches have a growing tendency as jT j is enlarged
since a longer trajectory has more chance to deviate from its
corresponding decompressed trajectory.

7.2.3 Performance of Query Processing

In the final set of experiments, we evaluate the effectiveness
(memory cost of index) and efficiency (running time) of the fol-
lowing methods for processing range queries by varying
the number of trajectories (to be queried) jDj on BJ dataset,
the size of query window jQwj and compression ratio CR:

1) Range query processing on raw trajectories with spa-
tial index is denoted as SI. This approach of query
processing is creating spatial index (i.e., R-tree) on the
original trajectories to speed up the query processing.

2) Range query processing on partially decompressed
trajectory data is denoted as SI-IL. This method takes
IR-tree as the spatial index for compressed trajectories.

In order to compare the performance of the above two
approaches for range query processing, we randomly gener-
ate 103 queries on test dataset (i.e., the trajectory set to be
queried) and record the total running time. These queries
are process in the raw trajectories and compressed trajecto-
ries (generated by OSTC) respectively.

Effect of jDj. To study the scalability of the algorithms, we
generate 5 datasets containing from 200 k to 1000 k trajectories
by random selection from the original trajectory set. Thenwe
run experiments on these five datasets, the results of which
are depicted in Fig. 13. As shown in Fig. 13a, the memory
cost of SI increases as the size of trajectory dataset is enlarged
since its index is mainly established on these trajectories,
while SI-IL keeps a constant memory cost when enlarging
jDj due to the fact that its index is mainly established with
the reference set whose size is stable. When referring to the
running time in Fig. 13b, as expected, though the running
time increase as the number of trajectories increases, our
proposed algorithm scales well with the size of the dataset
generally.

Effect of jQwj. Subsequently, we study the effects of the
size of query window jQwj, the radius of circular query win-
dow, by changing it from 2 km to 10 km. Not surprisingly,
as we can see from Fig. 14, SI-IL significantly outperforms
SI for all values of jQwj in terms of both memory cost and
runtime. For memory cost, SI and SI-IL keep a constant cost
as jQwj increases since the number of trajectories used to
construct the index is stable, which is demonstrated in
Fig. 14a. For efficiency, the performances of both algorithms
deteriorate with the increasing size of query window (see
Fig. 14b). This is because statistically the relevance of a tra-
jectory will be affected by more points as jQwj increases. In
other words, more nodes of the R-tree overlap with the
larger query window and need to be examined. Besides, we
also notice that the running time of SI-IL is far less than that
of SI, which testifies the superiority of SI-IL.

Effect of CR. In the final experiments, we investigate how
the compression ratio CR affects the performance of our
proposed SI-IL method. We choose 5 groups of trajectories
whose compression ratios are approximately equal to 2, 4,
6, 8, 10 respectively. Generally, a large CR means that most

Fig. 11. Performance of compression algorithms: Effect of jT j.

Fig. 12. Spatial error of compression algorithms.

Fig. 13. Performance of query processing: Effect of jDj.

Fig. 14. Performance of query processing: Effect of jQwj.

ZHENG ET AL.: REFERENCE-BASED FRAMEWORK FOR SPATIO-TEMPORAL TRAJECTORY COMPRESSION AND QUERY PROCESSING 2237

Authorized licensed use limited to: Soochow University. Downloaded on April 27,2021 at 03:57:16 UTC from IEEE Xplore.  Restrictions apply. 



part of the raw trajectory can be compressed by the reference
(sub-)trajectories while a smallCRmeansmore original sam-
ples of the trajectory are kept for representing it when being
compressed. From Fig. 15a we can see that, SI-IL approach
performs badly when CR is small (i.e., CR < 3:5), which
consumes more memory than SI, since SI-IL has to construct
a complicated index structure for a large number of original
samples of the trajectories that are used to represent the tra-
jectories. However, when CR � 6, the memory cost remains
relatively small and unchanged. This may be due to the fact
that the raw trajectories can be almost compressed by the ref-
erence (sub-)trajectories and the index can be only con-
structed on the reference (sub-)trajectories. Besides, Fig. 15b
illustrates SI-IL is consistently more efficient than SI, show-
ing the benefits of our proposedmethod.

8 RELATED WORK

8.1 Trajectory Compression

The existing trajectory compression algorithms can be clas-
sified into two categories: 1) spatial compression; 2) spatio-
temporal compression.

Spatial compression algorithms treat trajectories as poly-
lines. For example, Douglas-Peucker algorithm [2] is a classic
line generalization approach that uses a perpendicular dis-
tance threshold to reduce the number of points. As DP algo-
rithm is simple and feasible, a variety of applications have
been proposed [24] to speed up DP algorithm. Bellman’s
algorithm [3] fits a finite number of line segments to a curve
based on dynamic programming, preserving the most essen-
tial spatial features. Due to the pure geometric nature, the
above algorithms cannot be applied when the temporal
information of trajectories alsomatters.

Taking the temporal component of trajectories into
account, Sliding Window Algorithm [6] and Opening Win-
dowAlgorithm [1], [25] are designed to keep spatio-temporal
information of a trajectory within a sliding window to com-
press it. Muckell et al. introduce a heuristic method called
SQUISH [7], using a priority queue where the priority of
each point is defined as an estimate of the error that the
removal of that point would introduce, to compress trajecto-
ries. Recently, a lossless path compressor in road network is
developed in [26], namely Minimum Entropy Labeling,
which guarantees a theoretic bound and achieves practically
high spatio-temporal compressibility. [27] presents a com-
pressed data structure for moving object trajectories, where
the compressed trajectories can be represented as sequences
of road edges. Song et al. develop a framework, PRESS [10],
that separates a given trajectory in a road network into spatial
path and time sequence components. These two components
are then compressed by Hybrid Spatial Compression algo-
rithm and error Bounded Temporal Compression algorithm

respectively, achieving spatial lossless and temporal error-
bounded compression. However, the pre-computation and
storage of all-pair shortest paths and most frequent paths
require a stable road network and large memory space to be
available, which limits its applied scenarios.

8.2 Trajectory Index and Query

As a fundamental trajectory data manipulation, trajectory
query is becoming crucial. Building efficient spatio-temporal
index structures on trajectories can significantly facilitate
query processing in trajectory databases. Koide et al. propose
a novel spatio-temporal index structure for Network-
Constrained Trajectories (NCTs), namely Suffix-array-based
Network-constrained Trajectory index [28]. Then they
further design a compressed-indexmethod for NCTs by con-
verting NCTs into a trajectory string, in which Relative
Movement Labeling and FM-index are incorporated to accel-
erate the query processing [27]. However, the above existing
work targets network-constrained data and uses this charac-
teristic to improve the efficiency of query processing and the
accuracy of the query results. Effective index structures [19],
[29], [30], [31] are built to manage trajectories in euclidean
space and support high performance trajectory queries,
among which R-tree [21] is the most common index adopted
to accelerate the query processing. Here, we also process the
trajectory query over an R-tree index of all the reference
(sub-)trajectories. Notice that we do not consider the STR-
tree or TB-tree [29] for trajectory index since they focus more
on trajectory preservation and leave other spatial properties
like spatial proximity aside, while in the our problem, the R-
tree index is only for fast retrieval of nearest trajectories.

For trajectory query, a typical one asks for the informa-
tion against spatio-temporal relationships between trajecto-
ries and other spatial data objects, i.e., points, regions and
trajectories [23]. For instance, Chen et al. propose k-Path
Nearest Neighbor (k-PNN) query to return the k-NN with
respect to shortest path connecting a given point (i.e., a des-
tination); SETI [32] and PA-tree [33] are designed for range
queries which seek to find all trajectories that intersect a
spatial region; and SECONDO [34] and TrajStore [35] are
developed for performing regular k-NN queries on trajecto-
ries using the euclidean distance.

9 CONCLUSION AND FUTURE WORK

In this paper we propose a novel data-driven framework,
called REST, to compress the spatio-temporal information of
trajectory data. In order to achieve high effectiveness and
efficiency, we addressed a few challenges by proposing dif-
ferent strategies to construct a compact but expressive refer-
ence set, and designing efficient and optimal algorithms to
represent a given trajectory with selected matchable refer-
ence trajectories. To the best our knowledge, it is the first
data-drive approach to compress trajectories in uncon-
strained space with both spatial and temporal dimensions
considered. In addition, as the compressed trajectories are in
the form of sequence of reference trajectories and original
samples, we develop an effective index structure to support
efficient query processing over compressed trajectories with-
out full decompression. Extensive empirical study based on
real trajectories dataset also confirms the superiority of our

Fig. 15. Performance of query processing: Effect of CR.
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proposed framework over the state-of-the-art approaches in
terms of compression ratio, efficiency and space cost.
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