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Abstract—Automation in road vehicles is an emerging tech-
nology that has developed rapidly over the last decade. There
have been many inter-disciplinary challenges posed on existing
transportation infrastructure by autonomous vehicles. In this
paper, we conduct an algorithmic study on when and how an
autonomous vehicle should change its lane, which is a fundamen-
tal problem in vehicle automation field and root cause of most
‘phantom’ traffic jams. We propose a prediction-and-decision
framework, called Cheetah (Change lane smart for autonomous
vehicle), which aims to optimize the lane changing maneuvers of
autonomous vehicle while minimizing its impact on surrounding
vehicles. In the prediction phase, Cheetah learns the spatio-
temporal dynamics from historical trajectories of surrounding
vehicles with a deep model (GAS-LED model) and predict their
corresponding actions in the near future. A global attention
mechanism and state sharing strategy are also incorporated to
achieve higher accuracy and better convergence efficiency. Then
in the decision phase, Cheetah looks for optimal lane change
maneuvers for the autonomous vehicle by taking into account a
few factors such as speed, impact on other vehicles and safety
issues. A tree-based adaptive beam search algorithm is designed
to reduce the search space and improve accuracy. In order to
make our framework applicable to more scenarios, we further
propose an improved Cheetah (Cheetah+) framework that makes
the autonomous vehicle adapt for exiting a road and meet the
requirement for driving comfort. Extensive experiments offer
evidence that the proposed framework can advance the state
of the art in terms of effectiveness and efficiency.

Index Terms—Autonomous vehicle, Lane change maneuvers,
Trajectory prediction

I. INTRODUCTION

W ITH rapid urbanization and the increasing number
of cars on the roads, traffic congestion has become

a pressing issue in major cities worldwide. The resulting
gridlock not only leads to wasted fuel but also contributes to
elevated levels of air pollution [1]. Adding to the frustration
of drivers, unexplained traffic jams, commonly known as
‘phantom’ traffic jams, are a frequent occurrence in everyday
scenarios. These jams tend to emerge in areas where traffic
density is high, and even minor disruptions, such as forced lane
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changes or hard braking, can set off a chain reaction leading
to substantial congestion [2]. Effectively preventing phantom
traffic jams requires all vehicles to maintain appropriate gaps
between each other and avoid engaging in improper lane
changes or sudden braking. However, achieving such a level
of coordination and precision is a daunting task for human
drivers. The complexities of monitoring and adjusting driving
behaviors in real-time, amidst the hustle and bustle of traffic,
can make it exceedingly challenging, if not impossible, for
human drivers to consistently adhere to these requirements.

With the rapid advancement of vehicle automation technol-
ogy, it is anticipated that the future adoption of autonomous
vehicles will contribute significantly to achieving the goal of
efficient and smooth transportation. Studies have demonstrated
that the utilization of Adaptive Cruise Control (ACC) in
autonomous vehicles for car-following control, incorporating
smooth acceleration and braking, enables these vehicles to
maintain a consistent distance from the preceding vehicle,
thereby mitigating the occurrence of phantom traffic jams [3],
[4]. However, in the context of Lane Change Assistant (LCA)
systems in autonomous vehicles, the existing algorithms pri-
marily focus on ensuring the safety and comfort of lane change
maneuvers [2], [5], [6]. Unfortunately, there has been limited
investigation into the potential impact on other surrounding
vehicles and the resulting traffic conditions. For instance,
Tesla’s manual for the Model S advises drivers against using
the Auto Lane Change feature on city streets or roads with
dynamic traffic conditions [7]. The reason behind this cau-
tionary warning is attributed to the fact that solely relying on
the autonomous vehicle’s status to determine when and how
to change lanes, without considering the driving behaviors of
surrounding vehicles, can lead to more severe traffic conges-
tion or even accidents [8]. The absence of a comprehensive
understanding of the surrounding traffic dynamics may result
in improper lane change decisions, disrupting the flow of
vehicles and potentially causing hazardous situations. Our
work is grounded on the fundamental assumption that efficient
LCA systems in autonomous vehicles should not only ensure
safe, smooth, and efficient lane changes but also minimize their
impact on surrounding vehicles. This necessitates the consid-
eration of the driving behaviors of neighboring vehicles and
the broader traffic conditions, facilitating a more synchronized
and harmonious flow of traffic. By addressing this critical
aspect, we aim to enhance the overall effectiveness and safety
of autonomous vehicle operations.

To sum up, hard braking and improper lane changes are
the two main reasons for most phantom traffic jams. In

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3348550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



2

the field of autonomous driving, the first issue was studied
more extensively and handled by ACC systems. However,
the second issue has not been addressed well due to a few
challenges: 1) lack of proper framework; 2) uncertainty of
surrounding vehicles’ driving behaviors; and 3) variety of
vehicle maneuvers. In this work, we aim to address the above
challenges and propose a new LCA system that fulfills SAE
(Society of Automotive Engineers) level 4 or 5 automation [9].

For the simplicity of study, we consider a traffic scenario
where there is one autonomous vehicle A and many con-
ventional vehicles (with human drivers) C traveling on a
multi-lane road. Our system can only control the behaviors
of the autonomous vehicle: lane change, speed-up, speed-
down, maintain speed. For other conventional vehicles, we
can collect their real-time locations via Internet of Vehicles
(IoV) or the autonomous vehicle’s sensors. Our objective is
to maximize the average speed of the autonomous vehicle
without disturbing the other conventional vehicles as much
as possible. To this end, we proposed a novel prediction-
and-decision framework, called Cheetah, which consists of
two phases. In the prediction phase, a trajectory prediction
model, namely GAS-LED model (Global Attention and State
sharing based LSTM Encoder-Decoder model), is proposed
to model the dependencies of spatial and temporal features
from neighboring vehicle’s historical trajectories and forecast
their future behaviors. The state sharing technique coordinated
with global attention is designed to connect the encoder
and the decoder, which not only achieves high accuracy but
also reduces training time. Then during the decision phase,
Cheetah hunts for optimal lane change maneuvers efficiently
with a maneuver tree-based adaptive beam search algorithm.
Instead of setting the width parameter heuristically, our search
algorithm can automatically select high-confidence nodes and
prune low-confidence nodes in each layer of the tree.

Though our previous work [10] has already achieved the
objective of maximizing the average speed of the autonomous
vehicle while minimizing its impact on surrounding con-
ventional vehicles, there is still room of improving Cheetah
in the following two aspects. (1) Exit strategy: when the
autonomous vehicle needs to exit a road, it should enter
the leftmost or rightmost lane in advance to make the exit
process as smooth as possible. However, as Cheetah does not
consider exit strategy in its framework, it may change lane
suddenly when the target exit is approaching quickly, which
can cause serious traffic jams or even accidents. (2) Comfort-
awareness: to make the driving more comfortable, it requires
the autonomous vehicle to reduce the fluctuations of physical
movements [11]. However, at current stage Cheetah ignores
the factors for driving comfort, and it is difficult to consider
the discomfort caused by both longitudinal acceleration and
lateral lane change. To tackle the above problems, we present
Cheetah+, a more advanced version of Cheetah with the fol-
lowing three improvements. (1) We first propose an Automated
Exiting (AutoExit) strategy with an exit factor to consciously
control the autonomous vehicle to enter the target lane (i.e., the
leftmost or rightmost lane) at a distance from the target exit.
(2) Besides, we design a discomfort factor that can measure
the fluctuations of both longitudinal acceleration and lateral

lane change of the autonomous vehicle. (3) Furthermore,
maintaining the design principle of Cheetah, we reconstruct
a set of improved search objectives by introducing an exit
and a discomfort factor into our original objective. As a
result, Cheetah+ can not only maximize the average speed
of the autonomous vehicle while minimizing its impact on
surrounding conventional vehicles, but also make the exit more
safely and the driving more comfortably.

The major value-added extension over our preliminary
work [10] can be summarized as follows:
• We propose an Automated Exiting (AutoExit) strategy as
well as an exit factor to make the autonomous vehicle adapt
for exiting a road with the minimal forced lane change.
• We propose a discomfort factor to measure the fluctuations
of both longitudinal acceleration and lateral lane change of the
autonomous vehicle.
• Based on the well-designed exit and the discomfort factors,
we present a set of improved search objectives w.r.t. different
conditions of the autonomous vehicle.
• We conduct extensive experiments to evaluate Cheetah+ on
real and simulated data, verifying the effectiveness on multiple
metrics.

II. PROBLEM STATEMENT

A. Problem Setting

The existing LCS systems mainly focus on the safety and
comfortableness of driving, but ignore the impact of the
lane change maneuvers of the autonomous vehicle on its
surrounding vehicles, which may cause traffic jams. In this
work, we try to reduce this impact as much as possible.
More formally speaking, our objective is to maximize the
average speed of the autonomous vehicle while minimizing
its impact on surrounding conventional vehicles.

In this study, we consider an interactive environment where
there are one autonomous vehicle A and a set of conventional
vehicles C driving on a straight multi-lane road. For the sake
of simplicity, parking and turning are not considered for now.
The autonomous vehicle can obtain the real-time location of
surrounding vehicles through its sensors or IoV (Internet of
Vehicles), and make decision on lane change maneuver at each
time instant within a time duration of interest T. Without loss
of generality, we assume the dimensions and performance of
all vehicles are the same.

In the scenario mentioned above, we first define the notion
of lane. A lane L is part of the road used to guide vehicles in
the same direction. Usually, a road has multiple (at least two)
lanes. Herein, all the lanes are numbered incrementally from
the leftmost side to the rightmost side, i.e., L1, L2, · · · , Lℓ,
where L1 and Lℓ indicate the leftmost lane and the rightmost
lane, respectively. An advantage of using this type of lane-level
coordination system is to allow us to focus on the lane change
behavior itself without worrying about the lateral position of
the vehicle. Next, we introduce two basic units for spatial and
temporal dimensions, respectively.
Trajectory Point. A trajectory point p indicates the location
of a vehicle in a 2-dimensional space, wherein p.L denotes
the lateral lane number and p.Dlon refers to the longitudinal
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Fig. 1. Cheetah overview

distance of the vehicle traveled from the starting point of a
lane, which is a fixed point denoted as ps i.e., ps.Dlon=0.
ptCi

or ptA is used to denote the trajectory point of the
vehicle Ci or A at time instant t. The d(ptCi

, ptCj
) denotes

the longitudinal distance between two trajectory points, which
can be calculated as follows:

d(ptCi
, ptCj

) = |ptCi
.Dlon − ptCj

.Dlon| (1)

where ptCi
.Dlon is the longitudinal distance of vehicle Ci at

time instant t, which equals to d(ps, p
t
Ci
).

Time Step. In order to model the problem more concisely,
we treat the continuous time duration as a set of discrete time
steps, i.e., T = {1, 2, · · · , N}, and a time step t ∈ T. It serves
as the minimum frequency for the autonomous vehicle to make
lane change decisions. Now the question is how to choose
a suitable time granularity in real application scenarios? Ac-
cording to [12], the average duration of single-lane change
is 4.6 seconds for a vehicle, which includes the transition
time and the observation time required by the driver. In the
field of microscopic traffic simulation [13], [14]. However, the
transition and observation time of lane change is often ignored
and the duration of single-lane change is considered less than
1.2 seconds. Therefore, without loss of generality, the time
granularity in this work is set to 0.5 seconds, which means
the time interval between two consecutive time steps (e.g., t
and t+ 1) is 0.5 seconds.
Trajectory. A trajectory T consists of a sequence of ve-
hicle’s trajectory points, ordered by time step, i.e., T =
⟨p1, p2, · · · , pt⟩. We use TCi

and TA to denote the trajectory
of the vehicle Ci and A, respectively.
Lane Change Maneuver. A maneuver is a series of (almost)
simultaneous behaviors performed by a vehicle in order to
accomplish a task (e.g., change lane). Inspired by recent
studies in microscopic traffic field, we represent a lane change
maneuver at time step t as a pair of a lateral lane change behav-
ior and a longitudinal motion behavior, i.e., M t = [Bt

lc, B
t
m].

Bt
lc can be one of the three behaviors: change left (Lt), change

right (Rt), and do not change (Nt), i.e., Bt
lc ∈ {Lt ,Rt ,Nt}.

Bt
m indicates the longitudinal distance travelled by the vehicle

between current and the next time step, i.e., Bt
m = d(pt, pt+1).

Given a time duration of interest T, the autonomous vehicle
will perform a sequence of lane change maneuvers, denoted by
M = ⟨M1,M2, · · · ,MN ⟩, with the objective to maximize its

average speed and minimize the impact on other conventional
vehicles. In this work, we use maneuver to stand for lane
change maneuver whenever the context is clear.
Restrictions. We pose some traffic restrictions. (1) Speed
limit: all lanes are subject to two speed limits: Vmin and Vmax.
(2) Lane change restrictions: a vehicle can only change to
adjacent lane at each time step. Besides, it should keep Dlcs

distance at minimum with the preceding and tailing vehicles
in the target lane. (3) Safe following distance: all vehicles in
the same lane should keep a safe following distance Dss.

B. Framework Overview

Figure 1 illustrates the workflow of the framework. Next
we will briefly introduce each component separately.
Trajectory Prediction. In order to reduce the impact of the
autonomous vehicle on its surrounding conventional vehicles,
Cheetah needs to predict the future trajectories of the sur-
rounding conventional vehicles. To this end, we develop an
LSTM-based deep model (i.e., GAS-LED model) to predict
the trajectories of z time steps ahead by utilizing historical
trajectories in the past n time steps. Instead of predicting the
actual coordinates of each trajectory point directly, GAS-LED
model is designed to make dual prediction for lateral lane
change behavior Blc and longitudinal motion behavior Bm of
conventional vehicles at future time steps. For Blc, the model
estimates the probability of three behaviors and selects the
behavior with the maximum probability as the predicted result.
For Bm, the model outputs a longitudinal travel distance.

The most challenging part is how to maintain high accuracy
in dynamic traffic environments, where the context of the
autonomous vehicle keeps changing. To this end, we adopt
a parallel model architecture integrated with a global attention
mechanism to improve the prediction accuracy. In addition,
an encoder-and-decoder state sharing mechanism is enabled
to improve the convergence efficiency, so that the model can
get up-to-date more quickly when the environment changes.
Maneuver Decision. Once GAS-LED model outputs the
predicted trajectories of the surrounding conventional vehicles,
Cheetah can search for the optimal maneuver sequence for the
autonomous vehicle by using a search module (i.e., maneuver
sequence search module). However, since the longitudinal
motion behaviors Bm is a continuous value, we need to
discretize it first to make the search process feasible and then
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convert it back to continuous value during post-processing.
There are two goals during the search process. The first one
is to maximize the average speed of the autonomous vehicle,
and the second one is to minimize the impact on surrounding
conventional vehicles, which is characterized by an impact
factor to measure the extent to which the conventional vehicles
are affected by the maneuver of the autonomous vehicle.

The most challenging part is how to reduce search space
and achieve high efficiency. To this end, we propose to use a
maneuver tree structure to represent the entire search space.
Using our adaptive beam search algorithm, the maneuver tree
can be kept within a tractable size so the search process can
be performed efficiently.

III. TRAJECTORY PREDICTION

To reduce the impact of the autonomous vehicle on its
surrounding conventional vehicles, it is necessary for the
autonomous vehicle to predict the future trajectories of its
surrounding conventional vehicles. In Cheetah, we propose
a novel trajectory prediction model (i.e., GAS-LED model).
It divides the trajectory prediction task into two sub-tasks,
namely lane change classification and motion regression,
which can assure the accuracy of lane-level trajectory predic-
tion and the reliability of maneuver decision-making. More-
over, GAS-LED model is designed to be trained efficiently
with fast convergence so that the model can get up-to-date
quickly when the environment changes dramatically.

A. Limitations of Existing Methods

Existing studies on trajectory prediction can be broadly
classified into two categories, i.e., rule-based and learning-
based trajectory prediction. In the sequel, we will briefly
discuss the limitations of both categories of methods.
Rule-based Trajectory Prediction. Rule-based trajectory
prediction methods mainly apply the transportation rules to
simulate traffic flow models. For example, a vehicle will
move to the right lane when there is no vehicle on its
right front, or it will speed up when there is no preceding
vehicle. The simulated models can be applied to predict the
future possible actions of vehicles according to the real-time
road environment at each time step. The cellular automaton
algorithms are capable of simulating the traffic flows [15]–
[17], which complete the task efficiently in simple scenarios
like one-way straight lane and coarse-grained scene. However,
these methods ignore the historical trajectories of vehicles,
which makes them difficult to perform long-term predictions.
Besides, since these methods are designed for simple traffic
conditions, the level of accuracy will be reduced significantly
in more complex scenarios such as vehicles on a multi-lane
road in our studied problem.
Learning-based Trajectory Prediction. In recent years, with
a success achieved in applying RNN to model non-linear
temporal dependencies in sequence learning tasks, there have
been plenty of works [18]–[23] utilizing RNN to predict the
trajectories of vehicles. Overall, they have some common
characteristics. (1) RNNs are adopted to extract long-term his-
torical features. (2) The scale of the neural networks is large,

and there are many training parameters and hyperparameters
involved. (3) Single models output lateral and longitudinal
information, which are continuous values in the Cartesian
coordinate system.

These trajectory prediction models are able to predict long-
term trajectories, and deal with the scenes with fine granu-
larity and multi-interaction conditions based on the historical
trajectories of vehicles. However, the training process of the
aforementioned models is usually time-consuming due to a
large number of parameters and hyperparameters. This will
hinder the autonomous vehicle from updating model parame-
ters promptly. Moreover, using a single model to predict both
the lateral and longitudinal information may compromise the
accuracy of lane-level trajectory prediction, leading to unre-
liable maneuver decisions. In general traffic scenarios, such
as highways or urban roads, the road structure predominantly
consists of multi-lane roads, where vehicles exhibit stable
driving behavior at high speeds. Directly predicting the precise
position of a vehicle in such scenarios can be costly in terms
of training and prone to errors. This is due to the significant
variation in the longitudinal driving distance compared to
the relatively minor changes in lateral position. To simplify
the prediction process while ensuring validity, the lane-level
coordinate system can be utilized, as vehicles cannot drive side
by side within the same lane due to lane width restrictions.
By replacing coordinate predictions with predictions of lateral
lane change behavior and longitudinal travel distance, the
effectiveness of predictions can be improved while reducing
model complexity. In summary, our goal is to develop an
accurate and efficient lane-level trajectory prediction model.

B. GAS-LED Model

We propose a Global Attention and State sharing based
LSTM Encoder-Decoder model, called GAS-LED model, for
lane-level trajectory prediction. More specifically, a global
attention mechanism is applied to assign attention weights to
the encoder hidden state vectors for reflecting their different
importance while avoiding complicating the model unduly.
Besides, in order to improve the convergence efficiency of the
model, we design an encoder-and-decoder state sharing mech-
anism to reduce the workload of calculation. The introduction
of the encoder-decoder structure offers several significant
benefits, including the ability to learn end-to-end, capture
complex dependencies, generate accurate predictions, adapt
to different scenarios, and handle diverse input and output
formats. Furthermore, when combined with the proposed state
sharing mechanism, the encoder-decoder structure enables
efficient convergence and enhances its suitability for multi-
step lane change and motion prediction. Furthermore, we adopt
a dual-model structure, i.e., two similar GAS-LED models
operate in parallel to perform lane change classification and
motion regression simultaneously. The two models share the
same underlying structure, which are trained separately and
optimized for their own tasks (i.e., lane change classification
and motion regression) to improve accuracy.

Let T h denote a historical trajectory and T f denote a pre-
dicted future trajectory. The length of T h and T f are indicated
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Fig. 2. GAS-LED model structure

by n and z, respectively, i.e., T h = ⟨pt−n+1, pt−n+2, · · · , pt⟩
and T f = ⟨pt+1, pt+2, · · · , pt+z⟩, where t represents the
current time step. At each time step, taking a historical
trajectory T h of the past n time steps as input, the GAS-
LED model outputs the predicted trajectory T f of the future
z time steps. Next, we detail the GAS-LED model.
Input. The autonomous vehicle can get a set of 2-dimensional
trajectory points from radar sensors including lateral lane
number p.L and longitudinal distance p.Dlon. GAS-LED
model needs to use a sequence of historical trajectory points
to forecast a sequence of future trajectory points. The input
features X are [xt−n+1, xt−n+2, · · · , xt] with the input win-
dow length n, where each x has 14 features: 2 for predicted
vehicle (C0) and 12 for its surrounding vehicles (i.e., CC0 =
{C1, C2, C3, C4, C5, C6}). The predicted vehicle C0 has two
features: current lane number ptC0

.L and longitudinal distance
ptC0

.Dlon. For the surrounding vehicles CC0
, we choose them

based on the previous work [19], which have the most effect on
the predicted vehicle. Each of them has two features: current
lane number ptCq

.L and relative longitudinal distance from the
predicted vehicle d(ptC0

, ptCq
), where Cq ∈ CC0

.
Output. In the task of lane-level trajectory prediction, we
focus on which lane the vehicle is in. Thus, for the lane change
behavior Blc, the model should output the probability of each
lane change behavior, and then select the behavior with the
maximum probability as the predicted result. Specifically, l̂t
denotes a 3-dimensional probability vector [l̂1t , l̂

2
t , l̂

3
t ] at time

step t, where l̂1t =P(Lt), l̂2t =P(Rt) and l̂3t =P(Nt). For the
motion behavior Bm, the model should output the longitudinal
travel distance d(ptC0

, pt+1
C0

), denoted as m̂t.
As a result, for lane change classification, the output results

Yl̂ are [l̂t, l̂t+1, · · · , l̂t+z−1] with the output window length z,
which represent the probabilities of Lt , Rt , and Nt in near
future time steps. For motion regression, the output results Ym̂

are [m̂t, m̂t+1, · · · , m̂t+z−1] with the output window length z,
which indicate the longitude travel distance of the predicted
vehicle in near future time steps.
Trajectory Prediction Objective. Given the current time step
t, our model needs to minimize the loss function as follows:

Loss =

t+z−1∑
τ=t

3∑
i=1

−liτ log(l̂iτ ) +
1

z

t+z−1∑
τ=t

(mτ − m̂τ )
2 (2)

where liτ and mτ denote the true values of the probability

and distance, respectively. This loss function is the sum of
Cross-entropy loss and Mean Squared error.
Model Structure. As shown in Figure 2, the historical infor-
mation of the predicted vehicle and its surrounding vehicles is
taken as the input of our GAS-LED model. Then, two similar
models are applied in parallel to obtain multiple outputs
simultaneously, i.e., the softmax activation for lane change
classification, and the linear activation for motion regression.
In the encoder part, the global attention mechanism assigns
different attention weights to the hidden state vectors, which
can reflect their different importance [24]. Besides, the decoder
uses the last hidden and cell state vector of the encoder
directly, as indicated by the blue and purple lines in Figure 2.

To be specific, in the encoder part, the input X is firstly
embedded into X̃ via the embedding layer, i.e., X̃ =
ϕeb(X;Web), where ϕeb is the embedding function with ReLU
activation, Web denotes the embedding parameters. Secondly,
X̃ is fed into the encoder LSTM, and the LSTM calculates the
hidden and cell state vectors for each step s ∈ {1, 2, · · · , n}
as follows:

hs
1, c

s
1 = LSTM1(h

s−1
1 , cs−1

1 , x̃s;Wl1) (3)

where hs−1
1 and cs1−1

1 are the hidden and cell state vectors at
the previous step s− 1, x̃s denotes s-th vector of X̃ , and h0

1

and c01 are set as the initial vectors according to [25]. Thirdly,
the global attention mechanism uses the concatenated hidden
state vectors to output the attention weights a which can be
calculated as follows:

a = ϕga(Concat(h1
1, h

2
1, · · · , hn

1 );Wat) (4)

where ϕga is the global attention function with softmax
activation [26]. Finally, the output vector of the encoder part
hencoder can be formulated as

∑n
s=1 a

s · hs
1, where as denotes

s-th attention weight of a, and hencoder is the aggregation of
all hidden state vectors w.r.t. different attention weights.

In the decoder part, the decoder LSTM is firstly used to
decode the output vector from the encoder. However, the
LSTM uses state sharing mechanism, which means that the
state vectors of each decoding step equal to the last hidden
and cell state vectors from the encoder LSTM, i.e., hn

1 and cn1 .
To be specific, the decoder LSTM calculates the hidden and
cell state vectors for each step s′ ∈ {1, 2, · · · , z} as follows:

hs′
2 , cs

′
2 =

{
LSTM2(h

n
1 , c

n
1 , hencoder;Wl2) s′ = 1

LSTM2(h
n
1 , c

n
1 , h

s′−1
2 ;Wl2) otherwise

(5)

At the first step, the input vector of the LSTM is hencoder, after
which the input will be changed to the hidden state vector
at the previous step. Finally, the concatenated hidden state
vectors are input to the fully connected output layer. Since we
have two parallel GAS-LED models, and their calculations are
the same except for the outputs, here, we distinguish their fully
connected output layers as follows:

Yl = ϕol(Concat(h1
2, h

2
2, · · · , hz

2);Wol)

Ym = ϕom(Concat(h1
2, h

2
2, · · · , hz

2);Wom)
(6)

where ϕol is the output function (for lane change classification)
with softmax activation, and ϕom is the output function (for
motion regression) with linear activation.
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To sum up, one GAS-LED model, used for lane change clas-
sification, outputs the lane change behaviors of the future time
steps; another GAS-LED model, used for motion regression,
outputs the longitudinal travel distance of the future time steps.
We simply combine the two outputs to obtain the predicted
trajectory points (p.L, p.Dlon) of the future time steps for the
predicted vehicle C0, as a result of its future trajectory T f

C0
.

Model Implementation. For the model implementation, the
embedding layer contain 64 units with ReLU activation. The
fully connected output layers for lane change classification
and motion regression are comprised of 3 units and 1 unit,
respectively. The encoder and decoder LSTMs have 128
units, while the global attention mechanism involves two fully
connected layers (activated by softmax), each with 64 units.

IV. MANEUVER DECISION

After having the predicted future trajectories of the sur-
rounding conventional vehicles, the autonomous vehicle needs
to plan its maneuver based on the prediction. However, since
the motion behavior Bm of the autonomous vehicle is a con-
tinuous value, performing a search against it directly will be
extremely time-consuming. To speed up the search process, we
develop two stages for maneuver decision: maneuver sequence
search and maneuver process. In the maneuver sequence
search stage, we search for a discretized version of the optimal
maneuver sequence of the autonomous vehicle. Specifically, a
discretized maneuver at time step t is a pair M̃ t = [Bt

lc, B̃
t
m],

where B̃t
m is a discretized version of Bt

m taking one of three
behaviors: speed-up (Up), speed-down (Dw ), and maintain
speed (Mt), i.e., B̃t

m ∈ {Up,Dw ,Mt}. In the maneuver
process stage, we generate the precise value for Bt

m based
on B̃t

m obtained in the first stage. Since the logic of the
maneuver process is easy to implement by using authoritative
technology–Automotive Lane Change Aid (ALCA) [27], we
mainly focus on the maneuver sequence search in this section.

A. Problem Definition

At time step t, given a prediction horizon z, the objective
of maneuver sequence search is to find a maneuver sequence
M̃ = ⟨M̃ t, M̃ t+1, · · · , M̃ t+z−1⟩ of length z to 1) maximize
the average speed of the autonomous vehicle (benefit); and to
2) minimize its impact on surrounding conventional vehicles
(cost). In the following, we first quantitatively define the
impact factor used in search condition 2), and then formally
define the search objective.
Impact Factor Fim. At time step t, we assume the maneuver
M̃ t of the autonomous vehicle A can have impact on the
set of conventional vehicles CA within a radius of R. The
impact, called impact factor, will emerge after the maneuver
being performed, and thus it will be acquired at time step
t + 1. Formally, the impact factor F t+1

im is defined as the
sum of the sub-impact factor fCi,t+1

im for each surrounding
conventional vehicles Ci ∈ CA, i.e., F t+1

im =
∑

fCi,t+1
im .

Specifically, we categorize the impact situations of maneuver
within radius R into three types: queuing, jumping the queue,
and crossing. Figure 3 illustrates the three situations, where
the red shaded area, called conflicting area, is the location

Queuing Jumping the queue Crossing

Fig. 3. Three impact situations

that both vehicles plan to arrive at the next time step. These
three impacts encompass the effects of vehicle interactions
on regular roads, including both the impacts of lateral lane
changes and the impacts of longitudinal deceleration. Prior
transportation studies have shown that crossing usually has
the greatest impact, while queuing has the least [28], [29].
Therefore, by assigning sub-impact factors, we can effectively
measure the severity of different impact situations, with em-
phasis on the relative differences between these factors. To
distinguish the impacts of queuing, jumping the queue, and
crossing, the absolute values of the three impact factors will
be set as 1, 2, and 3, respectively. Next we present how to
predict the three impact situations.

Obviously, the impact situations depend on the future tra-
jectories of the surrounding conventional vehicles and the
maneuver of the autonomous vehicle. A vehicle’s state at
time step t can be described using a pair [pt, pt+1], which is
used to describe its location at time step t and its immediate
future location at time step t + 1. Then the impact situations
can be determined by checking if the autonomous vehicle
and the conventional vehicle are on the same lane and their
following distance is below the safe distance threshold. We
use Algorithm 1 to predict the impact situations and calculate
the impact factor F t+1

im .

Algorithm 1: Impact factor calculation
Input: current time t, autonomous vehicle A, all conventional

vehicles CA in radius range R
Output: impact factor F t+1

im
1 F t+1

im ← 0;
2 foreach Ci ∈ CA do
3 f

Ci,t+1
im ← 0;

4 if pt+1
Ci

.L = pt+1
A .L then

5 if d(pt+1
Ci

, pt+1
A ) < Dss then

6 if ptCi
.L = ptA.L then

7 f
Ci,t+1
im ← 1 ; // queuing

8 else
9 f

Ci,t+1
im ← 2 ; // jumping the queue

10 end
11 end
12 else
13 if pt+1

Ci
.L = ptA.L and ptCi

.L = pt+1
A .L then

14 if d(pt+1
Ci

, pt+1
A ) < Dlcs or d(ptCi

, ptA) < Dlcs then
15 f

Ci,t+1
im ← 3 ; // crossing

16 end
17 end
18 end
19 F t+1

im ← F t+1
im + f

Ci,t+1
im ;

20 end
21 return F t+1

im ;

Search Objective. We define the overall search objective
as a linear combination of the above two search conditions.
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Specifically, at time step t, we aim to search for the maneuver
sequence that maximizes the objective function defined below:

argmax
M̃

t+z−1∑
τ=t

V τ+1
A −F τ+1

im (7)

Here, the speed of autonomous vehicle at time step t+1 (i.e.,
V t+1
A ) is calculated as V t+1

A = V t
A + atA ∗ 0.5, where atA

denotes the acceleration of the autonomous vehicle at time
step t. Benefiting from the the discretized motion behavior
B̃t

m, atA is determined by different B̃t
m as follows:

atA =


aup B̃t

m = Up

adw B̃t
m = Dw

0 B̃t
m = Mt

(8)

where aup and adw denote the speed-up acceleration and the
speed-down acceleration, respectively. It should be noted that
the range of features (VA and Fim) is normalized to [0, 1].

B. Maneuver Sequence Search Module

Maneuver Tree Structure. A maneuver tree is a tree-based
data structure. The depth of the tree is z, and each non-
leaf node has 9 child nodes (i.e., 3 × 3 pairs of discretized
maneuver). Each node (except for the root) represents a kind of
maneuver M̃ of the autonomous vehicle, and each edge holds
two weights namely Fim (cost) and VA (benefit) of choosing
this edge. The root node is the current state while its child
nodes represent the maneuvers.
Workflow Overview. At each time step, the maneuver tree
will be reinitialized as a nine-complete tree with a fixed
depth z, with the latest weights on each edge. First, based on
the current trajectory point of the autonomous vehicle, some
invalid nodes can be discarded based on the following rules:
• When the autonomous vehicle is in the rightmost lane, three
direct child nodes (denoting the behavior of ‘Change right’)
of the current node will be removed.
• When the autonomous vehicle is in the leftmost lane, three
direct child nodes (representing the behavior of ‘Change left’)
of the current node will be removed.

After deleting the invalid points, we use the adaptive beam
search algorithm to search for the optimal path in the tree.
Finally, the tree will be updated to prepare for the next process.
Adaptive Beam Search Algorithm. For a search process,
a search algorithm is applied to search for a z-length path
from the root node to the leaf node in the maneuver tree that
achieves the search objective. Existing search algorithms use a
predetermined number of candidate nodes in each layer (called
the width) and only those nodes are expanded next, i.e., Brute-
force search algorithm (width=9), Greedy search algorithm
(width=1) [30] and Beam search algorithm (1<width<9) [31].
The greater the width, the fewer nodes are pruned and the
more time-consuming the search process is. It is important
to acknowledge that brute force search possesses the widest
scope and can guarantee the optimal solution. However, as the
depth of the search tree increases, the search space expands
exponentially, leading to a substantial rise in search time.
Once the depth reaches 10, the search response time exceeds
500 milliseconds, which surpasses the duration of a single

time step (i.e., 0.5 seconds), rendering the search process
unsuccessful. In fact, the width may depend on the weight
distribution of each layer, and thus should be predetermined
more adaptively. For instance, in one layer, the weights are
(0.01, 0.4, 0.5, 0.003), in another layer, the weights are (0.7,
0.6, 0.8, 0.9). If the algorithm fixes a small-sized width, it
will ignore some valuable nodes (0.7,0.6), leading to a local
optimum solution. Alternatively, if the algorithm fixes a large-
sized width, it will consider excessive nodes (0.01,0.03). Thus,
the width in each layer depends on the different number of
nodes with high weights (a.k.a. high-confidence).

Instead of fixing the search width, we adaptively select
the candidate nodes with high confidence in each layer. To
automatically select the candidate nodes, we define a thresh-
old γ, which determines the minimum difference between
high-confidence nodes and low-confidence nodes. Specifi-
cally, in i-th layer (i ∈ {1, 2, · · · , z}), we sort all the
nodes descending based on their cumulative weights CW =∑t+i−1

τ=t V τ+i
A − F τ+i

im . Then we select the high-confidence
nodes (from CWTop1 to CWTopK) as the candidate nodes
based on γ, i.e., CWTopK − CWTopK+1 ≥ γ. Thereafter,
the nodes in i+1-th layer are the child nodes of the candidate
nodes in i-th layer, while the non-candidate nodes are pruned
to reduce search space. The search procedure in our adaptive
beam search algorithm is similar to the classical beam search
algorithm [31]. At each time step, once reaching the search
depth (i.e., z), the algorithm will return a z-length path with
the highest cumulative weights.
Example. As illustrated in Figure 4, the number of candidate
nodes in each layer is different (4→6→7→5→5) following
the threshold γ, and the non-candidate nodes are pruned
accordingly. The search result is a 5-length path with the
highest cumulative weights (yellow path).
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Change left & speed-up

Change left & speed-down

Change left & maintain speed

Do not change & speed-up

Do not change & speed-down

Do not change & maintain speed

Change right & speed-up

Change right & speed-down

Change right & maintain speed

Fig. 4. Example of adaptive beam search

V. EXTENSION

As the extension of our previous work [10], we propose
an improved Cheetah (Cheetah+) framework that makes the
autonomous vehicle adapt for exiting a road and meet the
requirement for driving comfort. Next, we first elaborate
the two optimizations, and then present the improved search
objectives used in Cheetah+.

A. Exit Strategy

A vehicle traveling on a road will always need to exit
the road for reaching its destination. Usually, an autonomous
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PLC area FLC area

Fig. 5. PLC and FLC areas of AutoExit

vehicle should enter the leftmost or rightmost lane of a road
in advance to ensure its exit. Intuitively, one can introduce
a rule-based exiting strategy into a lane change algorithm,
e.g., the Full Overlap Strategy (FOS) [32] that performs
forced lane change within the predefined range in each lane.
However, forced lane change before the target exit may cause
serious traffic jams or even accidents since the autonomous
vehicle ignores the impact of lane change maneuvers on its
surrounding conventional vehicles.

To tackle the problem, we propose an Automated Exiting
strategy, called AutoExit, to make the autonomous vehicle
adapt for exiting a road and reduce forced lane change, when it
needs to exit. The main idea behind AutoExit is to consciously
control the autonomous vehicle to enter the target lane (i.e., the
leftmost or rightmost lane) at a distance from the target exit.
As shown in Figure 5, we define two areas before the target
exit, i.e., proactive lane-changing (PLC) area and forced lane-
changing (FLC) area. In PLC area, the autonomous vehicle
needs to balance the benefit and cost of changing lane, and
tries to enter or approach the target lane. In FLC area, the
autonomous vehicle may perform forced lane change to ensure
its exit, following FOS [32]. Apparently, if the autonomous
vehicle enters or approaches the target lane in PLC area, the
times of forced lane change will be greatly reduced. Therefore,
we should design an additional factor that measures the benefit
of the autonomous vehicle changing lane in PLC area, and
introduce it into the original search objective in Equation (7).
Next, we give the exit factor used in AutoExit.
Exit Factor Fex. At time step t, we assume the maneuver M̃ t

of the autonomous vehicle A can have positive benefit when
getting close to the target lane, or have zero benefit when
staying away from the target lane. The benefit, called exit
factor, will emerge after the maneuver being performed, and
thus it will be acquired at time step t+1. The exit factor F t+1

ex

is determined by the target lane number (1 or ℓ), the current
lane number ptA.L, and the current lane change behavior Bt

lc.
Formally, when the target lane number is 1, i.e., the target lane
is the leftmost lane L1, the exit factor is defined as follows:

F t+1
ex =


1 ptA.L ̸= 1 and Bt

lc = Lt

1 ptA.L = 1 and Bt
lc = Nt

0 ptA.L ̸= 1 and Bt
lc ̸= Lt

(9)

where Lt denotes change left, and Nt denotes do not change.
When the target lane number is ℓ, i.e., the target lane is the
rightmost lane Lℓ, the exit factor is defined as follows:

F t+1
ex =


1 ptA.L ̸= ℓ and Bt

lc = Rt

1 ptA.L = ℓ and Bt
lc = Nt

0 ptA.L ̸= ℓ and Bt
lc ̸= Rt

(10)

where Rt denotes change right. The acquired exit factor
enables AutoExit to measure the benefit of the autonomous

vehicle changing lane in PLC area, and we can directly intro-
duce it into the original search objective as an additional search
condition (detailed in Section V-C). Once the autonomous
vehicle leaves PLC area, i.e., enters FLC area, AutoExit
utilizes FOS [32] to ensure that the autonomous vehicle can
exit the road. We note that if the autonomous vehicle does not
need to exit the road, AutoExit will be hidden as the default.

B. Comfort-aware Driving
In addition to taking speed and impact on other vehicles

into account, autonomous driving needs to be comfortable and
enjoyable to be accepted by passengers [33]. It requires the
autonomous vehicle to minimize the avoidable fluctuations of
physical movements [11]. Existing lane change algorithms [5],
[6], [34], [35] enhance driving comfort of the autonomous
vehicle by minimizing its Jerk feature. Jerk feature, defined as
the change rate of acceleration, is used to measure driving
comfort since it has a strong influence on the comfort of
the passengers [36]. The larger the Jerk feature is, the more
uncomfortable passengers will feel. However, the existing
algorithms mainly focus on the change rate of longitudi-
nal acceleration, ignoring the discomfort caused by frequent
lateral lane change. Obviously, frequent lane change of the
autonomous vehicle could cause passengers discomfort and
even lead to potential accidents.

To solve the problem above, we design a discomfort factor
that can measure the fluctuations of both longitudinal acceler-
ation and lateral lane change of the autonomous vehicle, and
introduce it into the original search objective in Equation (7),
thus making the autonomous vehicle meet the requirement for
driving comfort more comprehensively. Next, we elaborate the
discomfort factor.
Discomfort Factor Fdi. At time step t, we assume the
maneuver M̃ t of the autonomous vehicle A has influence on
the driving comfort. The influence, called discomfort factor,
will emerge after the maneuver being performed, and thus
we assume it can be acquired at time step t + 1. Formally,
the discomfort factor F t+1

di is defined as the sum of two
sub-discomfort factors: 1) the change rate of longitudinal
acceleration between time step t−1 and t, denoted by f

(t−1,t)
lonac ;

and 2) the change extent of lateral lane change behavior
between time step t − 1 and t, denoted by f

(t−1,t)
latlc . Overall,

F t+1
di = f

(t−1,t)
lonac + f

(t−1,t)
latlc . Based on the calculation of

Jerk feature [11], the change rate of longitudinal acceleration
between t− 1 and t is calculated as follows:

f
(t−1,t)
lonac =

|atA − at−1
A |

aup − adw
(11)

where atA denotes the acceleration of the autonomous vehicle
at time step t, and aup and adw denote the speed-up accelera-
tion and the speed-down acceleration, respectively. The range
of f (t−1,t)

lonac is [0, 1]. When there is a noticeable change in the
longitudinal acceleration of the autonomous vehicle between
t−1 and t, the value of f (t−1,t)

lonac will be close to 1; otherwise,
it will be close to 0. The change extent of lateral lane change
behavior between t− 1 and t is defined as follows:

f
(t−1,t)
latlc =

{
1 Bt−1

lc ̸= Nt and Bt
lc ̸= Nt

0 otherwise
(12)
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where Bt−1
lc denotes the lane change behavior at time step

t − 1. The range of f
(t−1,t)
latlc is [0, 1]. When the autonomous

vehicle exhibits frequent lateral lane changes between t − 1

and t, the value of f
(t−1,t)
latlc will be close to 1; otherwise,

it will be close to 0. f (t−1,t)
lonac and f

(t−1,t)
latlc work together to

evaluate the comfort of the autonomous vehicle, aiming to
reduce instances of frequent acceleration, deceleration, and
lane-changing behavior. Thereafter, we can directly introduce
the discomfort factor into the original search objective as an
additional search condition (detailed in Section V-C).

C. Improved Search Objectives
Cheetah+ is an improved version of Cheetah, which is

designed to maximize the average speed of the autonomous ve-
hicle while minimizing its impact on surrounding conventional
vehicles, as well as make the autonomous vehicle adapt for
exiting a road and meet the requirement for driving comfort.
Benefiting from the well-designed exit factor and discomfort
factor, we can introduce them into the original search objective
as the additional search conditions, and search for the optimal
maneuver sequence by using the maneuver sequence search
module described in Section IV-B. Specifically, the improved
search objectives used in Cheetah+ are determined by different
conditions of the autonomous vehicle as follows:
• Condition 1: Do not need to exit / Need to exit before
PLC area. At time step t, if the autonomous vehicle does not
need to exit the road or it needs to exit and travels before
PLC area, we aim to search for its maneuver sequence that
maximizes the objective function as follows:

argmax
M̃

t+z−1∑
τ=t

V τ+1
A −F τ+1

im −F τ+1
di

(13)

where M̃ denotes the maneuver sequence of length z, and
V τ+1
A , F τ+1

im and F τ+1
di denote the speed, the impact factor

and the discomfort factor of the autonomous vehicle at time
step τ + 1, respectively. In this condition, the autonomous
vehicle need to maximize its average speed while minimizing
its impact on surrounding conventional vehicles, as well as
meet the requirement for driving comfort.
• Condition 2: Need to exit in PLC area. At time step t,
if the autonomous vehicle needs to exit the road and travels
in PLC area, we aim to search for its maneuver sequence that
maximizes the objective function as follows:

argmax
M̃

t+z−1∑
τ=t

V τ+1
A −F τ+1

im +F τ+1
ex −F τ+1

di
(14)

where F τ+1
ex denotes the exit factor of the autonomous vehicle

at time step τ + 1. In this condition, the autonomous vehicle
needs to maximize its average speed while minimizing its
impact on surrounding conventional vehicles, as well as adapt
for exiting the road and meet the requirement for driving
comfort. For the above two conditions, the range of features
(VA, Fim, Fex, and Fdi) is normalized to [0, 1].
• Condition 3: Need to exit in FLC area. At time step t, if the
autonomous vehicle needs to exit the road and travels in FLC
area, the objective function is set to null, and the maneuver
sequence search module is replaced with FOS [32] to ensure
that the autonomous vehicle can exit the road successfully.

VI. EXPERIMENTS

A. Experimental Settings

We implement all models and algorithms in Python on
Linux, and run the experiments on a machine with an Intel(R)
CPU i7-4770@3.4GHz and 32G RAM.
Datasets. As it requires interaction between the autonomous
and conventional vehicles, most of the experiments are con-
ducted in two simulated environments, called SIM and SIM+,
where SIM is used for evaluating Cheetah and SIM+ is used for
evaluating the improved Cheetah (i.e., Cheetah+). Specifically,
SIM is generated using the microscopic traffic simulator [15],
[35], [37], [38], which simulates the traffic behaviors of 600
conventional vehicles on a straight six-lane road of length
3km with periodic boundary conditions. We utilize Cheetah
to control the autonomous vehicle to perform lane change
maneuvers in SIM. SIM+ is generated based on SIM, we
further set an exit at the 2.5km of the rightmost lane. We
utilize Cheetah+ to control the autonomous vehicle to perform
lane change maneuvers for exiting the road. For the sake of
simplicity, only the autonomous vehicle is allowed to exit the
road, and it will immediately enter the starting point of the
rightmost lane after exiting. In both SIM and SIM+, we set
the traffic restrictions as Vmin = 0km/h, Vmax = 115km/h,
Dss = 10m and Dlcs = 10m according to [39].

Furthermore, we evaluate our GAS-LED model on a dataset
constructed by merging two real-world datasets: NGSIM US-
101 [40] and I-80 [41]. The merged dataset, called REAL,
consists of real trajectories of conventional vehicles traveling
on a 1.14km-length highway segment with six straight lanes.
The original trajectories were captured at 10Hz (10 frames
per second) over a period of 45 minutes. We preprocess the
dataset by 1) removing the frames with less than 10 vehicles
and 2) down-sampling the datasets to a rate of 2Hz (setting
the time step to 0.5s). After preprocessing, REAL has 10, 542
frames with 9, 864 conventional vehicles. On average, there are
223 vehicles per frame, and the speed of vehicle is 33.4km/h.
Since the distributions of REAL, SIM and SIM+ are similar,
we can train our GAS-LED model on REAL and use it to do
the trajectory prediction in SIM and SIM+.
Parameters Settings. Unless otherwise specified, we set the
parameters in Cheetah and Cheetah+ throughout the experi-
ments as follows. For the trajectory prediction phase, we set
both the length of input historical trajectories and the length
of predicted trajectories to 5 (i.e., n = z = 5), following the
settings used in the existing work [42]. In addition, we train
our GAS-LED model by using the Adam optimizer [43] for
15 epochs with a learning rate of 0.001 and a batch size of
64, following the implementations of the previous work [10].

For the maneuver decision phase, we set the speed-up
acceleration aup to 1.2m/s2 and the speed-down accelera-
tion adw to −3m/s2, according to the rates recommended
by [44]. We set the length of both PLC area and FLC area to
800m according to [32]. Moreover, we set the adaptive beam
search threshold as γ = 0.4, and the impact factor radius as
R = 38m, which are evaluated in Section VI-F.
Compared Methods. We compare Cheetah against several
lane change algorithms, including STNS [34], FLS [35], and
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Fig. 6. Effectiveness of Cheetah

SCMPC [5]. In addition, we compare Cheetah+ against the
modified versions of the above lane change algorithms, i.e.,
STNS*, FLS*, SCMPC*, and Cheetah*, which are adapted for
exiting the road by directly introducing the rule-based exiting
strategy FOS [32]. For the evaluation of trajectory prediction,
we compare GAS-LED model against the state-of-the-art tra-
jectory prediction models including LSTM [20], S-LSTM [21],
CS-LSTM [42], and ED-LSTM [18]. For the evaluation of
maneuver decision, we compare our adaptive beam (ABM)
search algorithm against several search algorithms, i.e., Brute-
force (BF) search algorithm with fixed width 9, Greedy (GD)
search algorithm [30] with fixed width 1, and Beam (BM)
search algorithm [31] with fixed width 4.

B. End-to-End Evaluation of Cheetah

In this section, we study the end-to-end performance of
Cheetah by comparing it against several lane change algo-
rithms (STNS, FLS, and SCMPC). We conduct 100 tests in the
simulated environment SIM, in each of which the autonomous
vehicle is initialized at a random position and drives through
3km, and measure the effectiveness from two aspects:
• Macroscopic: we record the end-to-end time of the au-
tonomous vehicle and all conventional vehicles traveling 3km.
• Microscopic: we record the average speed change rate of
the conventional vehicles affected by (i.e., within radius R =
38m of) the autonomous vehicle. The speed change rate is
defined as |V t

Ci
− V t−1

Ci
|/V t−1

Ci
(%), where V t

Ci
and V t−1

Ci
are

the speeds of a conventional vehicle Ci in two consecutive
time steps. This metric directly reflects the extent of impact
on the surrounding vehicles.
Macroscopic. We report the average end-to-end driving time
of the autonomous vehicle and the conventional vehicles in
Figures 6a and 6b. As shown, Cheetah achieves the shortest
average driving time for both, which clearly demonstrates that
Cheetah can maximize the average speed of the autonomous
vehicle, while minimizing the impact on conventional vehicles.
Microscopic. We report the average speed change rate of
the surrounding conventional vehicles in Figure 6c. We can
see that Cheetah causes the least significant impact on the
speeds of surrounding conventional vehicles, demonstrating
the effectiveness from the perspective of microscopic traffic.

C. End-to-End Evaluation of Cheetah+

In this section, we study the end-to-end performance of
Cheetah+ by comparing it against the modified versions of lane
change algorithms (STNS*, FLS*, SCMPC*, and Cheetah*).
We conduct 100 tests in the simulated environment SIM+,
in each of which the autonomous vehicle is initialized at

Fig. 7. Effectiveness of Cheetah+

a random position and drives through 3km. In addition to
measuring the effectiveness from the macroscopic and micro-
scopic aspects as in Section VI-B, we further introduce two
microscopic metrics to holistically evaluate the effectiveness
of the autonomous vehicle in SIM+. The first metric (Micro-
1) counts the times of forced lane change of the autonomous
vehicle that occurs in FLC area, which reflects the possibility
of causing traffic jams or accidents, and the second metric
(Micro-2) measures the discomfort factor of the autonomous
vehicle, which reflects the driving comfort.
Macroscopic. We report the average driving time of the au-
tonomous vehicle and the conventional vehicles in Figures 7a
and 7b. As expected, Cheetah+ achieves the shortest average
driving time for both vehicles. This clearly demonstrates that
Cheetah+ can maximize the average speed of the autonomous
vehicle when it needs to exit the road, while minimizing the
impact on its surrounding conventional vehicles.
Microscopic. We report the average speed change rate of
the surrounding conventional vehicles in Figure 7c. We can
see that Cheetah+ causes the least significant impact on the
speeds of surrounding conventional vehicles, demonstrating
the effectiveness of our framework from the perspective of
microscopic traffic. Further, we give the average times of
forced lane change of the autonomous vehicle that occurs in
FLC area and the average discomfort factor of the autonomous
vehicle in Figures 7d and 7e, respectively. As we can see,
Cheetah+ achieves the least average times of forced lane
change and the lowest average discomfort factor. This clearly
demonstrates that 1) AutoExit with the exit factor can signifi-
cantly reduce the occurrences of forced lane change when the
autonomous vehicle exits the road; and 2) Cheetah+ with the
discomfort factor can minimize the avoidable fluctuations of
both longitudinal acceleration and lateral lane change.

D. Evaluation of Trajectory Prediction
In this section, we take a break-down evaluation of our

GAS-LED model in trajectory prediction phase by comparing
it with the state-of-the-art trajectory prediction models (LSTM,
S-LSTM, CS-LSTM, and ED-LSTM). To this end, we split
the merged dataset REAL into training and test sets with a
splitting ratio of 4 : 1. All the models share the same input
and output structures, and they are trained on the training set
and tested on the test set.
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TABLE I
EFFECTIVENESS OF GAS-LED MODEL

Lane change classification ACC(%)

Models Prediction time step
1 2 3 4 5

LSTM 91.2 89.7 88.5 88.1 87.6
S-LSTM 94.5 93.1 92.8 92.2 90.5

CS-LSTM 95.1 94.3 93.9 93.2 91.8
ED-LSTM 95.8 95.2 94.6 93.5 92.3
GAS-LED 96.1 95.7 94.8 94.2 93.5

Motion regression MSE(ft)

Models Prediction time step
1 2 3 4 5

LSTM 0.60 0.89 1.39 1.58 1.87
S-LSTM 0.36 0.91 1.07 1.33 1.63

CS-LSTM 0.39 0.81 1.27 1.59 1.90
ED-LSTM 0.27 0.63 0.93 1.20 1.49
GAS-LED 0.23 0.60 0.89 1.16 1.47

Fig. 8. Efficiency of GAS-LED model

Effectiveness of GAS-LED Model. We study the lane change
classification task and the motion regression task separately,
and for both tasks we use historical trajectories of length
5 to predict trajectories of the next 5 time steps on the
test set. We report the Accuracy (ACC) of the lane change
classification task and the Mean Squared error (MSE) of
the motion regression task in Table I. As depicted, for both
tasks, our proposed GAS-LED model outperforms all the other
models for all prediction time steps.
Efficiency of GAS-LED Model. To study the efficiency of
the model, we record the curve of the training loss in the first
three training epochs for all the models on the training set.
We choose the Cross-entropy loss and Mean Squared error
as the loss metrics, and plot the loss curves in Figures 8a
and 8b. As shown, our GAS-LED model is minimized at
around 1 epoch, while the other models are minimized at
around 1.5 epochs. This is because our model relies on the
state sharing of encoder-decoder structure, thus reducing the
training convergence time.
Necessity of a Continuously Updated Model. To demonstrate
the necessity of a continuously updated model in maintaining
a high trajectory prediction accuracy, we compare the effec-
tiveness of GAS-LED model under two training strategies:
• Constant model (CT): we train GAS-LED model using the
entire training set, and use it to do the trajectory prediction
for the entire test set.
• Updated model (UD): we further divide the training and test
sets into time windows. We train GAS-LED model on each
training window, and use it to do the trajectory prediction on
the corresponding test window.
For GAS-LED model under CT and UD, we record the average
lane change ACC and motion MSE of all prediction time steps
in Table II. We can see that the effect of the updated model
is much better than that of the constant model. This proves

TABLE II
EFFECTIVENESS OF GAS-LED MODEL UNDER CT AND UT STRATEGIES

Strategies Lane change ACC(%) Motion MSE(ft)
CT 86.5 1.94
UD 92.7 1.49

Fig. 9. Effectiveness of GAS-LED model in Cheetah

Fig. 10. Effectiveness of GAS-LED model in Cheetah+

that the trajectory prediction model needs to be updated in
continuously changing environments to maintain accuracy.
Effectiveness of GAS-LED Model in Cheetah and
Cheetah+. We study the effectiveness of GAS-LED model
when putting it in Cheetah and Cheetah+ with maneuver de-
cision. We compare GAS-LED model against other trajectory
prediction models in terms of effectiveness as in Sections VI-B
and VI-C. The results are shown in Figures 9 and 10. We can
see that in Cheetah and Cheetah+ with the maneuver sequence
search module, the proposed GAS-LED model outperforms all
the competitive models, due to the synergy of our GAS-LED
model and maneuver sequence search module. Other models
pay more attention to location information rather than the lane
change behaviors. This shows that our GAS-LED model not
only outperforms other models in the stand-alone trajectory
prediction task, but also is effective in lane change planning.
Ablation Study of GAS-LED Model. We further evaluate
the performance of the dual-model structure (DMS) and
the state sharing mechanism (SSM) proposed in GAS-LED
model. The ablation study is conducted by comparing GAS-
LED model against two alternative models: GAS-LED-w/o-
DMS, which utilizes a single-model structure similar to multi-
task learning, and GAS-LED-w/o-SSM, which uses a vanilla
encoder-decoder approach [18] instead of SSM. Specifically,
we record their average lane change ACC and motion MSE of
all prediction time steps in Table III. We can see that GAS-
LED model outperforms the GAS-LED-w/o-DMS and GAS-
LED-w/o-SSM models. This provides strong evidence that
both the DMS and SSM significantly enhance the effectiveness
of lane change classification and motion regression.
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TABLE III
ABLATION STUDY OF GAS-LED MODEL

Models Lane change ACC(%) Motion MSE(ft)
GAS-LED-w/o-DMS 88.3 1.77
GAS-LED-w/o-SSM 89.2 1.65

GAS-LED 92.7 1.49

Fig. 11. Effectiveness and efficiency of adaptive beam search

E. Evaluation of Maneuver Decision

In this section, we take a break-down evaluation of our ma-
neuver sequence search module in maneuver decision phase.
We compare our adaptive beam (ABM) search algorithm
against several search algorithms (BF, GD, and BM). We
conduct 100 tests in SIM and SIM+ separately, in each of
which the autonomous vehicle is initialized at a random
position and drives through 3km. Since the experimental
results of all search algorithms are similar in both simulated
environments, here, we only present the results in SIM.
Effectiveness of Adaptive Beam Search Algorithm. To
study the effectiveness of the adaptive beam search algorithm
adopted in our maneuver sequence search module, we compare
the accuracy of the maneuver results of different search
algorithms. As BF search algorithm without any pruning is
guaranteed to produce the globally optimal result, we define
the accuracies of GD, BM, and ABM as the ratios that these
algorithms will generate the same maneuver as BF. We report
the accuracy results in Figure 11a. We can see that the accu-
racy of our ABM search algorithm is noticeably better than
other algorithms since we take adaptive nodes in each layer
of the maneuver tree to search the optimal path. ABM search
algorithm improves the accuracy by 3.6 ∼ 10% compared
to other algorithms, which evidences the effectiveness of our
adaptive beam search algorithm.
Efficiency of Adaptive Beam Search Algorithm. We also
compare the search response time and the number of searched
nodes of different search algorithms in Figures 11b and 11c.
As we can see, ABM search algorithm prunes 23 ∼ 46%
nodes during the search process, which results in 18 ∼ 38%
response time reduction for BM search algorithm and BF
search algorithm. GD search algorithm takes the shortest
response time since it only considers one candidate node in
each layer. Therefore, it will mistakenly prune many high-
confidence nodes, leading to a low accuracy for the search.

F. Effect of Parameters

In this section, we study the effect of the parameters used
in Cheetah and Cheetah+. Since the results of Cheetah and
Cheetah+ are similar, we only present the results of Cheetah.
Effect of Adaptive Beam search Threshold γ. We conduct
a grid search for the threshold γ used in our adaptive beam
search algorithm from 0 to 1 with stride 0.1, and measure
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the accuracy and response time of the search algorithm under
different γ. The results are depicted in Figures 12 and 13. We
can see that when γ is greater than 0.4, the accuracy begin
to decline rapidly while the response time tends to stabilize.
Thus, we choose γ = 0.4 to balance accuracy and efficiency.
Effect of Impact Factor Radius R. The radius of the impact
factor determines the size of the nearby environment that the
autonomous vehicle needs to consider. An overly large radius
will cause calculation redundancy; conversely, an overly small
radius will ignore important nearby vehicles. And intuitively,
the radius is proportional to the maximal speed for the road.
Therefore, the radius is formalized as: R = k×Vmax. We test
the parameter k at different Vmax values, i.e., highway=32m/s,
urban=15m/s, 20m/s and downtown=5m/s, so as to calculate
the average impact factor under different R. We took the
average value of the impact factor under each candidate value
of Vmax to compare the different values of k. As shown in
Figure 14, when k equals to 1.2, the increasing trend of the
impact factor slows down, which means the impact factor
tends to stabilize. Thus, k = 1.2 is taken as the default.
Correspondingly, we set the radius in the experiments as
R = 38m w.r.t. Vmax=32m/s (115km/h).

VII. RELATED WORK

Lane change is one of the most conventional behaviors in
autonomous driving. In this study, an autonomous vehicle is
supposed to plan a series of lane change maneuvers. Existing
lane change planing studies typically consider the driving
safety and comfort of the vehicles [5], [6], [34], [35]. For
example, [5] presents a novel control algorithm for lane change
assistance and autonomous driving on highways based on
Scenario Model Predictive Control (SCMPC). The basic idea
is to account for the uncertainty in the traffic environment
by a small number of future scenarios to perform safe lane
change. [34] proposes a classical cellular automata model
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(called STNS) for planning the behaviors of vehicles, where
a set of rules are applied to judgement the future lane change
maneuvers. [6] presents a kinematics model for lane change,
which can plan the trajectories based on the characteristics of
polynomials. Besides, the infinite dynamic circles are applied
to detect collision during lane change. [35] proposes a Freeway
LaneSelection model (FLS), which will enable transportation
professionals to more accurately model lane-changing behav-
iors on freeways. FLS algorithm consists of choice of target
lane and gap acceptance decisions, which aims to output the
most accurate lane change maneuver. Our study focuses on
the impact of the lane change maneuver of the autonomous
vehicle, aiming to alleviate ‘phantom’ traffic jams.

Urban computing [45] aims to solve the issues caused by
human’s rapid progress in urbanization, such as traffic signal
control [46]–[48], bike lane planning recommendation [49],
[50], crime rate inference [51], crowd flow alert [52], [53],
and resource rebalancing [54]. This study aims to optimize
the lane changing maneuvers of autonomous vehicles, thereby
enhancing the overall efficiency and safety of autonomous
driving in urban or highway environments.

VIII. CONCLUSION

In this paper, we propose Cheetah, a prediction-and-decision
framework that helps the autonomous vehicle change lanes
more wisely. To make our framework applicable to more
scenarios, we further propose Cheetah+ that makes the au-
tonomous vehicle adapt for exiting a road and meet the
requirement for driving comfort. Extensive experiments based
on both real and synthetic datasets also confirm the superiority
of our proposed framework over state-of-the-art approaches in
terms of both macroscopic and microscopic effectiveness.

ACKNOWLEDGMENT

This work is partially supported by NSFC (No. 61972069,
61836007 and 61832017), Shenzhen Municipal Science
and Technology R&D Funding Basic Research Program
(JCYJ20210324133607021), and Municipal Government of
Quzhou under Grant (No. 2022D037, 2023D044), and Key
Laboratory of Data Intelligence and Cognitive Computing,
Longhua District, Shenzhen.

REFERENCES

[1] D. Schrank, B. Eisele, and T. Lomax, “2019 urban mobility report,”
Texas A&M Transportation Institute, Tech. Rep., 2019.

[2] M. Won, T. Park, and S. H. Son, “Toward mitigating phantom jam using
vehicle-to-vehicle communication,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 5, pp. 1313–1324, 2017.

[3] L. Wang and B. K. P. Horn, “On the stability analysis of mixed
traffic with vehicles under car-following and bilateral control,” IEEE
Transactions on Automatic Control, vol. 65, no. 7, pp. 3076–3083, 2020.

[4] L. Davis, “Effect of adaptive cruise control systems on traffic flow,”
Physical Review E, vol. 69, no. 6, p. 066110, 2004.

[5] G. Cesari, G. Schildbach, A. Carvalho, and F. Borrelli, “Scenario model
predictive control for lane change assistance and autonomous driving
on highways,” IEEE Intelligent transportation systems magazine, vol. 9,
no. 3, pp. 23–35, 2017.

[6] F. You, R. Zhang, G. Lie, H. Wang, H. Wen, and J. Xu, “Trajectory
planning and tracking control for autonomous lane change maneuver
based on the cooperative vehicle infrastructure system,” Expert Systems
with Applications, vol. 42, no. 14, pp. 5932–5946, 2015.

[7] Tesla, “Model s owner’s manual,” 2022. [Online]. Available: https:
//www.tesla.com/ownersmanual/models/en us/

[8] X. Li and J.-Q. Sun, “Studies of vehicle lane-changing dynamics and its
effect on traffic efficiency, safety and environmental impact,” Physica A:
Statistical Mechanics and its Applications, vol. 467, pp. 41–58, 2017.

[9] SAE-International, “Sae standards news: J3016 automated-driving
graphic update,” 2019. [Online]. Available: https://www.sae.org/news/
2019/01/sae-updates-j3016-automated-driving-graphic

[10] S. Liu, H. Su, Y. Zhao, K. Zeng, and K. Zheng, “Lane change schedul-
ing for autonomous vehicle: A prediction-and-search framework,” in
SIGKDD, 2021, pp. 3343–3353.

[11] M. Zhu, Y. Wang, Z. Pu, J. Hu, X. Wang, and R. Ke, “Safe, efficient,
and comfortable velocity control based on reinforcement learning for
autonomous driving,” Transportation Research Part C: Emerging Tech-
nologies, vol. 117, p. 102662, 2020.

[12] T. Toledo and D. Zohar, “Modeling duration of lane changes,” Trans-
portation Research Record, vol. 1999, no. 1, pp. 71–78, 2007.

[13] R. Worrall and A. Bullen, “An empirical analysis of lane changing on
multilane highways,” Highway Research Record, no. 303, 1970.

[14] S. E. Lee, E. C. Olsen, W. W. Wierwille et al., “A comprehensive exam-
ination of naturalistic lane-changes,” United States. National Highway
Traffic Safety Administration, Tech. Rep., 2004.

[15] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, “Two lane
traffic simulations using cellular automata,” Physica A: Statistical Me-
chanics and its Applications, vol. 231, no. 4, pp. 534–550, 1996.

[16] M. M. Pedersen and P. T. Ruhoff, “Entry ramps in the nagel-
schreckenberg model,” Physical Review E, p. 056705, 2002.

[17] A. K. Daoudia and N. Moussa, “Numerical simulations of a three-
lane traffic model using cellular automata,” Chinese journal of physics,
vol. 41, no. 6, 2003.

[18] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-
decoder architecture,” in 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2018, pp. 1672–1678.

[19] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of sur-
rounding vehicles with maneuver based lstms,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2018, pp. 1179–1184.

[20] F. Altché and A. de La Fortelle, “An lstm network for highway trajectory
prediction,” in ITSC. IEEE, 2017, pp. 353–359.

[21] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 961–971.

[22] Y. Zha, J. Deng, Y. Qiu, K. Zhang, and Y. Wang, “A survey of intelligent
driving vehicle trajectory tracking based on vehicle dynamics,” SAE
International journal of vehicle dynamics, stability, and NVH, vol. 7,
no. 10-07-02-0014, 2023.

[23] Q. Shi and H. Zhang, “An improved learning-based lstm approach for
lane change intention prediction subject to imbalanced data,” Trans-
portation research part C: emerging technologies, vol. 133, p. 103414,
2021.

[24] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[25] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition,” arXiv preprint arXiv:1402.1128, 2014.

[26] C. Raffel and D. P. Ellis, “Feed-forward networks with atten-
tion can solve some long-term memory problems,” arXiv preprint
arXiv:1512.08756, 2015.

[27] K. Schofield, “Automotive lane change aid,” Apr. 19 2005, uS Patent
6,882,287.

[28] R. Herman, E. W. Montroll, R. B. Potts, and R. W. Rothery, “Traffic
dynamics: analysis of stability in car following,” Operations research,
vol. 7, no. 1, pp. 86–106, 1959.

[29] A. Ahmed, F. Outay, S. O. R. Zaidi, M. Adnan, and D. Ngoduy, “Ex-
amining queue-jumping phenomenon in heterogeneous traffic stream at
signalized intersection using uav-based data,” Personal and Ubiquitous
Computing, pp. 1–16, 2020.

[30] F. O. de França, “A greedy search tree heuristic for symbolic regression,”
Information Sciences, vol. 442, pp. 18–32, 2018.

[31] M. Freitag and Y. Al-Onaizan, “Beam search strategies for neural
machine translation,” in Proceedings of the First Workshop on Neural
Machine Translation, Aug. 2017, pp. 56–60.

[32] C. Dong, H. Wang, Y. Li, W. Wang, and Z. Zhang, “Route control
strategies for autonomous vehicles exiting to off-ramps,” IEEE TITS,
vol. 21, no. 7, pp. 3104–3116, 2019.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3348550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://www.tesla.com/ownersmanual/models/en_us/
https://www.tesla.com/ownersmanual/models/en_us/
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic


14

[33] F. Hartwich, M. Beggiato, and J. F. Krems, “Driving comfort, enjoyment
and acceptance of automated driving–effects of drivers’ age and driving
style familiarity,” Ergonomics, vol. 61, no. 8, pp. 1017–1032, 2018.

[34] D. Chowdhury, D. E. Wolf, and M. Schreckenberg, “Particle hopping
models for two-lane traffic with two kinds of vehicles: Effects of lane-
changing rules,” Physica A: Statistical Mechanics and its Applications,
vol. 235, no. 3-4, pp. 417–439, 1997.

[35] C. Choudhury, T. Toledo, and M. Ben-Akiva, “Ngsim freeway lane
selection model,” Federal Highway Administration, Tech. Rep., 12 2004.

[36] I. Jacobson, L. Richards, and A. Kuhlthau, “Models of human comfort
in vehicle environments,” Human Factors in Transport Research Edited
by DJ Oborne, JA Levis, vol. 2, 1980.

[37] H. Yeo, A. Skabardonis, J. Halkias, J. Colyar, and V. Alexiadis, “Over-
saturated freeway flow algorithm for use in next generation simulation,”
Transportation Research Record, vol. 2088, no. 1, pp. 68–79, 2008.

[38] L. Zhang, S. Cai, Y. Zhang, and M. Zhang, “Comparison of lane
changing algorithms between ngsim and corsim,” in 2010 IEEE 71st
Vehicular Technology Conference. IEEE, 2010, pp. 1–6.

[39] K. Nagel, D. E. Wolf, P. Wagner, and P. Simon, “Two-lane traffic
rules for cellular automata: A systematic approach,” Physical Review
E, vol. 58, no. 2, p. 1425, 1998.

[40] J. Colyar and J. Halkias, “Next generation simulation ngsim us highway
101 dataset,” Federal Highway Administration, Tech. Rep., 2007.

[41] J. Halkias and J. Colyar, “Next generation simulation ngsim interstate
80 freeway dataset,” Federal Highway Administration, Tech. Rep., 2006.

[42] N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle
trajectory prediction,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, 2018, pp. 1468–1476.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[44] P. Bokare and A. Maurya, “Acceleration-deceleration behaviour of
various vehicle types,” Transportation research procedia, vol. 25, pp.
4733–4749, 2017.

[45] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Transactions on In-
telligent Systems and Technology (TIST), vol. 5, no. 3, pp. 1–55, 2014.

[46] X. Li and J.-Q. Sun, “Signal multiobjective optimization for urban traffic
network,” IEEE TITS, vol. 19, no. 11, pp. 3529–3537, 2018.

[47] C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and Z. Li,
“Toward a thousand lights: Decentralized deep reinforcement learning
for large-scale traffic signal control,” in AAAI, 2020, pp. 3414–3421.

[48] X. Li and J.-Q. Sun, “Multi-objective optimal predictive control of
signals in urban traffic network,” Journal of Intelligent Transportation
Systems, vol. 23, no. 4, pp. 370–388, 2019.

[49] J. Bao, T. He, S. Ruan, Y. Li, and Y. Zheng, “Planning bike lanes based
on sharing-bikes’ trajectories,” in ACM SIGKDD, 2017, pp. 1377–1386.

[50] T. He, J. Bao, S. Ruan, R. Li, Y. Li, H. He, and Y. Zheng, “Interactive
bike lane planning using sharing bikes’ trajectories,” IEEE TKDE,
vol. 32, no. 8, pp. 1529–1542, 2019.

[51] H. Wang, D. Kifer, C. Graif, and Z. Li, “Crime rate inference with big
data,” in ACM SIGKDD, 2016, pp. 635–644.

[52] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in AAAI, 2017.

[53] C. Shi, X. Han, L. Song, X. Wang, S. Wang, J. Du, and S. Y.
Philip, “Deep collaborative filtering with multi-aspect information in
heterogeneous networks,” IEEE TKDE, pp. 1413–1425, 2019.

[54] J. Liu, L. Sun, W. Chen, and H. Xiong, “Rebalancing bike sharing
systems: A multi-source data smart optimization,” in ACM SIGKDD,
2016, pp. 1005–1014.

Shuncheng Liu received the Bachelor degree in
Computer Science and Technology from Chongqing
University of Posts and Telecommunications, in
2019. He is currently a PhD student in University
of Electronic Science and Technology of China. His
research interests include autonomous driving and
spatio-temporal data mining.

Xu Chen recieved the Bachelor degree in Elec-
tronics and Electrical Engineering from University
of Electronic Science and Technology of China, in
2020. He is now a PhD student in the same univer-
sity. His research interests include spatio-temporal
data mining and AI for database.

Yan Zhao is an Assistant Professor with Aalborg
University. She received the PhD Degree in Com-
puter Science from Soochow University in 2020.
Her research interests include spatial database and
trajectory computing.

Han Su received the BS degree in software engi-
neering from Nanjing University, in 2011, and the
PhD degree in computer science from the University
of Queensland, in 2015. She is currently an associate
professor with University of Electronic Science and
Technology of China. Her research interests include
autonomous driving and trajectory mining.

Xiaofang Zhou received the bachelor’s and master’s
degrees in computer science from Nanjing Univer-
sity, in 1984 and 1987, respectively, and the PhD
degree in computer science from the University of
Queensland in 1994. He is the Otto Poon Professor
of Engineering and Chair Professor of Computer
Science and Engineering at the Hong Kong Uni-
versity of Science and Technology. His research is
focused on finding effective and efficient solutions
to managing integrating, and analyzing very large
amounts of complex data for business and scientific

applications. His research interests include spatial and multimedia databases,
high performance query processing, web information systems, data mining,
and data quality management. He is a fellow of IEEE.

Kai Zheng is a Professor of Computer Science with
University of Electronic Science and Technology of
China. He received his PhD degree in Computer
Science from The University of Queensland in 2012.
He has been working in the area of spatial-temporal
databases, uncertain databases, social-media analy-
sis, in-memory computing, and blockchain technolo-
gies. He has published over 100 papers in prestigious
journals and conferences in data management field
such as SIGMOD, ICDE, VLDB Journal, ACM
Transactions and IEEE Transactions. He is a senior

member of IEEE.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3348550

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


	Introduction
	Problem Statement
	Problem Setting
	Framework Overview

	Trajectory Prediction
	Limitations of Existing Methods
	GAS-LED Model

	Maneuver Decision
	Problem Definition
	Maneuver Sequence Search Module

	Extension
	Exit Strategy
	Comfort-aware Driving
	Improved Search Objectives

	Experiments
	Experimental Settings
	End-to-End Evaluation of Cheetah
	End-to-End Evaluation of Cheetah+
	Evaluation of Trajectory Prediction
	Evaluation of Maneuver Decision
	Effect of Parameters

	Related Work
	Conclusion
	References
	Biographies
	Shuncheng Liu
	Xu Chen
	Yan Zhao
	Han Su
	Xiaofang Zhou
	Kai Zheng


