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Abstract—With the diffusion of online mobile devices with geo-location capabilities, the infrastructure necessary for real-world
deployment of Spatial Crowdsourcing (SC), where so-called mobile workers are assigned location-sensitive tasks, is in place. Some
SC tasks cannot be completed by a single worker due to their complexity, but rather must be assigned to and completed by a group of
users. Achieving such group assignments that satisfy all group members evenly is an open challenge. To address this challenge, we
propose a novel preference-aware group task assignment framework encompassing two components: Mutual Information-based
Preference Modeling (MIPM) and Preference-aware Group Task Assignment (PGTA). The MIPM component learns the preferences of
groups contrastively by maximizing the mutual information between workers and worker groups based on worker-task and group-task
interaction data and by using an attention mechanism to weight group members adaptively. In addition, curriculum negative sampling is
adopted to generate a small number of negative workers for each worker group, following the principles of curriculum learning. Next, the
PGTA component offers an optimal task assignment algorithm that employs tree decomposition to assign tasks to appropriate worker
groups, with the aim of maximizing the number of task assignments while prioritizing more interested groups when assigning tasks. The
task assignment framework also features preference-constrained pruning of unpromising worker groups to speed up the assignment
process. Finally, we report extensive experiments that offer evidence of the effectiveness and practicality of the paper’s proposal.
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1 INTRODUCTION

With the widespread diffusion of online, geo-located mobile
devices such as smartphones, the notion of Spatial Crowd-
sourcing (SC), where location-sensitive tasks are assigned
to and completed by mobile workers, is attracting substan-
tial interest in both academia and industry. SC platforms
assign tasks to workers that the workers must perform at
specific locations, e.g., taking photos or monitoring traffic
conditions. Most of existing studies focus on assigning tasks
to individual workers [8], [20], [21], [24], [38]. For example,
Zheng et al. [42] take the rejection of assigned tasks into
consideration and focus on the problem of maximizing the
acceptance by workers of assigned tasks. Another study [25]
considers a Flexible Two-sided Online task Assignment
(FTOA) problem, where prediction of the spatio-temporal
distributions of future tasks and workers is used to guide
idle workers to locations with work so that the total number
of assigned task is increased. However, in some SC appli-
cations, a single worker cannot perform a task efficiently
and independently. Examples occur in home improvement,
furniture installation, monitoring of traffic conditions in an
area, organization of an event, or performing entertainment
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at an event [5], [6], [37]. Rather, in these examples, it takes
multiple workers to perform a task, thus calling for group
task assignments.

Several group task assignment proposals exist for SC.
Gao et al. [13] study a Top-k team recommendation problem
called TopkTR and a variant called TopkTRL, both of which
aim to recommend suitable crowdsourced teams for tasks.
Considering the cooperation of workers, Cheng et al. [5]
propose greedy and game-theoretic approaches with the
goal of assigning tasks to groups of workers with high
cooperation qualities. However, these studies assume that
all workers in a worker group are willing to complete
the assigned tasks. In practice, some workers may not be
interested in an assigned task, resulting in workers rejecting
tasks or completing tasks with low quality. Li et al. [17] re-
cently propose a framework for group task assignment that
considers the preferences of worker groups by taking into
the account the social impact of workers. Our study goes
further in this direction by using mutual information among
workers to learn group preferences and by optimizing task
assignments based on the group preferences.

The example in Figure 1 illustrates the problem of
group task assignment. Five workers {w1, ..., w5}, and t-
wo tasks {s1, s2} exist. Each worker has a current lo-
cation and a reachable distance. Each task requires t-
wo workers for its completion and has a location in
which it must be performed. Considering the spatio-
temporal constraints between workers and tasks, i.e.,
a task assigned to a worker should be in the reach-
able range of the worker, and the worker should be
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Fig. 1. Running Example

able to arrive at the task location before the deadline
for completing the task, s1 and s2 have three available
worker groups, i.e., {{w1, w2}, {w2, w5}, {w1, w5}}, and
{{w3, w5}, {w3, w4}, {w4, w5}}. Figure 1 also shows the
preference values of the worker groups for the available
tasks. Without considering group preferences, a general
group task assignment problem is to maximize the total
number of assigned tasks. In the example, the task assign-
ment {(s1, {w1, w2}), (s2, {w3, w5})} is optimal. However,
the two assigned worker groups have extremely low prefer-
ences for tasks s1 and s2, and the preference value sum for
the assignment is only 0.11. Such an assignment may result
in workers refusing to accept the task or completing it with
low quality.

To address this issue, we propose a data-driven frame-
work that considers the preferences of worker groups when
making assignments. The framework consists of a Mutual
Information-based Preference Modeling (MIPM) phase and
a Preference-aware Group Task Assignment (PGTA) phase.
The first phase aims to model the preferences of each worker
group for different task categories. More specifically, it first
maximizes the mutual information between worker and
group representations to train a discriminator by means
of contrastive learning, which aims to adjust preference
representations of workers and worker groups. Then, it uses
an attention mechanism to form worker groups of highly
relevant workers by setting different weights for different
workers adaptively, to improve the preference representa-
tion of each worker group. Finally, group preferences for
different task categories are obtained through a prediction
layer. The assignment phase first identifies available worker
groups for each task without violating the spatio-temporal
constraints. Then it uses a tree-decomposition algorithm to
assign a suitable worker group to each task while prioritiz-
ing worker groups according to their interests in the tasks.
When applying our solutions in the example in Figure 1, a
task assignment {(s1, {w1, w5}), (s2, {w3, w4})}with a total
preference value of 0.91 is obtained.

The initial conference version [19] of this study only
considers the similar non-members that do not belong to
a worker group as negative samples for the group when
computing group preferences, thus ignoring dissimilar non-
members. To further improve the effectiveness of group

preference learning, the MIMP phase introduces a Curricu-
lum Negative Sampling (CNS) method that follows the prin-
ciples of curriculum learning. Specifically, given an input
worker group, CNS first selects the dissimilar non-members
as negative samples, which are easy to distinguish from the
input group. Then, it gradually selects non-members that
are increasingly similar to the input group and thus are more
difficult to distinguish from the input group. The resulting
curriculum negative sampling enables effective learning of
distinguishable group representations.

For improving the task assignment efficiency, we pro-
pose a preference-constrained pruning strategy to disregard
worker groups with relatively low preferences for a specific
task category, as such groups are unlikely to accept to
perform the tasks in that category. Accordingly, the pruning
strategy improves the efficiency of task assignment since
fewer worker groups need to be considered during task
assignment.

In summary, the new technical contributions are five-
fold.

1) We identify and study in depth the limitations in our
previous group task assignment framework that disregards
dissimilar non-member workers when learning group pref-
erence and fails to consider the groups with low preferences
in task assignment.

2) We adopt a curriculum negative sampling method
to select both similar and dissimilar non-member workers
as negative samples following the principles of curriculum
learning.

3) We propose a preference-constrained pruning strategy
for improving efficiency of task assignment.

4) We report on extensive experiments that offer insight
into the effects of key parameters and the effectiveness of
the new proposal. In particular, the algorithms considering
curriculum negative sampling, i.e., CNS-MIPM+OGTA and
CNS-MIPM+OGTA+P, can improve the assignment success
rate by up to 7.93% and 9.31% over MIPM+OGTA (that
does not consider curriculum negative sampling), respec-
tively. With preference-constrained pruning, the CPU time
of CNS-MIPM+OGTA+P is only 39.35%–85.33% of that of
CNS-MIPM+OGTA (without pruning), while being able to
achieve similar assignment success rate and similar number
of task assignments of CNS-MIPM+OGTA.

The remainder of this paper is organized as follows.
Section 2 covers the related work, and Section 3 introduces
notation and defines the problem. Section 4 then proposes a
mutual information-based approach to worker group pref-
erence modeling and a tree-decomposition-based algorithm
for preference-based group task assignment, followed by
a coverage of experimental findings in Section 5. Finally,
Section 6 offers conclusions.

2 RELATED WORK

Spatial crowdsourcing (SC) is a new framework that has
emerged in recent years, requiring workers with GPS de-
vices to travel to a specific location physically under certain
restrictions to perform spatial task [9], [10], [16], [24], [28]–
[30], [32]–[35], [39], [40]. Most of the existing studies focus
on task assignment. Based on the task publishing models,
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Kazemi et al. [14] divides SC into worker selection task (W-
ST) mode and server assignment task (SAT) mode. Most of
the research in the two modes is devoted to finding ways to
achieve a certain goal of task assignment, e.g., maximizing
the number of assigned tasks [14], [15], [22], [23], [25], max-
imizing the coverage of worker skills required by tasks [6],
or maximizing the total profit of the platform [33], [43]. For
example, Tong et al. propose a Global Online Micro-task
Allocation framework in SC, which allocates micro-tasks
to suitable workers in online scenarios [26]. Some studies
aim to design route planning for shared mobility to achieve
effective task assignment in the SC applications such as
ride-sharing, food delivery, and crowdsourced parcel deliv-
ery [27], [36]. However, these studies on task assignment
in SC put their focus on allocating individual workers to
tasks without considering cooperation among workers. For
a complex task, such as home improvement, major furniture
installation, and monitoring the traffic condition in an area,
a single worker may not be able to complete it independent-
ly.

In the task assignment problem of SC, compared with
single task assignment, group task assignment is more com-
plex, and few studies exist in this field. The recent study [13]
proposes a Top-k team recommendation problem in SC,
where a method that recommends suitable crowdsourcing
teams for each task is proposed. Cheng et al. [5] consider
that the completion of complex tasks requires the coopera-
tion of workers and propose a greedy and a game-theoretic
method to assign multiple workers with high cooperative
qualities to complete a task together. Another related work
studies a reliable diversity-based spatial crowdsourcing
problem, where each task (e.g., taking videos/photos of a
landmark and checking whether or not parking spaces are
available) is assigned to multiple workers that are moving
towards some directions, and the workers must finish the
assigned task before its expiration time [8]. However, these
studies on group task assignment do not consider whether
workers are interested in the assigned task, which may lead
to workers’ rejection of performing the task or low-quality
completion of the task.

Recently, Li et al. [18] use a bipartite graph embedding
model and an attention mechanism to learn the social
impact-based preferences of worker groups for different cat-
egories of tasks and assign tasks to the groups according to
their preferences. In the study [18], social networks between
workers are used to reduce the sparseness of group-task
interaction data. However, it is often difficult for us to obtain
additional information, e.g., social networks among work-
ers. Therefore, the method of improving sparsity through
additional information is no longer applicable. Unlike the
above studies, our proposed approach does not dependent
on additional information. Instead, it uses historical task-
performing data to maximize the mutual information a-
mong workers in order to learn the informative represen-
tations of groups and group preferences.

3 PROBLEM DEFINITION

We proceed to introduce a set of preliminary concepts and
then give our problem statement. Table 1 summarizes the
main notation used in the paper.

TABLE 1
Summary of Notation

Notation Definition
s Spatial task
s.l Location of spatial task s
s.p Published time of spatial task s
s.e Expiration time of spatial task s
s.c Category of spatial task s
s.numW Number of workers that s requires to be assigned
S A set of tasks
w Worker
w.l Current location of worker w
w.r Reachable radius of worker w
w.on Online time of worker w
w.off Offline time of worker w
w.sp Speed of worker w
W A set of workers
AWS(s) Available worker set of task s
AWG(s) Available worker group of task s
A A spatial task assignment

Definition 1 (Spatial Task). A spatial task, denoted by s =
(l, p, e, c,numW ), has a location s.l, a publication time
s.p, an expiration time s.e, a category s.c, and a number
s.numW that is the number of workers required to be
assigned to perform s.

Definition 2 (Worker). A worker, denoted as w = (l, r, on,
off , sp), includes a location w.l, a reachable distance w.r,
an online time w .on , an offline time w .off , and a speed
sp. The reachable area of the worker is a circular area
with w.l as the center and w.r as the radius, where
worker w can accept the task assignment. A worker can
be in an online or an offline mode. When a worker is
ready for performing a task (from the online time w .on
to the next offline time w .off ), the worker is online.

In group task assignment, a task s requires multiple
workers to complete it cooperatively. Workers can only
handle one task at a specific time, which is reasonable in
practice.
Definition 3 (Available Worker Set). The available worker

set for task s, denoted as AWS (s), is a set of workers
that satisfy the following conditions: ∀w ∈ AWS (s),
1) worker w is online, i.e., w.on ≤ tnow ≤ w.off ,
2) task s is located in the reachable range of worker w,
i.e., d(w.l, s.l) ≤ w.r,
3) worker w can travel from the current location w.l to
the task location s.l directly before it expires, i.e., tnow +
t(w.l, s.l) ≤ s.e, and
4) worker w can travel from the current location w.l to
the task location s.l directly before the offline time of w,
i.e., tnow + t(w.l, s.l) ≤ w.off ,
where tnow is the current time, d(w.l, s.l) is the travel
distance between locations w.l and s.l, and t(w.l, s.l) =
w.sp ∗ d(w.l, s.l) is the travel time between locations w.l
and s.l.

In Figure 1, task s1 is located in the reachable ranges
of the online workers w1, w2, and w5. Further, w1, w2,
and w5 can arrive at the location of task s1 before their
offline times and the expiration time of s. Therefore, we can
get an available worker set {w1, w2, w5} for task s1, i.e.,
AWS (s1 ) = {w1, w2, w5}.
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Definition 4 (Available Worker Group). Given a task s and
its available worker set AWS (s), the available worker
group for task s, denoted as AWG(s), should satisfy the
following three conditions:
1) all the workers in AWG(s) are available workers for
task s, i.e., AWG(s) ⊂ AWS (s),
2) the number of the workers in AWG(s) is s.numW ,
i.e., |AWG(s)| = s.numW , and
3) each worker in AWG(s) can arrive at the location of s
before the offtimes of others in AWG(s), i.e., ∀wi, wj ∈
AWG(s) (tnow + t(wi.l, s.l) ≤ wj .off ).

For task s1 in Figure 1, its available worker set is
{w1, w2, w5}. Assuming that s1.numW = 2, we can ob-
tain three available worker groups for s1, i.e., {w1, w2},
{w1, w5}, and {w2, w5}. In the rest of this paper, we will
use the terms worker group and group interchangeably.
Definition 5 (Spatial Task Assignment). Given a set of work-

ers W and a set of tasks S, a spatial task assignment is
denoted as A, which contains a set of pairs of a task and
an AWG for the task: (s1,AWG(s1 )), (s2,AWG(s2 )),...,
(s|S|,AWG(s|S |)), where AWG(si)∩AWG(sj ) = ∅, and
1 ≤ i 6= j ≤ |S|.

For example, {(s1, {w1, w2}), (s2, {w3, w4})} and {(s1,
{w1, w5}), (s2, {w3, w4})} are two spatial task assignments
in Figure 1.

Preference-aware Group Task Assignment (PGTA)
Problem Statement. Given a set of workers W and a
set of tasks S at the current time on a SC platform, our
problem aims to find an optimal task assignment Ao that
maximizes the number of assigned tasks (i.e., ∀Ai ∈ A
(|Ai.S| ≤ |Ao.S|)) while taking the preferences of worker
groups into account, where Ai.S denotes the set of tasks
that are assigned to all the workers in Ai, and A denotes all
the possible ways of assignments.

4 FRAMEWORK

In this section, we give the details of our proposed group
task assignment framework. In practice, the groups in group
task assignment are often contingent, so the group-task
interaction data is often sparse. To overcome this problem,
we use mutual information maximization to capture the
internal information of workers and groups, where a mutual
information-based contrastive representation learning mod-
el with curriculum negative sampling is proposed. At the
same time, because different workers play different roles in
different groups, their influence is also different. Therefore,
we use an attention mechanism to learn the weight of each
worker in a group. Finally, we learn the preferences of
worker groups for tasks and adopt a tree-decomposition
algorithm to obtain the optimal task assignment. In the
following, we first give an overview of the framework and
then provide specifics on each part in the framework.

4.1 Framework Overview

As shown in Figure 2, the group task assignment framework
is mainly composed of two parts: 1) Mutual Information-
based Preference Modeling (MIPM), and 2) Preference-
based Group Task Assignment (PGTA).

In the MIPM part, we notice that group activities of-
ten reflect the following two phenomena: 1) the difference
between different groups, and 2) the connection among
members in a group. To capture these features, we pro-
pose a Curriculum Negative Sampling (CNS) method to
sample negative samples (i.e., the non-members that do not
belong to a group) for an input worker group. Then, we
use a Mutual Information-based Contrastive Representation
Learning (MI-CRL) model to contrast the representations of
the members in a group against those of non-members and
maximize the worker-group mutual information to train a
discriminator to regularize the representations of workers
and groups. The goal of contrastive representation learning
is to learn such an embedding space in which similar sample
pairs (i.e., the members in a group) stay close to each other
while dissimilar ones (i.e., the non-members that do not
belong to a group) are far apart. In order to overcome
the sparsity of the group-task interaction data, we propose
an adaptive group preference weighting technique to set
different weights for each worker in a group, which uses the
workers’ personal preferences to improve group preference
representations. Finally, the group preferences for different
task categories are obtained through a prediction layer.

In the PGTA part, given workers and tasks to be as-
signed, we first obtain a set of available worker groups
(AWGs) for each task by considering the spatio-temporal
constraints (i.e., the reachable radius and the valid time of
workers, as well as the expiration time of tasks). Then we
employ the optimal task assignment algorithm based on tree
decomposition to assign tasks to appropriate worker groups
to maximize the total number of assigned tasks while giving
higher priorities to worker groups with higher preferences
on tasks.

4.2 Mutual Information-based Preference Modeling
We present how to use historical interaction data to model
worker groups’ preferences. The main problem of group
preference modeling is the sparsity of the group-task in-
teraction data. To solve this problem, we use curriculum
negative sampling and mutual information maximization
for contrastive representation learning and utilize an adap-
tive group preference weighting technique to relief the data
sparsity. By aggregating the representations of each group
member, we can obtain the representations of worker group-
s. Then the representations of worker groups can be used to
calculate the preferences of each worker group for all task
categories, which will be used in the task assignment phase.

4.2.1 Mutual Information-based Contrastive Representa-
tion Learning with Curriculum Negative Sampling
We use W to represent a set of workers, C to represent a set
of task categories, andG to represent a set of worker groups.
Further, XWC represents the interaction matrix formed by
the interaction data of workers and task categories (i.e.,
worker-task interaction data), and XGC represents the inter-
action matrix formed by the interaction data of groups and
task categories (i.e., group-task interaction data). We use wi

and cj to denote the latent representations of worker wi and
task category cj , respectively, where the worker representa-
tion denotes the worker’s personal preference (stored in the
worker-task category interaction matrix XWC ).
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Fig. 2. Framework Overview

Worker Representation Encoder. In order to obtain a la-
tent representation that represents each worker w’s personal
preference, we use a multi-layer perceptron with two fully
connected layers, shown as follows:

w = fe(w,XWC ) = σ(KT
2 (σ(K

T
1 xw + b1)) + b2), (1)

where w denotes the preference representation of worker
w, fe(·) is a preference encoding function, XWC denotes
the worker-task interaction matrix, and xw is the row of
XWC that corresponds to worker w in the matrix. We use
a nonlinear activation function σ(x) = 1

1+exp(−x) to encode
the preference, where KT

1 and KT
2 are two learnable weight

matrices, and b1 and b2 are bias matrices.
Group Representation Encoder. Since the preference of

a worker group depends on the preference of each group
member, we use an attention mechanism [1] to better ob-
tain the representation of the worker group. The attention
mechanism can learn the contributions of different group
members to the group decision, as a result of which each
group member’s preference representation can be weighted.
The computation is shown in the following.

gi =
∑

wj∈gi
α(j, i)Kaggwj , (2)

α(j, i) =
exp(hTKaggwj)∑

wk∈gi exp(h
TKaggwk)

, (3)

where gi and wi denote the representations of worker group
gi and worker wj , respectively. Next, α(j, i) is a learnable
parameter representing the weight of worker wj in worker
group gi, which can be calculated in Equation 3, where hT

represents the hidden layer parameters of the attention net-
work. Further, Kagg denotes represents the weight matrix.
A larger α(j, i) means that worker wj contributes more to
the group decision.

Curriculum Negative Sampling. We propose a Curricu-
lum Negative Sampling (CNS) method, which generates a

small amount of negative samples for each worker group,
following the principles of curriculum learning [3]. The
idea behind it is that it starts to train a model with easier
samples first, and then gradually increase the difficulty
levels. Instead of randomly selecting non-members that do
not belong to the group as negative samples, CNS first
finds workers that are largely different from the input group
members and thus are easy to be distinguished from the
input group. Then, we find workers that are increasingly
similar to the input worker group and thus are more difficult
to be distinguished from the input group. CNS facilitates
effective learning of distinguishable worker and group rep-
resentations.

Specifically, given an input worker group g, we can get a
similar worker set and a dissimilar worker set according to
whether the workers have performed the tasks with same
categories with the input worker group, i.e., a non-member
worker w̃ is similar with g if xTw̃ · xg > 0, where xw̃ is
the row (corresponding to w̃) of the worker-task interaction
matrix XWC and xg represents the row (corresponding to
g) of the group-task interaction matrix XGC ; otherwise,
w̃ is dissimilar with g. We first generate negative worker
samples that are different from the input worker group,
e.g., sampling m dissimilar workers. In such a case, it can be
easy to train worker and group representation encoders that
return distinguishable representations of the input worker
group and the negative samples. Then, we gradually gen-
erate negative worker samples that are increasingly similar
to the input worker group, e.g., sampling m workers from
the similar and the dissimilar workers where the number
of similar workers increases from 1 to m gradually. In
such a situation, it is more difficult for the worker and
group representation encoders to generate distinguishable
worker and group representations. The negative sampling
distribution of similar workers is shown as follows:

P (w̃|g) ∝ ηI(xTw̃ · xg > 0) + (1− η) 1

|W |
, (4)
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where η is the sampling ratio, and I(·) is an indicator
function. We select the dissimilar workers randomly when
sampling them.

Mutual Information-based Contrastive Representation
Learning. Inspired by the success of the MINE frame-
work [2] that verifies the flexibility and effectiveness of
Mutual Information (MI) maximization methods in dis-
criminator networks to distinguish positive and negative
samples accurately, we design a Mutual Information-based
Contrastive Representation Learning method. Through such
a contrast method, using a scoring function can increase the
scores of positive cases and reduce the scores of negative
cases.

More specifically, we maximize the mutual information
between workers and groups, i.e., the mutual information
between the representation of the group members (obtained
by Equation 1) and the representation of the group (obtained
by Equation 2), by training a contrast discriminator network
D : RF × RF 7→ R+, where D(w,g) represents a scoring
function of the worker-group pair. Compared with non-
members, the members in group g have higher scores.

Furthermore, we use a simple bilinear function to calcu-
late the score of the worker-group representation pair, i.e.,
D(w,g) = σ(wTWg), where σ(·) is a non-linear function,
and W is a learnable score matrix. The positive sample
(w,g) in the networkD represents the latent preference rep-
resentation of the worker-group pair (w, g), where w ∈ g.
The negative sample is denoted as (w̃,g), where w̃ is the
representation of the non-members that do not belong to
group g.

We train the discriminator D using a noise-contrast
target, and calculate a Binary Cross-Entropy loss function
between the positive and negative samples. The objective
function is shown in the following.

OMI = − 1

|G|
∑
g∈G

1

µg

[∑
w∈g

logD(w,g)

+
m∑
i=1

Ew̃∼CNS(g)log(1−D(w̃,g))
]
,

(5)

where G denotes all the worker groups, and µg repre-
sents the sum of the number |g| of workers in group g
and the number m of negative worker samples of g, i.e.,
µg = |g| + m. Next, D(w,g) denotes the score between
worker w and group g, and Ew̃∼CNS(g)log(1 − D(w̃,g)) is
the mathematical expectation of log(1 − D(w̃,g)), where
w̃ is sampled based on the CNS of group g, i.e., w̃ ∼
CNS (g). The objective function is based on the Jensen-
Shannon divergence to maximize the mutual information
between the worker representation w and the worker group
representation g [31]. When training the discriminator, by
contrasting group members against non-members, we can
learn the discriminative characteristics shared by group
members, thereby improving the representations of workers
and groups.

4.2.2 Adaptive Group Preference Weighting
In this section, we present a group adaptive preference
weighting strategy, which overcomes the sparsity of inter-
active data by giving the relevant group members higher
priority. First, we define the loss functions of workers and

groups. In the group-task interaction data XGC , we use a
polynomial likelihood equation to optimize the group loss
function to obtain the group representation g. The group
representation g is used as the input of a fully connected
layer, and then a softmax function is used to regularize
the output of the fully connected layer and generates the
probability vector π(g) for the task category set C . The loss
function measures the KL distance between the regularized
task-performing history and the predicted probability that
the task assigned to the corresponding worker group, so the
objective function of the group is as follows:

Ogroup = −
∑
g∈G

1

|xg|
∑
c∈C

xgclogπc(g), (6)

where xg denotes the row corresponding to group g of
group-task interaction matrix XGC , xgc denotes the in-
teraction between group g and task category c, πc(g) =
softmax (KCg), and KC represents the weight matrix of the
prediction layer. Similarly, based on the polynomial likeli-
hood equation and using the worker-task interaction data
XWC to adjust the worker representation w, the worker’s
objective function is calculated as follows:

Oworker = −
∑
w∈W

1

|xw|
∑
c∈C

xwclogπc(w) (7)

Equation 7 is to predict the preferences of all the groups
that worker w belongs to based on w’s representation w,
which will lead to the overfitting problem since the group-
task interaction data is very sparse and lacks flexibility
in applying preferences among different worker groups.
In order to overcome this problem, we identify the group
members who are highly relevant to the group based on con-
textual information and then use the personal preferences
of the group members to improve the representation of the
group. In order to measure the contextual relevance, we
introduce an adaptive group preference weighting strategy
for each group member. Specifically, in the previous section,
after maximizing the mutual information, the discriminator
D can obtain the score, D(w,g), which can quantify the
contextual information of each worker-group pair (w, g).
Workers with more contextual information will have higher
scores. We use the discriminator score as the adaptive group
preference weight of group member w ∈ g. Then for each
group member, we use the weight D(w,g) to adjust the
group representation g. Equation 8 shows the objective
function of the adaptive group preference weighting strate-
gy.

OWG = −
∑
g∈G

1

|xg|
∑
c∈C

∑
w∈g
D(w,g)xwclogπc(g) (8)

The objective function of the whole MIPM model is
the sum of the three objective functions including the
MI maximization objective function (cf. Equation 5), the
worker group objective function (cf. Equation 6), and the
group adaptive preference weight user objective function
(cf. Equation 8), shown in Equation 9. We use a standard
Stochastic Gradient Descent [4] strategy to minimize the
objective function.

O = OMI +Ogroup + λOWG , (9)
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where λ is a parameter controlling the contribution of OWG .
By optimizing the above objective function, we can

obtain the group representation g for each worker group
g and then obtain the group preferences for different task
categories through a prediction layer. The prediction layer
is shown in Equation 10.

π(g) = softmax (KCg), (10)

where KC represents the weight matrix of the prediction
layer. We define the worker objective function Oworker

(shown in Equation 7) to regularize the worker represen-
tations with worker-task interactions XWC , thus facilitating
the joint training with shared encoder fe(·) and prediction
layer. The calculated preference, π(g), of each worker group
g will be used in the next phase.

4.3 Preference-based Group Task Assignment
In this section, we first obtain the available worker group
sets for each task and then adopt a tree-decomposition
algorithm [38], [41] to assign tasks to appropriate worker
groups based on their preferences.

4.3.1 Available Worker Group Set (AWGS) Generation
According to Definitions 3 and 4, we can obtain the
available worker groups for each task s, denoted as
AWG(s) = {AWG1(s),AWG2(s), ...,AWG |AWG(s)|(s)},
where AWG(s) denotes all available worker groups of
s, and |AWG(s)| denotes the number of groups in
AWG(s). The time complexity of computing AWGs is
O
(
|S| · |AWSmax|numW

)
, where |S| is the number of tasks

to be assigned, |AWSmax| denotes the maximal number of
available workers among all the tasks (i.e., |AWSmax| =
maxs∈S |AWS (s)|), and numW is the number of group
members.

Preference-constrained Pruning. We observe that some
available worker groups with relatively low preference ex-
ist, which means that workers in these groups are unwilling
to perform tasks together. Based on this observation, we pro-
pose a preference-constrained pruning strategy that prunes
the available worker groups with low preference to further
enhance the task assignment efficiency. Specifically, for each
task s, we sort its available worker groups in AWG(s)
according to their preference for s descendingly. Then we
remove the top-k available worker groups with low prefer-
ence for task s, where k is a preference-constrained factor.
Due to the fact that some tasks may have less-than-k avail-
able worker groups, they have no available worker groups
after pruning, which impacts the final task assignment
negatively, e.g., reducing the number of task assignments.
To solve this issue, we introduce a lower bound, LB , to
enable enough available worker groups for each task s after
pruning, where LB = min{L, |AWG(s)|}. Here, L is a user-
or platform-specified threshold, which determines the min-
imal number of available worker groups after pruning. In
practice, L can be set based on the complexity and difficulty
of tasks. For example, a complex and difficulty task needs
more workers (with a larger L value) to be finished. If a task
s has enough available worker groups, i.e., |AWG(s)| ≥ L,
the lower bound, LB , is set to L; otherwise, LB is set to
|AWG(s)|. We study the effect of k in our experimental part

in Section 5.2. The studies show that the pruning strategy
with a suitable preference-constrained factor k can result in
the same task assignment result as does AWGS generation
without pruning, and it can improve the efficiency of the
task assignment.

4.3.2 Task Assignment based on Group Preference
In order to assign suitable worker groups to tasks, we use
an optimal assignment algorithm based on tree decomposi-
tion [38], [41]. More specifically, we first construct a task
dependency graph G(V,E) for all the tasks, where each
vertex represents a task (i.e., v ∈ V if and only if sv ∈ S). If
tasks su and sv have the common available workers, then an
edge e(u, v) is added between vertices u and v. We use the
Maximum Cardinality Search (MCS) algorithm to separate
the task dependency graph into clusters, each of which is
a maximal clique. A clique is maximal if and only if it is
not a subset of the other cliques. The time complexity of the
task dependency graph construction is O(|S|2 · |AWSmax |),
where |AWSmax | is the maximal number of available work-
ers for all the tasks.

Next, we use the Recursive Tree Construction (RTC)
algorithm [38], [41] to organize these clusters into a balanced
tree structure, where the sibling nodes in the balanced
tree do not share the common available workers. The time
complexity of RTC is O(

∑m
i (|Xi|+ |Gi

sub| · (|V i|+ |E′i|))),
where m is the number of recursions of the RTC algorithm.
Next, Xi, Gi

sub, V i, and E′i denote the task cluster set, the
subgraph set, the vertex set, and the edge set to be checked
in the ith recursion, respectively.

After getting the tree, we use the depth-first search
method to independently solve the optimal assignment sub-
problem on each sibling node to find the global optimal
assignment. During the search process, we assign tasks to
the available worker groups with high preferences, i.e., we
choose the group with the highest preference for the current
task when encountering different worker groups. The time
complexity of the search procedure is O(

∑r
i (|Si

N | · |Qi
s| +

|N i
child|)), where r denotes the number of recursions when

searching, |Si
N | is the number of tasks in the tree node N in

the ith recursion, |Qi
s| is the number of AWGs for task s in

the ith recursion, and |N i
child| is the number of child nodes

of N in the ith recursion.

4.4 Limitations of PGTA

Our PGTA problem aims to assign a group of workers to
each task, but it ignores the waiting time of group members.
Waiting time is important in group task assignment espe-
cially in the scenarios where tasks need multiple workers to
cooperate to finish them. However, our proposed algorithms
can be extended to handle such scenarios by introducing
some waiting time constraints when computing the avail-
able worker groups to ensure that the workers in a group
can arrive at the assigned task at almost the same time.

Although our preference-based group task assignment
algorithm can achieve effective task assignment, the cal-
culation is relatively inefficient. From the time complexity
analysis in Section 4.3, we can see that the cost is domi-
nated by the AWG generation phase with an exponential
time complexity, which is computationally expensive when
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numW (the number of workers required to be assigned
to perform a task) is large. Therefore, our task assignment
algorithm is not suitable for the tasks that require a large
number of workers to perform them. However, in practice,
the algorithm is still efficient because the number of required
workers for each task is relatively small. Besides, since the
AWG generation of each task is independent with each
other, we can calculate the AWGs for each task in parallel to
improve efficiency.

5 EXPERIMENT

We evaluate the performance of the group preference mod-
eling and the group task assignment on real data, respective-
ly, where the experimental setup is presented in Section 5.1,
followed by the major experimental results in Section 5.2.

5.1 Experimental Setup

5.1.1 Dataset
The experiments are carried out on a check-in dataset from
Twitter, which provides check-in data in the United States
from September 2010 to January 2011 except Hawaii and
Alaska, including 62,462 POI locations and 61,412 user
locations. The dataset is used widely in the experimental
evaluation of SC platforms [7], [11], [12]. Since the dataset
lacks the corresponding category information of the venue,
we use FourSquare’s API1 to generate its category informa-
tion. Considering that the dataset lacks information about
the geographic location of workers and tasks, for each work-
er/task, we take the average value of the corresponding
check-in location as the location. For each check-in, we
simulate that a user is a worker, and the venue accessed
by the user is the task performed by the worker. The speed
of workers are set to 5km/h. The publication time of the
task is set to the earliest check-in time of the task in a day.
Because the dataset does not contain explicit worker group
information, we set the distance to be within a certain range
(i.e., 10 km), and workers visiting the same category of tasks
within a certain period of time (i.e., 1 hour) are regarded as a
worker group. We use the category information of the venue
in 18 kinds of check-ins to simulate the category information
of the task. A check-in record means that the worker has
accepted and completed the task.

5.1.2 Evaluation Methods
We verify the efficiency and effectiveness of our methods by
comparing the following methods:

1) OGTA: the Optimal Group Task Assignment method
based on tree decomposition without considering worker
group preference.

2) SIP+OGTA: the OGTA method with worker groups’
Social Impact-based Preference [17].

3) MIPM+GGTA: the Greedy Group Task Assignment
(GGTA) method with worker groups’ preferences calculat-
ed by the Mutual Information-based Preference Modeling,
where the negative samples are the similar non-members
sampled from the distribution P (w̃|g) in Equation 5. MIP-
M+GGTA assigns each task to the worker group with the

1. https://developer.foursquare.com/

maximal preference from the unassigned workers, until all
the tasks are assigned or all the workers are exhausted.

4) MIPM+OGTA: our OGTA method with MIPM.
5) CNS-MIPM+OGTA: our MIPM+OGTA method with

Curriculum Negative Sampling.
6) CNS-MIPM+OGTA+P: our CNS-MIPM-OGTA

method with preference-constrained Pruning, where L is
set to 3.

5.1.3 Metrics

Three main metrics are compared for the above methods,
i.e., CPU time, Assignment Success Rate (ASR), and the
number of task assignments, for finding task assignments.
ASR is the ratio of successful assignments to the total
assignments for all workers in a certain time instance. In
the experiments, once a certain period of time (that is set
to 1 hour in our settings) when all members of a group
actually perform (check in) tasks (locations) with the same
category that are close to each other (e.g., in our experiment,
the distance between tasks is required to be no more than
10 km), the assignment of this task can be considered as
a successful assignment. A larger ASR value implies more
accurate assignments.

Table 2 shows our experimental settings, which gives
the default values of all parameters. We conduct the exper-
iments on Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz with
32 GB RAM.

TABLE 2
Experiment Parameters

Parameter Default value
Valid time of tasks, e − p 2.5 h
Available time of workers, off − on 3 h
Reachable radius of workers, r 10 km
Number of workers for each group, numW 2
Number of tasks, |S| 1000
Number of workers, |W | 3000
Preference-constrained factor, k 4

5.2 Experiment Results

Effect of e − p. We first evaluate the effect of tasks’ valid
time, e − p, on the performance of group task assignment
(see Figure 3). It can be seen that the CPU time of al-
l methods shows an increasing trend as the valid time
of tasks increases. This is because as the valid time of
tasks increases, more groups of available workers exist,
which lead to a larger search space. The CPU time of
OGTA-related methods except the pruning one (i.e., CNS-
MIPM+OGTA+P) show similar trends because these meth-
ods all use the optimal task assignment methods based
on tree decomposition and have similar time complexity.
CNS-MIPM+OGTA+P is most efficient among the OGTA-
related methods, demonstrating the superiority of the prun-
ing strategy. As expected, the preference-based task as-
signment methods (i.e., SIP+OGTA, MIPM+GGTA, MIP-
M+OGTA, CNS-MIPM+OGTA, and CNS-MIPM+OGTA+P)
all increase in terms of ASR (see Figure 3(b)) when the
tasks’ valid time gets larger. The reason behind it is that
as e − p increases, each worker group will have more
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Fig. 3. Effect of e− p

opportunities to be assigned tasks of interest, thereby im-
proving success rate of task assignment. The ASR values
of MIPM+OGTA and MIPM+GGTA are higher than than
those of OGTA and SIP+OGTA, which shows the advantage
of mutual information-based preference modeling. CNS-
MIPM+OGTA related methods perform better than MIP-
M+OGTA related ones, showing the superiority of the
curriculum negative sampling strategy. CNS-MIPM+OGTA
and CNS-MIPM+OGTA+P are neck to neck in terms of
ASR and the number of task assignments (cf. Figure 3(c)),
which depicts that the pruning strategy can improve the
task assignment efficiency without loss of assignment ef-
fectiveness. As shown in Figure 3(c), the MIPM+GGTA
method has the least number of task assignments, while the
OGTA-related methods can generate more task assignments,
which shows the superiority of the optimal task assignment
method. Therefore, it can be concluded from Figure 3 that
the CNS-MIPM+OGTA methods guarantee both the success
rate of task assignment and the number of tasks assigned,
which shows the effectiveness of the methods proposed in
this paper.

Effect of off − on . Next, we study how the available
time of workers affects the performance of group task as-
signment. As shown in Figure 4(a), as the available time
of workers increases, the CPU time of all methods also
gradually increase with the similar reason of the effect of
tasks’ valid time, i.e., the number of available worker groups
for each task increases, resulting in a larger search space. In
terms of the success rate of task assignment in Figure 4(b),
as off − on gets larger, the ASR values of preference-based
methods show an increasing trend. The reason behind it is
similar to that of e − p, i.e., an SC platform has a higher
probability to assign tasks to workers who are more in-
terested in it. MIPM+OGTA and MIPM+GGTA have sim-
ilar task assignment success rates, while the number of
tasks assigned by MIPM+OGTA is significantly higher than
that of MIPM+GGTA (see Figure 4(c)). This is because the
optimal task assignment method outperforms the greedy
task assignment method in terms of the number of as-
signed tasks. In addition, the number of tasks assigned
to all methods gradually increases as the available time
of workers increases since that the number of available
worker groups corresponding to each task also increases.
The proposed CNS-MIPM+OGTA+P method can achieve
the highest assignment success rate and competitive number

of task assignments with less CPU time compared with the
MIPM+OGTA related methods, i.e., the CPU time is only
60.50%–64.97% of the MIPM+OGTA related methods, which
shows the benefits of the curriculum negative sampling and
the pruning strategy.

Effect of r. We further evaluate the effect of the reachable
distance r of workers. It can be seen from Figure 5(a)
that when r increases, the CPU time of all OGTA related
methods show a similar growth trend. The reasons be-
hind it are in the following: 1) all methods are based on
the tree-decomposition-based optimal task assignment; and
2) when the reachable distance of workers increases, the
number of the available worker groups for each task also
increases, leading to a larger search space. MIPM+GGTA
still consumes the least CPU time, but its performance in the
number of task assignments is poor compared with others
(see Figure 5(c)). Additionally, as shown in Figure 5(b), with
r increasing, the ASR values of the methods considering
worker group preferences also increase. This is because
the group of workers can be assigned their interested
tasks with a higher probability. We also observe that CNS-
MIPM+OGTA and CNS-MIPM+OGTA+P can improve the
assignment success rate by up to 7.93% and 9.31% over
MIPM+OGTA, respectively, which shows the superiority
of considering curriculum negative sampling in workers’
preference learning.

Effect of numW . Figure 6 shows the effect of the number
of workers in each group on task assignment performance.
It can be seen from Figure 6(a) that as numW increases,
the number of available workers for each task decreases,
reducing the search space in the task assignment process,
so the CPU time of all methods shows a downward trend.
Since the number of available worker groups corresponding
to each task decreases with the increase of numW , the task is
less likely to be assigned to a suitable group where workers
are interested in the task. As a result, the ASR values
of all the methods except OGTA (that does not consider
worker group preferences) show a downward trend (see
Figure 6(b)). In addition, as shown in Figure 6(c), the OGTA
related methods perform similarly in terms of the number
of assigned tasks, and MIPM+GGTA assigns the fewest
tasks. Overall, CNS-MIPM+OGTA+P achieves good balance
between efficiency and effectiveness.

Effect of |S|. We study the scalability of the methods
by changing the size of the number of tasks |S|. From
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Figure 7(a) we can see that the CPU time of all method-
s increases. At the same time, we observe that the per-
formance gaps between the OGTA-related methods (i.e.,
OGTA, SIP+OGTA, MIPM+OGTA, CNS-MIPM+OGTA, and
CNS-MIPM+OGTA+P) and MIPM+GGTA become larger
when |S| increases. This is because as the number of tasks
increases, the OGTA-related methods will cause addition-
al tree construction, and searching these trees costs more
CPU time. However, the total number of tasks assigned by
MIPM+GGTA is less than those of OGTA-related methods,
as shown in Figure 7(c). With the increase of |S|, a worker
group can access the tasks that they are more interested in,
so the ASR values increase (see Figure 7(b)). Moreover, each
task corresponds to more available worker groups, so the
number of task assignments also increases (see Figure 7(c)).
In general, MIPM+OGTA related methods (including MIP-
M+OGTA, CNS-MIPM+OGTA, and CNS-MIPM+OGTA+P)
perform better than others in terms of assignment success
rate and task assignment number, demonstrating their su-
periority.

Effect of |W |. We proceed to evaluate the effect of |W |.
As shown in the Figure 8(a), the larger the |W |, the longer
the CPU time of all methods is. This is because more and
more available workers need to be assigned, which leads to
longer time overhead. When it comes to the task assignment
success rate in Figure 8(b), all preference-based methods
show an increasing trend with the increase of |W |, and the
number of task assignments also increases (see Figure 8(c)).
In summary, MIPM+OGTA related methods perform well in
terms of the number of assigned tasks and the assignment

success rate, among which CNS-MIPM+OGTA+P achieves
a good balance between efficiency and effectiveness.

Effect of k. In the final set of experiments, we study the
effect of preference-constrained factor, k, which is used to
prune available worker groups with low preference when
finding available worker group sets (see Section 4.3.1). We
change k from 2 to 6. In this set of experiments, we mainly
evaluate the performance of CNS-MIPM+OGTA without
pruning and CNS-MIPM+OGTA+P with pruning. As shown
in Figure 9(a), CNS-MIPM+OGTA+P can improve the CPU
time substantially, i.e., its CPU time is 39.35%–81.90% of
that of CNS-MIPM+OGTA. In Figures 9(b) and 9(c), CNS-
MIPM+OGTA+P can achieve higher and same assignment
success rate when k = 4 and k = 5, and performs slightly
worse than CNS-MIPM+OGTA in terms of the number of
task assignments, i.e., the number of task assignments of
CNS-MIPM+OGTA+P is 99.42%–99.85% of that achieved
by CNS-MIPM+OGTA, when k = 4 and k = 5. It is note-
worthy that CNS-MIPM+OGTA+P can achieve the same
number of task assignments as CNS-MIPM+OGTA when
k = 6. This demonstrates the superiority of the pruning
strategy for solving the group task assignment problem
when a suitable k is selected.

Summary of the empirical study. The findings of the
empirical study can be summarized as follows:

1) OGTA-related algorithms achieve the maximum num-
ber of task assignments but at the cost of high CPU time;

2) MIPM+GGTA is the most efficient algorithm but per-
forms the worst in terms of the number of task assignments;

3) CNS-MIPM+OGTA and CNS-MIPM+OGTA+P are
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neck to neck in terms of obtaining the highest assignment
success rate and the maximal number of task assignments,
but CNS-MIPM+OGTA+P is more efficient;

4) CNS-MIPM+OGTA+P achieves a better balance be-
tween effectiveness (including the assignment success rate
and the number of task assignments) and efficiency (second
to the greedy algorithm, MIPM+GGTA).

6 CONCLUSION

In this paper we propose and offer solutions to an SC
problem called Preference-aware Group Task Assignment,
which aims to find the optimal task assignment with the
maximal number of assigned tasks while considering work-
er groups’ preferences. In order to relief the data sparsity,
we give a Mutual Information-based Preference Modeling
method, which learns the group preferences by maximizing
the mutual information among workers and groups and
using an attention mechanism to model the contributions of
different group members. Based on the group preferences,
a tree-decomposition approach is adopted to achieve the
optimal task assignment. We further improve the group
task assignment framework by integrating a curriculum
negative sampling method and a preference-constrained
pruning strategy to achieve effective group preference learn-
ing and efficient task assignment. An extensive empirical
study based on a real dataset confirms the superiority of
our proposed methods.
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