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Worker-Churn-based Task Assignment with
Context-LSTM in Spatial Crowdsourcing
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Abstract—The pervasiveness of GPS-enabled devices and wireless communication technologies flourish the market of Spatial
Crowdsourcing (SC), which consists of location-based tasks and requires workers to be at specific locations physically to complete
them. In this work, we study the problem of worker-churn-based task assignment in SC, where tasks are assigned by considering
workers’ churn. In particular, we aim to maximize the total rewards of task assignments based on the worker churn prediction. To solve
the problem, we propose a two-phase framework, which consists of a worker churn prediction and a task assignment phase. In the first
phase, we use an LSTM-based model to extract latent feelings of workers based on historical data and then estimate idle time intervals
of workers. In the assignment phase, we design an efficient greedy algorithm and a Kuhn-Munkras-based algorithm that can achieve
the optimal task assignment. To improve the accuracy of the idle time interval estimation for workers, we adopt a context-dependent
LSTM model, which involves interactions between inputs and their context. We further optimize the original task assignment framework
by proposing a travel distance optimization strategy to reduce the overall travel distance. Extensive experiments offer insight into the
effectiveness and efficiency of the proposed solutions.

Index Terms—Spatial Crowdsourcing, Task Assignment, Worker Churn.
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1 INTRODUCTION

Crowdsourcing is a computing paradigm, where humans
actively or passively participate in the procedure of
computing, especially for tasks that are intrinsically easier
for humans than for computers [38]. Many successful
crowdsourcing platforms exist, e.g., Amazon Mechanical
Turk (MTurk)1 and Wikipedia2. Along with the ubiquity
of GPS-equipped networked devices, e.g., smartphones, a
new class of crowdsourcing, called Spatial Crowdsourcing
(SC), has drawn increasing attention in both academia and
industry. With SC, requesters can issue spatial tasks (e.g.,
monitoring traffic conditions and picking up passengers) to
SC servers that then assign workers to these tasks (called
task assignment). Workers complete their tasks by moving
to the specified locations. Spatio-temporal information (e.g.,
location, mobility, and the associated contexts) plays a
crucial role in SC. Due to its natural connection to the
physical world, SC is relevant to a wide spectrum of
daily applications, including real-time ride-hailing services
(e.g., Uber3), and on-wheel meal-ordering services (e.g.,
GrubHub4).
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Research on SC [6]–[8], [11], [38], [41], [44], [45], [47]–[51]
has gained momentum in recent years; consequently,
many techniques of task assignment are proposed
for different application scenarios. Cheng et al. [10]
study a reliable diversity-based spatial crowdsourcing
(RDB-SC) problem in SC, which aims to maximize
the diversity score of assignments. Zhao et al. [46]
propose a tensor-decomposition-based algorithm to learn
worker preference, based on which they assign tasks by
transforming the assignment problem into a Minimum Cost
Maximum Flow problem. The study [18] aims to maximize
the number of performed tasks for a worker with an optimal
schedule, which combines two optimization problems, i.e.,
task-matching and task-scheduling.

However, the existing studies focus mainly on
spatio-temporal availability of workers and tasks, thus
leaving challenges related to effective and efficient task
assignment largely unaddressed. For example, the above
studies fail to consider user churn (i.e., worker churn) in
task assignment, which describes worker defection from
an SC service provider. Studies on user churn started
from Customer Relation Management and have been
proposed in various service fields [1], [13], [19], [22], [37].
Considering user churn as a real and serious business
problem, several machine learning methods and artificial
neural networks have been proposed to address the problem
by telecommunication companies [2], [13], [25]. Besides,
studies on user churn prediction in these fields, such as
banks and websites, have been carried out as well [1], [19],
[22]. Traditionally, the user churn prediction is treated as
a classification problem based on labeled data and feature
engineering, where users are divided into the churn and
non-churn categories generally [40]. As the SC market
saturates due to the globalization of services and fierce
competition, the cost of worker acquisition has been rising
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rapidly. Therefore, it is crucial to predict worker churn and
take some measures to retain workers.

In this work, we investigate a task assignment problem
in SC, called Worker-Churn-based Task Assignment
(WC-TA). To be more specific, given a set of workers and
a set of tasks, it aims to achieve the highest total rewards of
task assignments based on the worker churn prediction.

In order to tackle the proposed WC-TA problem, we
propose a two-phase framework, which includes a worker
churn prediction and a task assignment phase. The first
phase aims to predict the worker churn in the future. More
specifically, we capture the latent feelings of workers using
an LSTM-based model based on the historical data and then
predict the idle time interval of workers. In the assignment
phase, we propose a greedy and a Kuhn Munkras (KM)
based method to achieve the task assignment. Specifically,
the greedy method aims to assign each task to the most
churn-prone worker from the unassigned workers, until all
the tasks are assigned or all the workers are exhausted. The
KM-based method is to find the maximum weight matching
on a bipartite graph (composed of workers and tasks) in
which the workers that are more likely to be churned are
given higher priority.

The conference version [39] of this work provides a
standard LSTM model to predict worker churn. However,
the model does not consider the context when modeling
the latent feelings of workers, where the contextual
information can make a model more expressive and
explainable. Inspired by the success of Mogrifier LSTM [31],
a context-LSTM model, in modeling Natural Language
Processing, we adopt it to predict worker churn. Mogrifier
LSTM is an expressive model that explores how inputs
interact with the context in which they occur. In particular,
it uses a mutual gating strategy to integrate the current
input and the previous output, which provides a richer
space of interactions between inputs and their context.
Mogrifier LSTM adapts to our worker churn prediction
problem by modifying the number of iteration rounds based
on workers’ satisfaction and passion.

The second limitation of the conference version [39] is
that it fails to consider the travel distance of workers in
task assignment, which is a key factor in SC since workers
must go to the designated locations physically to perform
the assigned tasks. However, the goals of maximizing the
total reward of assigned tasks and minimizing the travel
distance are often conflicting, which means optimizing both
simultaneously could be difficult. To address this issue,
in Section 6 of this extension, we incorporate a travel
distance optimization strategy into the task assignment
phase, which tries to minimize the overall travel distance of
workers while keeping the total reward of task assignment
unchanged by giving priority to the performable task set
with lower travel distance for each worker.

The major value-added extensions over our preliminary
work [39] are four-fold.

1) We identify and study in depth two limitations in our
previous algorithms, which do not consider the contextual
information when modeling worker churn and the travel
distance when assigning tasks.

2) We propose a satisfaction-based and a passion-based
model to estimate each worker’s idle time interval based on

both inputs and their context.
3) We redesign the KM-based task assignment algorithm

by incorporating a travel distance optimization strategy
into the task assignment process, which tries to re-assign
workers the performable tasks with less travel distance
whenever possible as long as the overall reward of task
assignment remains optimized.

4) Extensive experiments are conducted to study the
impact of the key parameters, demonstrating the efficiency
and effectiveness of the proposed methods.

The remainder of this paper is organized as follows.
Section 2 introduces the related work, and Section 3
provides the proposed problem. In Section 4, a brief
introduction of the framework overview is given, followed
by the worker churn prediction models and two task
assignment algorithms in Sections 5 and 6. We give the
experimental results in Section 7 and conclude the paper
in Section 8.

2 RELATED WORK

2.1 Task Assignment in Spatial Crowdsourcing

Spatial Crowdsourcing (SC) can be deemed as one of the
main enablers to complete location-based tasks [5], [12],
[14], [26]–[30], [33]–[36], [42]. According to the task publish
mode, SC can be classified into two categories, namely server
assigned tasks (SAT) mode and worker selected tasks (WST)
mode [23]. In SAT mode, the SC server assigns proper tasks
to nearby workers based on the system optimization goals,
e.g., maximizing the number of assigned tasks [9], [18], [23],
[24], and maximizing the total reward of task assignment [4],
[39]. While in WST mode, the server publishes various
spatial tasks online, and workers can select any tasks based
on their own preferences without the need to coordinate
with the server [17], [18].

Most existing studies adopt the SAT mode, where an
SC server takes charge of the task assignment process. For
example, Cheng et al. [10] propose a reliable diversity-based
spatial crowdsourcing (RDB-SC) problem in SC, where an
SC server assigns tasks to suitable workers to maximize
the diversity score of assignments. Zhao et al. [46]
propose a preference-based task assignment problem and
design a tensor-decomposition-based algorithm to capture
worker’s temporal preferences, based on which tasks are
assigned. However, the above studies focus mainly on
spatio-temporal availability of workers and tasks, which do
not consider worker churn that describes worker defection
from an SC service provider.

2.2 User/Worker Churn Prediction

User/Worker churn prediction is a hot spot in both
academia and industry. Traditionally, the problem of user
churn prediction is treated as a classification problem, where
users are generally divided into the churn and non-churn
categories.

To solve the problem of user churn prediction, it
is necessary to take into account users’ characteristics,
including state sequences, behavior sequences, and other
features extracted from the historical user profile. Recent
studies make great efforts to predict user churn. For
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instance, Bahnsen et al. [3] introduce a new finance-based
approach and develop a cost-sensitive customer churn
prediction model, which enables classification algorithms
to serve business objectives. Hudaib et al. [21] hybrid
a K-means algorithm, Multilayer Perceptron Artificial
Neural Networks, and Self-Organizing Maps to establish
a two-stage loss prediction model to predict user churn,
where the effectiveness of the solution is demonstrated
on real data. However, due to the data sparsity, the
spatio-temporal characteristic, and uncertain churn criteria
in SC applications, the aforementioned methods cannot be
applied to the worker churn in SC directly. In this work, we
combine different models (i.e., LSTM and fully connected
neural network) under different criteria to address the
worker churn prediction problem by considering SC
characteristics.

3 PROBLEM DEFINITION

We proceed to present necessary preliminaries and then
define the problem addressed. Table 1 lists the notation
used throughout the paper. We use capital letters (e.g., A)
to denote finite sets and use blackboard bold letters (e.g., A)
to denote sets of finite sets.

TABLE 1
Summary of Notation

Notation Definition
s Spatial task
s.l Location of spatial task s
s.p Publication time of spatial task s
s.e Expiration time of spatial task s
s.r Reward of spatial task s
w Worker
w.l Current location of worker w
w.d Reachable distance of worker w
Sw A historical task-performing sequence of w
w.τ Idle time interval of worker w
A A spatial task assignment
A.r Total reward in task assignment A
A Spatial task assignment set
µ Temporal threshold

Definition 1 (Spatial Task). A spatial task, denoted by s =
(l, p, e, r), has a location s.l, a publication time s.p, an
expiration time s.e, and a reward s.r.

Figure 1 shows a task assignment example, where two
tasks, s1 and s2, exist. Each task has a publication time, an
expiration time and a reward, e.g., the publication time and
the expiration time of s1 are 0 and 2, respectively, and the
reward of s1 is 1. With SC, the query of a spatial task s
can be answered only if a worker is physically located at
that location s.l. Besides, considering the expiration time, a
spatial task s can be completed only if a worker arrives at
s.l before its deadline s.e. Note that with the single task
assignment mode [23], an SC server should assign each
spatial task to only one worker.
Definition 2 (Worker). A worker, denoted by w = (l, d),

has a location w.l and a reachable distance w.d. The
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Fig. 1. Running Example

reachable range of worker w is a circle with w.l as the
center and w.d as the radius, within which w can accept
assignments.

In Figure 1, three workers, w1, w2 and w3, exist,
which are associated with their reachable distance, e.g., the
reachable distance of w1 is 2. A worker can be in either
online or offline mode. A worker is online when being ready
to accept tasks. In our work, a worker can handle only
one task at a certain time instance, which is reasonable in
practice. Once the SC server assigns a task to a worker, the
worker is considered being offline until the assigned task is
completed.

Definition 3 (Idle Time Interval). Given a worker w who
has performed n tasks in a time period, we define the
task-performing history of w as a time-ordered task
sequence, Sw = (s1, s2, ..., sn). The idle time interval
of worker w is the time interval between two adjacent
performed tasks, i.e., w.τi = si+1.ts − si.te (i > 0),
where w.τi denotes the idle time interval of w between
si and si+1, si+1.ts denotes the start time (i.e., time of
assignment) of si+1, and si.te is the completion time of
si.

In the rest of the paper, we will use the terms idle time
interval and idle interval interchangeably.

Definition 4 (Churn-prone Worker). Given a temporal
threshold µ, if the idle time interval of worker w exceeds
µ, worker w is regarded as a churn-prone worker.

Definition 5 (Spatial Task Assignment). Given a set of
workers W = {w1, w2, ..., w|W |} and a set of tasks
S = {s1, s2, ..., s|S|}, we define A as the spatial task
assignment. Next, A consists of a set of tuples of form
(w, s), where a spatial task s is assigned to worker w,
satisfying all the workers’ and tasks’ spatio-temporal
constraints.

We use A.r to denote the total reward in task assignment
A. The problem investigated can be stated as follows.

Worker Churn based Task Assignment (WC-TA)
Problem Statement. Given a set of online workers W and a
set of tasks S at the current time instance on an SC platform,
the WC-TA problem is to find an optimal task assignment
Aopt that achieves the following goals:
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1) primary optimization goal: maximize the total reward
among workers, i.e., ∀Ai ∈ A (Aopt.r ≥ Ai.r), where A
denotes all possible assignments; and

2) secondary optimization goal: maximize the
assignment ratio of churn-prone workers, which is the
ratio between the number of assigned churn-prone workers
and the total number of churn-prone workers.

We assume that worker w2 is a churn-prone worker
in Figure 1. When we only aim to maximize the total
reward among workers without considering worker churn,
we can assign the closet worker to each task and get the
task assignment {(w1, s2), (w3, s1)} with the total reward
of 2. However, such a task assignment might lead to the
churn of w2 since the worker is not assigned any task and
cannot get any reward. When we consider worker churn,
we can also achieve a total reward of 2 with the assignment
{(w2, s2), (w3, s1)}, showing the necessity of considering
worker churn.

4 FRAMEWORK OVERVIEW

Our framework (cf. Figure 2) is comprised of two
components: worker churn prediction and task assignment.

The first component aims to predict worker churn by
calculating the idle time intervals for all workers based
on workers’ historical task-performing data. To this end,
we utilize an LSTM-based Latent Feeling Capture (LFC)
model, which is a regression model that predicts the idle
time intervals of workers. More specifically, we extract
the latent feeling of each worker from historical data,
including worker ID, reward, time interval, and spatial
distance between two adjacent completed tasks, as well
as geographic locations of tasks. Taking the data related
to latent feelings of each worker as input, the LFC model
generates a worker idle time interval tensor, where each
entry is the prediction of a worker’s idle time interval
in a certain time slot. Given a temporal threshold µ, e.g.,
a month, if the predicted idle time interval of a worker
exceeds µ, the worker is regarded as a churn-prone worker;
otherwise, the worker is regarded as an active one.

In practice, it is necessary for an SC server to take
measures to retain the churn-prone workers to ensure
continuous and high worker participation and satisfaction.
The measures include assigning the churn-prone workers
high-value tasks, e.g., tasks with high rewards or
nearby tasks. Therefore, in the assignment component, by
considering spatio-temporal constraints including workers’
reachable region and tasks’ expiration time, we assign
tasks to the suitable workers by giving priority to the
churn-prone workers. For the sake of efficiency, we propose
a churn-aware greedy algorithm that tries to assign tasks to
the workers who are most likely to churn. We also develop
a churn-aware KM algorithm to maximize the total reward
while giving priority to the churn-prone workers when
assigning tasks.

5 WORKER CHURN PREDICTION

We adopt a behavior-based modeling method to help
the LSTM-based LFC model predict worker churn, which
turns the classification problem of churn prediction into a

regression problem. Then we estimate the idle time intervals
for each worker using the LSTM-based LFC model, based on
which we obtain the churn-prone workers by introducing a
temporal threshold.

5.1 Behavior-based Modeling
Traditionally, the problem of user churn prediction is treated
as a classification problem with labeled data [40]. However,
in the fields like SC, the standards of worker churn are
not always the same, and it is hard to tell if a worker
is really churned. Besides, we cannot get labeled data
in SC. To solve these issues, we transform the worker
churn problem into a behavior-based problem and introduce
a BM-UCP (Behavior-based Modeling for User Churn
Prediction) method [40] to solve it. Different from traditional
methods of user churn prediction, BM-UCP converts the
classification problem into a regression problem, which
predicts the idle time intervals of users. More specifically,
given a temporal threshold µ, BM-UCP trains a model that
maximizes the accuracy defined in Equation 1.

accuracy =

∑|W |
i l((τi>µ ∧ τ∗i >µ) ∨ (τi ≤ µ ∧ τ∗i ≤ µ))

|W |
,

l(x) =

{
1 if x = True
0 otherwise,

(1)

where l(x) is an indication function, τi is the predicted
idle time interval of worker wi, τ∗i is the true value of
the time interval, ∧ is logical AND operation, ∨ is logical
OR operation, and |W | is the number of workers. Given a
temporal threshold µ, we train the model by maximizing
the churn prediction accuracy, i.e., minimizing the variance
between τ and τ∗ (cf. Equation 1).

5.2 LSTM-based Latent Feeling Capturing Model
We introduce the proposed LSTM-based Latent Feeling
Capturing (LFC) model from three aspects, i.e., input, latent
feeling capturing, and output, the structure of which is
shown in Figure 3. In the following, we provide specifics
on each aspect.

5.2.1 Input
In this part, we introduce the input of the LSTM-based
LFC model. In practice, it is obvious that workers’ idle
time intervals are affected by workers’ latent feelings
such as satisfaction and passion about the assigned tasks.
Specifically, satisfaction indicates the pleasure a worker
gets from the task assignment or the fulfillment degree
of the expectations of the worker, which determines the
completion time of a performed task to some extent. Passion
indicates the wish or the desire to perform a task, which
determines the start time of a task to be performed. Both
satisfaction and passion are used to express the latent
feelings of a worker from different aspects. For example,
after performing tasks for a long time period, the passion
of a worker to perform one more tasks may be decreased.
In this process, the satisfaction will be changed to affect
the completion time of tasks due to the rewards or the
difficulty of tasks. The idle time interval of a worker w is
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the time interval between two adjacent performed tasks (see
Definition 3), i.e., w.τi = si+1.ts − si.te, where w.τi denotes
the idle time interval of w between two adjacent performed
tasks (si and si+1), si+1.ts denotes the start time of si+1 that
is primarily determined by the worker passion, and si.te is
the completion time of si that is primarily determined by
the worker satisfaction. Therefore, workers’ satisfaction and
passion about tasks can affect their idle time intervals.

We introduce two kinds of vectors as the input
of LSTM-based LFC, i.e., satisfaction-related and
passion-related vectors. Besides the rewards and the
locations of tasks, we assume that satisfaction-related
and passion-related vectors are primarily determined
by the geographical distance (affecting the completion
time of tasks to a certain extent) and the time interval
between two adjacent tasks, respectively. Specifically, for
worker w, the satisfaction-related vector vst , denoted by
vst = (rt, dt, lot, lat), where rt represents the reward
of the tth task in the historical data of w, dt represents
the geographical distance between the tth task and the
(t − 1)th task, lot represents the longitude of the tth task,
and lat represents the latitude of the tth task. Passion
is a feeling similar to satisfaction, which is denoted by
vpt = (rt, wtt, lot, lat), where wtt represents the time
interval between the tth task and the (t − 1)th task in
the historical data of w, and the remaining three elements
(i.e., rt, lot, and lat) have the same meanings as the
corresponding elements in the satisfaction-related vector.

The model is an LSTM-based model, and we set the
time-step length to 10, i.e., an input instance consists of 10
satisfaction-related vectors or 10 passion-related vectors.

5.2.2 Latent Feeling Capturing

As we discussed above, the idle time interval is related to
a worker’s latent feelings (i.e., satisfaction and passion). A
worker’s satisfaction/passion after performing the tth task

is related to the satisfaction/passion before the tth task
and the features of the tth task. Therefore, we regard the
latent feelings as sequential data, which means that the
latent feelings have sequential dependencies. As shown in
Figure 3, LFC contains two-way LSTMs, where one way is
used to capture a worker’s satisfaction and the other way is
used to capture a worker’s passion.

We will first introduce the process of capturing worker
satisfaction. We take NL as a non-linear translation. Given
the historical data of worker w, denoted by Sw =
{s1, s2, ..., sn}, w’s satisfaction after performing task st
depends on features of task st and the satisfaction after
performing previous assigned tasks. As a result, we can
calculate the worker’s satisfaction in the current moment
by the input satisfaction-related vector and the satisfaction
gotten from performing previous assigned tasks, as shown
in Equation 2.

St = NLst(st) +NLss(St−1), (2)

where St is worker w’s satisfaction after performing the
tth task, NLst(st) denotes the non-linear translation for w’s
satisfaction of the current task st that reflects the impact
of st on worker satisfaction, and NLss(St−1) denotes the
non-linear translation for w’s satisfaction after completing
the (t − 1 )th task.

The process of calculating passion is similar to that of
calculating satisfaction, which is shown in the following.

Pt = NLpt(st) +NLpp(Pt−1), (3)

where Pt is worker w’s passion after performing the tth
task, NLpt(st) denotes the non-linear translation for w’s
passion of the current task st that reflects the impact of st
on worker passion, and NLpp(St−1) denotes the non-linear
translation for w’s passion after completing the (t − 1 )th
task.
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As discussed above, both satisfaction and passion
have sequential dependencies. LSTM solves the long-term
dependency problem through three gate mechanisms and
has excellent performance when processing sequential data.
Therefore, we introduce LSTM [20] into our model to
capture satisfaction and passion.

Next, we illustrate the LSTM-based satisfaction
capturing, which is shown in the following equations.

fst = σ(Ws
f · [Hs

t−1,v
s
t ] + bsf ), (4)

ist = σ(Ws
i · [Hs

t−1,v
s
t ] + bsi ), (5)

C̃st = tanh(Ws
c · [Hs

t−1,v
s
t ] + bsc), (6)

ost = σ(Ws
o · [Hs

t−1,v
s
t ] + bso), (7)

St = fst � St−1 + ist � C̃st , (8)

Hs
t = ost � tanh(St), (9)

where fst indicates what to forget, and the concatenation
of satisfaction-related vector vst and the filtered satisfaction
Hs
t−1 from the last time step are taken as input. We use

a sigmoid function σ(·) as the activation function when
calculating fst . Note that the W terms denote weight
matrices, e.g., Ws

f is the matrix of weights from the input
to the forget gate f , and the b terms denote bias vectors,
e.g., bsf is the forget gate bias vector. Next, ist indicates what
to update, the input and activation function are the same
as those of calculating fst but the parameters are different.
Further, C̃st is a candidate satisfaction, which is calculated
by taking the concatenation of vst and filtered satisfaction
Hs
t−1 as input and selecting a tanh function tanh(·) for

activation. Then, the new satisfaction is an addition of the
values remembered from St−1 (calculated by fst � St−1),
and the values that need to be updated from the candidate
satisfaction C̃st (calculated by ist � C̃st ), where � is the

elementwise product. Finally, ost indicates what to output,
which is based on our cell state. The filtered satisfaction
Hs
last of the last time step will be used as the output of LSTM

for idle time interval calculation, and the satisfaction of
worker w, denoted by Sw, is the satisfaction of the last time
step. The structure of the LSTM-based satisfaction capturing
is shown in Figure 4.

The process of capturing passion is similar to that of
satisfaction.

Context-based Optimization. Although the original
LSTM has shown promising performance in modeling
dependencies and dynamics in sequential data, it does
not have strong and explicit capability for capturing
the contextual information in the sequential data. In
particular, the original LSTM does not fully interact
with the inputs and the hidden states at multiple prior
moments, but only correlates with the input at the
current moment and the prior hidden state, leading to
poor accuracy in capturing workers’ long- and short-term
satisfaction and passion. To tackle this issue and inspired
by the success of Mogrifier LSTM [31] in modeling
contexts in Natural Language Processing, we introduce two
context-LSTMs (i.e., satisfaction-based and passion-based
context-LSTMs) to replace the original LSTMs in the LFC
model, which involves interactions between inputs and
their contexts. Specifically, the context-LSTM equips the
LSTM with gates that scale its weight matrices W in a
context-dependent manner. Mogrifier LSTM is a general
model for sequential data, but it only processes the worker’s
task-performing sequence sequentially and cannot integrate
spatial information to consider the relationship between
tasks. Our satisfaction-related vectors, which is the input of
Mogrifier LSTM, consider the spatial distance between two
adjacent tasks, which integrates spatial information into the
Mogrifier LSTM and makes up for its defect of ignoring
spatial information.

Based on Equations 4–9 that illustrate the
satisfaction-based LSTM, we can simplify it as
LSTM (vst ,St−1, Hs

t−1). In the satisfaction-based
context-LSTM, the two inputs vst and Hs

t−1 modulate
one another in an alternating way before the usual LSTM
computation, which is shown in Figure 5. Specifically, the
satisfaction-based context-LSTM can be represented by
CLSTM (vst ,St−1, Hs

t−1) = LSTM (vst,last,St−1, Hs
t−1,last),

where the modulated inputs vst,last and Hs
t−1,last are the

final ones after the modulation. Taking Figure 5 as a case,
CLSTM (vst ,St−1, Hs

t−1) = LSTM (vst,5,St−1, Hs
t−1,4).

Formally,

vst,j = 2σ(QjHs
t−1,j−1)� vst,j−2, for odd j ∈ [1, . . . , r],

(10)

Hs
t−1,j = 2σ(Rjvst,j−1)�Hs

t−1,j−2, for even j ∈ [1, . . . , r],
(11)

where vst,−1 = vst and Hs
t−1,0 = Hs

t−1. Next, r denotes
the number of modulation rounds that is calculated by
r = 1

dt+1N , where dt denotes the geographical distance
between the tth task and the (t − 1 )th task, and N is a
hyperparameter. We should notice that the context-LSTM
is converted back into LSTM when r = 0.
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Fig. 5. Five Modulation Rounds of Satisfaction-based Context-LSTM

The passion-based LSTM can be optimized in the same
way but with different number of modulation rounds,
which is set to 1

wtt+1N , where wtt is the time interval
between the tth task and the (t − 1 )th task in the historical
data of worker w.

5.3 Output
Since the idle time interval of worker w is related to
the latent feelings including satisfaction and passion, the
satisfaction and passion output by the two-way LSTMs can
be concatenated and then passed through a fully connected
layer, by which the predicted idle time interval of w is
output, as shown in Equation 12.

τw =Wsp · [Sw,Pw] + bsp, (12)

where τw is the predicted idle time interval of worker w,
Wsp is the weight matrix, and bsp is the bias.

Given a temporal threshold µ, if the predicted idle time
interval of worker w, τw, exceeds µ, w is judged as a
churn-prone worker.

6 TASK ASSIGNMENT

In a real-time scenario, where workers and tasks arrive
dynamically and require immediate responses from an
SC server, it is challenging to achieve the global optimal
solution for the WC-TA problem. Since an SC server only
has local knowledge of available tasks and workers at
any instance of time, we optimize the task assignment
locally at every time instance by maximizing the current
assignments and giving higher priorities to workers who are
more likely to be churned. We propose two task assignment
algorithms on this basis, a Churn-aware Greedy algorithm
and a Churn-aware KM algorithm.

6.1 Churn-aware Greedy Algorithm
Taking workers’ idle time intervals as the priority of task
assignment, we propose a basic greedy solution to solve the
WC-TA problem.

Specifically, given a set of online workers, W =
{w1, w2, ..., w|W |}, and a set of available tasks, S =
{s1, s2, ..., s|S|}, at the current time, the available workers
for spatial task s (s ∈ S), denoted as AW (s) , should satisfy
the following two conditions: ∀w ∈ AW (s), s ∈ S,

1) dis(w.l, s.l) ≤ w.d, and
2) tnow + t(w.l, s.l) ≤ s.e,

where dis(w.l, s.l) is the distance (e.g., Euclidean distance)
between w.l and s.l, tnow is the current time, and t(w.l, s.l)
is the travel time from w.l to s.l. For the sake of simplicity,

we assume that all the workers share the same speed, so
the travel time between two locations can be estimated
with their Euclidean distance, e.g., t(w.l, s.l) = dis(w.l, s.l).
However, our proposed algorithms are not dependent on
this assumption and can handle the case where workers are
moving at different speeds.

The churn-aware greedy algorithm is shown in
Algorithm 1. Given a worker set W and a task set S, we
calculate the set of available workers for each task according
to the conditions described above (line 3). Then, we sort
the workers in the available worker set for each task in
descending order according to worker-task greedy value ρ
(line 4), where ρ =Wc · w .τ +Wr · s.r ,Wc is the weight of
w’s predicted idle time interval w .τ , and Wr is the weight
of s’s reward s.r . Finally, each task is assigned to the worker
˜AW (s)[0] with the largest greedy value (line 5).

Algorithm 1: Churn-aware Greedy Algorithm
Input: W,S
Output: A

1 A← ∅;
2 for each task s ∈ S do
3 AW (s)← Find the set of available workers of s;
4 ˜AW (s)← Sort AW (s) in descending order of the

worker-task greedy value ρ;
5 A ∪ [(s, ˜AW (s)[0])];

6 return A;

The time complexity of Algorithm 1 is O(|S| · (|W | +
|maxAW | · log |maxAW |)), where |S| denotes the number
of tasks, |W | denotes the number of workers, and |maxAW |
denotes the maximum number of available workers among
all tasks, i.e., |maxAW | = maxs∈S |AW (s)|.

6.2 Churn-aware KM Algorithm
In this part, we transform the WC-TA problem to a Bipartite
Maximum Weight Matching problem and apply the KM
algorithm to solve it. The Bipartite Maximum Weight
Matching is based on a graph, which is represented by
G = (V,E) with V corresponding to the set of vertices
and E the set of edges. Given a set of online workers,
W = {w1, w2, ..., w|W |}, and a set of available tasks, S =
{s1, s2, ..., s|S|}, the number of V and the number of E are
fixed to |W |+ |S| and

∑
w∈W mw, respectively, where mw is

the number of worker w’s adaptive available assignments,
which is a subset of worker w’s available tasks AS (w)
and positively related to the predicted idle time interval of
w. Each task s in AS (w) should meet the two conditions
of AW (s) in Section 6.1, i.e., ∀s ∈ AS (w)(dis(w.l, s.l) ≤
w.d, tnow + t(w.l, s.l) ≤ s.e). For the vertex construction,
the entire point set V is divided into two sets VW and V S ,
where VW ∩ V S = ∅. Each worker w maps to a vertex,
vw ∈ VW , and each spatial task s maps to a vertex, vs ∈ V S .

Due to the spatio-temporal constraints, we add an edge
from vw mapped from w ∈W to the vertex vs mapped from
s ∈ S if s can be assigned to w, i.e., s ∈ AS (w). For each
edge (vw, vs), its weight (denoted by weight(vw, vs)) can
be measured as the weighted sum of the time interval w.τ
and the reward of the spatial task s, i.e., weight(vw, vs) =
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Wc ·w .τ +Wr · s.r , where weight(vw, vs) is the worker-task
greedy value ρ (see Section 6.1), Wc is the weight of w’s
predicted idle time interval w .τ , andWr is the weight of s’s
reward s.r . Figure 6 depicts an example of a graph for five
workers and three tasks.

To improve efficiency, we limit the number of edges in
the graph. Each worker node vw has an adaptive upper
limit uw. It means that the number of edges associated with
a worker node cannot exceed uw, which is calculated by
ρ · w .τT , where ρ is a hyperparameter, called limit coefficient.
Next, T is a time range (e.g., three months) used to narrow
w .τ down to a certain computer-convenient range, which
can be set by observation from a real application or specified
by the SC platform. We retain the top-k edges with the
maximal weights and remove the remaining ones for each
worker node, where k = min{uw, |AS (w)|}, uw is the upper
limit, and |AS (w)| denotes the number of w’s available
tasks. For the same consideration, the number of associated
edges of each task node vs cannot exceed us, in order to
reduce the competition among workers and the recursion
depth of the algorithm, where us is a hyperparameter.

The WC-TA problem is now converted into a Bipartite
Maximum Matching problem in the direct bipartite graphG,
which is to achieve the maximum weight matching of G. In
our work, we use the KM algorithm with limited recursions
to find the maximal weight matching.

The Churn-aware KM algorithm is shown in
Algorithm 2. The input is the bipartite graph G, which is
composed of two vertex sets V S and VW . The algorithm
first initializes task assignment A, task expectation ES ,
and a relaxation array slack that is used to update worker
and task expectations. Then, for each vertex w in W (i.e.,
vw ∈ VW ), its expectation is set to the largest weight among
the edges associated with it in graph G (lines 4–5). Next,
Algorithm 2 recursively finds matching tasks for worker w
through the FindTask function (lines 6–11). The FindTask
function is shown in Algorithm 3, which will be introduced
later. If w fails to match a task, we adjust the expectations of
workers and tasks involved in the last matching to change
the competitive relationship among workers so that more
workers can be assigned (lines 12–24).

The original KM algorithm is used to find the

Algorithm 2: Churn-aware KM Algorithm
Input: G
Output: A

1 A← [−1, ...,−1];
/*A = [A(s1), ..., A(s|S|)];*/

2 ES ← [0, ..., 0];
/*ES = [ES(s1), ..., ES(s|S|)];*/

3 slack ← [INF , ..., INF ];
/*slack = [slack(s1), ..., slack(s|S|)];*/

4 for each worker w ∈W do
5 EW (w)← max{weight(vw, vs)};
6 for each worker w ∈W do
7 while EW (w) > 0 do
8 visS ← [False, ..., False];

/*visS = [visS(s1), ..., visS(s|S|)];*/
9 visW ← [False, ..., False];

/*visW = [visW (w1), ..., visW (w|W |)];*/
10 if FindTask(w,0) then
11 break;

12 else
13 d← INF ;
14 for each task s ∈ S do
15 if ! visS(s) then
16 d← min{d, slack(s)};

17 for each worker w ∈W do
18 if visW (w) then
19 EW (w)− = d;

20 for each task s ∈ S do
21 if visS(s) then
22 ES(s)+ = d;
23 else
24 slack(s)− = d;

25 return A;

Algorithm 3: FindTask Algorithm
Input: worker w, recursion depth RT
Output: Bool

1 visW (w)← True ;
2 if RT > λ then
3 return False;

4 else
5 for each task s is adjacent to w in G do
6 if visS(s) then
7 continue;

8 gap ← EW (w) + ES(s)− weight(vw, vs);
9 if gap = 0 then

10 if A(s) = −1 or FindTask(A(s),RT + 1) then
11 A(s)← w;
12 return True ;

13 else
14 slack(s)← min{slack(s), gap};

15 return False ;
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perfect matching of a weighted bipartite graph. However,
considering that a perfect matching may not exist in a
worker-task bipartite graph, we propose some optimization
strategies to improve the KM algorithm. In the original KM
algorithm, it does not stop trying to match tasks for a worker
until a successful match, which may cause an endless loop in
our problem. Therefore, in our algorithm, if the expectation
of w is less than 0 (line 7), we stop matching tasks for the
worker.

In the following, we introduce the FindTask algorithm
(see Algorithm 3), which is a Depth First Search algorithm
that finds a suitable task for each worker. The depth
of recursion cannot exceed the upper recursion limit λ
(lines 2–3). In the algorithm, we calculate the difference
between the sum of expectations of the worker and the task
and the weight of the edge associated with the two vertices
(lines 5–8). If the difference is equal to 0, the task can be
assigned to the worker (lines 9–11). Else, slack(s) is updated
to min{slack(s), gap} (lines 13–14).

Algorithm 2 has time complexity O(|W | · (|S| + |W |)),
where |W | and |S| are the numbers of workers and tasks,
respectively.

Travel Distance Optimization. An issue of the original
KM task assignment algorithm is that it does not consider
travel distance of workers during the assignment process.
In the problem settings of SC, travel distance is a critical
factor since workers must go to the task location physically
to perform the task. To address this issue and considering
the fact that a worker is more likely to accept nearby
tasks, we propose a strategy, referred to as travel distance
optimization, to improve the overall task assignment by
giving priority to the worker-task assignments with lower
travel distance. Specifically, we carefully design a distance
discount factor δ(w.l, s.l) between worker w and task s,
which is shown in Equation 13.

δ(w.l, s.l) = 1−min{1, dis(w.l, s.l)/w.d}, (13)

wherew.l/s.l denotes the location ofw/s, dis(w.l, s.l) is the
distance between w and s, and w.d is the reachable distance
of w. Next, dis(w.l, s.l)/w.d indicates the willingness of
worker w for performing task s based on travel distance.
The lower dis(w.l, s.l)/w.d is, the higher willingness the
worker has. Accordingly, a higher δ(w.l, s.l) value means
that worker w are more likely to perform task s.

We consider the travel distance optimization by applying
the distance discount factor in the churn-aware KM
algorithm. In particular, we replace the weight between
worker node vw and task node vs, weight(vw, vs), by
δ(w.l, s.l) · weight(vw, vs) in line 5 of Algorithm 2 and
line 8 of Algorithm 3. We study the effect of the travel
distance optimization strategy in our experimental part
in Section 7.2.2. The studies show that the optimization
strategy can result in nearly the same task assignment
results (including the total reward and the assignment ratio
of churn-prone workers) as does the KM method without
travel distance optimization, and it can reduce the total
travel distance of task assignment.

7 EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed methods on
real data. The experimental setup is presented in Section 7.1,
followed by a coverage of key experimental results in
Section 7.2.

7.1 Experimental Setup

We use a check-in dataset from Yelp to simulate our
problem, which is a common practice in evaluation of SC
platforms [9], [16], [17]. In order to make the user data more
representative, we filter the data, where we only use the
data of users with the number of reviews exceeding 20 and
the number of reviews before 2019-05-14 23:22:59 exceeding
10. The resulting dataset provides check-in data from eight
metropolitan areas in the USA, which includes 160,585 POIs
and 31,262 users. We assume that we assign tasks to workers
in a certain time slot in the near future, i.e., 2019-05-14
23:22:59. We also assume that the users are the workers of an
SC platform since users who check in to different spots are
good candidates to perform spatial tasks in the vicinity of
those spots, and their locations are those of the most recent
check-in points. For each POI, we use its location and stars
as the location and reward of a task, respectively. Checking
in a POI is equivalent to accepting a task. The distance is
calculated by the Euclidian distance. The experiments are
implemented on an Intel(R) Xeon(R) CPU Silver 4214 @
2.20GHz, and NVidia GeForce RTX 2080Ti GPU.

7.2 Experiment Results

7.2.1 Performance of Worker Churn Modeling

We first evaluate the performance of worker churn
prediction.

Evaluation Methods. We study the performance of the
following methods.

1) LR: A linear regression method [32], which is a
statistical method that uses regression analysis to determine
the quantitative relationship between two or more variables.
Its expression is y = wx+ b, where x is historical data, and
y denotes the predicted idle time interval in our problem.

2) MC: A multi-layer fully connected neural network
method [15], which is a computational model. MC is
composed of a large number of nodes (i.e., neurons)
connected to each other. Each node represents a specific
output function, i.e., an activation function. Each connection
between two nodes represents a weighted value for the
signal passing through the connection, called a weight,
which is equivalent to the memory of an artificial neural
network. The output of the network is different depending
on the connection method of the network, the weight value,
and the activation function.

3) LFC: Our latent feeling capture model, which is based
on two-way LSTMs.

4) CLFC: Our LFC model with two-way context-LSTMs.
Metrics. To evaluate the accuracy of worker churn

prediction, we adopt the metric, accuracy, shown in
Equation 1. We randomly select 20% of the reviews from the
dataset, which are used as the testing data to evaluate the
inferred values. The remaining 80% are used as the training
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TABLE 2
Accuracy of Worker Churn Prediction

Methods Temporal threshold (%)
half a month 1 month 2 months 3 months

LR 38.04±0.38 57.15±0.64 77.70±0.47 84.13±0.28
MC 37.90±0.45 56.91±0.58 77.76±0.43 84.46±1.20
LFC 59.90±1.02 67.96±0.70 78.97±0.44 84.73±0.32
CLFC 70.78±0.28 76.89±0.26 83.74±0.24 87.78±0.22

data. We divide the testing dataset into 20 subsets evenly,
run the methods on each subset, and report all results.

Accuracy. We report the accuracy values of all methods
in Table 2, where the accuracy values consist of the mean
and standard deviation of all results, e.g., a± b denotes that
a is the mean and b is the standard deviation of all results.
Under different temporal thresholds, i.e., half a month,
one month, two months, and three months, CLFC always
achieves the highest mean accuracy, followed by LFC. CLFC
outperforms LFC by 3.60%–18.16% in terms of the mean
accuracy, which demonstrates the superiority of CLFC for
predicting the worker churn. We also observe that CLFC
always has the lowest standard deviations, which indicates
that the accuracy results tend to be close to the mean, i.e.,
the results are relatively consistent, showing the reliability
of CLFC for worker churn prediction.

7.2.2 Performance of Task Assignment

In this set of experiments, we evaluate the performance of
task assignment.

Evaluation Methods. We study the following methods.
1) Greedy: The greedy task assignment method that does

not consider the worker churn but considers the travel
distance instead.

2) Greedy+WC: The greedy method based on the worker
churn predicted by LFC.

3) DR: The Degree-Reduction-based task assignment
method [43] that utilizes a degree reduction strategy. It is
based on the same bipartite graph with the KM method,
which finds the worker/task node with the minimal degree
(i.e., the node with least edges) and assigns its connected
node with the maximal weight. The intuition is that the
nodes with less edges are more likely to be assigned
unsuccessfully when they are assigned later, so DR gives
priority to them.

4) KM: The KM task assignment method that does not
consider the worker churn but considers the travel distance
instead.

5) KM+WC: The KM method based on the worker churn
predicted by LFC.

6) KM+CWC: The KM method based on the worker
churn predicted by CLFC.

7) KM+CWC+Dis: The KM+CWC method, where the
travel distance optimization strategy is adopted in task
assignment.

Metrics. Three metrics are compared among the
methods, i.e., CPU Time for finding task assignments, Total
Reward, Assignment Ratio of churn-prone workers (marked

as AR), and Average Travel Distance for workers. AR can be
computed in Equation 14.

AR =
N(Wassign ∩Wchurn)

N(Wchurn)
, (14)

where N(Wassign ∩ Wchurn) denotes the number of the
assigned churn-prone workers, and N(Wchurn) denotes
the number of churn-prone workers. A larger AR implies
more effective task assignments that give priority to
churn-prone workers when assigning tasks. Table 3
shows our experimental settings, where default values are
underlined.

TABLE 3
Experimental Parameters

Parameter Values
Number of tasks |S| 1000, 2000, 3000, 4000, 5000
Number of workers |W | 1000, 2000 , 3000, 4000, 5000
Reachable distance of workers d (km) 0.05, 0.1, 0.5, 1.0, 5.0
Valid time of tasks e− p (h) 0.05, 0.1, 0.3, 0.5, 0.7
Limit coefficient ρ 2, 4, 6, 8, 10

Effect of |S|. To study the scalability of the proposed
methods, we generate five datasets containing 1,000 to
5,000 tasks by random selection from the Yelp dataset.
As shown in Figure 7(a), for all greedy-related methods
(including Greedy, Greedy+WC and DR), the CPU time
exhibits a similar increasing trend as |S| increases. However,
for KM-related methods (i.e., KM, KM+WC, KM+CWC,
and KM+CWC+Dis), the CPU time is not simply positively
correlated with |S|. When |S| is small (i.e., |S| = 1, 000),
the competition among workers is intense, which may
increase the recursion depth of KM-related methods. When
|S| is larger than 2,000 and gets larger, the CPU time of
KM-related methods increases since they need to search
more tasks. Although KM+CWC and KM+CWC+Dis are
more time-consuming than KM and KM+WC, they are
able to obtain the most rewards and achieve the highest
assignment ratio, as shown in Figures 7(b) and 7(c),
which demonstrates the effectiveness of the proposed
context-LSTM model. As expected in Figure 7(b), the total
rewards obtained by all methods increase with increasing
|S|. Since Greedy and Greedy+WC are greedy solutions,
they perform worse than their counterparts (i.e., KM and
KM+WC), respectively. DR performs worse than Greedy
and Greedy+WC in terms of the total reward since DR gives
priority to the worker/task nodes with the minimal degree,
i.e., workers/tasks that have less associated tasks/workers,
and then considers task reward. For the KM-related
methods that considering worker churn, i.e., KM+WC,
KM+CWC, and KM+CWC+Dis, churn-prone workers can
be associated with more task vertices in the bipartite graphs,
which changes the competitive relationship among workers.
Therefore, the total rewards of KM+WC, KM+CWC, and
KM+CWC+Dis are more than that of the original KM
method. When it comes to assignment ratio in Figure 7(c),
since Greedy+WC and KM+WC consider worker churn
and give higher priority to churn-prone workers, they
outperform their counterparts, i.e., Greedy, DR and KM
that do not consider worker churn, respectively. As the
number of tasks increases, the assignment ratio of all
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Fig. 8. Performance of Task Assignment: Effect of |W |

methods increases. The reason behind it is self-evident,
that is, with more tasks to be assigned, each worker
receives more available tasks such that the worker has more
chance to be assigned a task. From Figure 7(d) we can see
that KM+CWC+Dis achieves the minimal average travel
distance, which shows the superiority of the travel distance
optimization strategy.

Effect of |W |. To study the effect of |W |, we generate
five datasets containing 1,000 to 5,000 workers by random
selection from the testing set. As shown in Figure 8(a),
the CPU time of all methods increase as |W | increases
since they need to traverse more workers. In Figures 8(b)
and 8(c), KM+CWC and KM+CWC+Dis can achieve higher
global rewards and assignment ratio than KM+WC while
sacrificing some efficiency. However, the computational
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Fig. 9. Performance of Task Assignment: Effect of d

efficiency of KM+CWC and KM+CWC+Dis are acceptable.
In Figure 8(b), as |W | increases, more tasks can be assigned
to workers, and thus the total rewards of all methods
increase. We also observe that the total reward of DR is
slightly less than those of other greedy methods for the
same reason that DR prioritizes the workers/tasks that
have less associated tasks/workers and then considers
task reward. In Figure 8(c), the assignment ratio of all
methods drops, but Greedy+WC and KM+WC always
perform better than their own counterparts (i.e., Greedy
and KM) without considering worker churn and are able
to improve the assignment ratio by up to 6.56% and
27.48%, respectively. For the average travel distance shown
in Figure 8(d), the average travel distance of all methods
except KM+CWC+Dis decreases at first and then increases
with |W | getting larger. This is due to the fact that when
the number of workers increases from 1000 to 3000, tasks
are more likely to assign to nearby workers, thus reducing
the average travel distance. When the number of workers
increases from 3000 to 5000, the number of churn-prone
workers also increases dramatically, which becomes the
key factor in the average travel distance since all methods
give priority to these churn-prone workers (that may be
far away from the assigned tasks) in task assignment.
We also observe that KM+CWC+Dis performs best, the
average travel distance of which is 56.32%–94.75% of those
of other methods, demonstrating the advantage of the
travel distance optimization. To save space, in the following
experiments, we do not report results of DR, as these are
similar to those in the effect of |S| and |W |, and reporting
these results will impact the presentation of the whole
experimental results.

Effect of d. We also study the effect of workers’ reachable
distance d. From Figure 9(a) we can see that, the CPU
time of KM-related methods increase faster than those of
greedy-related methods as d increases. This is because that
as d increases, there are more available tasks for each worker
and the competition among workers will be more intense,
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Fig. 10. Performance of Task Assignment: Effect of e− p

which will increase the recursion depth of KM-related
methods. Moreover, workers with larger reachable distances
tend to have more available task assignments, which
leads to more edges in the bipartite graphs of KM-related
methods. The total rewards and assignment ratio of all
methods increase as d increases, as shown in Figures 9(b)
and 9(c). However, we also notice that limited by the
number of tasks and workers, the effect of d on all methods
becomes less pronounced when d ≥ 0.5 km, i.e., all methods
remain unchanged after d exceeds 0.5 km. Figure 9(d)
shows that KM+CWC+Dis can reduce the average travel
distance compared to other KM-related methods (i.e., KM,
KM+WC, and KM+CWC), demonstrating the superiority
of the travel distance optimization strategy. In particular,
KM+CWC+Dis reduces the average travel distance by up to
29.38% compared to KM+CWC.

Effect of e − p. We then study the effect of the valid
time e − p of tasks in Figure 10. When e − p increases,
tasks can be assigned to more workers, which leads to
more available worker-task matches and more CPU time,
as shown in Figure 10(a). We also notice that the increase of
CPU time of all methods become slower when e− p ≥ 0.5 h
since with longer task valid time there is increasing chance
that most of the workers have already been added into
the available worker sets, and thus few workers need to
be added into the available worker sets. When e − p gets
larger, each task has a higher probability of being assigned
to a suitable worker, so the total rewards and assignment
ratio of churn-prone workers increase, which are shown in
Figures 10(b) and 10(c). In Figure 10(d), KM+CWC+Dis still
outperforms others in terms of the average travel distance
regardless of e− p.

Effect of ρ. Finally, we study the effect of ρ, which
limits the number of edges associated with worker vertices
in KM+WC-related methods (i.e., KM+WC, KM+CWC,
and KM+CWC+Dis). As ρ increases, each worker can be
associated with more tasks, and the competition among
workers is more intense, leading to increasing CPU time
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among the above KM+WC-related methods, which is
shown in Figure 11(a). At the same time, as ρ increases,
these methods can find a matching with greater weights.
Therefore, the total rewards and the assignment ratio of
these methods increase and are always better than those
of other methods (i.e., Greedy, Greedy+WC, and KM) when
ρ > 2, as shown in Figures 11(b) and 11(c). In Figure 11(d),
KM+CWC+Dis can improve the average travel distance by
up to 13.15% compared with others.

8 CONCLUSION AND FUTURE WORK

The ubiquity of mobile devices with high-fidelity
sensors and the sharp decreases in the cost of
ultra-broadband wireless networks flourish the market
of Spatial Crowdsourcing (SC), which consists of
location-specific tasks and requires workers to physically
be at specific locations to complete them. In this paper,
we study a novel task assignment problem in SC, namely
Worker Churn based Task Assignment (WC-TA). We
address a few challenges by proposing different strategies
to identify the workers who are easy to churn and consider
their feelings when assigning tasks, so that they can
get a better experience on SC platforms. Furthermore,
we introduce two-way context-LSTMs to identify the
churn-prone workers more accurately and design a travel
distance optimization strategy to reduce the overall travel
cost. Extensive experiments demonstrate the effectiveness
of our proposed solutions.
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