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Abstract—In Spatial crowdsourcing, mobile users perform spatio-temporal tasks that involve travel to specified locations. Spatial

crowdsourcing (SC) is enabled by SC platforms that support mobile worker recruitment and retention, as well as task assignment,

which is essential to maximize profits that are accrued from serving task requests. Specifically, how to best achieve task assignment in

a cost-effective manner while contending with spatio-temporal constraints is a key challenge in SC. To address this challenge, we

formalize and study a novel Profit-driven Task Assignment problem. We first establish a task reward pricing model that takes into

account the temporal constraints (i.e., expected completion time and deadline) of tasks. Then we adopt an optimal algorithm based on

tree decomposition to achieve an optimal task assignment and propose greedy algorithms based on Random Tuning Optimization to

improve the computational efficiency. To balance effectiveness and efficiency, we also provide a heuristic task assignment algorithm

based on Ant Colony Optimization that assigns tasks by simulating behavior of ant colonies foraging for food. Finally, we conduct

extensive experiments using real and synthetic data, offering detailed insight into effectiveness and efficiency of the proposed methods.

Index Terms—Spatial crowdsourcing, task assignment, profit
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1 INTRODUCTION

RECENT years have witnessed a revolution in Spatial
Crowdsourcing (SC), where people with mobile connec-

tivity can accept and accomplish a variety of location-based
tasks [9], [21], [27], [28], [29], [30], [31], [33], [42]. A typical
SC system encompasses a platform, task requesters, and
mobile workers. The platform provides task assignment
services to task requesters, and enables workers to serve
requests. Most existing research in SC targets task assign-
ment while adopting different optimization strategies [3],
[5], [43]. Although task assignment has been studied

extensively, problems such as how to optimize the profits
achieved by an SC platform remain unsolved.

A primary quality of an SC platform is its inherent cost
effectiveness. In other words, it is essential for an SC plat-
form to be able to perform task assignments that maximize
profits. Although several SC applications have been pro-
posed, these generally assume that an SC platform assigns
tasks to mobile workers on a voluntary basis, without con-
sidering the profit of the SC system [6], [14]. However, effec-
tive non-monetary incentive schemes for tedious and
repetitive work are often difficult to engineer [26], and such
schemes are often unrealistic for commercial SC platforms
due to their profit-driven nature. Moreover, workers are
unwilling to perform assigned tasks without pay as per-
forming tasks incurs costs (e.g., mobile device battery
energy cost for sensing and data processing). Several profit-
based task assignment mechanisms have been developed
for crowdsourcing. For instance, considering the profit of a
platform, Yang et al. [38] provide incentive mechanisms for
mobile crowdsourcing based on platform-centric and user-
centric system models, but they focus mainly on improving
computational efficiency rather than improving the profit.
A recent study [25] proposes a profit maximizing truthful
auction mechanism, where the platform acts as an auction-
eer and workers act as sellers that submit bids to the plat-
form. However, they focus on improving the total profit of a
platform by mean of incentive mechanisms instead of pay-
ing attention to the task assignment process. Sarker et al.
[24] develop a workload allocation policy that enables rea-
sonable trade-offs between worker utility and platform
profit. Nevertheless, this study focuses on sensing tasks and
divides a task into subtasks of uniform size, and workers
perform the subtasks independently without cooperation.
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Li et al. [18] propose an online optimization framework to
maximize the profit in mobile crowdsourcing. In doing so,
they transform integer programming into fraction program-
ming and construct a pseudo-tree for use in task assign-
ment. But they disregard spatial constraints that play an
essential role in SC when assigning tasks.

We investigate profit-based task assignment in SC, where
each task has a certain workload that can be assigned to one
or more workers to move to the location of the task physi-
cally and complete the task, e.g., maintenance tasks, leaflet
distribution, and holding a barbecue party, cooperatively.
For example, the workload of a leaflet distribution task is
shared among workers by assigning each worker a certain
number of leaflets to distribute when a worker arrives at the
task’s location. If all leaflets are distributed on time, the
workers and the SC platform obtain the task reward and
profit. Fig. 1 exemplifies profit-based task assignment, con-
sidering five workers (fw1; :::; w5g) and three tasks
(fs1; s2; s3g). Each worker has a current location and a reach-
able distance range (w:r). For example, worker w1 is located
at (1,6) and has reachable distance 2.2. Each task is
published and expires at particular times (s:p and s:d,
respectively) and is labeled with its expected completion
time (s:e), workload (s:wl), and reward information (i.e.,
penalty rate s:pr and maximum reward s:maxR). The prob-
lem is to assign tasks to suitable workers so as to maximize
the total platform profit. In SC, it is intuitive to assign tasks
to nearby workers without violating spatio-temporal con-
straints (i.e., workers’ reachable distance and tasks’ expira-
tion time), which is referred to as the shortest distance priority
algorithm. With this algorithm, we obtain the task assign-
ment fðs1; w2Þ;ðs2; w1Þ; ðs3; w3Þg (shown with blue arrows in
Fig. 1) that yields a platform profit of 6.58. The calculation
of task reward is based on the reward pricing model to be
presented in Section 3, and we assume that the platform
gets 80% of task rewards. However, this algorithm leaves
w4 and w5 unassigned, which indicates that the profits are
sub-optimal.

We propose a profit-driven task assignment framework
that links task assignment with its economic performance.
We first formulate the Profit-driven Task Assignment (PTA)
problem and show that it is NP-hard. We then establish a
reward pricing model that takes into account the temporal
constraints of tasks and where the total reward is tied to the
payments by task requesters and the processing time of

tasks. When it comes to task assignment, we introduce an
exact tree-decomposition-based algorithm, called Optimal
Task Assignment (OTA), that finds assignments that yield
the optimal total platform profit. To achieve computational
efficiency, we propose a Greedy Task Assignment (GTA)
algorithm that gives priority to tasks with the higher reward
per unit of work and assigns tasks to the closest workers,
ensuring that tasks can be finished before their expected
completion times. Further, GTA with coarse and fine-
grained Random Tuning Optimization (GTA-RTO) strate-
gies are developed to prune non-promising worker-task
assignment pairs. The black and red arrows in Fig. 1 depict
the task assignments by the OTA and GTA-RTO algorithms
that generate profits of 9.60 and 8.07.

The conference version of this work [37] provides OTA
and GTA-RTO algorithms that address the PTA problem.
However, the OTA algorithm is time consuming, and the
GTA-RTO algorithm achieves relatively low profits for SC
platforms, especially for commercial SC platforms. An SC
platform tends to prioritize high profits even if some effi-
ciency must be sacrificed. Therefore, to support the diverse
effectiveness and efficiency requirements of SC platforms,
we provide a tailor-made task assignment method based on
Ant Colony Optimization (ACO), which can achieve a better
balance between effectiveness and efficiency. An ACO algo-
rithm, first proposed by Dorigo et al. [12], takes inspiration
from the foraging behavior of some ant species. The ants
deposit pheromones on the ground to indicate favorable
paths that should be followed by other members of the col-
ony. Due to their advantages, ACO algorithms are applied
widely for solving combinatorial optimization problems,
such as the traveling salesman problem and assignment
problem [10], [11], [23], [48]. To solve our problem using
ACO, we utilize the foraging behavior of a set of artificial
ants to simulate the task assignment process. Ants aim to
find short paths between tasks and workers in task-worker
assignment pairs according to a stochastic mechanism that
is biased by pheromones (left by previous ants) and heuris-
tic information (determined by travel distance). A resulting
task assignment consists of a set of short paths (i.e., task-
worker pairs). When applying ACO to the example in
Fig. 1, we obtain the task assignment fðs1; fw2; w4; w5gÞ,
ðs2; fw1gÞ, ðs3; fw3gÞg with a profit of 9.04, which exceeds
the profit obtained by GTA-RTO.

The major value-added extensions over our preliminary
work [37] are three-fold.

1) We identify and study in depth a limitation in our
previous algorithms, thus enabling improved trade-
offs between effectiveness and efficiency in task
assignment.

2) We provide an ACO-based task assignment algo-
rithm that solves the PTA problem, achieving a bet-
ter balance between effectiveness (second to OTA)
and efficiency (second to GTA-RTO).

3) We report on extensive experiments that offer
detailed insight into the effectiveness and efficiency
of the paper’s proposals. In particular, the CPU time
of ACO is only 0:02%–15:89% of that of OTA, while
being able to achieve up to 97:60% of the profit of
OTA. ACO can improve the overall profit ratio by

Fig. 1. Running example.

ZHAO ETAL.: PROFITOPTIMIZATION IN SPATIALCROWDSOURCING: EFFECTIVENESS AND EFFICIENCY 8387

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on September 02,2023 at 07:07:32 UTC from IEEE Xplore.  Restrictions apply. 



up to 6:50% compared with GTA-RTO when they
consume the same CPU time under appropriate set-
tings of the numbers of algorithm iterations and ants.

The remainder of the paper is organized as follows.
Section 2 introduces preliminary concepts and the PTA
problem. We then propose the reward pricing model in Sec-
tion 3. The task assignment algorithms (including the opti-
mal, greedy, and ACO-based algorithms) are presented in
Section 4. We report on the empirical study in Section 5, fol-
lowed by a coverage of related work in Section 6. Section 7
concludes the paper.

2 PRELIMINARIES AND PROBLEM STATEMENT

We first introduce preliminaries in the context of reward-
based task assignment, where tasks are assigned to workers
who will receive a certain reward for completing a task, in
SC adopting the Server Assigned Tasks (SAT) mode [15].
Then we formulate the Profit-driven Task Assignment
(PTA) problem and prove that it is NP-hard. Table 1 sum-
marizes notation used throughout the paper.

Definition 1 (Spatial Task). A spatial task, denoted by s = ðl,
p, e, d, wl, maxR, prÞ, has a location s:l, a publication time
s:p, an expected completion time s:e, and a deadline s:d. Each
task is also labeled with a required workload s:wl incurred in
order to finish the task (we simply use the time required to fin-
ish a task to denote s:wl). Next, s:maxR is the maximum
reward that the task requester can provide, and s:pr is a penalty
rate, which establishes a correlation between the completion
time and the reward.

Definition 2 (Worker). A worker, denoted by w = ðl, rÞ,
encompasses a location w:l and a reachable distance w:r. The

reachable range of worker w is a circle with center w:l and
radius w:r, within which w can accept assignments.

Definition 3 (Available Worker Set). Given a task s to
be assigned and a set of workers in the vicinity of s, an available
worker set for task s, denoted as AWSðsÞ, should satisfy three
conditions: 8w 2 AWSðsÞ

1) worker w is able to arrive at the location of task s before
its deadline, i.e., tnow þ tðw:l; s:lÞ < s:d,

2) task s is located in the reachable range of worker w, i.e.,
dðw:l; s:lÞ � w:r, and

3) all workers in AWSðsÞ have enough time to complete
task s together before it expires, i.e.,

P
w2AWSðsÞðs:d�

ðtnow þ tðw:l; s:lÞÞÞ � s:wl,
where tnow is the current time, tða; bÞ is the travel time from
location a to location b, and dða; bÞ is the travel distance from
location a to location b. The above three conditions guarantee
that workers in an available worker set can travel from their
origins to the location of their reachable task s before it expires
and can complete the workload of s together.

Definition 4 (Platform Profit). Given a task s to be assigned
and an available worker set AWSðsÞ, the profit of the SC plat-
form can be computed as PAWSðsÞ ¼ aRAWSðsÞ, where PAWSðsÞ
and RAWSðsÞ ð0 � RAWSðsÞ � s:maxRÞ are the profit of the
platform to finish s and the reward for s (i.e., the payment that
the task requester provides), respectively, when assigning task s
to workers in AWSðsÞ. Parameter a ð0 < a < 1Þ indicates
the fraction of the task reward that the platform obtains. The
calculation of the reward for s, RAWSðsÞ, is elaborated in
Section 3.

Note that we simply assume that the profit of an SC plat-
form is proportional to the reward (e.g., the profit is 80% of
the reward when a ¼ 80%) and that the remaining reward is
allocated to workers. Real SC platforms, e.g., real-time ride-
hailing services (e.g., Uber1) and on-wheel meal-ordering
services (e.g., GrubHub2), make money by taking a propor-
tion of the commission from task requesters (who publish
tasks) for each task assignment. SC platforms provide task
assignment service to workers and task requesters. This way,
platforms have a strong impact on the organisation of work
and, above all, on the relationships between workers and task
requesters. In a nutshell, the platforms allow individuals,
families, or companies in need of a service to hire a worker
who is willing to offer the service, under the guise of
enhanced flexibility and at the task requester’s premises.
Therefore, it is reasonable for the platforms to be rewarded
proportionally to the workers’ rewards in order to incentivize
them. Our solutions focus on the profit of the SC platforms
and do not consider the profit/reward allocation mechanism
of workers. However, the algorithms we propose are inde-
pendent of this assumption and can handle different profit/
reward allocationmechanisms.

Definition 5 (Optimal Available Worker Set (OptAWS)).
An available worker set, AWSðsÞ, is optimal if every proper sub-
set of it can only achieve a less-than-PAWSðsÞ platform profit.

TABLE 1
Summary of Notation

Notation Definition

s Spatial task
s:l Location of spatial task s
s:p Publication time of spatial task s
s:e Expected completion time of spatial task s
s:d Deadline of spatial task s
s:wl Workload of spatial task s
s:maxR Maximum reward of spatial task s
s:pr Penalty rate of spatial task s
S Spatial task set
w Worker
w:l Location of worker w
w:r Reachable distance of worker w
W Worker set
AWSðsÞ Available worker set for task s
tða; bÞ Travel time from location a to location b
dða; bÞ Travel distance from location a to location b
PAWSðsÞ The profit obtained by an SC platform after

workers in AWSðsÞ completing task s
RAWSðsÞ The reward obtained by workers in AWSðsÞ by

completing task s
OptAWSðsÞ Optimal available worker set for task s
A A spatial task assignment
A:P Total profit of spatial task assignment A
A Spatial task assignment set

1. https://www.uber.com/
2. https://get.grubhub.com/
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Note that more than one optimal AWS may exist for a
given task s. For example, in Fig. 1, fw1g, fw1; w2g, and
fw1; w5g are optimal for task s2, while fw1; w2; w5g is not
optimal for task s2 since one of its proper subsets, fw1; w2g,
can achieve the same platform profit.

Definition 6 (Spatial Task Assignment). Given a set of
workers W and a set of tasks S, a spatial task assignment A con-
sists of a set of pairs of a task and an OptAWS for the task:
ðs1;OptAWSðs1ÞÞ, ðs2;OptAWSðs2ÞÞ,..., ðsN ;OptAWSðsN ÞÞ,
where

Ti¼N
i¼1 OptAWSðsiÞ ¼ ;, and N denotes the number of

tasks.

Let A:P denote the total profit of the SC platform for task
assignment A, i.e., A:P ¼P

ðs;OptAWSðsÞÞ2A POptAWSðsÞ, and let
A denote all possible assignments. The problem investi-
gated can be stated as follows.

Definition 7 (PTA Problem). Given a worker set W and a
task set S, the PTA problem is to find the globally optimal
assignment Aopt, such that 8Ai 2 A, Ai:P � Aopt:P .

Next, we prove the hardness of the PTA problem.

Lemma 1. The PTA problem is NP-hard.

Proof. We prove Lemma 1 through a reduction from the 0-1
knapsack problem that can be described as follows: given
a set C of n items, in which each item ci 2 C is labeled
with a weightmi and a value vi, the problem is to identify
a subset C0 of C that maximizes

P
ci2C0 vi subject toP

ci2C0 mi �M, where M is the maximum weight
capacity.

A given 0-1 knapsack problem instance can be trans-
formed to an instance of the PTA problem as follows: we
are given a task set S of n tasks, in which each task si is
associated with the publication time si:p ¼ 0, expected
completion time si:e ¼ 1, deadline si:d ¼ 1, workload
si:wl ¼ mi, and maximum reward si:maxR ¼ vi. We are
also given a set W of M workers. Moreover, all tasks and
workers are situated at the same location. Thus, in this
instance of the assignment problem, it is only possible to
assignmi workers to task si in order to get reward vi.

If we can solve the PTA problem efficiently (i.e., in
polynominal time), we can solve a 0-1 knapsack problem
instance by transforming it to the corresponding PTA
problem instance and then solve that instance efficiently.
This contradicts the fact that the 0-1 knapsack problem is
NP-hard [35], and so there cannot be an efficient solution
to the PTA problem that is then NP-hard. tu

3 REWARD PRICING MODEL CONSTRUCTION

In order to develop a cost-effective task assignment algo-
rithm, a reasonable reward pricing model has to be estab-
lished that takes into account the temporal constraints of
tasks. We thus design a Reward Pricing Model (RPM) based
on the intuition that taking longer to complete a task
(including waiting time and task duration, covering the
time from when a task is published to when it is finished)
increases the probability of task failure, which in turn
reduces the rewards and profit for the SC platform. In par-
ticular, we consider a single task s with a publication time
s:p, an expected completion time s:e, a deadline s:d, a

required workload s:wl, a maximum reward s:maxR, and a
penalty rate s:pr. RPM focuses on the task completion time
and actual reward (i.e., the requester’s actual payment in
return for completing the task), which is illustrated in Fig. 2.

Using the above properties of a task, the RPM expresses
the actual payment that will be made in return for complet-
ing task s, as shown in Equation (1).

RAWSðsÞ ¼
s:maxR s:p � s:te � s:e
s:maxR� s:pr�
ðs:te � s:eÞ s:e < s:te � s:d
0 s:te > s:d;

8>><
>>:

(1)

where RAWSðsÞ represents the actual reward of task s, and
s:te denotes the completion time of s given the available
worker set AWS.

In order to calculate s:te, we let s:ts denote the start time
(i.e., time of assignment) of s, let T ðAWSðsÞÞ denote the
duration of task s (i.e., the time from assignment to comple-
tion), and let w:wlðAWSðsÞÞ > 0 denote the workload con-
tribution (a time duration) of w when task s is performed by
workers in AWSðsÞ. Fig. 3 illustrates the workload alloca-
tion of an available worker set fw2; w5g for task s1 based on
the example in Fig. 1. It follows that, for each worker w in
AWSðsÞ, the task duration is equal to w’s travel time plus
w’s workload contribution, i.e.,

8w 2 AWSðsÞ; w:wlðAWSðsÞÞ > 0

T ðAWSðsÞÞ ¼ tðw:l; s:lÞ þ w:wlðAWSðsÞÞð Þ (2)

Summing up the right side over all workers in AWSðsÞ,
we have

T ðAWSðsÞÞ

¼
P

w2AWSðsÞ tðw:l; s:lÞ þ
P

w2AWSðsÞ w:wlðAWSðsÞÞ
jAWSðsÞj

(3)

Given that s:wl ¼P
w2AWSðsÞ w:wlðAWSðsÞÞ, we get

T ðAWSðsÞÞ ¼
P

w2AWSðsÞ tðw:l; s:lÞ þ s:wl

jAWSðsÞj (4)

Finally, s:te can be calculated as s:te ¼ s:ts þ
T ðAWSðsÞÞ, and each worker’s workload can be calcu-
lated as w:wlðAWSðsÞÞ ¼ T ðAWSðsÞÞ � tðw:l; s:lÞ, where
T ðAWSðsÞÞ denotes the duration of task s. According to
the RPM in Fig. 2, we make two observations.

Fig. 2. Task reward pricing model.
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1) Since we require w:wlðAWSðsÞÞ > 0, if the travel
time of a worker w (w 2W ) exceeds the task dura-
tion, i.e., tðw:l; s:lÞ � T ðAWSðsÞÞ, then worker w has
no contribution to task s and should be removed
from AWSðsÞ.

2) When the workers in an available worker set AWSðsÞ
can cooperate to finish a task s before its expected com-
pletion time s:e, meaning that they obtain the maxi-
mum reward (s:maxR) for completing s, adding more
workers toAWSðsÞ cannot yield a higher reward.

In other words, adding workers to AWSðsÞ does not nec-
essarily mean an earlier completion time or a higher total
reward, which explains why we propose the concept of an
optimal available worker set in Definition 5.

4 TASK ASSIGNMENT

4.1 Optimal Task Assignment (OTA)

The globally optimal task assignment assigns a possible
available worker set or a null worker set to each task in a
manner that maximizes the profit for the SC platform. In
this section, we apply a tree-decomposition-based algorithm
[42], [46] to achieve an optimal task assignment. We do this
in three steps:

1) Find all reachable workers for each task. The reach-
able worker set for a task s, denoted as RW ðsÞ, must
satisfy the following conditions: 8w 2 RW ðsÞ, tnow þ
tðw:l; s:lÞ < s:d ^ dðw:l; s:lÞ � w:r. These two condi-
tions guarantee that w can reach s before it expires
and s is in the reachable range of w.

2) Find OptAWSs for each task. Given the reachable
worker set for each task, we utilize a dynamic pro-
gramming algorithm [8] that iteratively expands the
sets of tasks in ascending order of the set size to find
all OptAWSs.

3) Apply the tree-decomposition-based algorithm [42],
[46] to find an optimal task assignment. In particular,
we first utilize a graph to represent task dependencies,
where two tasks sharing reachableworkers are depen-
dent and are connected by an edge in the graph. Then
we use tree decomposition to separate all tasks into
clusters, each of which is a maximal clique of the
graph, andwe organize them into a tree structure such
that tasks in sibling nodes do not share the same reach-
able workers. Then the tree can be traversed in a
depth-first manner to find an optimal assignment. The
process is omitted due to space limit.

When applying the OTA algorithm to the example in
Fig. 1, we get a profit of 9.60 for the SC platform with the
task assignment fðs1; fw2; w5gÞ; ðs2; fw1gÞ; ðs3; fw3; w4gÞg.

4.2 Greedy Task Assignment With Random Tuning
Optimization (GTA-RTO)

4.2.1 Basic Greedy Task Assignment

For the sake of efficiency, we propose a basic Greedy Task
Assignment (GTA) solution to the PTA problem that gives
higher priority to tasks with higher reward per unit of work
and to workers with low travel cost.

GTA, shown in Algorithm 1, takes a worker set W and a
task set S as input, and it returns a task assignment set A, an
unassigned worker set W 0, and an unassigned task set S0.
After initialization (line 1), we sort the tasks in S0 descend-
ingly according to their reward per unit of work, i.e., s:maxR

s:wl

(line 2). Then for each task s in S0, we try to assign the first
arriving worker (i.e., the closest worker) inW 0 to s until s can
be finished before its expected completion time s:e (lines 3–
13). Specifically, if there are insufficient workers to complete
task s, s is skipped (lines 7–8); otherwise, the closest worker in
W 0 is assigned to task s (lines 9–10).When theworkload of s is
finished by the assigned workers, the task assignment A is
updated (lines 11–12). The time complexity of GTA is
OðmaxfN � logN ;N �N � logNgÞ, where N denotes the
number of tasks andN denotes the number ofworkers.When
applied to the example in Fig. 1, GTA obtains the task assign-
ment fðs2; fw1; w2gÞ; ðs3; fw3; w4gÞg that yields a profit of 5.8.

Algorithm 1. GTA

Input:W , S
output: A,W 0, S0

1: A ;,W 0  W , S0  S
2: Sort tasks in S0 according to s:maxR

s:wl descendingly
3: for each s 2 S0 do
4: AWSðsÞ  ;
5: Sort workers inW 0 according to their arrival time

ascendingly
6: while s is not finished before its expected completion

time do
7: ifW 0 is ; then
8: break
9: w the closest worker inW 0

10: AWSðsÞ  AWSðsÞ [ fwg
11: if s is finished then
12: A A [ fðs; AWSðsÞÞg
13: S0  S0 � fsg;W 0  W 0 �AWSðsÞ
14: Return A,W 0, S0

4.2.2 Random Tuning Optimization

Although GTA is a polynomial-time greedy algorithm that
finds a good task assignment set A, some weaknesses exist
in GTA. First, GTA always tries to complete a task before its
expected completion time while ignoring the penalty rate
and deadline of the task, which also impact the final profit.
Moreover, GTA assigns the closest workers without consid-
ering the time utilization ratios of workers. For instance,
when a task is distant from all workers, assigning the closest

Fig. 3. Workload allocation of available worker set fw2; w5g for task s1.
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workers to perform this task may yield an overall low profit
for the platform.

To address these limitations, we improve GTA with Ran-
dom Tuning Optimization (obtaining GTA-RTO), which
contains two tuning strategies: coarse tuning and fine tuning.
Coarse tuning randomly abandons low-value tasks, i.e.,
tasks with low time utilization ratio (measured by travel
time ratio and rate of return) of workers, and fine tuning
reassigns partial workers randomly to find a better task
assignment.

GTA-RTO is detailed in Algorithm 2, which starts from an
assignment achieved by GTA (line 1). Then the current task
assignment A0, unassigned worker set W 0, and unassigned
task set S0 are modified in a tuning loop (lines 4–14), where
the Coarse Tuning (CT) and Fine Tuning (FT) algorithms are
invoked in order, followed by GTA. Specifically, we first
invoke CT with A0 as input to generate an updated A0, unas-
signed worker set W 0

C , and unassigned task set S0C (line 6).
Then global unassigned worker set W 0 and task set S0 are
updated (line 7). Similarly, we updateA0,W 0, andS0 by invok-
ing FT (lines 8–9). Taking the global unassignedworker setW 0

and task set S0 as input, GTA is invoked to generate a task
assignmentAG (line 10). Subsequently, a new task assignment
is achieved as the union of A0 and AG (line 11). If the profit of
A0 exceeds that of A (i.e., the current task assignment), we
replaceAwithA0 (lines 12–13). Algorithm 2 stops when there
is no improvement, i.e., A:Pk ¼ A:Pk�1, where A:Pk denotes
the profit of task assignmentA in the kth iteration.

Algorithm 2. GTA-RTO

Input:W , S
output: A
1: A0;W 0; S0  GTAðW;SÞ
2: A A0

3: k 0
4: repeat
5: k ¼ kþ 1;
6: A0,W 0

C , S
0
C  CT ðA0Þ

7: W 0  W 0 [W 0
C ; S

0  S0 [ S0C
8: A0,W 0

F , S
0
F  FT ðA0Þ

9: W 0  W 0 [W 0
F ; S

0  S0 [ S0F
10: AG,W

0, S0  GTAðW 0; S0Þ
11: A0  A0 [AG

12: if A0:P > A:P then
13: A A0

14: until A:Pk ¼ A:Pk�1

15: /*A:Pk denotes the profit of task assignment A in the kth
iteration*/

16: Return A

Coarse Tuning (CT). CT aims to disregard low-value tasks,
where the value of a task is measured by the travel time
ratio and rate of return. More specifically, the probability
PCT
AWSðsÞðsÞ that task s (assigned to workers in available

worker set AWSðsÞ) will be abandoned for its low value in
CT is defined as follows:

PCT
AWSðsÞðsÞ ¼ pCTm þ pCTt �

P
w2AWSðsÞ tðw:l; s:lÞ

T ðAWSðsÞÞ � jAWSðsÞj
þ pCTr �

�
1� RAWSðsÞ

s:maxR

�
;

(5)

where pCTm þ pCTt þ pCTr ¼ 1, tðw:l; s:lÞ denotes the travel time
between w:l and s:l, T ðAWSðsÞÞ is the task duration of task s
with available worker set AWSðsÞ, and RAWSðsÞ is the
reward of task s when it is finished by workers in AWSðsÞ.
Next,

P
w2AWSðsÞ tðw:l;s:lÞ

T ðAWSðsÞÞ�jAWSðsÞj represents the travel time ratio of

workers in AWSðsÞ to complete task s, and
RAWSðsÞ
s:maxR is the rate

of return. Further, pCTm is the minimum probability that a

task is abandoned. Finally, pCTt and pCTr are parameters that

control the contributions of the time utilization ratio of
workers and the rate of return.

Algorithm 3. CT

Input: A
output: AC ,WC , SC

1: AC  A;WC  ;; SC  ;
2: for each task-AWS pair ðs;AWSðsÞÞ 2 AC do
3: Calculate PCT

AWSðsÞðsÞ based on Equation (5)
4: if PCT

AWSðsÞðsÞ > z do
5: AC  AC � ðs; AWSðsÞÞ
6: SC  SC [ s;WC  WC [AWSðsÞ
7: Return AC ,WC , SC

CT is detailed in Algorithm 3, which takes a task assign-
ment A as input and generates an updated task assignment
AC that abandons low-value tasks. In particular, we first cal-
culate the probabilities of abandoning each task s in AC

(lines 2–3) and remove the task-AWS pair ðs;AWSðsÞÞ from
AC if the probability exceeds z, which is chosen randomly
from the range [0,1] (lines 4–5).

Fine Tuning (FT). In the FT processing, no task is
completely abandoned, and only few workers are reas-
signed, ensuring that tasks can be completed before their
deadline. The probability PFT

AWSðsÞðs; wÞ that worker w
(w 2 AWSðsÞ) assigned to task s is reassigned is defined as
follows:

PFT
AWSðsÞðs; wÞ ¼ pFTm þ pFTt �

tðw:l; s:lÞ
T ðAWSðsÞÞ (6)

w 2 AWSðsÞ;
where tðw:l;s:lÞ

T ðAWSðsÞÞ is the ratio between the travel time of w and
the task duration of s, called travel time ratio of w. Further,
pFTm is the minimum probability that a worker is reassigned,
pFTt captures how much the travel time ratio of worker w
affects the probability, and pFTm þ pFTt ¼ 1.

FT is detailed in Algorithm 4 that takes a task assignment
as input and outputs an updated task assignment AF , an
unassigned worker set WF , and an unassigned task set SF .
First, we calculate the probability that each task s in AF is
abandoned based on Equation (5) (line 4) and the reassign-
ment probability of each assigned worker w 2 AWSðsÞ
based on Equation (6) (line 5). Subsequently, we randomly
remove worker w from the current task assignment accord-
ing to the reassignment probability PFT

AWSðsÞðs; wÞ (i.e., a
worker with a higher probability is more likely to be
removed) when the abandoned probability exceeds a ran-
dom number z (from range [0,1]) and s can be finished with-
out w (lines 6–10). The task assignment AF is updated
accordingly (line 12) and is output (line 13).
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The time complexity of both Algorithms 3 and 4 is
OðNðs;AWSðsÞÞÞ, where Nðs;AWSðsÞÞ denotes the number of
task-AWS pairs. Therefore, the time complexity of Algo-
rithm 2 is OðK �maxfN � logN ;N �N � logN; Nðs;AWSðsÞÞgÞ,
where K denotes the number of iterations, N denotes the
number of tasks, and N denotes the number of workers. In
the example in Fig. 1, the GTA-RTO algorithm returns the
task assignment fðs1; fw2; w4gÞ, ðs2; fw1; w5gÞ, ðs3; fw3gÞg
with a profit of 8.07, which is 84:06% of that obtained by
OTA.

Algorithm 4. FT

Input: A
output: AF ,WF , SF

1: AF  A;WF  ;; SF  ;
2: for each task-AWS pair ðs;AWSðsÞÞ 2 AF do
3: AF  AF � ðs; AWSðsÞÞ
4: Calculate pCTAWSðsÞðsÞ based on Equation (5)

5: Calculate PFT
AWSðsÞðs; wÞ for each worker w 2 AWSðsÞ

based on Equation (6)
6: while pCTAWSðsÞðsÞ > z do
7: Randomly choose a worker w from AWSðsÞ

according to PFT
AWSðsÞðs; wÞ

8: if s cannot be completed without w then
9: break
10: AWSðsÞ  AWSðsÞ � fwg
11: WF  WF [ fwg
12: AF  AF [ ðs;AWSðsÞÞ
13: Return AF ,WF , SF

4.3 Ant Colony Optimization (ACO) Based Task
Assignment

Ant Colony Optimization (ACO) is a heuristic evolutionary
algorithm that offers an alternative means of solving com-
plicated combinatorial optimization problems [12]. ACO
can achieve excellent performance via self-adaption and
may thus yield good performance at solving optimization
problems. Since the PTA problem is a combinatorial optimi-
zation problem, which aims to find an optimal task assign-
ment from a finite set of task assignments, we adopt ACO to
solving it.

4.3.1 Inspiration of ACO: Ant Foraging

ACO is based on the natural foraging behavior of an ant col-
ony, where ants find the shortest route from their nest to a
food source using a simple communication mechanism.
This mechanism is guided by a medium, i.e., pheromone,
that is left by ants on the ground to mark a favorable path
(i.e., a short path) and is used to guide other ants towards
the target food source. In particular, ants perceive the pres-
ence of pheromones and tend to follow paths with a high
pheromone concentration. This mechanism enables ants to
transport food to their nest in a remarkably effective man-
ner. Each ant randomly chooses a path for reaching food
and leaves pheromones along the path. The pheromone
concentration increases with the number of ants passing. A
shorter path means that less time is spent on reaching food
and returning, which results in more ants following this
path in a certain time interval (that leads to a higher

pheromone concentration). Fig. 4 illustrates the foraging
behavior without an obstacle (Fig. 4a) and with an obstacle
(Fig. 4b). If a path is blocked, there is an equal probability
for an ant to choose the left or right path at first. As the right
path (from nest to food passing point A) is shorter than the
left path (from nest to food passing point B) that thus
requires less travel time, it will end up with a higher phero-
mone concentration.

At a given point, when an ant has to choose among paths,
it will choose the one with the highest pheromone concentra-
tion with higher probability. As a result, a high pheromone
concentration is correlated with a short path. For example, as
shown in Fig. 4b, more ants prefer the right path because of
its higher pheromone concentration. Finally, all the ants will
follow a shortest path. This colony-level behavior, which is
based on the exploitation of positive feedback, is used by
ants to find the shortest path between a food source and their
nest.

4.3.2 Applying ACO to PTA

The PTA problem is to find an assignment with the maxi-
mum profit from a set of feasible task assignments. The orig-
inal ACO [12] was applied to the classical Traveling
Salesman Problem (TSP). In TSP, given a set of n towns, a
traveling salesman aims to find a minimal length closed
tour that visits each town once. The classic TSP is commonly
used to formulate the problem of finding a path of the mini-
mum cost [41]. However, the problem setting differs sub-
stantially from ours, and our problem cannot be directly
converted to a classical TSP problem since our problem
involves multiple workers (rather than only one traveling
salesman) and there are dependencies among workers, i.e.,
the workers share all tasks. Therefore, the original algorithm
does not solve our problem. In PTA, according to the
reward pricing model in Section 3, workers with low travel
times from their current location to a task’s location can con-
tribute more workload to completing the task, which is
more likely to result in a higher or the maximum reward for
the task. Due to the assumption that the profit of an SC

Fig. 4. Foraging behaviors of ants.
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platform is proportional to the reward (cf. Definition 4),
higher rewards for tasks imply a higher profit for the SC
platform. To make the original ACO algorithm applicable to
our problem, we consider a task-worker pair ðs; wÞ as a path
so that the distance between s and w is the path distance,
while the original ACO considers the path between two
towns.

When applying ACO to the PTA problem, a number of
artificial ants are assigned to building solutions (corre-
sponding to task assignments) to the PTA problem by
exchanging information on the quality of the solutions via
pheromones. ACO aims to find a solution with a set of short
paths (i.e., a set of task-worker pairs with short distances)
for the ants. However, in our problem, a task can be
assigned to multiple workers but a worker can only perform
one task at any time instance, whereas the original ACO sol-
ves the TSP problem where each town must be visited once
and the traveling salesman can visit multiple towns. We
improve the original ACO algorithm by considering the
worker-task constraints.

Algorithm 5. ACO-based Task Assignment

Input:W , S,M
output: A, A:P
1: A ;
2: Initialization of pheromone table T and heuristic informa-

tion table E
3: for each task s 2 S do
4: Compute the reachable worker set RWðsÞ for s;
5: Sort tasks in S according to s:maxR

s:wl descendingly
6: k 1;
7: repeat
8: foreachm 2M do
9: Am SolutionC(S;RWðSÞ; T; E;m);
10: if A:P < Am:P then
11: A Am

12: Update T ;
13: k kþ 1;
14: until k > �
15: /*� denotes the number threshold of iterations*/
16: Return A, A:P

Furthermore, we optimize the original ACO algorithm to
obtain a higher platform profit. After the solution construc-
tion procedure using ACO, we continue to assignmore work-
ers to tasks that have the potential to obtain higher rewards.
Specifically, given a task with potential to yield higher
rewards, we keep assigning reachable workers to it until the
maximum reward is achieved or no reachableworkers exist.

Overview. Algorithm 5 offers an overview of the full
ACO-based task assignment process. Given a worker set W ,
a task set S, and an ant setM, the task assignment A, phero-
mone table T , and heuristic information table E are initial-
ized (lines 1–2). Then the reachable worker set RWðsÞ for
each task s is calculated (lines 3–4) while satisfying 8w 2
RW ðsÞ, tnow þ tðw:l; s:lÞ � s:d ^ dðw:l; s:lÞ � w:r, where tnow
denotes the current time, tða; bÞ denotes the travel time
between location a and b, s:d denotes the deadline of s,
dða; bÞ denotes the distance between location a and b, and
w:r is the reachable distance of w. Tasks are sorted descend-
ingly on their reward per unit of work, i.e., s:maxR

s:wl (line 5).

Algorithm 5 performs a number of iterations (lines 7–14).
In each iteration, a number of ants construct complete solu-
tions by invoking the SolutionC procedure (line 9), and the
task assignment solution with the highest profit is kept
(lines 10–11). Then the pheromone table T is updated
according to the above solution, to be covered in more detail
later in this section. The iteration ends after a certain num-
ber of iterations, i.e., k > �, where � is the threshold number
of iterations that can be specified by the SC platform (line
14). Finally, a good task assignment and its profit are
obtained (line 16).

Solution Construction. Next we detail the SolutionC proce-
dure for each ant m in Algorithm 6. The procedure takes
five parameters: a task set (S), a reachable worker set for
each task in S (RWðSÞ ¼ fRWðsÞgs2S), a pheromone table
(T ), a heuristic information table (E), and an ant (m). After
initialization (lines 1–2), Algorithm 6 assigns paths to each
task until all the tasks are assigned, and computes an
updated task assignment (lines 4–26). In each solution con-
struction step, an ant selects the path to be visited according
to a stochastic mechanism that is biased by pheromones
(left by previous ants) and heuristic information. Specifi-
cally, for each task, we first calculate the selection probabili-
ties of paths (i.e., PðsÞ ¼ fPðs; wÞjw 2 RW 0ðsÞg, where ðs; wÞ
denotes a path between s and w) associated with s based on
Equation (7) (line 6). We then choose worker w from RW 0ðsÞ
based on PðsÞ and add w to the available task set of s when
RW 0ðsÞ 6¼ ; (lines 7–9).

Pðs; wÞ ¼
tðs;wÞ½ �a� hðs;wÞ½ �bP

w02RW 0ðsÞ t s;w0ð Þ½ �a � h s;w0ð Þ½ �b if w 2 RW 0ðsÞ
0 otherwise

8<
: (7)

hðs; wÞ ¼ 1

tðs:l; w:lÞ þ 1
; (8)

where Pðs; wÞ denotes the selection probability of path
ðs; wÞ, and tðs; wÞ denotes the pheromone of path ðs; wÞ.
Moreover, hðs; wÞ denotes the heuristic information of path
ðs; wÞ, which is the ratio between 1 and the travel time
between w and s, as captured in Equation (8). In this setting,
an ant tends to choose a path with less travel time, so that a
closer worker is assigned to task s. Next, a (a � 0) and b

(b � 0) are parameters that control the contributions of
tðs; wÞ and hðs; wÞ and that need to be fitted to the experi-
mental data. RW 0ðsÞ denotes the current reachable worker
set of task s, from which the assigned workers have been
removed compared to the original reachable worker set of
task s (lines 10–11). Workers that are not reachable for task s
are given selection probabilities of 0 for task s between s
and them.

As seen in Algorithm 6, a task assignment solution con-
tains a set of paths, each of which is denoted by a task-
worker pair (e.g., ðs; wÞ meaning that task s is assigned to
worker w). A feasible solution must satisfy two constraints:

1) for each task-worker pair ðs; wÞ in the solution,
worker w is a reachable worker of task s, i.e., w 2
RW 0ðsÞ, and

2) a task can be assigned to multiple workers but a
worker can only perform one task at any time
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instance, i.e., 8ðsi; wkÞ and ðsj; wgÞ, wk 6¼ wg (reflected
in lines 11 and 23).

When the current task s cannot be finished before its
deadline, its available worker set is set to the empty set, i.e.,
AWSðsÞ  ; (lines 13–14).

Algorithm 6. SolutionC

Input: S,RWðSÞ, T , E,m
output: A
1: A ;
2: RW0ðSÞ  RWðSÞ
3: /* RWðSÞ ¼ fRWðsÞgs2S and RW0ðSÞ ¼ fRW 0ðsÞgs2S */
4: foreach s 2 S do
5: AWSðsÞ  ;;
6: Compute the selection probabilities of paths (i.e.,

PðsÞ ¼ fPðs; wÞjw 2 RW 0ðsÞg, where ðs; wÞ denotes a
path between s and w) associated with s based on
Equation (7);

7: while RW 0ðsÞ 6¼ ; do
8: Choose worker w from RW 0ðsÞ based on PðsÞ;
9: AWSðsÞ  AWSðsÞ [ w;
10: if task s is finished before its deadline by workers in

AWSðsÞ then
11: RW0ðSÞ  RW0ðSÞ �AWSðsÞ;
12: break;
13: if task s cannot be finished before its deadline then
14: AWSðsÞ  ;;
15: foreach s 2 S do
16: if AWSðsÞ 6¼ ; and PAWSðsÞ < s:maxR then
17: while RW 0ðsÞ 6¼ ; do
18: if tðw:l; s:lÞ < T ðAWSðsÞÞ then
19: if PAWSðsÞ ¼ s:maxR then
20: Break;
21: else
22: AWSðsÞ  AWSðsÞ [ w;
23: RW0ðSÞ  RW0ðSÞ � w;
24: else
25: RW 0ðsÞ  RW 0ðsÞ � w;
26: A A [ ðs; AWSðsÞÞ;
27: Return A;

To obtain a higher platform profit, we continue to assign
more workers to tasks that have the potential to obtain
higher rewards (lines 15–26). A task s has the potential to
obtain higher rewards with more workers if reachable
workers exist that are able to arrive at the location of
s before its current completion time, i.e., tðw:l; s:lÞ <
T ðAWSðsÞÞ, where tðw:l; s:lÞ denotes the travel time
between location w:l and s:l, and T ðAWSðsÞÞ denotes the
task duration of s (i.e., the time from assignment to comple-
tion). Specifically, for a task s having the potential to yield
higher rewards, we keep assigning reachable workers to it
until the maximum reward is achieved or no reachable
workers exist (lines 17–25). Then we update the task assign-
ment solution A (line 26). Finally, a task assignment is
returned (line 27). The time complexity of Algorithm 6 is
OðN � jmaxRW jÞ, where N denotes the number of tasks,
and jmaxRW j denotes the maximum number of reachable
workers across all tasks, i.e., jmaxRW j ¼ maxs2SjRW ðsÞj.
Accordingly, the time complexity of the ACO-based task
assignment algorithm (cf. Algorithm 5) is OðmaxfN �N;N �

logN ; � � jMj � N � jmaxRW jgÞ, where N denotes the num-
ber of workers, � is the number of iterations, and jMj
denotes the number of ants.

Pheromone Updating. A key characteristic of Algorithm 5
is that in each iteration, the pheromone values are updated
(line 12) by the ants that have built the solution in the itera-
tion. The pheromone update in the kth (k > 1) iteration is
described in the following equations. First, tkðs; wÞ denotes
the pheromone on path ðs; wÞ after k iterations and is com-
puted as follows:

tkðs; wÞ ¼ ð1� rÞ � tk�1ðs; wÞ þ
X
m2M

Dtkmðs; wÞ; (9)

where r is the evaporation rate of pheromone (from the pre-
vious to the current iteration), M denotes the ant set, and
Dtkmðs; wÞ denotes the quantity of pheromone given to path
ðs; wÞ by ant m in the kth iteration, which is calculated
according to Equation (10).

Dtkmðs; wÞ ¼ PAWSðsÞ � PAWSðsÞ�fwg if s; AWSðsÞð Þ 2 Ak
m

0 otherwise,

�

(10)

where PAWSðsÞ � PAWSðsÞ�fwg denotes the profit increase
by adding worker w to the available worker set (i.e.,
AWSðsÞ � fwg) of task s, and Ak

m denotes the task assign-
ment of ant m in the kth iteration. The intuition is that if a
path ðs; wÞ can generate a higher profit for the task assign-
ment, the path will contribute more profit to the solution.
As a result, the ant tends to give more pheromones to this
path, and other ants are more likely to select this path.

5 EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed methods on
both real and synthetic datasets. The experimental setup is
presented in Section 5.1, followed by a coverage of key
experimental results in Section 5.2.

5.1 Experimental Setup

Datasets.We perform experiments on two datasets: gMission
(GM) and synthetic (SYN). First, gMission is an open source
SC dataset [2], where each task is associated with a location,
a publication time, and a reward, and each worker is associ-
ated with a location and a reachable distance. As the gMis-
sion data is not associated with expected completion times,
deadlines, and workloads and penalty rates of tasks, we
uniformly generate these attributes from the ranges [10,20],
½s:eþ 1; s:eþ 20�, [10, 20], and ½0; s:maxR

s:d�s:e� (to guarantee that
the rewards obtained by workers are non-negative), respec-
tively, where s:d is the deadline of s and s:maxR is the maxi-
mum reward of each task s. These settings are adjusted
according to the actual data attributes, e.g., locations of
workers and tasks, publication times of tasks, and reachable
distances of workers. Values that are too small (including
expected completion times and deadlines of tasks) or too
large (including workloads and penalty rates of tasks) of the
generated attributes cause most of the tasks to be unable to
finish. In the other extreme, the use of too large expected
completion times and deadlines of tasks or too large
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workloads and penalty rates of tasks renders it impossible
to observe the effects of the constraints imposed by these
attributes. We set the maximum reward to s:wl � s:reward
for each task s, where s:wl denotes the workload of s and
s:reward is the reward of s in gMission. The speeds of work-
ers are set to 1.

For the synthetic dataset, we generate locations of tasks
and workers following a uniform distribution in a 2D space
½0; 30�2 based on observations from real datasets (e.g., gMis-
sion). The publication times of all tasks are set to 0, and each
worker’s reachable distance is set to 0.8. The expected com-
pletion times, deadlines, and workloads and penalty rates
of tasks are uniformly generated from the ranges [5,20],
½s:eþ 1; s:eþ 15�, [5,20], and ½0; s:maxR

s:d�s:e �. The maximal reward
of each task is set following a Gaussian distribution since it
is influenced by complex variables in the real world. The
speeds of workers in the synthetic dataset are set to 0.1.

Evaluation Methods. We evaluate performance of the fol-
lowing algorithms.

1) OTA: TheOptimal TaskAssignment (OTA) algorithm.
2) GTA: The basic Greedy Task Assignment (GTA)

algorithm.
3) GTA + CT: GTA with Coarse Tuning.
4) GTA + FT: GTA with Fine Tuning.
5) GTA-RTO: GTA with Random Tuning Optimization

(including coarse and fine tuning).
6) ACO: Ant Colony Optimization (ACO) based task

assignment algorithm.
7) k-MTA: The Maximum Task Assignment (MTA) [15]

based on a Minimum Cost Maximum Flow tech-
nique. In MTA, the weight between a worker (w) ver-
tex and a task (s) vertex is set to 1

dðw:l;s:lÞ , where

dðw:l; s:lÞ is the distance between w and s. The capac-
ity between a task vertex and the fictitious destina-
tion vertex is set to k (k ¼ 1; 2; 3), which means that
at most k workers can be assigned to a task. MTA
aims to maximize the number of task assignments by
assigning workers to closer tasks with higher
priorities.

Metrics. Two metrics are compared among the above
algorithms: Profit-gaining Ratio (PR, the ratio between the
real and the optimal total platform profit) and CPU time (for
finding the task assignment).

Table 2 shows the parameter settings, where the default
values are underlined. All the experiments are conducted
on an Intel(R) Core(TM) i7� 10700 CPU @ 2.90GHz with
32.0 GB RAM.

5.2 Experimental Results

5.2.1 Scalability

Effect of N . We first study the effect of number of tasks N .
From Figs. 5a and 6a, we can see that OTA generates the
highest profit-gaining ratio (i.e., PR = 1), followed by ACO,
GTA-RTO, GTA+FT, GTA+CT, GTA, and k-MTA. ACO can
achieve up to 97:60% of the overall profit of OTA, and it can
improve the overall profit by up to 9:05% compared with
GTA-RTO, which shows that ACO is superior in terms of
obtaining profit. GTA-RTO is able to achieve at most 89:50%
of the overall profit of OTA, which improves the total profit
by up to 25:56% over GTA. We also notice that the profits
generated by the k-MTA methods decline with increasing
N . This is so because the k-MTA methods only aim to maxi-
mize the number of task assignments (i.e., the number of
matched task-worker pairs) while ignoring the completion
of tasks. For example, a task that is assigned to at most k
workers may not be finished by these workers, and thus the
reward of this task is 0, and there is no contribution to the
platform profit. Furthermore, with increasing N , the
k-MTA methods are more likely to assign fewer workers to
a task, which results in more unfinished tasks and lower
profits. This also explains why the k-MTA methods perform
worse when k is smaller: each task is assigned to fewer
workers with smaller k, leading to more unfinished tasks.
In Figs. 5b, 5c, 5b, and 5c, although the CPU time of all

TABLE 2
Parameter Settings

Parameters Values

Number of tasks (GM),N 100, 200, 300,
400, 500

Number of tasks (SYN),N 1k, 3k, 5k, 7k,
9k

Number of workers (GM),N 100, 200, 300,
400, 500

Number of workers (SYN),N 1k, 3k, 5k, 7k,
9k

Abandoned probability of tasks in CT
(GM&SYN), pCTm

0.1, 0.2, 0.3, 0.4

Reassigned probability of workers in FT
(SYN), pFTm

0.2, 0.4, 0.6, 0.8

Early stop round in CT, FT and RTO (SYN), n 5, 10, 15, 20
The parameter measuring the contribution of
pheromone on a path in ACO (SYN), a

0.4, 0.6, 0.8, 1.0,
1.2

The parameter measuring the contribution of
heuristic information on a path in ACO (SYN),
b

1.2, 1.4, 1.6, 1.8,
2.0

Evaporation rate of pheromone in ACO
(SYN), r

0.1, 0.2, 0.3, 0.4,
0.5

Number of ants in ACO (SYN), jMj 3, 6, 9, 12, 15
Threshold number of iterations in ACO
(SYN), �

5, 10, 15, 20, 25

Reachable distance of workers (SYN), r 0.2, 0.4, 0.6, 0.8,
1

Fig. 5. Effect ofN on the gMission dataset.
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methods increases with N , the GTA-based approaches
(including GTA, GTA+FT, GTA+CT, and GTA-RTO) per-
form better than the MTA-based approaches. ACO is slower
than the GTA-based approaches, but it can improve the
platform profit, which is crucial. OTA deteriorates much
faster and cannot even return a result within a tolerable
time duration when N > 400 on the gMission dataset and
whenN > 7000 on the synthetic dataset.

Effect of N. Next we study the effect of N on the perfor-
mance of the algorithms. Figs. 7a and 8a show that ACO
performs better than all the GTA-based and MTA-based
algorithms in terms of PR when varying N. From Figs. 7b,
7c, 8b, and 8c, we can see that OTA is much slower than
other methods. Although ACO is more time-consuming
than the GTA-based algorithms, its CPU time is able, and it
is able to achieve a good trade-off between effectiveness
(second to OTA) and efficiency (second to GTA-based
algorithms).

5.2.2 Performance of GTA-Based Algorithms

We proceed to evaluate the performance of the GTA-based
algorithms for different parameter settings. We also include
OTA and ACO for comparison. To save space, we do not
report the CPU time of OTA, which is uncompetitive.

Effect of pCTm . In the coarse tuning, parameter pCTm repre-
sents the basic probability of abandoning a task. Note that
parameters pCTt and pCTr are both set to

1�pCTm
2 . In Figs. 9a and

10a, GTA-RTO achieves the highest profit among the GTA-
based methods, especially when pCTm is set to 0.3, which indi-
cates that too conservative and too aggressive strategies are
not suitable. In Figs. 9b and 10b, we see that the CPU time
of GTA+CT and GTA-RTO increase when pCTm increases
since more radical exploration strategies are more likely to
reassign more workers when adopting the coarse tuning
strategy. Further the performance of GTA, GTA+FT, OTA,
and ACO stay stable in Figs. 9 and 10 since only strategies
with coarse tuning are affected by variations in pCTm . In sub-
sequent experiments, we omit results for the GM dataset, as
these are similar to those obtained for the SYN dataset.

Effect of pFTm . We also evaluate the effect of varying pFTm ,
the basic probability parameter in fine tuning. Parameter
pFTt is set to 1� pFTm . Fig. 11a shows that when compared
with the GTA-based approaches, GTA-RTO can obtain
higher profit. The CPU time of the methods with fine tuning
(i.e., GTA-FT and GTA-RTO) increases when increasing pFTm
(see Fig. 11b) for the same reason as pCTm increases, namely
that a more radical exploration tends to generate more reas-
signed workers, thus incurring more CPU time for task
assignment. Moreover, as only the fine tuning process is
affected when varying pFTm , the methods without fine tuning
(OTA, GTA, GTA+CT, and ACO) are unaffected, as shown
in Fig. 11.

Effect of n. Next, we study the effect of varying n, called
early stop round, that affects the termination condition in
the GTA-based methods (except for GTA). In other words,
GTA+CT, GTA+FT, and GTA-RTO keep searching until the
nth iteration. OTA, GTA, and ACO are unaffected by n.
From Fig. 12a, we can see that the profit of the GTA-based

Fig. 6. Effect ofN on the synthetic dataset.

Fig. 7. Effect ofN on the gMission dataset.

Fig. 8. Effect ofN on the synthetic dataset.

Fig. 9. Effect of pCTm on the gMssion dataset.

8396 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on September 02,2023 at 07:07:32 UTC from IEEE Xplore.  Restrictions apply. 



methods (except GTA) increase with increasing n. Specifi-
cally, a larger n leads to a higher possibility of finding a task
assignment with more profit. Obviously, the CPU time of
these methods increase in Fig. 12b when n increases, since a
higher nmeans more iterations in the search process.

5.2.3 Performance of ACO

We next evaluate the performance of ACO across varying
parameter settings in order to determine settings that work
well for the data used. Moreover, we include OTA, GTA,
GTA+CT, GTA+FT, and GTA-RTO as baseline algorithms.

Effect of a. Obviously, OTA, GTA, GTA+CT, GTA+FT
and GTA-RTO are unaffected by variations in parameters
that are specific to ACO, i.e., they are unaffected by a (mea-
suring the contribution of pheromone on a path), as can be
seen in Fig. 13. In Fig. 13a, PR first increases when increas-
ing a. After peaking at a ¼ 0:8, PR drops steadily. It is worth
noting that the profit obtained by ACO always exceeds
those of the other algorithms (except OTA) for all a, demon-
strating the superiority of ACO. In terms of efficiency,
Fig. 13b shows that the CPU time of all the algorithms
remain stable regardless of a.

Effect of b. Next we study the effect of varying b that con-
trols the contribution of heuristic information on a path in
ACO. Fig. 14 shows that b has a similar effect on PR and
CPU time as a has. Specifically, the PR of ACO increases as
b is increased from 1.2 to 1.8, and then the PR drops slowly
when b > 1:8 (see Fig. 14a). The CPU time of all approaches
remain unchanged when varying b, shown in Fig. 14b.

Effect of r. We study the effect of varying r, the evapora-
tion rate of pheromone deposited by previous ants, varying
it from 0.1 to 0.5. As we can see in Fig. 15a, ACO achieves

the highest PR when r ¼ 0:4. Although ACO is the most
time-consuming among all the algorithms (see Fig. 15b), it
also outperforms the others in terms of PR.

Effect of jMj. Fig. 16 shows that both the PR and CPU time
of ACO exhibit an increasing trend when the number of
ants jMj increases. More ants means that ants will follow
more paths, which is more likely to result in a task assign-
ment with higher profit. This explains the increasing trend
in Fig. 16a. In addition, the CPU time of ACO increases since
more paths need to be searched, as can be seen in Fig. 16b.

Effect of �. As expected, the profit of ACO increases grad-
ually as � (threshold number of iterations in ACO) is
increased—see in Fig. 17a. This is so because with more iter-
ations, each ant tends to have more chances to choose a
shorter path (i.e., a task assignment with lower travel times
for workers), which leads to a task assignment with more
profit. ACO still performs better than the GTA-based meth-
ods in terms of PR. However, the CPU time of ACO also
increases when increasing the number of iterations, as
shown in Fig. 17b. To achieve a good balance between effec-
tiveness and efficiency, we use � ¼ 5 as the default value in
the experiments.

Effect of r. Finally, we study the effect of r (reachable dis-
tance of workers). Figs. 18a and 18b show that ACO can
achieve task assignments with higher profits than the com-
petitors, at the cost of increased CPU time. However, the
computational cost of ACO remains acceptable. As illus-
trated in Fig. 18a, the profits of ACO first increases and then
decreases gradually. This may be due to the fact that when r
is first increased, each worker has more reachable tasks. As
a result, each ant has more chances to choose a shorter path
(i.e., a task assignment with lower travel time), which leads

Fig. 10. Effect of pCTm on the synthetic dataset.

Fig. 11. Effect of pFTm on the synthetic dataset.

Fig. 12. Effect of n on the synthetic dataset.

Fig. 13. Effect of a on the synthetic dataset.

Fig. 14. Effect of b on the synthetic dataset.

Fig. 15. Effect of r on the synthetic dataset.
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to task assignments with increased profits. When r reaches a
certain level (i.e., r � 0:4), a task with a higher s:maxR

s:wl value is
more likely to be assigned to more workers since ACO pri-
oritizes tasks with a higher reward per unit of work and
each task has more available workers to choose among. This
situation leads to more unassigned tasks with lower s:maxR

s:wl

values, thus decreasing the total profits. These profits of the
GTA-related methods always decrease with growing r
because they prioritize tasks with higher s:maxR

s:wl values, leav-
ing more tasks with lower s:maxR

s:wl values unassigned. In
Fig. 18b, the CPU time of ACO increases as r increases since
each ant has to check more reachable workers for each task
when r grows. In contrast, the CPU times of the GTA-
related methods decline with growing r. The reason is that
these methods end the assignment iterations early, when all
available workers are assigned, which compensates for the
CPU time needed for searching among more available
workers.

Summary of the Empirical Study. The findings of the empir-
ical study can be summarized as follows:

1) OTA achieves the maximum profit but at the cost of
very high CPU time;

2) GTA-RTO performs better than the other GTA-based
methods in terms of profit, demonstrating the supe-
riority of random tuning (including coarse and fine
tuning) optimization;

3) ACO achieves a better balance between effectiveness
(second to OTA) and efficiency (second to the GTA-
based methods).

6 RELATED WORK

6.1 Spatial Crowdsourcing

Crowdsourcing is a computing paradigm, where humans
actively or passively participate in the process of comput-
ing, especially in the context of tasks that are intrinsically
easier for humans to complete than for computers [34].
Many successful crowdsourcing platforms exist, e.g., Ama-
zon Mechanical Turk (MTurk) and Wikipedia. Along with
the ubiquity of GPS-equipped, networked devices like
smart phones, a new class of crowdsourcing, called Spatial

Crowdsourcing (SC), has drawn increasing attention in both
academia and industry. With SC, requesters can issue spa-
tial tasks (e.g., monitoring traffic conditions) to SC servers
that then assign these tasks to workers (called task assign-
ment). The tasks are spatial because the workers must move
to specified locations to complete the tasks. As one of the
main enablers for the orchestration of location-based tasks,
research on task assignment has gained considerable atten-
tion; consequently, many task assignment techniques have
been proposed for different application scenarios [13], [22],
[36], [39], [40], [45], [47]. Depending on how tasks are
assigned to workers, SC can be classified into Server
Assigned Tasks (SAT) mode and Worker Selected Tasks
(WST) mode [15]. Most studies assume the SAT mode,
where an SC server takes charge of the task assignment. We
also adopt this mode. In SAT mode, the server assigns each
task to nearby workers based on system optimization goals
such as maximizing the number of assigned tasks after col-
lecting all the locations of workers [7], [9], [15], [16], [19],
[20], [44], maximizing the diversity score of assignments [5],
maximizing the coverage of required skills of workers [3],
or maximizing a global assignment quality score based on
prediction [4]. For example, Kazemi and Shahabi [15] for-
mulate SC as a matching problem between workers and
tasks. They aim to maximize the total number of assigned
tasks while conforming to workers’ constraints, based on
the assumption that the server has global knowledge of
tasks and workers at each time instance. Tong et al. [32] pro-
pose a two-sided online micro-task assignment framework
for spatial crowdsourcing that includes a TGOA-Greedy
and a TGOA-OP algorithm. It differs from our work in
terms of its task definition and problem setting. First, it
defines a task as a micro-task, the processing time of which
can be ignored. In contrast, we assign tasks with different
workloads, which require certain amounts of time to com-
plete. Second, the framework works in single-task assignment
mode [15] and assigns only a single worker to a task. In con-
trast, we are able to assign multiple workers to a task to guar-
antee that the workload of a task can be completed. Due to
these differences, their algorithms do not solve our problem.

In contrast, in WST mode, the server publishes spatial
tasks online, and workers select tasks without coordination
with the server [8], [9]. Deng et al. [8] formulate SC as a
scheduling problem, reducing it to a specialized Traveling
Salesman Problem. The authors propose exact and approxima-
tion algorithms to find a schedule that maximizes the num-
ber of tasks that can be completed by a worker, where travel
costs of workers and expiration times of tasks are taken into
consideration. Although task assignment has been the subject
of many studies, open problems remain, including how to
optimize the profit for an SC platform.

Fig. 16. Effect of jMj on the synthetic dataset.

Fig. 17. Effect of � on the synthetic dataset.

Fig. 18. Effect of r on the synthetic dataset.
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6.2 Profit-Aware Spatial Crowdsourcing

For an SC platform, an essential characteristic is its inherent
cost effectiveness, as a platform aims to maximize profit
during task assignment. However, many existing studies
assume that an SC platform assigns tasks to mobile workers
voluntarily for purposes of entertainment [1], information
[14], or altruism [6], without considering the profit of the
platform itself. In the settings of these studies, it is often dif-
ficult to engineer non-monetary incentive schemes for
tedious and repetitive work [26], and they do not address
the need for an SC platform to make a profit. Further, work-
ers may not be willing to complete assigned tasks without
payment because completing the tasks may incur participa-
tion costs (e.g., time and cost of travel and mobile device
battery energy cost for sensing, data processing, and
transmission).

Several profit-based task assignment mechanisms have
been developed in crowdsourcing systems. For instance, in
order to maximize the profit of a crowdsourcing system,
Koutsopoulos [17] designs an optimal incentive mechanism
through an optimal reverse auction with multiple winners.
A key drawback is that the task allocation is time-consum-
ing. Yang et al. [38] design incentive mechanisms for mobile
crowdsourcing systems while taking the profit of the plat-
form into consideration. They develop two system models
(a platform-centric model and a user-centric model), but
profit is sacrificed for computational efficiency. Shah-Man-
souri et al. [25] design a profit maximizing truthful auction
solution for mobile crowdsourcing systems, where the plat-
form acts as an auctioneer and mobile workers act as sellers
that submit bids to the platform. However, when assigning
tasks, the above studies do not consider spatio-temporal
information (e.g., location, mobility, and associated con-
texts), which plays a crucial role in SC. Furthermore, they
focus on improving the total profit for an SC platform by
providing different incentive mechanisms instead of target-
ing the task assignment process. In previous work [37], we
formulate a profit-driven task assignment problem for SC,
and we provide exact and greedy solutions. In the present
study, we go further in this direction and adopt an ant col-
ony optimization based approach to solve the profit-driven
task assignment problem, which aims to achieve a better
trade-off between effectiveness and efficiency.

7 CONCLUSION AND FUTURE WORK

We study a novel SC problem, called Profit-driven Task
Assignment (PTA), that aims to find a task assignment that
maximizes the profit of an SC platform. In order to achieve
high effectiveness and efficiency, we address key chal-
lenges by designing a reward pricing model to quantify
the relationship between the task’s reward and its comple-
tion time, and we develop exact and greedy algorithms to
assign tasks. Furthermore, considering that an SC platform
is likely to pursue high overall profits even at the cost of
sacrificing some efficiency, we design a heuristic task
assignment approach based on ant colony optimization,
which achieves a better effectiveness-efficiency trade-off.
An extensive empirical study based on real and synthetic
data confirms the superiority of the paper’s proposal. One
future research direction is to consider the privacy leakage

problem and design effective privacy protection strategies
in task assignment.
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