
1
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Abstract—One-class collaborative filtering (OCCF) problems are ubiquitous in real-world recommendation systems, such as news
recommendation, but suffer from data sparsity and lack of negative items. To address the challenge, the state-of-the-art algorithm
assigns uninteracted items with smaller weights of being negative and performs low-rank approximation over the user-item interaction
matrix. However, the prior ratings are usually suggested to be zero but may not be well-defined. To avert the direct utilization of prior
ratings for uninteracted items, we propose a novel ranking-based implicit regularizer by hypothesizing that users’ preference scores for
uninteracted items should not deviate a lot from each other. The regularizer is then used in a ranking-based OCCF framework to
penalize large differences of preference scores between uninteracted items. To efficiently optimize model parameters in this framework,
we develop the scalable alternating least square algorithm and coordinate descent algorithm, whose time complexity is linearly
proportional to the data size. Finally, we extensively evaluate the proposed algorithms on six public real-world datasets. The results
show that the proposed regularizer significantly improves the recommendation quality of ranking-based OCCF algorithms, such as
BPRMF and RankALS. Moreover, the ranking-based framework with the proposed regularizer outperforms the state-of-the-art
recommendation algorithms for implicit feedback.

Index Terms—One-class collaborative filtering, implicit regularization, item recommendation, coordinate descent, alternating least
square.
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1 INTRODUCTION

R RECOMMENDER systems have become one of the most
important ways to satisfy user interests and to increase

the revenue of service providers. In recent years, plenty
of research has concentrated on the recommendation for
implicit feedback, since this data is more prevalent but
full of noise. Implicit feedback is recorded whenever users
interact with information systems. Recommendation for im-
plicit feedback, also referred to as One-Class Collaborative
Filtering (OCCF), aims to infer user interest from abundant
yet noisy data and to provide each user a ranking list of
items by matching user interest with items’ latent property.

However, OCCF is very challenging, since implicit feed-
back is usually very sparse and only includes users’ inter-
acted items. Truly negative and potentially positive items
are mixed together in uninteracted items [1], [2], [3]. Model-
ing uninteracted items plays a very important role in devel-
oping effective OCCF algorithms. Existing works treat inter-
acted items as positive and uninteracted items as negative.
These works can be categorized into two groups. The first
regression-based methods optimize a pointwise weighted
square loss, which sets the prior zero ratings to uninteracted
items and assigns lower confidence to uninteracted items
than interacted items [1], [2], [4], [5]. These works differ
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from each other in how many uninteracted items are consid-
ered for optimization. For example, all uninteracted items
are considered as negative in [1], [4] and partial samples
from them are considered as negative in [2]. Due to the
same confidence of uninteracted items being negative, the
learning of parameters can be very efficient even when all
uninteracted items are considered. The empirical compari-
son in [5] reveals that leveraging more uninteracted items
leads to a higher quality of recommendation. According to
the analysis in [6], [7], the explicit prior ratings suggest that
prediction scores for uninteracted items should not deviate
far from zero values. This constraint is formalized as an
implicit regularizer, penalizing non-zero prediction scores
for uninteracted items. However, the same and zero-valued
prior ratings for all users may be questionable since the prior
ratings may vary from user to user, but no other choices of
prior ratings can be shown to work better.

Alternative ranking-based methods optimize a squared
or non-linear pairwise loss, which also treats uninteracted
items as negative. Instead of setting prior ratings to them,
ranking-based methods assume that interacted items should
be ranked higher than uninteracted items [3], [8], [9], [10].
In other words, the ranking-based methods avert the use of
prior ratings. However, only when the square loss function
is used, all uninteracted items can be efficiently incorpo-
rated [8]. When interacted items are ranked higher than
uninteracted ones, we expect the ideal loss should be small,
but the square loss may be still large. Therefore, they can
not completely guarantee that interacted items are ranked
higher than uninteracted items with respect to each user.
When the non-linear loss functions are applied, we have
to sample some items as negative from a large pool of
uninteracted items, to achieve efficient optimization [3],
[10]. Due to an extremely large number of candidate items,
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only a small set of uninteracted items are used as negative
for parameter learning. It is obvious that they also cannot
guarantee the ranking between interacted items and other
uninteracted items for each user.

To this end, in this paper, we propose a novel ranking-
based implicit regularizer for ranking-based OCCF, by hy-
pothesizing that prediction scores of uninteracted items for
each user should not deviate a lot from each other [11].
The ranking-based implicit regularizer is formulated with
squared differences of prediction scores between any two
uninteracted items for each user. In this way, the proposed
regularizer can implicitly determine personalized prior rat-
ings for each user in an automatic way. Constrained by
the regularizer, the ranking-based OCCF loss functions can
guarantee that more uninteracted items are ranked lower
than interacted items with respect to each user. This can
satisfy the ranking-based requirement better and improve
recommendation quality.

However, optimizing the ranking-based loss functions
with the proposed regularizer is very challenging. For each
user, every pair between uninteracted items is required to
be considered. Since there are only a few interacted items,
the total number of pairs between uninteracted items is
extremely large. Therefore, it is time-consuming to directly
calculate the regularization and its gradient with respect to
latent factors. Without similar consideration to [7], gradient-
based optimization approaches, which update parameters
for users and items simultaneously, would be of low ef-
ficiency. To separate their update for simplification and
improving efficiency, we develop alternating least square
and coordinate descent algorithms to optimize pairwise loss
functions with the proposed regularizer. For the squared
pairwise loss function, parameters are updated in an ex-
act closed-form. For the logit pairwise loss function, we
alternate between deriving a local variational bound of the
logit loss [12] and updating parameters in an approximately
closed-form. Based on a novel caching strategy, the time
complexity in each iteration of optimizing both loss func-
tions is only linearly proportional to the data size.

To summarize, our main contributions are three-fold:
• We propose a novel ranking-based implicit regularizer

and formulate it with squared differences of prediction
scores between any two uninteracted items for each user.
This regularizer plays an important role in better re-
stricting ranking-based OCCF algorithms, such that more
uninteracted items are ranked lower than interacted items
with respect to each user. We apply the proposed regular-
izer for regularizing several ranking-based loss functions,
and show that the regularizer significantly improves the
quality of recommendation.

• We develop alternating least square and coordinate de-
scent algorithms based on a strategy of first caching and
continually updating for efficient optimization. The loss
function can be either squared pairwise loss function or
logit pairwise loss function. The time complexity of both
algorithms is only in linear proportion to data size.

• We extensively evaluate the proposed algorithms on six
real-world datasets, and show that the proposed algo-
rithms outperform the competing baselines, including
RankALS, BPR, WRMF and SQL Rank, revealing the ef-
fectiveness of the proposed regularizer.

2 RELATED WORK

There are two main tasks in recommender systems, rating
prediction and item recommendation. Rating prediction is
investigated with explicit feedback datasets, where users
rate some items with a specified set of ratings, while item
recommendation is usually studied with implicit feedback
datasets, where each user interacts with some items.

Rating prediction aims to predict missing ratings in
a user-item rating matrix, based on intuitions that like-
minded users share many rating patterns and that a user is
likely to rate similar items to her rated ones. The kNN meth-
ods explicitly predict missing ratings with user-user similar-
ity or item-item similarity [13], and have been improved by
removing global effects from the data and globally learning
interpolation weights for all nearest neighbors [14], [15]. The
matrix factorization methods assume the user-item rating
matrix is of low-rank, and directly apply SVD, stochastic
gradient descent and alternating least square for learning
user and item latent factors [16]. These methods may differ
in whether incorporating missing values into loss functions.
The matrix factorization methods were extended to model
in a Bayesian way [17], such that hyperparameters are auto-
matically learned from rating data. Following that, implicit
feedback and side information were incorporated for pro-
moting expressiveness of user latent factors as well as item
latent factors [18], [19], [20]. However, these learning-based
methods follow a Missing At Random (MAR) assumption,
indicating the probability that a rating is missing does not
depend on the value of that rating, or the value of any
other missing ratings [21]. However, this assumption is
usually violated in recommender systems, and the missing
ratings are Missing At Not Random (MANR). Therefore,
these learning-based methods were improved with error-
imputation-based methods [22], [23], an inverse-propensity-
scoring based method [24] or a doubly robust method of
considering both of them [25].

Item recommendation aims to provide a ranking list
of items for each user by learning from implicit feedback
datasets. Since no ratings are in implicit feedback, we do
not encounter the rating prediction problem, and the MANR
assumption is not applicable. However, item recommen-
dation faces the lack of negative items, since only each
user’s interacted items are provided. The whole community
almost agreed with treating interacted items as positive,
but disputed much about how to use uninteracted items.
As discussed in the introduction, uninteracted items are
considered as negative with a lower confidence than inter-
acted items as positive [1], [2], [4], [6], [26], [27], [28], or
considered to be ranked in lower positions than interacted
items [3], [8], [10], [29]. The ranking-based methods averted
the usage of prior ratings for uninteracted items, but how
to effectively exploit uninteracted items is very challeng-
ing. Though square loss can yield a closed-form updating
equation in the alternating least square method when all
uninteracted items are considered [8], accurately ranking
pairs between interacted items and uninteracted ones may
have large loss values. Though logit loss or hinge loss is
almost zero for accurately ranking pairs, a small number of
items should be sampled from uninteracted items for the
sake of efficiency [3], [10]. The sampler should be efficient
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for sampling and effective to pick informative samples. The
common samplers include the uniform based sampler [3],
the popularity based sampler [30], rejection sampling with
the uniform proposal [10], dynamic negative sampler [31]
and decomposable sampler [32], [33]. In this paper, we do
not focus on negative sampling, but on a ranking-based
implicit regularizer, which penalizes large differences of
prediction scores between any two uninteracted items, to
better distinguish interacted items from uninteracted items.

3 RANKING-BASED IMPLICIT REGULARIZER

3.1 Implicit Regularizer
In this paper, we investigate item recommendation for im-
plicit feedback dataset. Assume user-item interaction matrix
R ∈ {0, 1}M×N available, where M denotes the number of
users and N denotes the number of items. Each element rui
indicates whether the user u interacts with the item i. U =
{u1, u2, ..., uM} denotes all users and E = {e1, e2, ..., eN}
denote all items. Eu = {i ∈ E|rui > 0} denotes the items
which the user u interacts with and Ui = {u ∈ U |rui > 0}
denotes the users who have interacted with the item i.

The SOTA regression-based methods treat all uninter-
acted items as negative, but assign them a lower confidence
being negative [1], [4], [6]. In particular, they optimize the
objective function as follows:∑

u,i

wui(rui − pTuqi)
2 + λ(‖P ‖2F + ‖Q‖2F ), (1)

where pu is the latent factor of user u, and qi is the latent
factor of item i. P and Q respectively stack pu and qi by
row. wui equals α when user u interacts with item i and 1
otherwise. α is generally greater than 1.

According to [6], [34], Eq (1) is decomposed into a pre-
diction error term and an implicit regularizer term, which is
defined as: ∑

u

∑
i/∈Eu

(pTuqi − 0)2. (2)

The recommendation for implicit feedback is interpreted
as explicit problems with the additional implicit regular-
izer [6], which penalizes non-zero prediction scores of unin-
teracted items for each user, and plays an important role in
improving deep matching network for recommendation [7].

3.2 Ranking-based Implicit Regularizer
It may be questionable to set the prior ratings of all un-
interacted items for all users to zero, since prior ratings
for uninteracted items should be as least different from
user to user. However, it is difficult to set appropriate
prior ratings for uninteracted items. Observing the implicit
regularizer actually implies some “similarity” among un-
interacted items (preference scores approaching the prior
rating), we propose a ranking-based implicit regularizer, by
hypothesizing each user’s preference scores for uninteracted
items are close to each other. Formally, the ranking-based
implicit regularizer is defined as follows:

Ω =
1

2

∑
u

∑
i<j /∈Eu

(pTuqi − pTuqj)
2

=
1

4

∑
u

∑
i,j /∈Eu

(pTuqi − pTuqj)
2.

(3)

The expression can be written in a symmetric way due to
no contribution of the case i = j and symmetry between
i < j and i > j. Compared with Eq (2), the ranking-
based regularizer eliminates the usage of prior ratings for
uninteracted items through difference of preference scores
between any two uninteracted items. When Ω is decreased,
preference scores of uninteracted items are closer to each
other. Therefore, the ranking-based implicit regularizer pe-
nalizes large differences of preference scores between any
two of uninteracted items, playing a similar role to the
implicit regularizer.

However, directly computing the regularizer and deriv-
ing its gradient is very time-consuming, since the regu-
larizer involves O(MN2) differences of preference scores.
Below we investigate how to reduce a great number of
double computations. Before delving into details, we first
rewrite the ranking-based implicit regularizer as follows:

Ω =
1

4
(Ω0 − 2Ω1 + Ω2),

where
Ω0 =

∑
u

∑
i,j

(pTuqi − pTuqj)
2

Ω1 =
∑
u

∑
i∈Eu

∑
j

(pTuqi − pTuqj)
2

Ω2 =
∑
u

∑
i,j∈Eu

(pTuqi − pTuqj)
2

The regularizer is then decomposed into summation over
a full set of items and summation over each user’s inter-
acted items. We will follow such a decomposition to derive
gradient and derivative of the regularizer with respect to
parameters. The gradient is used for alternating least square
while the derivative is used for coordinate descent.

3.3 Regularizer Gradient
We take each user’s latent factor or each item’s latent factor
as a whole and derive the gradient of the regularizer with
respect to user latent factors and item latent factors. Firstly,
we consider the gradient of Ω1 with respect to pu, latent
factor of user u, which is derived as follows:

∂Ω1

∂pu
=2

∑
i∈Eu

∑
j

(qi − qj)(p
T
uqi − pTuqj)

=2
(
NQT

uQu +NuQ
TQ− q̃q̃Tu − q̃uq̃

T
)
pu

where q̃ =
∑
j qj and q̃u =

∑
i∈Eu

qi. Qu ∈ RNu×K ,
denoting Q[Eu], is a submatrix of Q extracted by Eu.
Nu = |Eu| denotes the number of interacted items of user
u and Cu = |N − Nu| denotes the number of uninteracted
items. Deriving gradient of other two parts with respect to
pu is similar. Aggregating them together, we obtain gradient
of the ranking-based implicit regularizer with respect to pu:

∂Ω

∂pu
= Cu

(
QTQ−QT

uQu

)
pu − (q̃ − q̃u) (q̃ − q̃u)

T
pu

= Cu (S − Su)pu − (q̃ − q̃u) (q̃ − q̃u)
T
pu

(4)
where S = QTQ and Su = QT

uQu. Due to independence
of user latent vectors, the matrix S and the vector q̃ can be
computed prior to updating user latent factors.
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The gradient of the ranking-based implicit regularizer
with respect to item latent factor is as follows:

∂Ω

∂ql
=
∑
u

Cupup
T
uql −

∑
u

pup
T
u (q̃ − q̃u)

−
∑
u∈Ul

Cupup
T
uql +

∑
u∈Ul

pup
T
u (q̃ − q̃u)

=(H −H l)ql − (T − T l)q̃ + P T r̃ − P T
l r̃l.

(5)

where H = P Tdiag(c)P , H l = P T
l diag(cl)P l, T =

P TP , and T l = P T
l P l. The u-th element of c is Cu.

r̃ = diag(PQ̃
T

), where Q̃, of the same size as P , stacks
q̃u by row. Ul is used to extract a submatrix P l from P ,
a subvector r̃l from r̃ and a subvector cl of c. Compared
to the implicit regularizer in Eq (2), gradient with respect
to latent factors is not symmetric any more and becomes
much more complicated. The gradient with respect to an
item latent factor is correlated with other item latent factors,
so that parallel update among items is not feasible any more.

3.4 Regularizer Derivative
Next we separately consider each dimension of latent fac-
tors, and calculate its partial derivative of the regularizer
for subsequent usage in coordinate descent algorithms. We
consider the derivative of the regularizer with respect to
puf , the f -th dimension of user latent vector pu.

∂Ω

∂puf
= Cu(Sff − Suff )puf + Cu

∑
k 6=f

puk(Skf − Sukf )

− (q̃f − q̃uf )2puf − (q̃f − q̃uf )
∑
k 6=f

puk(q̃k − q̃uk) (6)

where Skf is the (k, f) element in the matrix S =∑
j qjq

T
j = QTQ. Sukf is the (k, f) element in the matrix

Su =
∑
i∈Eu

qiq
T
i = QT

uQu. q̃k is the k-th element of the
vector q̃ =

∑
j qj and q̃uf is the f -th element of the vector

q̃u =
∑
i∈Eu

qi.
Similarly, the derivative of the regularizer Ω with respect

to qlf , the f -th dimension of the l-th item latent vector is :

∂Ω

∂qlf
= (Hff −H l

ff )qlf +
∑
k 6=f

(Hkf −H l
kf )qlk

− (tf − tlf )T q̃ + r̃TP [:, f ]− r̃Tl P l[:, f ]

(7)

where Hkf denote the (k, f) element of the matrix H =∑
u Cupup

T
u , H l

kf denotes the (k, f) element of the matrix
H l =

∑
u∈Ul

Cupup
T
u , tf denotes the f -th row of the matrix

T =
∑
u pup

T
u and tlf denotes the f -th row of the matrix

T l =
∑
u∈Ul

pup
T
u . P [:, f ] denotes the f -th column of the

matrix P . Given these derivatives, we can optimize ranking-
based losses with the proposed regularizer by the coordinate
descent algorithms.

4 ONE-CLASS COLLABORATIVE FILTERING WITH
RANKING-BASED IMPLICIT REGULARIZER

We first introduce the loss functions for the ranking-based
collaborative filtering with the normalization strategy to
deal with the imbalance problem between the interacted and

uninteracted items. Then we develop the alternating least
square and coordinate descent algorithms for the square and
logit loss respectively for efficient optimization.

4.1 Loss function

Ranking-based methods do not use explicit prior ratings
for uninteracted items, and exactly align with the ranking-
based implicit regularizer. Basically, ranking-based methods
assume interacted items are ranked higher than uninter-
acted items. Therefore, ranking-based OCCF usually opti-
mizes the following objective function:

L1 =
∑
u

∑
i∈Eu

∑
j /∈Eu

`(rui − ruj , r̂ui − r̂uj) + λR(P ,Q)

where rui denotes the true rating, r̂ui = pTuqi denotes the
predicted rating and R(P ,Q) is the regularization term of
`1-norm or `2-norm. Note that we do not use the absolute
ratings but the relative ratings and avert explicit prior rat-
ings for uninteracted items. In the RankALS [8], rui−ruj = 1
and `(y, ŷ) = (y−ŷ)2, where item popularity is incorporated
for weighting each loss. In this case, all uninteracted items
can be incorporated with efficiency guarantee, but correctly
ranking pairs may also lead to large loss values. In the
BPR [3], `(y, ŷ) = −(y log σ(ŷ) + (1 − y) log(1 − σ(ŷ)))
and rui − ruj = 1. In this case, sampling from uninteracted
items is a necessary condition of efficient training. In other
words, whichever of these loss functions is used, they can
not guarantee that interacted items are ranked higher than
uninteracted ones. Therefore, we will optimize the ranking-
based loss function with the proposed ranking-based im-
plicit regularizer as follows

L =
∑
u

∑
i∈Eu

∑
j /∈Eu

`(1, r̂ui − r̂uj) + λR(P ,Q) + αΩ (8)

where we assume rui − ruj = 1. α controls effect of the
ranking-based implicit regularizer.

However, we observe that the magnitude of implicit
regularizer is much larger than the loss, particularly the BPR
loss, in Eq (8). Therefore, the coefficient α may be too sen-
sitive to tune. According to our experience, the coefficient
is usually very small to achieve best recommendation per-
formance in the validation set. To reduce sensitivity of the
coefficient, and intrinsically address the imbalance between
interacted items and uninteracted items, we introduce a
normalization strategy, which assign user-specific weight
to each loss and each implicit regularizer. Particularly, we
finally optimize the following objective function,

L =

L′︷ ︸︸ ︷∑
u

∑
i∈Eu

∑
j /∈Eu

zu`(1, r̂ui − r̂uj) +λR(P ,Q)

+
1

2
α
∑
u

∑
i<j /∈Eu

yu(r̂ui − r̂uj)2

︸ ︷︷ ︸
Ω′

(9)

where zu = f(Cu×Nu) and yu = f(Cu×Cu) is a normaliza-
tion coefficient for the loss and the regularizer, respectively.
Note that Nu is the number of interacted items of user u and
Cu is the number of uninteracted items. Here, we focus on
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three strategies of the normalization coefficient, by setting
f(x) = 1

x , f(x) = 1√
x

and f(x) = 1
log x . When f(x) = 1

x , it
simply computes the average loss and regularizer for each
user, but weakens contribution of users who have interacted
with many items to the loss. The other two strategies can
alleviate the problem to some extent.

Though we introduce a normalization coefficient into the
regularizer, the gradient and derivative of regularizer with
respect to parameters can be easily obtained by following
the chain rule. Particularly, letting p̆u =

√
yupu and ex-

plicitly showing parameters of the regularizer, Ω̆(P ,Q) =
Ω(P̆ ,Q), and the gradient can be derived as follows

∂Ω̆(P ,Q)

∂pu
=
√
yu
∂Ω(P̆ ,Q)

∂p̆u
= yu

∂Ω(P ,Q)

∂pu
∂Ω̆(P ,Q)

∂qi
=
∂Ω(P̆ ,Q)

∂qi
.

(10)

The derivation can be obtained similarly. However, such a
trick is difficult to use in the loss functions, so we consider
the loss functions one by one.

4.2 Optimizing Square Loss
The square loss is widely used in many machine learning
models, due to yielding closed-form solutions and being
convenience for theoretical analysis. When it is applied for
ranking-based methods in one-class collaborative filtering,
it is formulated as follows:

L′ =
1

2

∑
u

∑
i∈Eu

∑
j /∈Eu

zu (1− (r̂ui − r̂uj))2 (11)

Because of the large number of uninteracted items, straight-
forwardly computing gradient is very time-consuming. The
use of square loss can make gradient computation efficient.
Since we observe that both alternating least square and
coordinate descent work better than gradient descent for
optimizing WRMF [1], the well-known method for recom-
mendation from implicit feedback, below we develop an
alternating least square method and a coordinate descent
method for efficient parameter learning.

4.2.1 Alternating Least Square
The optimization procedure of the alternating least square
alternates between updating user latent vector and updat-
ing item latent vector until convergence. The ALS method
requires us to derive the gradient of the objective function
with respect to latent vectors. The gradient of the regularizer
is given in Section 3.3, so below we derive the gradient of
the loss L′ in Eq (11). The gradient with respect to pu is
elaborated as follows:
∂L′

∂pu
=
∑
i∈Eu

∑
j /∈Eu

−zu(qi − qj)
(

1− (pTuqi − pTuqj)
)

=zu (Nuq̃ −N q̃u) + zu (NuS + (N − 2Nu)Su)pu

− zu
(
q̃u (q̃ − q̃u)

T
+ (q̃ − q̃u) q̃Tu

)
pu.

(12)
Setting ∂L

∂pu
= ∂L′

∂pu
+α ∂Ω

∂pu
+ λpu to zero, we can obtain the

closed-form solution for updating latent vector of user u in
a form of Aupu = bu. Note that q̃ and QTQ should be pre-
computed for efficient computation. Regarding the gradient

Algorithm 1: ALS for Square Loss

Input: The rating matrix R ∈ RM×N

Output: latent factors P ∈ RM×K , and Q ∈ RN×K

1 Randomly initialize P , Q;
2 for u = {1, · · · ,M} do
3 Q̃[u, :]← QT

u1Nu ;
4 r̃[u]← 〈Q̃[u, :],pu〉;
5 q̃ ← QT1N ;
6 repeat
7 S ← QTQ; // O(NK2)
8 for u = {1, · · · ,M} do
9 Su ← QT

uQu ; // O(NuK
2)

10 Compute Au and bu; // O(K2)
11 Solve Aupu = bu ; // O(K3)

12 H̆ ← P T diag(y � c)P ; // O(MK2)

13 T̆ ← P T diag(y)P ; // O(MK2)

14 b̆← P T diag(y)r̃; // O(MK)

15 H̊ ← P T diag(z � c)P ; // O(MK2)

16 T̊ ← P T diag(z)P ; // O(MK2)

17 b̊← P T diag(z)r̃; // O(MK)
18 b← P T (z � n); // O(MK)
19 for l = 1 : N do
20 Compute H̆

l
, T̆

l
, H̊

l
and T̊

l
; // O(NlK

2)
21 Compute Al and bl ; // O(K2)
22 Solve Alql = bl; // O(K3)
23 q̃ ← q̃ − qold

l + ql; // O(K)

24 Q̃Ul
← Q̃Ul

− qold
l + ql; // O(NlK)

25 r̃Ul ← r̃Ul + P T
l (−qold

l + ql) ; // O(NlK)

26 b̆← b̆ + T̆
l
(−qold

l + ql); // O(K2)

27 b̊← b̊ + T̊
l
(−qold

l + ql); // O(K2)

28 until Convergent;

with respect to the item latent vector ql, we elaborate the
similar process as follows :

∂L′

∂ql
=
∑
u/∈Ul

∑
i∈Eu

zupu

(
1−

(
pTuqi − pTuql

))
−
∑
u∈Ul

∑
j /∈Eu

zupu

(
1−

(
pTuql − pTuqj

))
=N(T̊ − T̊

l
)ql − (H̊ − 2H̊

l
)ql − T̊

l
q̃

− P Tdiag(z)r̃ + P T
l diag(zl)r̃l

+ P T (z � n)−NP T
l zl

(13)

where the u-th element of n is Nu. T̊ and H̊ is obtained by
substituting pu with p̊u =

√
zupu in T and H , respectively.

T̊
l

and H̊
l

respectively denote submatrix of T̊ and H̊
extracted by the user set Ul. Setting ∂L

∂ql
= ∂L′

∂ql
+α ∂Ω

∂ql
+λql

to zero, we can obtain the closed-form solution for updating
latent vector of item l in a form of Alql = bl. Due to
independence of item l, T̊ , H̊ and b = P T (z � n) can be
precomputed. However, it is infeasible to precompute q̃, r̃
and b̊ = P Tdiag(z)r̃, since they are continuously changing
when each item latent vector is updated. We develop a
strategy of first caching and continual updating to address
this challenge. The details of procedure are referred in
Algorithm 1, where each line is commented with time cost.
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Complexity Since q̃ and QTQ are precomputed, updating
user latent factor pu only costs O(NuK

2 + K3), where we
assume solving the system of linear equation costs O(K3).
By caching the global quantities and dynamically updating
them, updating ql only costsO(NlK

2 +K3). To summarize,
the time complexity of the proposed learning algorithm
is O

(
‖R‖0K2 + (M +N)K3

)
, where ‖R‖0 denotes the

number of non-zero entries in the interaction matrix R. In
other words, the optimization algorithm is only in linear
proportion to the total number of users’ interacted items.

Regarding of the space complexity, the algorithm needs
O(MK+NK+K2) memory spaces for storing recommen-
dation models. More specifically, The user and item latent
matrices occupies O(MK) and O(NK), respectively. We
also need O(K2) extra space for storing QTQ. Since we
exploit the caching and updating strategy, we needO(MK),
O(K), O(M) extra memory spaces for these matrices Q̃, q̃,
r̃l, respectively.

4.2.2 Coordinate Descent

In spite of being linearly proportional to the number of in-
teracted items, alternating least square is still cubic with the
dimension K, due to the computation of matrix inversion.
To improve the efficiency, we develop an coordinate descent
algorithm, which updates an element of latent factor at a
time given others fixed. Below we first obtain the derivative
with respect to puf

∂L′

∂puf
=zuNuSffpuf + zu(N − 2Nu)Suffpuf

− 2zuq̃uf (q̃f − q̃uf )puf + zuNuq̃f

− zuNq̃uf + zu(N − 2Nu)
∑
k 6=f

pukS
u
kf

+ zuNu
∑
k 6=f

pukSkf − zuq̃uf
∑
k 6=f

puk q̃k

− zuq̃f
∑
k 6=f

pukq̃uk + 2zuq̃uf
∑
k 6=f

pukq̃uk

(14)

We note that the time complexity of computing Su is
O(NuK

2). Since each time we only update one factor, the
computation can be accelerated. In particular, we do not
compute Su in advance, instead we directly compute Suff
and

∑
k 6=f pukS

u
kf as follows:

Suff =
∑
i∈Eu

q2
if ,∑

k 6=f
pukS

u
kf =

∑
i∈Eu

∑
k 6=f

pukqikqif =
∑
i∈Eu

r̂fuiqif .

where r̂fui = r̂ui − pufqif . As long as we first cache pre-
diction scores for each user’s interacted items, these two
quantities can be computed in O(Nu) for each factor.

Next we obtain the derivatives with respect to qlf ,

∂L′

∂qlf
= N(T̊ff − T̊ lff )qlf − (H̊ff − 2H̊ l

ff )qlf − t̊
l

f q̃

+N
∑
k 6=f

(T̊kf − T̊ lkf )qlk −
∑
k 6=f

(H̊kf − 2H̊ l
kf )qlk

− b̊f + P l[:, f ]Tdiag(zl)r̃l + bf −NP l[:, f ]Tzl

(15)

Algorithm 2: Coordinate Descent for Square Loss

Input: The rating matrix R ∈ RM×N

Output: Latent factors P ∈ RM×K , and Q ∈ RN×K

1 Randomly initialize P , Q;
2 for u = {1, · · · ,M} do
3 Q̃[u, :]← QT

u1Nu ;
4 r̃[u]← 〈Q̃[u, :],pu〉;
5 q̃ ← QT1N ;
6 repeat
7 S ← QTQ; // O(NK2)
8 for u = {1, · · · ,M} do
9 r̂Eu ← Qupu ; // O(NuK)

10 for f = {1, · · · ,K} do
11 Compute Su

ff ,
∑

k 6=f pukS
u
kf ; // O(Nu)

12 Update puf ; // O(K)
13 r̂Eu ← r̂Eu + (puf − polduf )Qu[:, f ];

14 H̆ ← P T diag(y � c)P ; // O(MK2)

15 T̆ ← P T diag(y)P ; // O(MK2)

16 b̆← P T diag(y)r̃; // O(MK)

17 H̊ ← P T diag(z � c)P ; // O(MK2)

18 T̊ ← P T diag(z)P ; // O(MK2)

19 b̊← P T diag(z)r̃; // O(MK)
20 b← P T (z � n); // O(MK)
21 for l = {1, · · · , N} do
22 r̃0

Ul
← r̃Ul ; // O(Nl)

23 r̂Ul ← P lql ; // O(NlK)
24 r̄Ul ← P lq̃ ; // O(NlK)
25 for f = {1, · · · ,K} do
26 Compute H̊u

ff ,
∑

k 6=f pukH̊
u
kf ; // O(Nl)

27 Compute H̆u
ff ,
∑

k 6=f pukH̆
u
kf ;

28 Compute T̊u
ff ,
∑

k 6=f pukT̊
u
kf ;

29 Compute T̆u
ff ,
∑

k 6=f pukT̆
u
kf ;

30 Compute t̊
l
f q̃ and t̆

l
f q̃ ; // O(Nl)

31 b̆f ← b̆f + P l[:, f ]T diag(y)(r̃Ul − r̃0
Ul

) ;
32 b̊f ← b̊f + P l[:, f ]T diag(z)(r̃Ul − r̃0

Ul
) ;

33 Update qlf ; // O(K)
34 q̃f ← q̃f + qlf − qoldlf ;
35 Q̃[Ul, f ]← Q̃[Ul, f ] + qlf − qoldlf ;
36 r̃Ul ← r̃Ul + P l[:, f ](qlf − qoldlf ) ; // O(Nl)
37 r̂Ul ← r̂Ul + P l[:, f ](qlf − qoldlf ) ; // O(Nl)
38 r̄Ul ← r̄Ul + P l[:, f ](qlf − qoldlf ); // O(Nl)

39 until Convergent;

We also do not compute H̊
l

and T̊
l

in advance, we directly
compute the related quantities as follows

T̊ lff =
∑
u∈Ul

zup
2
uf ,

H̊ l
ff =

∑
u∈Ul

Cuzup
2
uf ,∑

k 6=f
qlkT̊

l
kf =

∑
u∈Ul

zu(r̂ful)puf ,∑
k 6=f

qlkH̊
l
kf =

∑
u∈Ul

Cuzu(r̂ful)puf ,

t̊
l

f q̃ =
∑
u∈Ul

zupufp
T
u q̃.

As long as we additionally cache r̄u = pTu q̃, these quantities
are computed in O(Nl). By observing only users in Ul are
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used for computation, we suggest updating r̄u only for
users in Ul instead of the whole users after updating each
factor. This dramatically reduces the computational cost
compared with the ALS method. The details of procedure
are referred in Algorithm 2.

Complexity Compared with alternating least square
method, matrix inversion is not required in the coordinate
descent optimization method. By caching the global quan-
tities and dynamically updating them, the time complexity
of parameter learning is now reduced to O(|R|K + (M +
N)K2), K times faster than alternating least square. How-
ever, it may require more iterations for convergence. The
space complexity of optimizing recommendation models is
the same as ALS in Section 4.2.1, i.e., O(MK +NK +K2).

4.3 Optimizing Logit Loss

The square loss can yield closed-form equations for up-
dating parameters, but may lead to large loss values for
accurately ranking pairs. In this section, we investigate how
to optimize the ranking-based logit loss with the proposed
regularizer. Different from the square loss, it is impossible
to incorporate all uninteracted items at a time. To address
the issue, we sample the same size of uninteracted items
as interacted items, and assume they should be ranked
lower than interacted items in the ranking-based logit loss,
following previous work [3]. Then, the ranking-based logit
loss with the proposed regularizer is formulated as follows:

L′ =
∑
u

∑
i∈Eu

∑
j∈Fu

zu log (1 + exp (− (r̂ui − r̂uj)))

where Fu is the set of sampled negative items for user
u. Different from the Bayesian Personalize Ranking (BPR)
loss, which compares an interacted item with a sampled
uninteracted item, the loss function compares an interacted
item with all items in Fu.

Another issue of the rankingb-based logit loss lies in
difficulty of directly deriving the closed-form updating
equations. Here, we seek a upper variational quadratic
bound of the logit loss [12], [34] and then derive the closed-
form updating equations for alternating least squares and
coordinate descent methods. Particularly,

log
(

1 + e−r̂uij

)
= log(1 + er̂uij )− r̂uij

≤λ (ε̂uij)
(
r̂2
uij − ε̂2uij

)
− 1

2
(r̂uij + ε̂uij) + log(1 + eε̂uij )

where λ(x) = 1
4x tanh

(
x
2

)
= 1

2x

(
σ(x)− 1

2

)
and σ(x) is the

sigmoid function. The equality holds only if ε̂uij = r̂uij .
By setting r̂uij = (r̂ui − r̂uj), the ranking-based logit loss is
bounded from the above by

L̂′ =
∑
u

∑
i∈Eu

∑
j∈Fu

zu

(
λ (ε̂uij) (r̂ui − r̂uj)2 − 1

2
(r̂ui − r̂uj)

)

where ε̂uij is the most recent estimation of r̂uij . Next we
elaborate the ALS and CD algorithms for optimizing the
ranking-based logit loss.

4.3.1 Alternating Least Square
The gradient of L̂′ with respect to user latent vector pu is
derived as follows:

∂L̂′
∂pu

=
∑
i∈Eu

∑
j∈Fu

2zuλ(ε̂uij)
(
qi − qj

) (
qi − qj

)T
pu

−
∑
i∈Eu

∑
j∈Fu

1

2
zu
(
qi − qj

)
=2zu

∑
i∈Eu

∑
j∈Fu

λ(ε̂uij)

 qiq
T
i pu

+ 2zu
∑
j∈Fu

∑
i∈Eu

λ(ε̂uij)

 qjq
T
j pu

− 2zu
∑
i∈Eu

∑
j∈Fu

λ(ε̂uij)
(
qiq

T
j pu + qjq

T
i pu

)
− 1

2
zuNu

∑
i∈Eu

qi +
1

2
zuNu

∑
j∈Fu

qj

(16)

For efficient computation, we cache prediction scores for
positive items in a sparse matrix R̂

+
and negative items

in a sparse matrix R̂
−

, so that λ(εuij) is computed in O(1).
Setting ∂L

∂pu
= ∂L̂′

∂pu
+α ∂Ω

∂pu
+ λpu to zero, we can obtain the

closed-form solution for updating latent vector of user u in
a form of Aupu = bu. Computing a part of Au in Eq (16) is
achieved with a two-layer loop, which costs O(N2

uK
2).

The gradient of L̂′ with respect to item latent vector ql is
derived as follows:

∂L̂′
∂ql

=
∑
u∈Ul

∑
j∈Fu

2zuλ (ε̂ulj)
(
pTuql − pTuqj

)
pu −

1

2
zupu

−
∑
u∈Vl

∑
i∈Eu

2zuλ (ε̂uil)
(
pTuqi − pTuql

)
pu +

1

2
zupu

=2
∑
u∈Ul

zu
∑
j∈Fu

λ(ε̂ulj)pup
T
uql

+ 2
∑
u∈Vl

zu
∑
i∈Eu

λ(ε̂uil)pup
T
uql

− 2
∑
u∈Ul

zupu
∑
j∈Fu

λ(ε̂ulj)r̂
−
uj

− 2
∑
u∈Vl

zupu
∑
i∈Eu

λ(ε̂uil)r̂
+
ui

− 1

2

∑
u∈Ul

zuNupu +
1

2

∑
u∈Vl

zuNupu

(17)
where Vl is a set of users without interacting item l. We
follow the similar first-caching-and-continual-updating
strategy to efficiently compute high-cost quantities. Setting
∂L
∂ql

= ∂L̂′

∂ql
+ α ∂Ω

∂ql
+ λql to zero, we can obtain the closed-

form solution for updating ql in a form of Alql = bl. The
details of procedure are referred in Algorithm 3.

Complexity According to Algorithm 3, it is easy to
understand that time complexity of updating user latent
factor is O(

∑
uN

2
uK

2 + MK3). Regarding to updating
latent factor for all items, the two-layer loop costs
O
(
K2(

∑N
l=1

∑M
u δ+

ul

∑N
j=1 δ

−
uj +

∑N
l=1

∑M
u δ−ul

∑N
j=1 δ

+
uj)
)
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Algorithm 3: ALS for Logit-Loss

Input: The rating matrix R ∈ RM×N

Output: Latent factors P ∈ RM×K , and Q ∈ RN×K

1 Randomly initialize P , Q;
2 for u ∈ {1, · · · ,M} do
3 Q̃[u, :]← QT

u1Nu ;
4 r̃[u]← 〈Q̃[u, :],pu〉;
5 q̃ ← QT1N ;
6 repeat
7 for u ∈ {1, · · · ,M} do
8 Sample item set Fu from E\Eu;

9 S ← QTQ; // O(NK2)
10 for u ∈ {1, · · · ,M} do
11 r̂+

Eu
, r̂−Fu

← Q[Eu, :]pu,Q[Fu, :]pu ;
12 Au ← Hessian matrix of

(
αΩ + 1

2
λ‖pu‖2

)
;

13 for i ∈ Eu do
14 for j ∈ Fu do
15 λ(êuij)← λ(r̂+ui − r̂

−
uj); // O(1)

16 Update Au; // O(K2)

17 Compute bu; // O(NuK)
18 Solve Aupu = bu ; // O(K3)
19 r̂+

Eu
, r̂−Fu

← Q[Eu, :]pu,Q[Fu, :]pu

20 H̆ ← P T diag(y � c)P ; // O(MK2)

21 T̆ ← P T diag(y)P ; // O(MK2)

22 b̆← P T diag(y)r̃; // O(MK)
23 for l = 1 : N do
24 r̂+

Ul
, r̂−Vl

← P [Ul, :]ql,P [Vl, :]ql ;
25 Al ← Hessian matrix of

(
αΩ + 1

2
λ‖ql‖2

)
;

26 bl ← − 1
2

∑
u∈Ul

zuNupu + 1
2

∑
u∈Vl

zuNupu;
27 for u ∈ Ul do
28 for j ∈ Fu do
29 λ(êulj)← λ(r̂+ul − r̂

−
uj); // O(1)

30 Update Al, bl; // O(K2)

31 for u ∈ Vl do
32 for i ∈ Eu do
33 λ(êuil)← λ(r̂+ui − r̂

−
ul); // O(1)

34 Update Al, bl; // O(K2)

35 Solve Alql = bl; // O(K3)
36 for u ∈ Ul do
37 Update score of item l in r̂+

Eu
, r̂−Fu

;

38 q̃ ← q̃ − qold
l + ql; // O(K)

39 Q̃Ul
← Q̃Ul

− qold
l + ql; // O(NlK)

40 r̃Ul ← r̃Ul + P T
l (−qold

l + ql) ; // O(NlK)

41 b̆← b̆ + T̆
l
(−qold

l + ql); // O(K2)

42 until Convergent;

in total, where we use δ+
uj indicate item j is positive and

δ−uj indicate item j is negative. The time complexity
equals O(

∑
uN

2
uK

2) by exchanging the first two
summations. One thing to pay special attention is Line
37 in Algorithm 3, where we additionally store element
index of Eu and Fu to ensure O(1) update. Therefore,
the total time complexity of the optimization algorithm
is O(

∑
uN

2
uK

2 + (M + N)K3). The space complexity of
optimizing recommendation models is the same as ALS in
Section 4.2.1, i.e., O(MK +NK +K2).

4.3.2 Coordinate Descent

Next we investigate how to optimize the objective function
with coordinate descent. We first derive the derivative of the
objective function with respect to puf as follows:

∂L̂′
∂puf

=
∑
i∈Eu

∑
j∈Fu

2zuλ(ε̂uij) (qif − qjf )
2
puf

+
∑
i∈Eu

∑
j∈Fu

2zuλ(ε̂uij) (qif − qjf )
(
r̂fui − r̂

f
uj

)
−
∑
i∈Eu

∑
j∈Ku

1

2
zu(qif − qjf )

(18)

where r̂fui = r̂ui − pufqif . The derivative with respect to qlf
is given as:

∂L̂′
∂qlf

=
∑
u∈Ul

∑
j∈Fu

2zuλ(ε̂ulj)
(
r̂fulpuf + p2

ufqlf − r̂ujpuf
)

+
∑
u∈Vl

∑
i∈Eu

2zuλ(ε̂uil)
(
r̂fulpuf + p2

ufqlf − r̂uipuf
)

−
∑
u∈Ul

1

2
zuNupuf +

∑
u∈Vl

1

2
zuNupuf

(19)
Setting ∂L

∂puf
= ∂L̂′

∂puf
+ α ∂Ω

∂puf
+ λpuf = 0 and ∂L

∂qlf
=

∂L̂′

∂qlf
+ α ∂Ω

∂qlf
+ λqlf = 0, we can take turn to update

each factor of latent factors until convergence. Different
from alternating learning square, the variational parameter
λ(ε̂uij) should be updated whenever a factor is updated.
This means λ(ε̂uij) is computed K times as many as the
alternating least square method. However, when only one
factor is updated each time, the loss could be closer to the
upper bound. According to Algorithm 2 and Algorithm 3, it
is easy to figure out the detailed procedure of the coordinate
descent algorithm, so that we omit it for space limitation.
Based on the analysis of Algorithm 2, it is easy to deduce
that the time complexity of the coordinate descent algorithm
is O(

∑
uN

2
uK + (M + N)K2), which should be K times

faster than the alternating least square method. The space
complexity of optimizing recommendation models is the
same as ALS in Section 4.2.1, i.e., O(MK +NK +K2).

5 EXPERIMENTS

5.1 Experimental Settings

5.1.1 Datasets

We perform experiments on two types of datasets to verify
the effectiveness of our methods. The first type of dataset
is explicit feedback dataset, including MovieLens, Amazon
and Yelp, where the ratings range from 1 to 5.
• MovieLens: The MovieLens dataset is from the famous

MovieLens10M dataset, including 10,000,054 ratings from
71,567 users for 10,681 items.

• Yelp: The Yelp dataset includes 2,685,066 ratings from
409,117 users for 85,539 points of interest, such as restau-
rants, hotels, and shopping malls.

• Netflix: The Netflix dataset is another famous movie
rating dataset. It contains 463,770 users and 17,764 items,
which is larger than the MovieLens and Yelp dataset.
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TABLE 1
The Statistics of the Datasets

Type Datasets Ratings Users Items Sparsity

Explicit
datasets

MovieLens 9,983,739 69,838 8,939 83.67%
Yelp 2,103,895 77,277 45,638 99.94%

Netflix 100,396,329 463,770 17,764 98.78%

Implicit
datasets

CiteUlike 204,986 5,551 16,980 99.78%
Gowalla 1,027,464 29,858 40,988 99.92%
LastFM 16,574,711 351,422 61,257 99.92%

These explicit feedback datasets are converted into implicit
feedback datasets following [3], by considering user’s rated
item as positive. The other type of dataset for experiments
is implicit feedback dataset, including CiteUlike, Gowalla
and LastFM, where user’s interacted items are considered
as positive.
• CiteUlike: The CiteULike dataset is from user’s individ-

ual library of articles [35].
• Gowalla: The Gowalla dataset includes users’ check-ins

at locations in a location-based social network.
• LastFM: The dataset is a famous music recommendation

dataset [36] with 360,000 users.
All the datasets are publicly available and we filter the
users and items with fewer than 10 interactions. Table 1
summarizes the statistics of the datasets.

When optimizing the ranking-based logit loss, we ran-
domly pick Nu items from uninteracted ones for each user
during each iteration and treat them as negative samples.

For each user, we randomly sample his 80% ratings as
training set and the rest 20% as testing test. We fit a model
to the training set and evaluate it in the test set. We repeat 5
random splits and report the averaged performances.

5.1.2 Baselines
• RankALS [8] optimizes the ranking-based square loss

with an alternating least square algorithm. The parameter
sj for each item is set to 1 so that they can be fairly
compared with the proposed methods.

• WRMF [1], [2] optimizes regression-based square loss,
by considering all uninteracted items as negative and
assigning them lower confidence being negative. The opti-
mization is based on alternating least square, which scales
linearly with the number of interaction.

• BPR [3] optimizes the ranking-based logit loss with
stochastic gradient descent. The negative samples are
randomly picked from uninteracted items.

• SQL RANK [37] exploits a listwise approach for recom-
mendation which cast listwise collaborative ranking as
maximum likelihood under a permutation model.

By presenting the top k candidate items for each user,
two standard metrics are used to assess the quality of
ranking: NDCG and Recall. The parameters are fine-tuned
according to the metric of NDCG@200.

5.2 Results and Analysis
5.2.1 Comparison with baselines
We tune hyperparameters of the proposed methods and
baselines in a validation set, which consists of 5% training

data. Note that the proposed method with the square loss is
trained for 20 iterations and the proposed method with logit
loss is trained for 50 iterations. Results are shown in Table 2,
where we set the dimension of latent space in all methods
to 32 and report NDCG and Recall at cutoffs 10, 50, and 200.

On all the datasets, our proposed algorithm outperforms
all the baselines. In particular, the square loss with the
ranking-based implicit regularizer (Square-RIR) is much
better than RanKALS. The relative improvements are 120.1%
on average with respect to NDCG@10. This shows the
effectiveness of the proposed regularizer. The logit loss
with the ranking-based implicit regularizer (Logit-RIR) is
also much better than BPR. The relative improvements are
51.7% on average with respect to NDCG@10. The superior
performance of BPR to RankALS may lie in logit loss, which
can yield small loss values for accurately ranking pairs.
WRMF is the best among the baselines, since it imposes
an implicit regularizer

∑
u

∑
i/∈Eu

(pTuqi)
2 to penalize non-

zero preference prediction. However, the proposed algo-
rithms still outperform WRMF, and the average relative
improvements are 5.5% in the explicit feedback datasets,
and up to 8.3% in the implicit feedback datasets in terms
of NDCG@10. This indicates that the ranking-based implicit
regularizer is more suitable for sparser implicit feedback
datasets. The logit loss can not consistently beat the square
loss, but BPR is better than RankALS. This indicates that
the ranking-based implicit regularizer benefits the square
loss more than the logit loss, to reduce large loss values for
accurately ranking pairs.

Furthermore, we investigate how the performance of the
proposed algorithm varies with the increasing dimension of
latent space. The results of NDCG@200 on MovieLens and
Gowalla datasets are reported in Figure 1, whereK is varied
in the set {16, 32, 48, 64, 128}. As the dimension of latent
space increases, the performance of the proposed method
with the logit loss gets close to the square loss in terms of
NDCG@200 in both datasets. The proposed method with the
logit loss outperforms BPR, and the relative improvements
increase as the dimension grows. Compared to WRMF, the
proposed methods are better even with the increase of di-
mension, especially in the MovieLens dataset. In the sparser
Gowalla dataset, as the dimension increases, the relative
improvements to WRMF algorithms gradually decrease.
This shows the superiority of the proposed ranking-based
implicit regularizer to the implicit regularizer in WRMF.

5.2.2 Effect of loss functions
As we exploit two kinds of loss functions and four nor-
malization strategies in our framework, we conduct an
ablation study to understand the effect of normalization
strategies and loss functions in the four datasets. Alternating
least square (ALS) is used for optimizing all the algo-
rithms. “none”, “avg”, “sqrt” and “log” denotes f(x) = 1,
f(x) = 1

x , f(x) = 1√
x

and f(x) = 1
log x , respectively.

Figure 2 summarizes the performance of NDCG@50
when the coefficient of the regularzier varies. The best
parameter for different normalization strategies is different
from each other. For the “avg” and “sqrt” strategy, α is
much larger than the other two strategies and thus much
easier to tune. Moreover, these two strategies show bet-
ter recommendation performance. This indicates these two
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TABLE 2
Comparison with baselines.

Dataset Alg NDCG@10 RECALL@10 NDCG@50 RECALL@50 NDCG@200 Recall@200

Square-RIR 0.4242± 0.0003 0.2223± 0.0003 0.4439± 0.0004 0.4817± 0.0006 0.5194± 0.0003 0.7154± 0.0006
RankALS 0.2337± 0.0005 0.1283± 0.0005 0.3212± 0.0005 0.4155± 0.0003 0.4282± 0.0005 0.7151± 0.0005
Logit-RIR 0.4193± 0.0002 0.2171± 0.0002 0.4422± 0.0002 0.4813± 0.0005 0.5236± 0.0002 0.7300± 0.0007

BPR 0.3502± 0.0009 0.1797± 0.0008 0.3828± 0.0009 0.4339± 0.0009 0.4710± 0.0009 0.6991± 0.0003
WRMF 0.4134± 0.0004 0.2133± 0.0005 0.4333± 0.0003 0.4688± 0.0003 0.5124± 0.0003 0.7113± 0.0005

MovieLens

SQL RANK 0.0443± 0.0003 0.0190± 0.0002 0.0501± 0.0003 0.0594± 0.0003 0.0737± 0.0002 0.1350± 0.0004

Square-RIR 0.0480± 0.0004 0.0560± 0.0005 0.0810± 0.0004 0.1624± 0.0009 0.1252± 0.0002 0.3484± 0.0007
RankALS 0.0202± 0.0002 0.0256± 0.0003 0.0453± 0.0002 0.1053± 0.0008 0.0897± 0.0001 0.2923± 0.0008
Logit-RIR 0.0470± 0.0004 0.0541± 0.0005 0.0788± 0.0004 0.1571± 0.0005 0.1227± 0.0004 0.3411± 0.0008

BPR 0.0302± 0.0005 0.0363± 0.0005 0.0555± 0.0005 0.1171± 0.0011 0.0919± 0.0006 0.2708± 0.0017
WRMF 0.0460± 0.0004 0.0547± 0.0005 0.0794± 0.0004 0.1606± 0.0006 0.1238± 0.0002 0.3471± 0.0004

Yelp

SQL RANK 0.0002± 0.0000 0.0003± 0.0000 0.0011± 0.0000 0.0026± 0.0001 0.0025± 0.0001 0.0086± 0.0003

Square-RIR 0.3893± 0.0002 0.1401± 0.0001 0.3728± 0.0002 0.3473± 0.0004 0.4400± 0.0010 0.5994± 0.0003
RankALS 0.1701± 0.0003 0.0607± 0.0002 0.2205± 0.0003 0.2451± 0.0004 0.3369± 0.0002 0.5677± 0.0002
Logit-RIR 0.3861± 0.0002 0.1400± 0.0002 0.3730± 0.0002 0.3532± 0.0002 0.4421± 0.0002 0.6107± 0.0002

BPR 0.2998± 0.0010 0.1043± 0.0004 0.3044± 0.0006 0.2959± 0.0006 0.3863± 0.0007 0.5745± 0.0008
WRMF 0.3841± 0.0001 0.1369± 0.0001 0.3651± 0.0002 0.3378± 0.0004 0.4300± 0.0002 0.5842± 0.0002

Netflix

SQL RANK 0.0120± 0.0120 0.0113± 0.0028 0.0600± 0.0017 0.0564± 0.0047 0.0954± 0.0048 0.1712± 0.0089

Square-RIR 0.1158± 0.0020 0.1240± 0.0025 0.1805± 0.0012 0.3238± 0.0004 0.2496± 0.0010 0.5797± 0.0010
RankALS 0.0902± 0.0011 0.0954± 0.0006 0.1564± 0.0011 0.2946± 0.0015 0.2265± 0.0013 0.5566± 0.0024
Logit-RIR 0.1127± 0.0022 0.1157± 0.0023 0.1712± 0.0021 0.3029± 0.0034 0.2374± 0.0020 0.5506± 0.0030

BPR 0.0900± 0.0010 0.0916± 0.0010 0.1365± 0.0014 0.2418± 0.0035 0.1889± 0.0015 0.4385± 0.0033
WRMF 0.1107± 0.0015 0.1172± 0.0008 0.1733± 0.0008 0.3077± 0.0020 0.2430± 0.0007 0.5670± 0.0032

CiteULike

SQL RANK 0.0017± 0.0003 0.0021± 0.0004 0.0022± 0.0004 0.0041± 0.0007 0.0035± 0.0004 0.0114± 0.0015

Square-RIR 0.0924± 0.0004 0.0949± 0.0005 0.1341± 0.0007 0.2249± 0.0015 0.1867± 0.0006 0.4306± 0.0010
RankALS 0.0415± 0.0009 0.0513± 0.0006 0.0835± 0.0010 0.1776± 0.0012 0.1433± 0.0009 0.4115± 0.0006
Logit-RIR 0.0999± 0.0005 0.0982± 0.0006 0.1408± 0.0005 0.2320± 0.0005 0.1951± 0.0004 0.4458± 0.0012

BPR 0.0860± 0.0008 0.0866± 0.0008 0.1243± 0.0007 0.2103± 0.0008 0.1743± 0.0009 0.4083± 0.0013
WRMF 0.0898± 0.0003 0.0932± 0.0004 0.1324± 0.0008 0.2240± 0.0015 0.1852± 0.0007 0.4303± 0.0011

Gowalla

SQL RANK 0.0003± 0.0001 0.0003± 0.0000 0.0011± 0.0001 0.0026± 0.0002 0.0071± 0.0000 0.0252± 0.0001

Square-RIR 0.1724± 0.0003 0.1482± 0.0002 0.2616± 0.0002 0.3466± 0.0009 0.3368± 0.0003 0.5787± 0.0003
RankALS 0.0530± 0.0010 0.0532± 0.0009 0.1282± 0.0002 0.2215± 0.0002 0.2285± 0.0001 0.5325± 0.0002
Logit-RIR 0.1685± 0.0002 0.1452± 0.0010 0.2581± 0.0002 0.3450± 0.0001 0.3387± 0.0003 0.5944± 0.0004

BPR 0.0636± 0.0002 0.0469± 0.0002 0.0934± 0.0003 0.1151± 0.0002 0.1356± 0.0003 0.2464± 0.0004
WRMF 0.1580± 0.0002 0.1400± 0.0008 0.2516± 0.0002 0.3473± 0.0002 0.3302± 0.0002 0.5897± 0.0003

LastFM

SQL RANK 0.0031± 0.0006 0.0041± 0.0008 0.0146± 0.0022 0.0288± 0.0050 0.0200± 0.0021 0.0469± 0.0048
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Fig. 1. NDCG@200 and Recall@200 on the MovieLens and Gowalla.

strategies strike a better balance between the ranking-based
regularizer and the loss function.The “log” strategy is very
similar to the “none” strategy in terms of performance and
choice of coefficient α. This may be because it excessively
shrinks x of f(x) and approximates f(x) = 1.

5.2.3 Effect of optimization methods
Figure 3 shows how loss values reduce in the CiteULike
dataset when the loss functions are optimized with the
alternating least square method and the coordinate descent
method, respectively. We choose the normalization strategy
f(x) = 1 and fine-tune the hyperparameters. In the figure,
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Fig. 2. Sensitivity with respect to the parameter α (k = 32 in the CiteU-
like dataset) with different loss functions and normalization strategies.

loss values are shown on the y-axis with a logarithmic scale.
We observe that all methods converge within 30 iterations.

According to this figure, we can see that the alternating
least square method converges in fewer iterations than the
coordinate descent method, particularly optimizing the logit
loss. This is because the coordinate descent method updates
one factor at a time while different factors are correlated
with each other. Therefore, the coordinate descent method is
much more efficient but requires more iterations for conver-
gence. As analyzed before, the time cost of the coordinate
descent method is K times less than the alternating least
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Fig. 3. Convergence study of the proposed method on CiteUlike.
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Fig. 4. The running time of different optimization algorithms with same
iterations when K varies in the MovieLens and CiteULike dataset.

square method. This is also evidenced in Figure 4. In addi-
tion, an interesting observation is that using the coordinate
descent method to optimize the logit loss can converge to
a smaller loss than the alternating least square method.
A potential explanation is that in the coordinate descent
method, the variational parameter λ(ε̂uij) is recalculated
in each iteration, so that the loss function is closer to the
upper bound. This is also confirmed by using the coordinate
descent method to optimize the square loss function con-
verge to the approximately same loss to the alternating least
square method, where there is no variational parameter.

In addition to loss values, we also report the recommen-
dation performance in Table 3, where the square loss and the
logit loss are optimized by these two optimization methods.
Here, we utilize the “sqrt” normalization strategy and set
the dimension to K = 16. From this table, we can observe
that in the CiteUlike and Gowalla datasets, optimizing both
loss functions by the coordinate descent method is slightly
better than the alternating least square loss method. In
the MovieLens and Yelp datasets, optimization based on
the coordinate descent method only leads to improvements
for the logit loss but not for the square loss. This is also
explained in the coordinate descent method, the variational
parameter is recalculated each time, so the loss function is
better approximated by its upper bound.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel ranking-based implicit
regularizer and leverage them to improve the ranking-based
one-class collaborative filtering algorithms, whose loss func-
tions include the square loss and the logit loss. We develop
an alternating least square method and a coordinate descent
method to efficiently optimize the proposed objective func-
tions. We then elaborate on the analysis of training time
complexity, showing both of them scale linearly with data

TABLE 3
Comparisons between different optimization methods.

Dataset Loss Opt NDCG@50 Recall@50

MovieLens
Square Loss ALS 0.4202 0.4542

CD 0.4071 0.4391

Logit Loss ALS 0.4066 0.4441
CD 0.4099 0.4468

Yelp
Square Loss ALS 0.0665 0.1391

CD 0.0661 0.1386

Logit Loss ALS 0.0681 0.1377
CD 0.0684 0.1384

CiteULike
Square Loss ALS 0.1419 0.2588

CD 0.1447 0.2557

Logit Loss ALS 0.1316 0.2349
CD 0.1352 0.2355

Gowalla
Square Loss ALS 0.1105 0.1967

CD 0.1114 0.1976

Logit Loss ALS 0.1208 0.2004
CD 0.1215 0.2079

size, and the coordinate descent method is K times faster
than the alternating least square method in each iteration.
Finally, we extensively evaluate the proposed method with 6
real-world datasets and show that the proposed regularizer
significantly improves the recommendation performance
of the ranking-based one-class collaborative filtering algo-
rithms, and outperforms the completing baselines. We also
show that the coordinate descent method is more efficient
and even yields slightly better recommendation perfor-
mance than the alternating least square method, particularly
for the logit loss.

In the future, we would like to investigate how to
optimize the proposed objective functions with stochastic
gradient descent and apply them for advanced neural net-
work recommenders [7]. Moreover, we will also try to relax
the hypothesis that prediction scores of uninteracted items
should not deviate a lot from each other. For example,
we may consider only restricting score proximity among
uninteracted items with similar popularity.

ACKNOWLEDGMENTS

The work was supported by grants from the National
Natural Science Foundation of China (Grant No. 61976198,
62022077, 61972069, 61836007, 61832017), the Fundamen-
tal Research Funds for the Central Universities, and
Sichuan Science and Technology Program under Grant
2020JDTD0007.

REFERENCES

[1] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” in Proceedings of ICDM’08. IEEE, 2008,
pp. 263–272.

[2] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and Q. Yang,
“One-class collaborative filtering,” in Proceedings of ICDM’08.
IEEE, 2008, pp. 502–511.

[3] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“Bpr: Bayesian personalized ranking from implicit feedback,” in
Proceedings of UAI’09. AUAI Press, 2009, pp. 452–461.

[4] R. Pan and M. Scholz, “Mind the gaps: weighting the unknown
in large-scale one-class collaborative filtering,” in Proceedings of
KDD’09. ACM, 2009, pp. 667–676.



12

[5] H.-F. Yu, M. Bilenko, and C.-J. Lin, “Selection of negative sam-
ples for one-class matrix factorization,” in Proceedings of SDM’17.
SIAM, 2017, pp. 363–371.

[6] I. Bayer, X. He, B. Kanagal, and S. Rendle, “A generic coordinate
descent framework for learning from implicit feedback,” in Pro-
ceedings of WWW’17, 2017, pp. 1341–1350.

[7] W. Krichene, N. Mayoraz, S. Rendle, L. Zhang, X. Yi, L. Hong,
E. Chi, and J. Anderson, “Efficient training on very large corpora
via gramian estimation,” arXiv preprint arXiv:1807.07187, 2018.
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