
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Task Assignment with Efficient Federated
Preference Learning in Spatial Crowdsourcing

Hao Miao, Xiaolong Zhong, Jiaxin Liu, Yan Zhao, Xiangyu Zhao, Weizhu Qian, Kai Zheng,
and Christian S. Jensen, Fellow, IEEE

Abstract—Spatial Crowdsourcing (SC) is finding widespread application in today’s online world. As we have transitioned from desktop
crowdsourcing applications (e.g., Wikipedia) to SC applications (e.g., Uber), there is a sense that SC systems must not only provide
effective task assignment but also need to ensure privacy. To achieve these often-conflicting objectives, we propose a framework, Task
Assignment with Federated Preference Learning, that performs task assignment based on worker preferences while keeping the data
decentralized and private in each platform center (e.g., each delivery center of an SC company). The framework includes a federated
preference learning phase and a task assignment phase. Specifically, in the first phase, we build a local preference model for each
platform center based on historical data. We provide means of horizontal federated learning that makes it possible to collaboratively
train these local preference models under the orchestration of a central server. Specifically, we provide a practical method that
accelerates federated preference learning based on stochastic controlled averaging and achieves low communication costs while
considering data heterogeneity among clients. The task assignment phase aims to achieve effective and efficient task assignment by
considering workers’ preferences. Extensive evaluations on real data offer insight into the effectiveness and efficiency of the paper’s
proposals.

Index Terms—preference; task assignment; federated learning; spatial crowdsourcing.

✦

1 INTRODUCTION

THE last decade has witnessed substantial advances in
Spatial Crowdsourcing (SC), which enables people on

the move to serve as multi-modal sensors that perform a
variety of location-based tasks [1], [2], [3], [4], [5], [6]. The
rising concerns of privacy [7], [8], [9], [10], [11], [12], [13]
and efficiency [14], [15], [16], [17], [18] raised by SC are
continuously attracting attention. In particular, privacy is
desirable in SC. In order to achieve effective SC services,
workers or platform centers (e.g., delivery centers of an
SC company) are usually required to disclose their raw
information (e.g., workers’ locations and historical data).
However, it is dangerous that real data can be used by
a malicious third party. Thus, people will be unwilling to
hand over their data to an SC platform, which leads to low
worker participation and even worker churn.

Previous studies on privacy protection in SC focus
mainly on protecting the location information of workers or

• Hao Miao, Yan Zhao, Weizhu Qian, and Christian S. Jensen are with
the department of Computer Science, Aalborg University, Aalborg 9220,
Denmark.
E-mail: {haom, yanz, wqian, csj}@cs.aau.dk

• Xiaolong Zhong, Jiaxin Liu are with the School of Computer Science and
Engineering, University of Electronic Science and Technology of China,
Chengdu 610054, China.
E-mail: {xiaolongzhong2000, jiaxinliu1999}@std.uestc.edu.cn

• Xiangyu Zhao is with the School of Data Science, City University of Hong
Kong, Hong Kong, China.
E-mail: xianzhao@cityu.edu.hk

• Kai Zheng is with Yangtze Delta Region Institute (Quzhou), School of
Computer Science and Engineering, and Shenzhen Institute for Advanced
Study, University of Electronic Science and Technology of China.
E-mail: zhengkai@uestc.edu.cn

Yan Zhao is the corresponding author.

tasks [7], [9], [13], [19], [20], data federation [21], [22], and on
secure distance computation [8], [10], [12]. However, these
studies do not take into account worker preferences, which
are essential for the operation of an SC platform. These
are needed in order to assign workers appropriate tasks,
which is key to ensuring continuous worker participation
and satisfaction. In contrast, when a worker is assigned
an inappropriate task, the worker may complete the task
with low quality or may even sabotage the task, which
impacts the SC platforms negatively. Considering worker
preferences is thus crucial in SC. Recently, a number of
studies have explored worker preference in SC [14], [16],
[17], [18], [23]. Zhao et al. [18] model different workers’
preferences for different categories of tasks in different time
slots with a three-dimensional tensor and fill-in missing
entries in tensors based on workers’ task-performance histo-
ries and context matrices. Another study [14] uses historical
task-performance data to maximize the mutual information
among workers in order to learn informative representation
vectors of groups and further learn group preferences. These
studies do not consider privacy when modeling worker
preferences. Instead, they transmit raw data directly to the
SC platform and train a preference model in a centralized
manner. In practice, data transfer between platform centers
is cumbersome, and platform centers may be unwilling to
share their data with other centers. In this kind of set-
ting, task assignment often fails to achieve effective task
assignment. To address the above challenges, we provide
a preference-driven task assignment solution that integrates
federated learning to protect raw data while using workers’
preferences in task assignment. Federated Learning (FL)
is a machine learning approach where many clients (e.g.,
mobile devices, organizations, or platforms) collaboratively

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Federated Preference Learning

Platform center 1

Central server

Data
…

Data Data

Data Historical data
… ①

② ② ②

④

③

①

②

Download parameters

Train locally

③ Upload parameters

④ Update server model

Platform center 2 Platform center n

Context encoder

In-category encoder

Collaborate module
+

Dynamic penalized

risk function

Global preference model

Local preference model

Task Assignment

Tasks to be

assigned

Workers to

be assigned

AWs for

each task

RTs for

each worker

Intersected

top-k KM

Spatio-temporal

constraints

Fig. 1. Framework Overview

train a model under the orchestration of a central server
while keeping the training data decentralized. It embodies
the principles of focused collection and data minimization,
which can mitigate the systemic privacy risks and costs as-
sociated with traditional, centralized machine learning [24].
Moreover, FL addresses privacy concerns associated with
the sharing of sensitive data with a central server, reducing
the risk of data leakage. MaMahan et al. [25] show that
federated learning offers many practical privacy benefits.

Filling the gap between existing research focusing on
privacy issues and methods ignoring worker preferences,
we propose a two-phase SC framework, namely Task As-
signment with Federated Preference Learning (TA-FPL),
which encompasses a federated preference learning and
task assignment, as shown in Figure 1. In the first phase,
a federated preference model is built for each local center,
and all local models are combined at a central server. For
each preference model, each platform center first downloads
parameters from the central server and utilizes local histori-
cal data to learn workers’ preferences for all task categories
by using a context encoder, an in-category encoder, and
a collaboration module. Then, the central server receives
the updated model parameters and aggregates them to
update its global preference model. For the aggregation,
we introduce a dynamic penalized risk function to achieve
better performance. In the task assignment phase, we first
calculate the Available Workers (AWs) for each task and
the Reachable Tasks (RTs) for each worker based on spatio-
temporal constraints. Then we propose an intersected top-k
Kuhn Munkras (KM) algorithm, which considers the top-
k AWs and RTs for each task and worker simultaneously,
to achieve effective and efficient task assignment based on
workers’ preferences.

A preliminary version of this study [26] applies stochas-
tic gradient descent (SGD) to optimize the federated pref-
erence learning, where clients calculate the gradients of the
loss over their local data, and the central server then ag-
gregates the gradients to update parameters. This approach
requires a large number of training rounds to produce
superior models, thus calling for a more communication-
efficient optimization method. In real-world scenarios, the
network connections between the server and clients can be
unreliable due to many factors, and only a small subset
of clients may be available at a given time. In addition,
the distributions of the local data held by different clients

are often not independent and identically distributed (Non-
IID) [27], which implies large heterogeneity.

To address these issues, we first optimized the training
of preference learning in TA-FPL with FederatedAveraging
(FedAvg) [25]. Specifically, we select a C-fraction of the
clients in each training round and update the selected clients
locally multiple times by involving a server that performs
model averaging. However, platform centers are generally
heterogeneous (non-IID) and complex across different real-
world SC settings. For instance, workers in one platform
center may need to identify an attractive location for ad-
vertisements, while workers in another platform center
may perform real-time traffic reporting. Such heterogeneous
cases impact FedAvg negatively [27], [28], causing slow and
unstable convergence due to client drift when updating
clients. Client drift has the effect that the optimums of
the loss functions of clients vary from client to client and
from that of the server. To contend with client drift, we
incorporate the idea of stochastic controlled averaging into
the federated preference learning phase of TA-FPL, which
ables overcoming heterogeneity and enables much faster
convergence. More concretely, we consider the difference
between the update direction for the server model c and
each client ci as the estimate of the client drift, which is then
used to correct the local updates during local preference
model training.

The major value-added extensions over our preliminary
study [26] are three-fold.

1) We analyze in depth a limitation of our previous
federated training method that fails to solve non-IID SC data
across clients, thus improving the efficiency of federated
preference learning.

2) We provide a drift-correct federated training (DCFT)
method that optimizes the preference learning by stochastic
controlled averaging while contending with SC data hetero-
geneity, thereby achieving efficient communication between
clients and the server.

3) We report on extensive experiments on a real-world
dataset, offering evidence of the efficiency of the paper’s
proposals, which reduces the convergence time of prefer-
ence learning by up to 45% compared to that of a federated
preference learning (FPL) model.

The remainder of the paper is organized as follows.
Preliminary concepts, notation, and a problem statement are
provided in Section 2. Next, federated preference learning

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

and intersected Top-k KM task allocation are covered in
Section 3. We report on an experimental study in Section 4.
Section 5 surveys related work, and Section 6 offers conclu-
sions.

2 PRELIMINARIES AND PROBLEM DEFINITION

We proceed to present preliminaries and define the problem
addressed. Table 1 lists the notations used throughout the
paper.

TABLE 1
Summary of Notation

Symbol Definition Symbol Definition
pc Platform center w.l Current location of w
pc.l Location of pc w.pc Platform center of w
pc.W A worker set of pc w.r Reachable radius of w
s Spatial task w.speed Speed of worker w
s.l Location of s w.S A set of historical tasks of w
s.p Publication time of s A A spatial task assignment
s.e Expiration time of s A.S Allocated task set of S
s.c Category of s A Task assignment set
w Worker

Definition 1 (Platform Center). A platform center, denoted
by pc = (l,W), has a location pc.l and a set of workers
pc.W .

Definition 2 (Spatial Task). A spatial task, denoted by s =
(l, p, e, c), has a location s.l, a publication time s.p, an
expiration time s.e, and a category s.c.

With SC, the query of a spatial task s can be answered
only if a worker is physically located at that location s.l
and be completed only if a worker arrives at s.l before
its deadline s.e. Note that with the single task assignment
mode [29], an SC server should allocate each spatial task to
only one worker at a time.
Definition 3 (Worker). A worker, denoted by w =

(l, pc, r, speed, S), has a location w.l, a center w.pc that
the worker w works for, a reachable radius w.r, a move-
ment speed w.speed, and a set of historical tasks w.S.

The reachable range of worker w is a circle with w.l as
the center and w.r as the radius, within which w can accept
assignments. In our work, a worker can handle only one
task at a certain time instance and belongs to a single center,
which is reasonable in practice.
Definition 4 (Spatial Task Assignment). Given a set of

workers W = {w1, w2, ..., w|W |}, a set of tasks S =
{s1, s2, ..., s|S|}, and a set of platform centers PC =
{pc1, pc2, ..., pc|PC|}, we define A as the spatial task
assignment which consists of a set of tuples of form
(pc, w, s), where a spatial task s is assigned to worker w
who works for pc, satisfying all the workers’ and tasks’
spatial-temporal constraints.

Based on the above definitions, a formal problem defini-
tion is as follows.

Preference-driven Task Assignment with Privacy Pro-
tection. Given a set of centers PC with private local data
(i.e., workers’ historical task records and workers’ locations),
a set of online workers W , and a set of tasks S at the current
timestamp, our problem is to find an optimal task assign-
ment Aopt that maximizes the total number of assigned

tasks, i.e., ∀Ai ∈ A (|Aopt.S| ≥ |Ai.S|), by considering
workers’ preferences and protecting the privacy of each
platform center, where A denotes all possible assignments
and Ai.S denotes the tasks of task assignment Ai.

Note that the proposed TA-FPL encompasses a federated
preference learning and a task assignment phase. Since we
aim to learn workers’ preferences in the federated learning
phase, which also enables privacy, we do not define prefer-
ence and privacy in the problem statement.

3 ALGORITHM

In this section, we introduce the details of the proposed
framework TA-FPL, which contains a federated preference
learning phase described in Section 3.1 and a preference-
driven task assignment phase described in Section 3.2. In
the federated preference learning phase, a local preference
model is proposed to model workers’ preferences for lo-
cal platform centers, which contains three modules, i.e., a
context encoder, an in-category encoder, and a collabora-
tion module. We combine the above-mentioned modules to
predict the local workers’ preferences. Then, we introduce a
novel federated training process to update the parameters of
the central server’s model in order to get the global workers’
preferences. In the preference-driven task assignment phase,
we introduce an Intersected top-k KM algorithm to find a
suitable task assignment.

Data Source

Worker-task

sequences

Local Preference Model

Context Encoder

Recency Encoder

Top-k

Gating Network

In-category

Encoder

Collaborate Module

Neighbors Retrieval

Memory Queue

Updating

Episodic context

In-category worker preference

Neighbors’ in-category preference Worker-task

location

sequences

Historical

data in center

Worker

Preference

Prediction

Fig. 2. Local Preference Model

3.1 Federated Preference Learning

In this section, we introduce the local preference model
and federated model training, respectively. Noted that the
central server’s model and local platform centers’ models
share the same model framework, as shown in Figure 2.

3.1.1 Local Platform Center Preference Modeling
In this section, we will introduce how to use each platform
center’s local data to model workers’ preferences.

Given a set of workers W over a set of task locations L
from a set of task categories C , a task record can be denoted
as a tuple si = (li, ci), where i is the index of the task in a
worker’s historical task record sequence, li is the location
of task si that the worker interacts with, and ci is the
task’s category. Different tasks may be located in the same
location. A sequence of N tasks from worker w is denoted
as Sw = {s1, s2, ..., sN}, which is ordered according to the
chronological order of tasks. Sc

w = {sc1, sc2, ..., scT } represents
the subsequence of Sw under category c, where T is the
number of task records in this subsequence and task records

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

in Sc
w are still in chronological order. Given Sw of worker w,

the goal of our preference model is to predict this worker’s
preferences of task location and task category in the near
future.

As shown in Figure 2, the local preference model is com-
posed of three modules: a context encoder, an in-category
encoder, and a collaboration module. First, to model worker
preferences under a task category, a task sequence can be
divided into multiple subsequences according to task cate-
gories, and each subsequence contains tasks of the same cat-
egory. The in-category encoder, utilizing SelfAttention [30],
[31], is used to model in-category transition patterns of task-
to-task in the subsequences. Second, the context encoder
contains episodic context and category context. Based on
the categories of recent task records, the context encoder
utilizes SelfAttention to predict the next category, thus
helping determine a worker’s preference for the next task
location. To get the episodic context, the context encoder
models the task-to-task transition patterns among recent
task records with another SelfAttention . Third, due to the
sparsity of observations in individual worker’s task records,
we retrieve workers with similar in-category preferences
to the target worker based on the context encoder’s next
category prediction. Finally, task location and task category
prediction are made based on the episodic context, the in-
category worker preferences, and neighboring workers’ in-
category preferences. We will then introduce the details of
each component of this preference model.

Context Encoder. The context encoder is designed to
obtain both category and episodic context for the worker
preference prediction. To decide which in-category worker
preferences should be used, the category of the next task
is predicted. By using a top-k gating network and a recency
encoder, we can obtain the category context and the episodic
context in recent task records, respectively.

For the top-k gating network, we take the categories of
recent tasks as input. Through the input category embed-
ding layer, the categories of the most recent M task records
can be projected into vectors Z = [ezcN−M

, ..., ezcN], and the
relative positions of recent task records [M, ..., 1] can be
similarly projected into P z = [P z

M , ..., P z
1] with the position

embedding layer. Then a SelfAttention network [30], [31],
which is composed of nl layers of a multi-head attention
block and a Fully Connected (FC) network block, transforms
the category vectors H0 = Z + P z into hidden representa-
tions Hnl = [hz

1, ..., h
z
T]. For the ith attention head, the input

latent states Hj will be transformed as Eq. 1, where projec-
tion matrices WQ

i ,WK
i ,WV

i are learnable parameters and
LN is a layer normalization network. We use hz = hz

T to
summarize the category information of recent task records.

Aj
i = Attention(HjWQ

i , HjWK
i , HjWV

i),

Attention(Q,K, V) = softmax(
Q ·KT√
da/nh

),

Hj+1 = LN(Hj + FCj(Aj)),

(1)

Then we feed hz into the output category embedding layer
and a softmax layer. The top-k gating network generates a
probability distribution over all task categories:

p(ĉN+1 = j) ∝ exp(⟨hz , ezj ⟩), (2)

where p(ĉN+1 = j) represents the probability of category
j being the category of the next task location and ezj is
the category embedding of category j. Considering the
uncertainty in the prediction of the next category, the gating
network selects top-k most probable categories according to
Eq. 3:

{cj}kj=1 = argtopk
j′

({p(ĉN+1 = j′)}|C|
j′=1

), (3)

where cj ∈ C .
The recency encoder is utilized to infer the episodic

context from recent task records. Because of the continu-
ity between tasks, the recent records of tasks reflect the
ongoing intent of the next task location. For the recency
encoder, we take the most recent M records of task locations
[lN−M , ..., lN] in the original sequence S as the input, which
is projected through the input task location embedding
layer into vectors Xr = [elN−M

, ..., elN]. The relative po-
sitions of recent task records [M, ..., 1] are projected into
P r = [P r

M , ..., P r
1] through the position embedding layer

similarly. Then, we use the SelfAttention network to trans-
form vectors Xr + P r into hidden states, and the hidden
state of the last task record is used to represent the inferred
episodic context of hr :

hr = SelfAttention(Xr + P r) (4)

The recency encoder checks the recent task locations
beyond specific categories and provides a complementary
view of the next task location besides the category context.

In-category Encoder. With respect to the k predicted
categories calculated in Eq. 3, we can calculate the corre-
sponding in-category worker preferences to predict the next
task location, i.e., the hidden representations {hcj}kj=1 from
the in-category encoder selected. Without loss of generality,
we take the encoding process for a task subsequence of
category c as an example. The corresponding task location
subsequence [lc1, ..., l

c
T] is projected through the input task

location embedding layer Ein into a set of dense vectors
Xc = [ecl1 , ..., e

c
lT
]. The relative positions [T, ..., 1] of these

records to the next task location are projected through the
position embedding layer P into P c = [P c

T , ..., P
c
1]. Taking

the dense vectors Xc+P c as input, the SelfAttention network
outputs the representations of the worker preferences in this
category hc:

hc = SelfAttention(Xc + P c) (5)

Collaboration Module. By using collaborative learning
among neighboring workers with similar preferences, the
sparsity issue can be mitigated. To predict the next task
location, we combine the neighboring workers’ information
based on their similarities obtained with in-category subse-
quences. In collaboration module, a memory tensor Mem
is used to record workers’ in-category preferences, storing
the latent states of the last F workers for each category c in
chronological order.

Using the target worker’s in-category preferences hc
w

under category c, the reading operation of Mem can be
performed as follows. First, we compute the similarity of the
preferences under category c between worker w and worker
i as:

sim(hc
w, hc

i) ∝ exp(⟨hc
w, hc

i ⟩) (6)

Then we choose the top-f similar workers as the neigh-
bors and take a weighted sum of their representations as

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

the neighborhood representation for the next task location
prediction:

hf =

top−f∑
i′

sim(hc
w, hc

i′)h
c
i′ (7)

We initialize Mem for the writing operation. We then
update it with the latest worker’s in-category preference
representations hc, generated from the in-category encoder.
Thus, the memory tensor is a queue that pushes the most
recently served workers’ representations of category c while
dynamically popping out the representations of workers
who have been inactive for a long time.

Preference Prediction. Based on the three modules
above, we can get the worker preference of the task location
and task category. We calculate the preference score of task
category cj with Eq. 2, score(ĉj) = score(ĉN+1 = cj):

score(ĉj) = exp(⟨hz , ezj ⟩), (8)

where hz represents the category information of recent task
records and ezj is the embedding of category j.

In order to predict the worker preference of task location
li, score(l̂i) = score(l̂N+1 = li), we use the mixture
of obtained representations as the worker representation.
Based on in-category worker preferences of the predicted
top-k categories hcj , neighboring workers’ in-category pref-
erences representation hfj , and the episodic context inferred
from the most recent task location records hr , we concate-
nate these three representations for each of k categories and
project the concatenated representations into the output task
location embedding space with a fully connected (FC) net-
work layer. Thus, the worker representation hj for category
j is:

hj = FC(hr ⊕ hcj ⊕ hfj), (9)

where j = 1, 2, ..., k and ⊕ is the concatenation operation.
Then we use inner product and softmax and get the worker
preference for task location li under the premise of category
j:

scorej(l̂i) = softmax(⟨hj , Eout⟩), (10)

where Eout represents the task locations’ embeddings.
Furthermore, when we consider all top-k categories, the
worker’s preference for task location li can be calculated
according to Eq. 11:

score(l̂i) =

k∑
j=1

scorej(l̂i)score(ĉj) (11)

3.1.2 Federated Preference Model Training
In this section, we will introduce the global loss function
and model parameters updating in federated training way.

Loss Function. The loss function of each platform center
is composed of two parts: the loss of task location prediction
and the loss of task category prediction.

For the loss of task location prediction, we apply the
negative sampling trick, which randomly samples Ns nega-
tive task locations according to their popularity in training
datasets for each positive instances [32]. The loss of task
location prediction is:

Lloc = −
Ns+1∑
l=1

δ(lN+1 = l) log p(l̂N+1 = l) (12)

p(l̂N+1 = l) = softmax(score(l̂N+1 = l)), (13)

where δ(·) is the indicator function, lN+1 is the ground-truth
task location, and l̂N+1 is the model’s prediction. Likewise,
we compute the loss of all task locations’ categories:

Lcate = −
C∑

j=1

δ(cN+1 = j) log p(ĉN+1 = j), (14)

where p(ĉN+1 = j) is computed by Eq. 2. We compute the
joint loss as follows:

L = λ× Lloc + (1− λ)× Lcate, (15)

where λ is a hyper-parameter to control the weights.
Given a central server that can transmit and receive

messages from m sampled platform centers, platform center
pck consists of Nk training instances. The whole federated
loss function l(θ) is:

l(θ) =
1

m

m∑
k=1

Lk(θ), (16)

where Lk(θ) is the empirical loss (i.e. Eq. 15) of platform
center pck, and θ are the parameters of our preference
network.

Federated Training. Initially, we employ federated train-
ing, as shown in Algorithm 1, to transmit local model
parameters of each platform center to the central server
for the purpose of privacy protection. In communication
round t ∈ [1, ..., T], a subset of platform centers Pt ⊂
{pc1, ..., pcN} is active. The central server transmits its cur-
rent model θt−1 to these platform centers (lines 2–3). Each
active platform center then optimizes a local empirical risk
objective, which is the sum of its local empirical loss and
a dynamic penalized risk function (line 19). Besides, each
active platform center computes its local gradient to satisfy
local optima condition (line 21), then transmits the updated
parameters to the central server (line 7). For unselected
platform centers, they do not update their models (lines 8–
10). Finally, the central server updates its state ht, which
implies whether they converge to a point that turns out
to be a stationary point of the global risk [33], and model
parameters θt (lines 11–12).

Algorithm 1: Federated Preference Model Training

Input: T , θ0, α, θ0k
1 for each round t in [1, .., T] do
2 Sample platform centers Pt;
3 Server transmits θt−1 to each selected platform

center;
4 for each platform center pck ∈ Pt do
5 θtk ←

argmin
θ

Lk(θ)− ⟨▽Lk(θ
t−1
k), θ⟩+ α

2
∥θ − θt−1∥2;

6 ▽Lk(θ
t
k)← ▽Lk(θ

t−1
k)− α(θtk − θt−1);

7 Transmit platform center model θtk to central
server;

8 for each platform center pck /∈ Pt do
9 θtk ← θt−1

k ;
10 ▽Lk(θ

t
k)← ▽Lk(θ

t−1
k);

11 ht ← ht−1 − α
m
(
∑

k∈Pt
θtk − θt−1);

12 θt ← (1
|Pt|

∑
k∈Pt

θtk)− 1
α
ht;

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Algorithm 2: FedAvg based Preference Model
Training

Input: T , θ0, α, θ0k, E
1 for each round t in [1, ..., T] do
2 Sample m(m ≥ 1) platform centers Pt;
3 Server transmits θt−1 to each selected platform

center;
4 for each client k ∈ Pt in parallel do
5 θtk ← ClientUpdate(k, θt−1

k);

6 for each platform center pck /∈ Pt do
7 θtk ← θt−1

k ;
8 ▽Lk(θ

t
k)← ▽Lk(θ

t−1
k);

9 ht = ht−1 − α
m
(
∑

k∈Pt
θtk − θt−1);

10 θt = (1
|Pt|

∑
k∈Pt

θtk)− 1
α
ht;

11 ClientUpdate(k, θ):
12 B ← split data stored in client k into batches of size

B;
13 for each local epoch i from 1 to E do
14 for batch b ∈ B do
15 θtk,i ← argmin

θ
Lk,i(θ)− ⟨▽Lk,i(θ

t−1
k,i), θ⟩+

α
2
∥θ − θt−1∥2;

16 ▽Lk,i(θ
t
k,i)← ▽Lk,i(θ

t−1
k,i)− α(θtk,i − θt−1);

17 θtk ← θtk,E ;
18 Transmit platform center model θtk to central server;
19 return θtk.

However, previous studies [25] show that federated
training requires large numbers of rounds to train a good
model which incurs high communication overheads. To
tackle this problem, we first train the preference learning
with FedAvg, where a selected subset of clients first update
their local models multiple times and where the server
aggregates the average gradients from the selected clients.

FedAvg based Training. We employ FedAvg to replace
the federated training. As shown in Algorithm 2, we trans-
mit local model parameters of selected platform centers to
the central server by performing local training on these se-
lected clients to reduce the computational load of the central
server. Similarly, in a communication round t ∈ [1, ..., T],
only a subset of all N platform centers Pt ⊂ {pc1, ..., pcN}
are active, where N is the number of all platform centers.
The central server allocates its current model θt−1 to these
platform centers (lines 2–3). But differently with federated
training, each active platform center locally takes several
steps of gradient descent on the current model using its local
data with a local empirical risk objective, which contains a
local empirical loss and a dynamic penalized risk function
(line 6 and lines 11–19). Platform centers that were not
selected do not update their models (lines 8–10). Finally, the
central server updates its state ht (which indicates whether
they converge to a stationary point of the global risk [33])
and model parameters θt (lines 12–13).

Drift-Corrected Federated Training (DCFT). In some SC
applications, the data held by different platform centers may
vary considerably. Put differently, the data is heterogeneous
and non-IID. For example, workers at one platform center
may primarily deliver advertisements, while workers at an-
other platform center may perform mostly real-time traffic
reporting. Studies [27], [28] show that heterogeneity of SC

𝑥

𝑦!

𝑦"

𝐶𝑙𝑖𝑒𝑛𝑡!

𝐶𝑙𝑖𝑒𝑛𝑡"

𝑆𝑒𝑟𝑣𝑒𝑟

𝑥!∗

𝑥"∗

𝑥∗

𝐶𝑙𝑖𝑒𝑛𝑡 𝑢𝑝𝑑𝑎𝑡𝑒

𝑆𝑒𝑟𝑣𝑒𝑟 𝑢𝑝𝑑𝑎𝑡𝑒

𝐶𝑙𝑖𝑒𝑛𝑡 𝐷𝑟𝑖𝑓𝑡

𝐶𝑙𝑖𝑒𝑛𝑡 𝑜𝑝𝑡𝑖𝑢𝑚

𝑇𝑟𝑢𝑒 𝑜𝑝𝑡𝑖𝑢𝑚

Fig. 3. Client-drift in FedAvg

data has adverse performance effects on FedAvg because it
causes update drift when performing training on the clients.
To illustrate, Fig. 3 shows two clients with three updating
steps for example to show the client drift. For each client,
the local updates move towards its individual optimum
x∗
i , while the server updates move towards 1

N

∑
i x

∗
i in-

stead of the true optimum x∗, and 1
N

∑
i x

∗
i may deviate

substantially from x∗. Such situations may require more
training rounds to achieve a good model, which degrades
the performance of TA-FPL.

𝑥!∗

𝑥∗

𝑙𝑜𝑐𝑎𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝐶𝑙𝑖𝑒𝑛𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑥 𝑦!

Fig. 4. Illustration of Drift-Correction

To contend with this issue, we propose so-called drift-
corrected federated training that incorporates the idea of
stochastically controlled averaging to optimize the pref-
erence learning. In other settings, this has proven to be
able to enable stable training and faster convergence [28].
Specifically, we consider heterogeneity as ’client-variance’
in the updates across different clients and aim to reduce the
client-variance during the federated training. As illustrated
in Fig. 4, when updating the model on a single client,
the local gradient (dashed line) moves towards x∗

1, but we
correct the update direction to ensure that the update points
to the true optimum x∗ by means of the correction term
(c − ci), where c is server control variate (a state of the
update direction) and ci is the i-th client control variate.
We initialize c and ci to zero.

The training procedure of stochastic controlled averag-
ing is similar to that of FedAvg, which has an additional
drift correction (i.e., c − ci). More concretely, in communi-
cation round t ∈ [1, ..., T], we select a subset of platform
centers Pt ⊂ {pc1, ..., pcN}, and the server transmits its
current model θt−1 to these active platform centers (lines 3
– 4), as shown in Algorithm 2. Each active platform center
locally updates the current model using its local data with a
local empirical risk objective with drift correction (lines 15 –
25). Meanwhile, the local control variate ci is also updated

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

as follows,

c+i = ci − c+
1

|B|α
(θ − θtk), (17)

where the previously computed gradients are reused to
update the control variate (line 22). Finally, the central server
updates its state ht, parameter θt, and control variate c to
make the model move towards the optimum of the global
model.

The difference between the original federated training
and the optimized one (i.e., DCFT) is that DCFT considers
data heterogeneity across platform centers (i.e., clients). This
heterogeneity reduces preference learning because it causes
update drift when performing training on the clients. Thus,
we propose DCFT that features stochastically controled
averaging to optimize the preference learning, where het-
erogeneity is considered as ‘client-variance’ in the updates.
Our aim is to reduce the client-variance during the federated
training, as shown in lines 22 – 23 in Algorithm 3.

Algorithm 3: Drift-Corrected Federated Preference
Model Training

Input: T , θ0, α, θ0k, E, c, ci
1 % Server execution
2 for each round t in [1, ..., T] do
3 Sample m(m ≥ 1) platform centers Pt from P ;
4 Server transmits θt−1 to each selected platform

center;
5 for each client k ∈ Pt in parallel do
6 θtk, c

+
i ← ClientUpdate(k, θt−1

k);
7 ci = c+i

8 for each platform center pck /∈ Pt do
9 θtk ← θt−1

k ;
10 ▽Lk(θ

t
k)← ▽Lk(θ

t−1
k);

11 c← c+ 1
|P |

∑
i∈Pt

δci
12 ht ← ht−1 − α

m
(
∑

k∈Pt
θtk − θt−1);

13 θt ← (1
|Pt|

∑
k∈Pt

θtk)− 1
α
ht;

14 % Update on client k
15 ClientUpdate(k, θ):
16 B ← split data stored in client k into batches of size

B;
17 for each local epoch i from 1 to E do
18 for batch b ∈ B do
19 θtk,i ← argmin

θ
Lk,i(θ)− ⟨▽Lk,i(θ

t−1
k,i), θ⟩+

α
2
∥θ − θt−1∥2;

20 ▽Lk,i(θ
t
k,i)← ▽Lk,i(θ

t−1
k,i)−α(θtk,i−θt−1+c−ci);

21 θtk ← θtk,E ;
22 c+i ← ci − c+ 1

|B|α (θ − θtk);
23 δci ← c+i − ci;
24 Transmit platform center model θtk, δci to central

server;
25 return θtk, c

+
i ;

3.2 Preference-driven Task Assignment

We proceed to first obtain the available worker set for each
task and reachable task set for each worker. Then, we use
spatio-temporal and top-k constraints to build a Bipartite
graph and propose an Intersected Top-k KM algorithm,
which utilizes the worker preferences for different task

categories calculated by the federated preference learning
model. To protect each platform’s local data and to get
the global workers’ preferences, all workers’ preferences are
calculated in local platform centers and are then uploaded
to the central server, where the task assignment occurs.

3.2.1 Available Worker Set and Reachable Task Set
Before building the Bipartite graph, we should consider
spatio-temporal constraints to filter workers and tasks.
Given a set of online workers, W = {w1, w2, ..., w|W |} and
a set of tasks, S = {s1, s2, ..., s|S|}, the available worker set
for spatial task s ∈ S and the reachable task set for worker
w ∈ W are denoted as AW (s) and RT (w) , respectively.

Both AW (s) (∀w ∈ AW (s), s ∈ S) and RT (w)
(∀s ∈ RT (w), w ∈ W) must satisfy two conditions: 1)
d(w.l, s.l) ⩽ w.r, and 2) tnow + d(w.l, s.l)/w.speed ⩽ s.e,
where d(w.l, s.l) represents the distance between w.l and
s.l (e.g., Euclidean distance).

w1 w2 w3 w4

s1 s2 s3

Fig. 5. Worker-Task Bipartite Graph

3.2.2 Intersected Top-k KM algorithm
Here, we transform the task assignment problem into a
Bipartite Maximum Weight Matching problem [34], which
is based on a graph that is represented by G = (V,E)
with a set V of vertices and a set E of edges. Given a
set of online workers, W = {w1, w2, ..., w|W |}, and a set
of available tasks, S = {s1, s2, ..., s|S|}, the cardinality of
V and the cardinality of E are fixed to |W | + |S| and∑|W |

i=1 ni, respectively, where ni is the number of worker wi’s
adaptive reachable assignments that is a subset of worker
wi’s reachable assignments RT (wi).

To construct vertices, V is divided into two sets, VW and
VS , where VW ∩ VS = ∅. Each worker wi maps to a vertex
vwi , and each spatial task sj maps to a vertex vsj . For the
edges’ construction, we add an edge from vwi mapped from
vertex wi ∈ W to vertex vsj mapped from sj ∈ S if they
satisfy the two following conditions:

1) spatio-temporal constraints: wi ∈ AW (sj) and sj ∈
RT (wi), and

2) top-k constraints: wi ∈ ÃW k(sj) and sj ∈ R̃T k(wi),
where ÃW k(sj) is a sorted set that contains the top-

k workers of task sj ’s available worker set when AW (sj)
is sorted in descending order according to the preference
of task sj ’s available workers. Similarly, R̃T k(wi) is a set
containing the top-k tasks of worker wi’s reachable task set
when set RT (wi) is sorted in descending order according
to the preference of worker wi for task s, ∀s ∈ RT (wi). For
each edge (vwi , v

s
j), its weight, denoted by weight(vwi , v

s
j),

can be measured as the preference of worker wi for task sj ,
denoted as pwi

(sj), which can be calculated as:

pwi (sj) = exp(⟨hz
wi

, ezc(sj)⟩), (18)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

where hz
wi

is the representation summarizing the category
information of worker wi’s recent task records, and ezc(sj) is
the category embedding of category c(sj), which is the task
sj ’s category.

Algorithm 4: Intersected Top-k KM Algorithm

Input: graph G, k, sorted available worker set ÃW
Output: match

1 Initialize match, valtask and slack;
2 for each worker w ∈W do
3 valworker[w]← max(weight(vWw , vSs));

4 for each worker w ∈W do
5 while valworker[w] > 0 do
6 Initialize vistask and visworker to False ;
7 if FindTask(w,0) then break ;
8 else
9 d=INF ;

10 for each task s ∈ S do
11 if ! vistask[s] then
12 d← min(d,slack[s]);

13 for each worker w ∈W do
14 Decrease valworker[w] by d if w is visited;

15 for each task s ∈ S do
16 Increase valtask[s] by d if s is visited;
17 Decrease slack[s] by d if s is not visited;

18 ReassignTask(match, ÃW);
19 return match;

Figure 5 depicts a graph for four workers wi (i =
1, 2, 3, 4), and three tasks sj (j = 1, 2, 3). If vertex wi and
vertex sj satisfy both of the above constraints, edge (vwi , v

s
j)

is drawn as a solid line (e.g., edge (vw1 , v
s
1) when k = 2).

If these two vertices only satisfy the spatio-temporal con-
straints, the edge (vwi , v

s
j) becomes a dotted line, which will

be removed from the original graph in our algorithm. For
example, edge (vw3 , v

s
2) is drawn as a dotted line, because w3

is not in the top-2 of ÃW 2(s2). The higher weight(vwi , v
s
j) of

the edge (vwi , v
s
j) is, the more likely a worker is to perform

this task successfully. Therefore, the mutual top-k will help
filter the lower preference edge and keep the quality of
assignments. However, this method will remove a number
of edges and will contribute to a higher loss of the number of
task assignments (e.g., w4 and s3). Therefore, we redistribute
the task sj to worker wi if wi ∈ ÃW (sj) and wi is not
assigned to any task, where ÃW (sj) is a sorted set which
contains all available workers of task sj .

The Intersected Top-k KM Algorithm is shown in Algo-
rithm 4. Suppose that we have a bipartite graph G, which is
composed of two vertices sets VS and VW . First, in graph
G, the expectation of each vertex in VW is equal to the
largest weight among the edges associated with it (lines 2–
3). Second, matching tasks for worker w are recursively
found through the Find Task Algorithm 5 (line 7). Third,
if w fails to match a task, to make more workers assigned,
the expectations of workers and tasks involved in the last
matching are adjusted, thus changing the competitive re-
lationship among workers (lines 8–17). Some refinements
should be made to the original KM algorithm, which is
used to find the perfect matching of a weighted bipartite

Algorithm 5: FindTask Algorithm
Input: worker w, recursion depth rdp
Output: Bool

1 visworker[w] = True;
2 if rdp > λ then return False ;
3 else
4 for each task s is adjacent to w in G do
5 if vistask[s] then continue ;
6 gap←

valworker[w] + valtask[s]− weight(vWw , vSs);
7 if gap ̸= 0 then
8 slack[s]← min(slack[s], gap);
9 else if match[s] ==-1 or

FindTask(match[s],rdp+1) then
10 Assign value w to match[s] and return True ;

11 return False ;

graph, to take into account cases where perfect matches do
not exist [34]. Since the original KM algorithm may cause
an endless loop in our problem, we stop matching tasks for
the worker if the expectation of w is less than 0 (line 5).
The time complexity of the proposed Intersected Top-k KM
Algorithm is O(nlogN).

To improve efficiency, we limit the number of edges in
the graph. Since we use the intersected Top-k method to
filter edges, the number of edges associated with a worker
node or a task node cannot exceed k. Thus, the recursion
depth of Algorithm 5 is set to k, which can reduce the
competition among workers (lines 2). The time complexity
of the FindTask algorithm is O(n). To reduce the number of
task assignments loss, a reassignment task algorithm is de-
signed, which is shown in Algorithm 6. First, the assignment
result will be checked (lines 1–3) in order to keep assign-
ments satisfying the constraints proposed before. Then, we
assign the remaining available tasks to the worker with the
highest preference score among the corresponding available
workers (lines 4–9). The time complexity of the proposed
reassignment task algorithm is O(n).

Algorithm 6: Reassignment Task Algorithm

Input: KM output assignments match, ÃW
Output: modified assignments match

1 for each task s in match do
2 if match[s]̸=-1 and match[s] not in ÃW (s) then
3 match[s]← -1;

4 for each task s in match do
5 if match[s] == −1 and |ÃW (s)| > 0 then
6 for each worker w in ÃW (s) do
7 if w not in match then
8 Assign value w to match[s];
9 return True ;

10 return match;

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setup
We use a check-in dataset from Twitter, which is used
widely for experimental evaluations of SC platforms [14],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

[35], [36], [37]. It provides check-in data in the United States
from September 2010 to January 2011 and includes 62,462
venue locations and 61,412 user locations. First, we use
FourSquare’s API1 to generate the corresponding category
information of venues. Then, for each worker and task, we
take the average of the corresponding check-in locations as a
venue’s location information. For each check-in, we simulate
that the user is a worker and that each venue accessed by
the user is a task performed by the worker. The publication
time of the task is set to the earliest check-in time of the task
in a day. We use the category information of the venues in
18 kinds of check-ins to simulate the category information
of tasks. Moreover, we randomly and uniformly generate
32 platform centers and use a Voronoi diagram-based algo-
rithm [34] to allocate all workers and their historical data
to corresponding platform centers. It is common practice in
experimental studies of spatial crowdsourcing platforms to
use uniformly distributed attribute values [38], [39], [40],
the argument being that this captures the effects of the
attributes on a more fair basis. A check-in record denotes
that the worker has accepted and completed the task. All
the experiments are implemented on an Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz and NVidia TITAN Xp GPU.

4.2 Performance of Federated Preference Learning
4.2.1 Overall Accuracy
We first evaluate the overall accuracy of the federated pref-
erence learning.

Evaluation Methods. We study four models.
1) CatePEP: The Category-based Personal Equal Popu-

larity (CatePEP) model, where the popularity of task cate-
gory c is set to 1 if the target worker did tasks in category c;
otherwise, it is set to 0. The popularity of task category c is
considered as the worker’s preference for c.

2) POISeqPop: The POI-based Sequence Popularity
(POISeqPop) model, which ranks tasks according to their
popularity in the target worker’s sequence in a descending
order. The popularity of task category c is calculated as
1/rank(c), which is regarded as the target worker’s pref-
erence for c.

3) CTP: The Centralized Training based Preference (CTP)
model, which trains our local preference model in a central-
ized manner. It means all workers belong to a single center.

4) FLP: Our Federated Learning based Preference (FLP)
model.

Metrics. To evaluate the accuracy of worker preference
learning, we use Recall@K as the evaluation metric. This
metric counts the proportion of times when the categories of
ground-truth tasks are ranked among the top-K predictions.
We use workers’ historical check-in sequences stored in local
platform centers for the experiments and we use the first
80% of the check-in records for training, the next 10% for
validation, and the remaining 10% for testing. We remove
POIs associated with fewer than 5 records and workers with
fewer than 10 or more than 300 check-in records.

Results. Table 2 shows the evaluation results, in which
CTP performs best followed by FLP, POISeqPop, and Cate-
PEP. The models (CTP and FTP) based on our category-
aware preference model outperform the others by far. This

1. https://developer.foursquare.com/

TABLE 2
Overall Accuracy of Different Preference Models

Methods Recall@1 Recall@2 Recall@3

CatePEP 0.1190 0.236 0.3630
POISeqPop 0.3876 0.5210 0.6065

CTP 0.4204 0.5978 0.6994
FPL 0.4120 0.5832 0.6850

TABLE 3
Accuracy and Convergence Time of Different Training Manners

Methods Recall@1 Recall@2 Recall@3 Convergence Time

FLP 0.4120 0.5832 0.6850 17.97 min
FLP-FedAvg 0.4278 0.5927 0.6933 11.72 min
FLP-DCFT 0.4267 0.5946 0,6946 9.77 min

shows that our preference model can provide more accurate
estimates of worker preferences. Considering that the local-
device level empirical losses are inconsistent with the global
empirical loss, it is expected that FLP performs worse than
CTP. Moreover, with the aid of linear and quadratic penalty
terms, the Recall@K (k = 1, 2, 3) of FLP is 97.6%–98.0% of
that of CTP.

4.2.2 Effect of Different Federated Training Approaches
We proceed to evaluate the performance of preference learn-
ing across different federated training approaches.

Evaluation Methods. We train the preference model
according to three different approaches and report the per-
formance.

1) FLP: Federated training (see Algorithm 1) is used for
preference learning.

2) FLP-FedAvg: The preference learning is optimized
using FedAvg (see Algorithm 2).

3) FLP-DCFT: The preference learning is optimized with
drift-corrected federated training to overcome data hetero-
geneity (see Algorithm 3).

30% 50% 70% 90%
0

20

40

60

80

Tr
ai

ni
ng

 (s
/e

po
ch

)

Training time Inference time

(a) Training Time

30% 50% 70% 90%
0

2

4

6

8

A
cc

ur
ac

y

1e 1

Recall@1 Recall@2 Recall@3

(b) Accuracy
Fig. 6. Parameter Sensitivity Analysis

Metrics. We quantify the performance of preference
learning with the different optimization approaches by mea-
suring the accuracy (i.e., Recall@k) of worker preference
learning and the convergence time. We set the ratio of
sampled clients to 0.7 during the training of FLP-FedAvg
and FLP-DCFT.

Results. In Table 3, the overall best results are high-
lighted in bold. Fed-DCFT performs the best among all
methods w.r.t. Recall@2, and Recall@3. This is because
DCT has the ability to contend with data heterogeneity by
correcting client drift, which improves the performance of
preference learning. As popular optimization methods, FLP-
FedAvg and FLP achieve comparable results as both suffer
from the issue of client drift, which affects the performance
negatively.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

16 32 64 128 256
Hidden Channels

0

2

4

6

8

A
cc

ur
ac

y

1e 1

Recall@1 Recall@2 Recall@3

Fig. 7. Effect of Hidden Features

To observe whether DCFT is able to accelerate the con-
vergence of preference learning, we report the convergence
time across different training approaches. We see that FLP-
DCFT converges the fastest, followed by FLP-FedAvg and
FLP. More specifically, FLP-DCFT converges faster than
FedAvg by 16.64% and faster than FLP by 45.63%. This is
because that FLP-DCFT only involves a subset of clients (i.e.,
70%) for training and accelerates the training by performing
drift correction, which makes it easier for the preference
model to reach the optimum.

4.2.3 Parameter Sensitivity of Preference Learning

Next, we assess the sensitivity of FLP-DCFT in terms of the
number of clients involved in the training and the number
of hidden features in the local preference learning models.

Effect of the Number of Clients. We conduct experi-
ments in which we randomly sample differently-sized sub-
sets of clients (i.e., 30%, 50%, 70%, and 90% of clients)
when training FLP-DCFT in each training round. Fig. 6(a)
shows the training time across different ratios of clients. The
training time increases from around 27s to 70s per epoch as
the number of clients increases. This shows that involving
more clients in the training can increase the training time,
which is due to more training data being introduced. Next,
we report the accuracy of FLP-DCFT in Fig. 6(b). We observe
that Recall@k shows an increasing trend, meaning that
involving more clients with more training data leads to
better accuracy.

Effect of the Number of Hidden Features. We also
study how sensitive the model is to the deep neural network
structure with different parameters. As indicated in Fig. 7,
we vary the number of channels (features) of the hidden
layers in the local preference models from 16 to 256. We see
that the model accuracy first increases and then decreases
slightly with the increase of hidden features, indicating that
the proposed preference model is robust to different param-
eters (i.e., hidden features) settings. We also observe that our
local preference model achieves the best performance when
setting the number of hidden features to 128. Therefore, we
use 128 hidden features as the default in experiments.

4.3 Performance of Task Assignment

We proceed to study the performance of task assignment.
Table 4 shows our experimental settings, where the default
values of all parameters are underlined.

Evaluation Methods. We study the following task as-
signment algorithms.

TABLE 4
Experiment Parameters

Parameter Values
Valid time of tasks (h) e− p 0.4, 0.8, 1.2, 1.6, 2.0
Reachable distance of workers (km) r 10, 15, 20, 25, 30
Number of workers |W | 2200, 2400, 2600, 2800, 3000
Number of tasks |S| 2600, 2800, 3000, 3200, 3400
Limit coefficient k 10, 20, 30, 40, 50

1) KM: The original KM algorithm that does not consider
workers’ preferences.

2) P+Greedy: The Greedy algorithm with workers’ Pref-
erences calculated by our FLP model.

3) P+KM: The original KM algorithm with workers’
Preferences calculated by our FLP model.

4) P+KM+Top-k: The P+KM algorithm, using the
worker-sided Top-k pruning strategy to prune edges.

5) P+KM+InTop-k: The P+KM algorithm, using our in-
tersected Top-k pruning strategy to prune edges.

6) P+KM+InTop-k+RE: The P+KM algorithm, using our
Intersected Top-k pruning strategy and the Reassignment
optimization strategy.

7) CTP+P+KM: The original KM algorithm with work-
ers’ preferneces calculated by CTP model.

Metrics. Three metrics are compared among the meth-
ods, including CPU time, Assignment Success Rate (ASR),
and the number of task assignments. The CPU time is
the time cost for finding the task assignment. ASR is the
ratio between the number of successful assignments of all
workers and the total number of assignments in a time
instance. In our experiments, if a worker performs (checks
in) tasks (locations) with the same category in the next two
check-ins, the assignment of this task can be considered
successful.

Effect of e − p. First, we evaluate the effect of the valid
time e − p of tasks on the performance of task assignments
(see Figure 8). It can be seen from Figures 8(a) and 8(c) that
the CPU time and the number of task assignments of all
algorithms exhibit an increasing trend as the valid time of
tasks increases. This is because as the valid time of tasks
increases, there will be more available workers and tasks,
which leads to a larger search space and higher probability
of being assigned to a task for each worker. The CPU time
of P+KM+InTop-k is less than those of P+KM+Top-k and
P+KM while keeping almost the same ASR and number
of task assignments, which is evidence of the efficiency
and effectiveness of our proposed algorithms. As shown in
Figure 8(b), P+KM related algorithms achieve the highest
Assignment Success Rate (ASR), which shows the impor-
tance of considering preferences. As shown in Figure 8(c),
the KM algorithm has the most task assignments, while
other preference-related algorithms achieve fewer task as-
signments. This is due to the fact that the preferences of
some workers among tasks vary greatly and many workers
tend to choose the tasks they are interested in, thus leading
to a lower number of task assignments. This reflects from
the side that the preference scores we learn are accurate and
discriminative.

Effect of r. We further evaluate the effect of the reachable
distance r of workers. It can be seen from Figure 9(a) that
when r increases, the CPU time of all algorithms shows a
similar growth trend. The reason is that when the reachable

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0.4 0.8 1.2 1.6 2.0
0

200

400

600

800

Valid time of tasks (h)

C
P

U
ti

m
e

(S
)

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(a) CPU Time

0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Valid time of tasks (h)

A
ss

ig
n

m
en

t
su

cc
es

s
ra

te

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(b) Assignment Success Rate

0.4 0.8 1.2 1.6 2.0

500

1000

1500

2000

2500

Valid time of tasks (h)

N
u

m
b

er
o

f
ta

sk
as

si
g

n
m

en
t

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(c) Number of Task Assignments

Fig. 8. Performance of Task Assignment: Effect of e− p

10.0 15.0 20.0 25.0 30.0
0

200

400

600

800

Reachable radius of worker (km)

C
P

U
ti

m
e

(S
)

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(a) CPU Time

10.0 15.0 20.0 25.0 30.0
0.0

0.2

0.4

0.6

0.8

1.0

Reachable radius of worker (km)

A
ss

ig
n

m
en

t
su

cc
es

s
ra

te

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(b) Assignment Success Rate

10.0 15.0 20.0 25.0 30.0

500

1000

1500

2000

2500

Reachable radius of worker (km)

N
u

m
b

er
o

f
ta

sk
as

si
g

n
m

en
t

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(c) Number of Task Assignments

Fig. 9. Performance of Task Assignment: Effect of r

2200.0 2400.0 2600.0 2800.0 3000.0
0

200

400

600

800

Number of workers

C
P

U
ti

m
e

(S
)

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(a) CPU Time

2200.0 2400.0 2600.0 2800.0 3000.0
0.0

0.2

0.4

0.6

0.8

1.0

Number of workers

A
ss

ig
n

m
en

t
su

cc
es

s
ra

te

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(b) Assignment Success Rate

2200.0 2400.0 2600.0 2800.0 3000.0

500

1000

1500

2000

2500

Number of workers

N
u

m
b

er
o

f
ta

sk
as

si
g

n
m

en
t

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(c) Number of Task Assignments

Fig. 10. Performance of Task Assignment: Effect of |W |

distance of workers increases, the number of available work-
ers and the number of reachable tasks increase, yielding a
larger search space. The P+Greedy algorithm still consumes
the least CPU time, but its performance in ASR is obviously
not as good as those of the other P+KM related algorithms
(see Figure 9(b)). In addition, as shown in Figure 9(c), when
r increases, the number of task assignments also increases
since workers are more likely to be assigned their available
tasks with greater r.

Effect of |W |. Next, we evaluate the effect of |W |. As
shown in Figure 10(a), the larger |W | is, the longer the CPU
time is. This is because more available workers need to
be assigned, which leads to more competition for limited
tasks and generates more time overhead. When it comes to
ASR in Figure 10(b), all preference-based algorithms keep

high ASR values, and the number of task assignments in-
creases (cf. Figure 10(c)). In summary, P+KM+InTop-k+RE,
which considers privacy protection via federated learning,
performs well in terms of CPU time and ASR while offering
the acceptable number of task assignments. In addition,
CTP+P+KM performs well than P+KM+InTop-k+RE. This
is because CTP learns preference by centralized learning,
however, which has high risks of privacy leakage.

Effect of |S|. We study the effect of the number |S|
of tasks. In Figure 11(a), the CPU time of P+KM related
algorithms decreases because as the number of tasks in-
creases, the occurrence probability of tasks that workers are
most interested in increases and the discriminative prefer-
ence scores also disperse the competition among workers.
Moreover, the CPU time of KM-related algorithms is higher

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

2600.0 2800.0 3000.0 3200.0 3400.0
0

200

400

600

800

Number of tasks

C
P

U
ti

m
e

(S
)

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(a) CPU Time

2600.0 2800.0 3000.0 3200.0 3400.0
0.0

0.2

0.4

0.6

0.8

1.0

Number of tasks

A
ss

ig
n

m
en

t
su

cc
es

s
ra

te

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(b) Assignment Success Rate

2600.0 2800.0 3000.0 3200.0 3400.0

500

1000

1500

2000

2500

Number of tasks

N
u

m
b

er
o

f
ta

sk
as

si
g

n
m

en
t

KM

P+Greedy

P+KM

P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(c) Number of Task Assignments

Fig. 11. Performance of Task Assignment: Effect of |S|

10.0 20.0 30.0 40.0 50.0
0

200

400

600

800

Limit coefficient

C
P

U
ti

m
e

(S
)

P+KM P+KM+Top-k

P+KM+InTop-k P+KM+InTop-k+RE

CTP+P+KM

(a) CPU Time

10.0 20.0 30.0 40.0 50.0
0.45

0.50

0.55

Limit coefficient

A
ss

ig
n

m
en

t
S

u
cc

es
s

R
at

e

P+KM P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(b) Assignment Success Rate

10.0 20.0 30.0 40.0 50.0

500

1000

1500

2000

2500

Limit coefficient

N
u

m
b

er
o

f
ta

sk
as

si
g

n
m

en
t

P+KM P+KM+Top-k

P+KM+InTop-k

P+KM+InTop-k+RE

CTP+P+KM

(c) Number of Task Assignments

Fig. 12. Performance of Task Assignment: Effect of k

than that of Greedy algorithm. Because it is time-consuming
for KM-related algorithms to find a perfect matching with
multiple iterations. The number of tasks assigned by KM
is more than those of preference-based algorithms (i.e., all
algorithms except KM), which sacrifice the number of task
assignments in order to improve the total preferences of
workers. In addition, with the increase of |S|, a worker
can access more available and interested tasks with less
competition, so both the number of task assignments and
the ASR value increase. In terms of decentralized training,
P+KM+InTop-k+RE performs better in terms of CPU time
and ASR, showing its superiority.

Effect of k. Finally, we study the effect of k, which limits
the number of edges associated with vertices and recur-
sion depth in pruning-based algorithms (i.e., P+KM+Top-k,
P+KM+InTop-k and P+KM+InTop-k+RE) and CTP+P+KM.
We report the results of pruning-based algorithms, where
P+KM is used as a reference. As k is a parameter only
for the pruning-based algorithms, the results of P+KM in
Figure 12 keep the same value. In figure 12(a), InTop-k based
algorithms (i.e., P+KM+InTop-k and P+KM+InTop-k+RE)
cost the least cpu time because they use the intersection
operation to filter more edges with low weights. In the
graphs of P+KM+Top-k and P+KM+InTop-k, each vertex is
associated with more edges, leading to more opportunities
to be assigned to available tasks as k increases. However,
k has little impact on the high weight edge. Thus, the
number of task assignments of these two algorithms in-
creases while ASR decreases as k grows. Compared with
P+KM+InTop-k, P+KM+InTop-k+RE takes less time but is

more effective to keep the number of task assignments,
which shows the necessity of the reassignment strategy. In
addition, CTP+P+KM performs the best in task assignment
due to the centralized training with more data.

5 RELATED WORK

Spatial crowdsourcing (SC) is a new framework that has
emerged recently, requiring workers with GPS devices to
reach a specific location physically under certain restrictions
to perform spatial tasks [15], [18], [34], [41], [42], [43], [44],
[45], [46], [47], [48], [49], [50], [51], [52], [53]. Most of the
existing studies focus on task assignment [29], [54], [55],
[56], [57], [58], [59], [60], [61], however, putting their focus on
effectiveness without considering the privacy of users’ raw
data and the tediousness of data migration in reality, which
leads to the risk of privacy leaks. To make the SC server
assign tasks properly, workers need to upload their highly
sensitive data (e.g., locations and historical task records),
which disclose their private attributes. Thus, in recent stud-
ies [8], [62], privacy-preserving task assignment is proposed
to make users (workers/task requesters) perturb their loca-
tions with Geo-Indistinguishability [19] and upload only the
perturbed locations. However, these studies mainly focus on
the privacy of locations without considering the preferences
of workers, failing to achieve a satisfying task assignment.
With federated learning, multiple entities (clients) collabo-
rate to solve a problem, under the coordination of a central
server or service provider [24]. Each client’s raw data is
stored locally and not exchanged or transferred; instead,
focused updates intended for immediate aggregation are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

used to achieve the learning objective [25], [27], [33], [63].
For example, a novel quantized federated averaging algo-
rithm [63] is designed to apply a stochastic quantization
scheme to the local and global model parameters, which is
the first work to provide theoretical analysis for quantized
federated learning algorithms with convex functions. In this
paper, we propose a federated preference learning model to
protect the privacy of workers’ raw data and learn worker
preferences without data migration, based on which we
assign tasks to suitable workers.

6 CONCLUSION

We propose a framework called Task Assignment with
Federated Preference Learning (TA-FPL), which aims to find
optimal task assignments while considering workers’ pref-
erences and protecting workers’ raw data. TA-FPL consists
of an efficient Federated Preference Learning (FPL) phase
and a Preference-driven Task Assignment (PTA) phase. For
the FPL phase, we present local means of learning platform
center models and combine these with a drift-corrected
federated training method. For the PTA phase, we propose
an Intersected Top-k KM algorithm to achieve effective
and efficient task assignments based on worker preferences
obtained in the first phase. To the best of our knowledge,
this is the first study in SC that applies federated learning
and enables preference modeling while offering raw data
privacy. An empirical study based on a real dataset offers
evidence of the superiority of our proposed algorithms. In
future research, it is of interest to achieve privacy-preserving
clustering so that similar clients can be clustered, thereby
further accelerating preference learning.

ACKNOWLEDGMENTS

This work is partially supported by NSFC (No. 61972069,
61836007, 61832017, 62272086), Shenzhen Municipal Sci-
ence and Technology R&D Funding Basic Research Pro-
gram (JCYJ20210324133607021), Municipal Government of
Quzhou under Grant No. 2022D037, and Key Laboratory
of Data Intelligence and Cognitive Computing, Longhua
District, Shenzhen.

REFERENCES

[1] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial
crowdsourcing: a survey,” PVLDB, vol. 29, no. 1, pp. 217–250, 2020.

[2] S. R. B. Gummidi, X. Xie, and T. B. Pedersen, “A survey of spatial
crowdsourcing,” TODS, vol. 44, no. 2, pp. 1–46, 2019.

[3] G. Li, Y. Zheng, J. Fan, J. Wang, and R. Cheng, “Crowdsourced
data management: Overview and challenges,” in SIGMOD, 2017,
pp. 1711–1716.

[4] R. Wang, S. Wang, H. Yan, and X. Wang, “Wsip: Wave superpo-
sition inspired pooling for dynamic interactions-aware trajectory
prediction,” in AAAI, vol. 37, no. 4, 2023, pp. 4685–4692.

[5] X. Chen, Y. Zhao, and K. Zheng, “Task publication time recom-
mendation in spatial crowdsourcing,” in CIKM, 2022, pp. 232–241.

[6] Y. Zhao, T. Lai, Z. Wang, K. Chen, H. Li, and K. Zheng, “Worker-
churn-based task assignment with context-lstm in spatial crowd-
sourcing,” TKDE, 2023.

[7] H. To, G. Ghinita, and C. Shahabi, “A framework for protecting
worker location privacy in spatial crowdsourcing,” PVLDB, vol. 7,
no. 10, pp. 919–930, 2014.

[8] H. To, C. Shahabi, and L. Xiong, “Privacy-preserving online task
assignment in spatial crowdsourcing with untrusted server,” in
ICDE, 2018, pp. 833–844.

[9] X. Yi, F.-Y. Rao, G. Ghinita, and E. Bertino, “Privacy-preserving
spatial crowdsourcing based on anonymous credentials,” in
MDM, 2018, pp. 187–196.

[10] C. Qiu and A. C. Squicciarini, “Location privacy protection in
vehicle-based spatial crowdsourcing via geo-indistinguishability,”
in ICDCS, 2019, pp. 1061–1071.

[11] C. Qiu, A. Squicciarini, Z. Li, C. Pang, and L. Yan, “Time-efficient
geo-obfuscation to protect worker location privacy over road
networks in spatial crowdsourcing,” in CIKM, 2020, pp. 1275–1284.

[12] M. Li, J. Wang, L. Zheng, H. Wu, P. Cheng, L. Chen, and
X. Lin, “Privacy-preserving batch-based task assignment in spatial
crowdsourcing with untrusted server,” in CIKM, 2021, pp. 947–
956.

[13] W. Huang, X. Lei, and H. Huang, “Pta-sc: Privacy-preserving task
allocation for spatial crowdsourcing,” in WCNC, 2021, pp. 1–7.

[14] Y. Li, Y. Zhao, and K. Zheng, “Preference-aware group task as-
signment in spatial crowdsourcing: A mutual information-based
approach,” in ICDM, 2021, pp. 350–359.

[15] Z. Wang, Y. Zhao, X. Chen, and K. Zheng, “Task assignment with
worker churn prediction in spatial crowdsourcing,” in CIKM, 2021,
pp. 2070–2079.

[16] X. Li, Y. Zhao, J. Guo, and K. Zheng, “Group task assignment
with social impact-based preference in spatial crowdsourcing,” in
DASFAA, 2020, pp. 677–693.

[17] Y. Zhao, K. Zheng, H. Yin, G. Liu, J. Fang, and X. Zhou,
“Preference-aware task assignment in spatial crowdsourcing: from
individuals to groups,” TKDE, 2020.

[18] Y. Zhao, J. Xia, G. Liu, H. Su, D. Lian, S. Shang, and K. Zheng,
“Preference-aware task assignment in spatial crowdsourcing,” in
AAAI, 2019, pp. 2629–2636.

[19] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi, “Geo-indistinguishability: Differential privacy for
location-based systems,” in SIGSAC, 2013, pp. 901–914.

[20] Q. Tao, Y. Tong, S. Li, Y. Zeng, Z. Zhou, and K. Xu, “A differentially
private task planning framework for spatial crowdsourcing,” in
MDM, 2021, pp. 9–18.

[21] Y. Wang, Y. Tong, Z. Zhou, Z. Ren, Y. Xu, G. Wu, and W. Lv, “Fed-
ltd: Towards cross-platform ride hailing via federated learning to
dispatch,” in SIGKDD, 2022, pp. 4079–4089.

[22] Y. Tong, X. Pan, Y. Zeng, Y. Shi, C. Xue, Z. Zhou, X. Zhang, L. Chen,
Y. Xu, K. Xu et al., “Hu-fu: Efficient and secure spatial queries over
data federation,” PVLDB, vol. 15, no. 6, p. 1159, 2022.

[23] Y. Zhao, K. Zheng, Z. Wang, L. Deng, B. Yang, T. B. Pedersen,
C. S. Jensen, and X. Zhou, “Coalition-based task assignment with
priority-aware fairness in spatial crowdsourcing,” VLDBJ, 2023.

[24] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations
and Trends in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[25] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in AISTATS. PMLR, 2017, pp. 1273–1282.

[26] J. Liu, L. Deng, H. Miao, Y. Zhao, and K. Zheng, “Task assignment
with federated preference learning in spatial crowdsourcing,” in
CIKM, 2022, pp. 1279–1288.

[27] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,”
MLSys, vol. 2, pp. 429–450, 2020.

[28] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “SCAFFOLD: stochastic controlled averaging for on-
device federated learning,” CoRR, vol. abs/1910.06378, 2019.

[29] L. Kazemi and C. Shahabi, “Geocrowd: enabling query answering
with spatial crowdsourcing,” in SIGSPATIAL, 2012, pp. 189–198.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
NIPS, vol. 30, 2017.

[31] J. Li, Y. Wang, and J. McAuley, “Time interval aware self-attention
for sequential recommendation,” in WSDM, 2020, pp. 322–330.

[32] R. Cai, J. Wu, A. San, C. Wang, and H. Wang, “Category-aware
collaborative sequential recommendation,” in SIGIR, 2021, pp.
388–397.

[33] A. E. Durmus, Z. Yue, M. Ramon, M. Matthew, W. Paul, and
S. Venkatesh, “Federated learning based on dynamic regulariza-
tion,” in ICLR, 2021.

[34] G. Ye, Y. Zhao, X. Chen, and K. Zheng, “Task allocation with
geographic partition in spatial crowdsourcing,” in CIKM, 2021,
pp. 2404–2413.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[35] P. Cheng, X. Lian, L. Chen, and C. Shahabi, “Prediction-based task
assignment in spatial crowdsourcing,” in ICDE, 2017, pp. 997–
1008.

[36] H. Dang, T. Nguyen, and H. To, “Maximum complex task as-
signment: Towards tasks correlation in spatial crowdsourcing,” in
IIWAS, 2013, pp. 77–81.

[37] D. Deng, C. Shahabi, and U. Demiryurek, “Maximizing the num-
ber of worker’s self-selected tasks in spatial crowdsourcing,” in
SIGSPATIAL, 2013, pp. 324–333.

[38] P. Cheng, X. Jian, and L. Chen, “An experimental evaluation of
task assignment in spatial crowdsourcing,” PVLDB, vol. 11, no. 11,
pp. 1428–1440, 2018.

[39] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile
micro-task allocation in spatial crowdsourcing,” in ICDE, 2016, pp.
49–60.

[40] S. R. B. Gummidi, T. B. Pedersen, and X. Xie, “Transit-based task
assignment in spatial crowdsourcing,” in SSDBM, 2020, pp. 1–12.

[41] Y. Cui, L. Deng, Y. Zhao, B. Yao, V. W. Zheng, and K. Zheng,
“Hidden poi ranking with spatial crowdsourcing,” in SIGKDD,
2019, pp. 814–824.

[42] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online
minimum matching in real-time spatial data: experiments and
analysis,” PVLDB, vol. 9, no. 12, pp. 1053–1064, 2016.

[43] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” PVLDB, vol. 11,
no. 11, p. 1633, 2018.

[44] J. Tu, P. Cheng, and L. Chen, “Quality-assured synchronized task
assignment in crowdsourcing,” TKDE, vol. 33, no. 3, pp. 1156–
1168, 2019.

[45] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou, “Pre-
dictive task assignment in spatial crowdsourcing: a data-driven
approach,” in ICDE, 2020, pp. 13–24.

[46] Y. Zhao, K. Zheng, J. Guo, B. Yang, T. B. Pedersen, and C. S. Jensen,
“Fairness-aware task assignment in spatial crowdsourcing: Game-
theoretic approaches,” in ICDE, 2021, pp. 265–276.

[47] Y. Zhao, X. Chen, L. Deng, T. Kieu, C. Guo, B. Yang, K. Zheng, and
C. S. Jensen, “Outlier detection for streaming task assignment in
crowdsourcing,” in WWW, 2022.

[48] Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou, “Destination-
aware task assignment in spatial crowdsourcing: A worker de-
composition approach,” TKDE, pp. 2336–2350, 2019.

[49] X. Li, Y. Zhao, X. Zhou, and K. Zheng, “Consensus-based group
task assignment with social impact in spatial crowdsourcing,”
Data Science and Engineering, vol. 5, no. 4, pp. 375–390, 2020.

[50] Y. Zhao, J. Guo, X. Chen, J. Hao, X. Zhou, and K. Zheng,
“Coalition-based task assignment in spatial crowdsourcing,” in
ICDE, 2021, pp. 241–252.

[51] S. Wang, J. Cao, and S. Y. Philip, “Deep learning for spatio-
temporal data mining: A survey,” TKDE, vol. 34, no. 8, pp. 3681–
3700, 2020.

[52] Y. Zhao, K. Zheng, Y. Li, J. Xia, B. Yang, T. B. Pedersen, R. Mao,
C. S. Jensen, and X. Zhou, “Profit optimization in spatial crowd-
sourcing: Effectiveness and efficiency,” TKDE, 2022.

[53] Y. Zhao, J. Liu, Y. Li, D. Zhang, C. S. Jensen, and K. Zheng,
“Preference-aware group task assignment in spatial crowdsourc-
ing: Effectiveness and efficiency,” TKDE, 2023.

[54] L. Kazemi, C. Shahabi, and L. Chen, “Geotrucrowd: trustworthy
query answering with spatial crowdsourcing,” in SIGSPATIAL,
2013, pp. 314–323.

[55] H. To, C. Shahabi, and L. Kazemi, “A server-assigned spatial
crowdsourcing framework,” TSAS, vol. 1, no. 1, pp. 1–28, 2015.

[56] Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou, and W. Lv,
“Slade: A smart large-scale task decomposer in crowdsourcing,”
TKDE, vol. 30, no. 8, pp. 1588–1601, 2018.

[57] Y. Tong, L. Wang, Z. Zimu, B. Ding, L. Chen, J. Ye, and K. Xu,
“Flexible online task assignment in real-time spatial data,” PVLDB,
vol. 10, no. 11, pp. 1334–1345, 2017.

[58] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao, “Task assignment
on multi-skill oriented spatial crowdsourcing,” TKDE, vol. 28,
no. 8, pp. 2201–2215, 2016.

[59] J. Xia, Y. Zhao, G. Liu, J. Xu, M. Zhang, and K. Zheng, “Profit-
driven task assignment in spatial crowdsourcing.” in IJCAI, 2019,
pp. 1914–1920.

[60] L. Zheng, L. Chen, and J. Ye, “Order dispatch in price-aware
ridesharing,” PVLDB, vol. 11, no. 8, pp. 853–865, 2018.

[61] Y. Zhao, L. Deng, and K. Zheng, “Adataskrec: An adaptive task
recommendation framework in spatial crowdsourcing,” TOIS,
2023.

[62] Q. Tao, Y. Tong, Z. Zhou, Y. Shi, L. Chen, and K. Xu, “Differentially
private online task assignment in spatial crowdsourcing: A tree-
based approach,” in ICDE, 2020, pp. 517–528.

[63] Y. Li, W. Li, and Z. Xue, “Federated learning with stochastic
quantization,” International Journal of Intelligent Systems, vol. 37,
no. 12, pp. 11 600–11 621, 2022.

Hao Miao received the M.E. in Computer sci-
ence and technology from Nanjing University of
Aeronautics and Astronautics, Nanjing, China, in
2021. He is currently a PhD Fellow in Computer
Science at Aalborg University. From September
2019 to November 2019, he was a Visiting Stu-
dent at PolyU, Hong Kong, China. His research
interests include spatio-temporal data analytics,
incremental learning, and federated learning.

Xiaolong Zhong received a bachelor’s degree
from Chongqing University of Technology, in
2018. He is currently studying for a master’s de-
gree in Computer Science and Technology at the
University of Electronic Science and Technology
of China. His research interests include feder-
ated learning and spatio-temporal data mining.

Jiaxin Liu received the bachelor’s degree in
Computer Science and Technology from South-
west Jiaotong University, in 2021. She is cur-
rently studying for a master’s degree in Com-
puter Science and Technology at the University
of Electronic Science and Technology of China.
Her research interests include spatial crowd-
sourcing, trajectory data mining and spatio-
temporal databases.

Yan Zhao is an Assistant Professor with Aalborg
University. She received the Doctoral Degree
in Computer Science from Soochow University
in 2020. Her research interests include spatial
database and trajectory computing.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Prof. Xiangyu Zhao is an assistant professor of
the school of data science at City University of
Hong Kong (CityU). Prior to CityU, he completed
his PhD (2021) at MSU. His current research
interests include data mining and machine learn-
ing, especially their applications in Urban Com-
puting and Recommender Systems. He has
published more than 80 papers in top con-
ferences and journals. His research has been
awarded ICDM’22 and ICDM’21 Best-ranked Pa-
pers, Global Top 100 Chinese New Stars in AI,

CCF-Ant Research Fund, CCF-Tencent Open Fund, Criteo Faculty
Research Award, and Bytedance Research Collaboration Award. He
serves as top data science conference (senior) program committee
members and session chairs (e.g., KDD, WWW, SIGIR, IJCAI, AAAI,
ICML, ICLR), and journal guest editors and reviewers (e.g., TKDE,
TKDD, TOIS, TIST, CSUR, Frontiers in Big Data). Please find more
information at https://zhaoxyai.github.io/.

Weizhu Qian is a postdoctoral researcher at
Aalborg University. He received the PhD degree
in Computer Science from University Bourgogne
Franche-Comté in 2021. His research interests
mainly focus on deep learning and data science.

Kai Zheng is a Professor of Computer Sci-
ence with University of Electronic Science and
Technology of China. He received his PhD de-
gree in Computer Science from The University
of Queensland in 2012. He has been work-
ing in the area of spatial-temporal databases,
uncertain databases, social-media analysis, in-
memory computing and blockchain technolo-
gies. He has published over 100 papers in presti-
gious journals and conferences in data manage-
ment field such as SIGMOD, ICDE, VLDB Jour-

nal, ACM Transactions and IEEE Transactions. He is a senior member
of IEEE.

Christian S. Jensen is a professor of computer
science at Aalborg University, Denmark. He was
a professor at Aarhus University from 2010 to
2013, and he was previously with Aalborg Uni-
versity for two decades. His research concerns
data management and analytics, and its focus is
on temporal and spatio-temporal data. He is a
member of the Academia Europaea, the Royal
Danish Academy of Sciences and Letters, and
the Danish Academy of Technical Sciences. He
has received several national and international

awards for his research, most recently the IEEE TCDE impact award.
He is a fellow of the IEEE and ACM.

