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Location recommendation is an important means to help people discover attractive locations. However, ex-

treme sparsity of user-location matrices leads to a severe challenge, so it is necessary to take implicit feedback

characteristics of user mobility data into account and leverage the location’s spatial information. To this end,

based on previously developed GeoMF, we propose a scalable and flexible framework, dubbed GeoMF++, for

joint geographical modeling and implicit feedback-based matrix factorization. We then develop an efficient

optimization algorithm for parameter learning, which scales linearly with data size and the total number

of neighbor grids of all locations. GeoMF++ can be well explained from two perspectives. First, it subsumes

two-dimensional kernel density estimation so that it captures spatial clustering phenomenon in user mobility

data; Second, it is strongly connected with widely used neighbor additive models, graph Laplacian regular-

ized models, and collective matrix factorization. Finally, we extensively evaluate GeoMF++ on two large-scale

LBSN datasets. The experimental results show that GeoMF++ consistently outperforms the state-of-the-art

and other competing baselines on both datasets in terms of NDCG and Recall. Besides, the efficiency studies

show that GeoMF++ is much more scalable with the increase of data size and the dimension of latent space.
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1 INTRODUCTION

With the popularity of smart mobile devices and the fusion of multiple positioning technologies,

it has become much easier for people to acquire real-time information regarding their locations.

This development has triggered the advent of location-based social networks (LBSNs), such as

Foursquare, Jiepang, Facebook Place, and so on. This emergence has not only caused location-

based socializing to become a new form of social interaction but also helped people speed up fa-

miliarization of the surroundings. To achieve the latter goal, location recommendation has become

one important means.

Location recommendation has been widely studied recently due to easy access of large-scale

user mobility data and inclusion of social network information. User mobility data from the LB-

SNs (i.e., check-ins) only include the histories of locations where users have been and therefore

they likely prefer. The visit frequencies reflect the confidence of a user’s positive preference. Nev-

ertheless, locations where a user has never visited are either really unattractive or undiscovered

but potentially appealing. These two cases are usually difficult to differentiate from each other if

there is no auxiliary information provided. These characteristics of user mobility data let us con-

sider them implicit feedback and motivates us to exploit weighted regularized matrix factorization

for location recommendation since it deals with sparsity issues better and outperforms other ap-

proaches empirically [15, 23, 42].

However, due to extreme sparsity of user-location matrices, this algorithm still faces severe chal-

lenges and suffers from comparatively low performance of recommendation. Fortunately, these

challenges can be further alleviated by taking locations’ geographical information into account.

With the existence of locations’ geographical information, the spatial clustering phenomenon [41],

which indicates that individual visited locations tend to cluster together, has been revealed in

user mobility behavior on the LBSNs [46]. This phenomenon has been leveraged for location

recommendation via geographical modeling. Previous geographical modeling algorithms include

parametric [46] and nonparametric [49] approaches for modeling the distribution of distance be-

tween any two visited locations. For improving their efficiency of geographical modeling, two-

dimensional geo-clustering algorithms over individual visited locations have been proposed [4, 26].

For the sake of avoiding setting the number of clusters, two-dimensional kernel density estimation

has been developed [21]. Nevertheless, these geographical modeling algorithms are independent

of collaborative filtering, so that they are usually integrated together for location recommendation

based on some heuristic approaches, like linear combination.

To this end, we extend two-dimensional kernel density estimation and propose an optimization-

based geographical modeling algorithm. It is based on user activity areas and location influential

areas, and estimates users’ geographical preference for locations by an inner product operator.

Moreover, a consistent objective goal with weighted regularized matrix factorization is exploited.

Therefore, geographical modeling can be seamlessly incorporated into matrix factorization. In

particular, we propose GeoMF to augment latent factors of users and locations with user activity

areas and location influential areas, respectively, as shown in Figure 2. In this way, a user’s

preference for a location is modeled as an inner product between them in the augmented space,

including both the user’s interest-based preference and the user’s geographical preference for the

location. If the user’s geographical preference for the location is nonzero, the activity areas of the

user intersect with the influential areas of the location so that this location is reachable from the

activity areas of the user. We then propose alternating optimization for learning the user/location

latent factor with weighted least squares and learning the user activity area with sparse and

nonnegative weighted least squares. However, based on the analysis of time complexity, it suffers

from computational issues in particular when learning nonnegative user activity areas, though

we reveal two important properties about improving the efficiency of learning algorithms.
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For the sake of improving efficiency and flexibility, we further propose GeoMF++, by mapping

location influential areas into the same latent space as that formed by weighted regularized ma-

trix factorization, as shown in Figure 3. Hence, we express a user’s geographical preference for

a location by dot product of the user’s latent factor with the weighted sum of latent factors of

the location’s influential areas. Different from GeoMF, user activity area is not used in GeoMF++

anymore, but can be recovered from user latent factors using nonnegative sparse coding, since

user latent factors encode propagated geographical influence from location influential areas. We

then develop an alternating optimization algorithm for learning user/item/area latent factors, and

show that it scales linearly with the data size and the total number of influential areas of all lo-

cations. Interestingly, supported by theoretical results about approximating locations’ spatial sim-

ilarity matrix with location influential areas, GeoMF++ is strongly connected with widely used

neighbor additive models and graph Laplacian regularized models as well as collective matrix

factorization.

Finally, we evaluate the proposed algorithms on two large-scale LBSN datasets with respect

to both warm-start and cold-start scenarios. The experimental results show that the proposed

algorithms benefit a lot from geographical modeling and consistently outperform several com-

peting baselines on both datasets with respect to both scenarios in terms of NDCG and Re-

call. We then investigate their training efficiency, and find that GeoMF++ is much more effi-

cient and scalable than the baselines with the increase of data size and the dimension of latent

space.

This article is an extension of our previous paper [23], in which we proposed GeoMF for joint ge-

ographical modeling and implicit feedback-based matrix factorization, so that geographical mod-

eling can be seamlessly incorporated into matrix factorization. In this article, we further make the

following contributions for location recommendation:

• For the sake of improving efficiency and flexibility of GeoMF, we propose GeoMF++ to map

location influential areas into the same latent space as that formed by weighted regularized

matrix factorization. Based on a newly developed alternating optimization algorithm, Ge-

oMF++ scales linearly with the data size and with the total number of the influential areas

of locations.

• We propose leveraging nonnegative sparse coding to recover user activity areas from user

latent factors learned from GeoMF++, since they are not parts of GeoMF++ anymore. The

case studies show that recovered user activity areas are meaningful and reasonable, com-

pared to that learned from GeoMF.

• We provide theoretical results for approximating locations’ spatial similarity matrix with

location influential areas, and establish strong connection of GeoMF++ with other widely

used algorithms for joint geographical modeling and matrix factorization.

• We reveal two important properties of GeoMF for improving the efficiency of learning non-

negative user activity areas, so that it can accelerate the original process of leaning user

activity areas.

• We extensively evaluate the proposed algorithms on LBSN datasets with respect to both

warm-start and cold-start scenarios. In addition to the self-crawled Jiepang dataset used in

our previous work, we also use another large-scale public Gowalla dataset with 6.4M check-

ins from 107K users. The experimental results show that the newly proposed GeoMF++ is

consistently superior to GeoMF and other competing baselines on both datasets, in terms of

not only training efficiency but also recommendation performance with respect to NDCG

and Recall.
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2 RELATED WORK

2.1 Location Recommendation

Location recommendation has been an important topic in location-based services. For example,

some research has focused on recommending some specific types of locations. Park et al. [35] de-

signed a system based on Bayesian learning with both users’ preference and location contexts to

recommend restaurants. Similarly, Horozov et al. [14] developed a user-based collaborative filter-

ing system to recommend restaurants to a user, by finding which restaurants similar users have

visited before. Zheng et al. [54] designed a random-walk-style model to do tourism hot spot recom-

mendation by taking into account both users’ travel experiences and users’ location attractiveness.

In addition to single-type location recommendation mentioned above, there is also some other

work considering multiple-activity-type location recommendation. For example, Zheng et al. [53]

considered location recommendation and activity recommendation together, so that they can pro-

vide location recommendation with respect to different types of activities. The proposed model

formulates a location-activity matrix for collaborative filtering and uses some additional informa-

tion such as location features to help recommendation. Furthermore, a personalized extension for

their model was proposed in [51]. The personalized model models a user-location-activity tensor

with the GPS data from all users, and employs collective tensor and matrix factorization to do rec-

ommendation. Takeuchi and Sugimoto [40] developed an item-based collaborative filtering system

to recommend shops to a user, if they are similar to the user’s previously visited shops.

With the growing popularity of location-based social networks, location recommendation is

drawing plenty of attention once again. The reasons are twofold: first, it is possible to obtain

large-scale user mobility data; second, several new challenges, including an extremely sparse user-

location matrix and the presence of social networks, have arisen from this data. To address these

challenges, several methods have been proposed. For example, Ye et al. [46] discovered the spatial

clustering phenomenon of individual visited locations and characterized it by a power-law dis-

tributed distance of any pair of visited locations [46]. In addition, they also exploited the similarity

between users based on location history and social relationships on social networks for collabo-

rative filtering. To better incorporate social relationships from social networks into collaborative

filtering, Noulas et al. [33] conducted random walk with a restart on a user-location bipartite graph

and social graph simultaneously. With regard to modeling the spatial clustering phenomenon, in-

stead of making the power-law distribution assumption, Zhang et al. [49] suggested using kernel

density estimation to estimate the distribution of distance between pairs of locations. Concentrat-

ing on modeling the distance distribution may ignore the multicenter characteristics of individual

visiting locations according to [4]. Thus, the authors tried to apply clustering techniques on in-

dividual visited locations for capturing the spatial clustering phenomenon. They also exploited

Bayesian nonnegative matrix factorization for location recommendation, placing a Gamma prior

on nonnegative latent factors since this model can capture the skewness of the visit frequency

to locations. These two models are then multiplied together since both of them are modeled in a

probabilistic way. To improve the ad hoc integration between them, Liu et al. [26] proposed a geo-

graphical probabilistic factor analysis framework to take geo-clustering and Bayesian nonnegative

matrix factorization into consideration by defining a user’s preference for locations as a multipli-

cation of his or her interest in the locations, the locations’ popularity, and the distance between

the user and locations.

In addition to studying the effect of social network information and of the spatial clustering phe-

nomenon, there has also been research into studying the impact of context information, e.g., time,

and the textual content of locations on location recommendation (and/or search, prediction) [5, 7,

10, 22, 24, 27, 28, 43, 44, 47, 48]. For example, in [27, 44, 47], the authors tried to leverage content
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information of locations via topic modeling to assist location recommendation. Jiang et al. [16] pro-

posed to find top-k similar users efficiently by integrating text modeling and location proximity,

which can better support user-based collaborative filtering. Gao et al. [10] proposed distinguishing

a user’s latent factors at different times and exploiting several strategies to aggregate a user’s time-

dependent latent factors. Different from this work, [48] proposed time-aware collaborative filtering

for location recommendation and integrated it with time-dependent geographical influence. Rather

than using memory-based collaborative filtering, [22, 43] utilized model-based collaborative filter-

ing based on matrix/tensor factorization. The authors further imposed an explicit/implicit regu-

larizer on the axis of time and location to improve time-aware location recommendation. In [5, 24,

28], the authors leveraged the information from previous locations, including the locations them-

selves, categories, and so on, for next location recommendation. The representative algorithms for

different kinds of location recommendation have been surveyed and empirically compared with

each other in [29], and GeoMF has been recognized as one state-of-the-art algorithm.

Comparing this work with these existing ones, major differences lie in the following perspec-

tives. First, we leverage weighted regularized matrix factorization for location recommendation

since, according to our experimental results, it may be more appropriate than other methods for

collaborative filtering from implicit feedback. Second, our model subsumes two-dimensional ker-

nel density estimation and doesn’t make any assumption about the distribution of visited locations.

Finally, geographical modeling is seamlessly and efficiently incorporated into weighted regular-

ized matrix factorization, and this incorporation explains why modeling the spatial clustering phe-

nomenon helps to deal with the challenge of matrix sparsity. However, we don’t take the content

information into consideration in our proposed model since we don’t have any other informa-

tion except the categories of locations in our dataset. This information can easily be incorporated

into the current framework. Actually, we have tried to incorporate the categories of locations, but

haven’t seen significant improvement. We elaborate it in the discussion in the Experiments section.

2.2 Matrix Factorization with Side Information

Side information of users and items can be encoded as features and fed together with user-item

preference/rating history into feature-based matrix factorization, including the regression-based

latent factor model [1], LibFM [36], MatchBox [39], SVDFeature [3], and Kernelized Matrix Fac-

torization [11, 55]. Some of them have been implemented in open-source frameworks and widely

used in many applications, such as music recommendation in KDDCup 2011 and friendship predic-

tion in KDDCup 2012. However, they did not work well in the Million Song Dataset Challenge [2]

for music recommendation due to extreme sparsity (0.01% density). In spite of wide use, these al-

gorithms are mainly designed for explicit feedback with both positively and negatively preferred

samples. However, due to only preferred (check-in) locations available, feeding check-in history

with the location’s geographical information into these algorithms requires drawing a compara-

ble number of negatively preferred locations for the sake of efficiency. This incurs suboptimal

recommendation performance. In contrast, GeoMF++ treats all locations not preferred by users as

negative yet assigns them a lower confidence for negative preference. Moreover, GeoMF++ pro-

vides theoretical results to establish a strong connection with other widely used algorithms for

joint geographical modeling and matrix factorization.

Side information can also be organized as other relational matrices and fed with the user-

location preference matrix into collective (multirelational) matrix factorization algorithms [8, 32,

38, 51], which share entity-specific parameters among all relations. For example, [51] organized

geographical information as a location-feature matrix, each of whose feature refers to the (normal-

ized) number of POIs (points of interest, e.g., museums) around that location, and assume location

latent factors are shared in user-location relation and location-feature relation. The difference from
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GeoMF++ lies in the normalization, so that GeoMF++ is less sensitive to the preprocessing of the

location-feature matrix. Moreover, GeoMF++ has more compact and general inputs so that more

side information can be easily incorporated. When more side information available, fine-tuning

the coefficients is time-consuming in collective matrix factorization, but GeoMF++ can resort to

Bayesian learning [19, 50].

3 PRELIMINARY

Given users’ mobility data, location recommendation operates on a user-location preference matrix

R = [ru,i ] ∈ {0, 1}M×N , where there are M users, denoted by U = {a1, . . . ,aM }, and N locations,

denoted by L = {l1, . . . , lN }. Each entry ru,i indicates whether a user au has visited a location li .
The column vector ru corresponds to the uth row of the matrix R. The column vector ri corre-

sponds to the ith column of the matrix R. The visit frequency matrix C ∈ NM×N is of the same size

as R. Lu = {li ∈ L|ru,i > 0} denotes all visited locations of the user au . Here, uppercase bold let-

ters denote matrices, lowercase bold letters denote column vectors, and nonbold letters represent

scalars.

3.1 Collaborative Filtering for Implicit Feedback

Given the preference matrix R, only users’ positive preferences are observed since unvisited lo-

cations are either negatively preferred or unknown to users. The visit frequency indicates the

confidence level of positive preferences so that a higher visit frequency corresponds to a larger

confidence of positive preference. Hence, given the preference matrix R, location recommendation

is the One-Class Collaborative Filtering (OCCF) problem [15, 34]. In this case, we can randomly

sample some negative locations for each user and assign them smaller weights than positive ones.

For better dealing with the sparsity challenge, we can even treat all unvisited locations as negative,

but at the same time we are assigning them smaller weights, we should guarantee the special struc-

ture of the weighting matrix for the sake of efficiency. For example, the weighting matrix could

follow a sparse and one-rank structure, that is, each entrywu,i of the weighting matrix W = [wu,i ],

wu,i =

{
α (cu,i ) + 1 if cu,i > 0

1 otherwise
, (1)

where α (cu,i ) > 0 is a monotonically increasing function with respect to cu,i . In this way, it exactly

encodes the observation that the frequency is a confidence of users’ positive preference. Based on

the weighting matrix, the objective function of collaborative filtering for implicit feedback, called

Weighted Regularized Matrix Factorization (WRMF), is represented as follows:

min
P,Q
‖W◦ 1

2 � (R − PQT )‖2F + γ (‖P‖2F + ‖Q‖
2
F ), (2)

where � is the Hadamard product operator, i.e., element-wise multiplication of matrices. W◦ 1
2 =

[w
1
2

u,i ] is Hadamard square root of W. ‖ · ‖F is the Frobenius norm of matrices, simply a square

root of the sum of squared values in matrices. This objective function involves mapping users and

locations into a joint latent space with dimensionK � min(M,N ) via a mapping matrix P ∈ RM×K

and a mapping matrix Q ∈ RN×K , respectively. In the joint latent space, a user’s preference for a

location is modeled as an inner product between them.

It is worth noting that the approximation error is summed over all entries in the user-location

preference matrix, but it can be efficiently reduced via alternating least squares, and its time com-

plexity in each iteration is still in proportion to the total number of nonzero entries in the user-

location preference matrix. We will provide detailed analyses in subsequent sections.
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4 GEOMF

Weighted regularized matrix factorization has shown its superiority in most implicit feedback

datasets. However, due to the inclusion of geographical information of locations, there is still

room for improvement to this algorithm. Although some recent studies have leveraged the spatial

clustering phenomenon for improving location recommendation [4, 10, 26, 49], most of them are

almost independent of the procedure for collaborative filtering, particularly matrix factorization.

The seamless incorporation of geographical modeling into weighted regularized matrix factor-

ization could be more beneficial. First, it better helps to cope with the sparsity challenges and

location cold-start problems. Second, it helps to understand how to recommend locations when

their geographical information provided, that is, how to automatically balance between geograph-

ical influence and personalized interest-based preference. To this end, we first propose GeoMF for

joint geographical modeling and matrix factorization.

4.1 Optimization-Based Kernel Density Estimation

Matrix factorization is a bilinear model; that is, given one mapping matrix fixed, the objective

function is linear with respect to the other. In practice, it resorts to optimization procedures like

alternating least squares and stochastic gradient descent to learn mapping matrices. For the sake of

its seamless incorporation with geographical modeling, we propose weighted linear regression for

two-dimensional kernel density estimation in the task of geographical modeling. It involves two

key concepts: user activity areas and location influential areas. Roughly speaking, user activity

areas consist of spatial regions where the user will show up, and location influential areas are

those spatial regions to which the influence of the location can be propagated. More specifically

and formally, assuming the areas are obtained by splitting the whole world into F spatial grids of

even size, denoted as G = {д1,д2, . . . ,дF }, we have the following definitions.

Definition 4.1 (User Activity Areas). A user’s activity areas include a set of spatial grids where

the user may show up with nonnegative possibilities.

We represent activity areas of a user au as a nonnegative vector xu = [xu, j ] ∈ RF
≥0. Each entry

xu, j indicates the possibility with which this user will appear in the grid дj ∈ G.

Definition 4.2 (Location Influential Areas). Influential areas of a location consist of a collection

of spatial grids to which the influence of this location can be propagated.

We also represent influential areas of a location li by a nonnegative vector yi ∈ RF
≥0, where each

entry yi, j indicates how much influence is propagated to the spatial grid дj ∈ G from the location

li . Usually, influential areas are different from location to location. For simplicity, we assume the

influence areas of a location are fixed in advance and have a normal distribution centered at this

location. In particular, the influence propagated to a grid дj from a location li is defined as yi, j =
1
σ
K (

di, j

σ
), where K (·) is standard normal distribution, σ is standard deviation, and di, j represents

geographical distance between location li and the center of the spatial grid дj . Figure 1 shows an

example of such a setting.

The advantage of setting the influential areas in this way is that the inner product between xu

and yi represents two-dimensional kernel density estimation on a user’s visited locations. Espe-

cially, according to kernel density estimation, the density of a user au at a location li is estimated

by

f̂σ (i ) =
1

σnu

∑
l ′i ∈L

cu,i′K

(
di,i′

σ

)
, (3)
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Fig. 1. Influential areas of a location li . The depth of color on each grid represents quantity of influence.

where nu =
∑

i′ cu,i′ . If locations in L are mapped into spatial grids G, this estimation becomes

f̂σ (i ) =
∑

дj ∈G

nu, j

σnu
K

(
di, j

σ

)
, (4)

where nu, j =
∑

l ′i ∈L δ (li′ ∈ дj )cu,i′ is the visit frequency of the user au to the spatial grid дj , while

δ (li′ ∈ дj ) means the location li falls into the spatial grid дj . At this moment, by setting xu to be

proportional to the visit frequency to the corresponding grid such that xu, j =
nu, j

σ nu
, the estimated

density of the user au at the location li equals the inner product xT
u yi . For the sake of taking

the characteristic of implicit feedback1 into account, instead of assigning xu empirical frequency,

we treat it as a variable and learn it by optimizing the following objective function (dubbed Ge-

oWLS [23]):

min
X
‖W◦ 1

2 � (R − XYT )‖2F + λ‖X‖1,
subject to X ≥ 0,

(5)

where we stack the activity area vector of each user by row to obtain a user activity area matrix X ∈
R

M×F
≥0 and stack the influential area vector of each location by row to obtain a location influential

area matrix Y ∈ RN×F
≥0 . ‖X‖1 is an �1 norm of the matrix X, encouraging a sparse solution for user

activity areas [31]. The underlying reasons for imposing sparsity regularization on user activity

areas are twofold: first, users are usually constrained around several long-stay locations, such

as home or working places; second, it can also improve the effectiveness and the efficiency of

recommendation, as shown in the previous conference paper [23].

4.2 Joint Model

Recall that in the matrix factorization model, the preference of the user au for the location li is ex-

pressed by pT
u qi , so geographical modeling becomes consistent with matrix factorization, making

seamless combination possible. In particular, we leverage X and Y to respectively augment user

latent factors P and location latent factors Q in the factorization model, as shown in Figure 2. Then

the estimated preference matrix for the proposed GeoMF model is formulated as follows:

R̂ = [ P,X ]

[
Q

Y

]T

= PQT + XYT . (6)

1The necessity has been evaluated in the previous conference paper [23].
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Fig. 2. The framework of GeoMF.

One reason for such an explicit augmentation with geographical information is that there is still no

evidence showing that the latent space has already included them. In this way, a user’s preference

for a location is modeled as an inner product in the augmented space and thus includes both

interest-based preference of the user from the latent space and geographical preference for the

location. If geographical preference of one user for a location is nonzero, his or her activity areas

intersect with the influential areas of the location so that the location is reachable from his or her

activity areas.

4.3 Optimization

After augmentation, in addition to P and Q, we are also required to learn X by minimizing the

following objective function:

min
P,Q,X

‖W◦ 1
2 � (R − PQT − XYT )‖2F + γ (‖P‖2F + ‖Q‖

2
F ) + λ‖X‖1,

subject to X ≥ 0.
(7)

The minimization of this objective function is achieved by an alternating optimization scheme.

It consists of one procedure to take turns learning latent factors for users and locations when

fixing X, and another one involving sparse and nonnegative weighted least squares with respect

to X when fixing all latent factors. In each procedure, the objective function is nonincreasing

due to minimization, and thus the iteration of such an alternating optimization can guarantee

the nonincrease of the objective function. Hence, such an alternating optimization algorithm can

converge after some rounds of iterations.

4.3.1 Learning Latent Factors. When fixing user activity area matrix X, the optimization of

Equation (7) with respect to user/item latent factors is similar to alternating least squares in

weighted regularized matrix factorization discussed previously. More specifically, the latent factor

pu of a user au , corresponding to the uth row of P is updated based on

pu = (QT Wu Q + γ IK )−1
(
QT Wu (ru − Yxu )

)
, (8)

where Wu is an N × N diagonal matrix, subject toW u
i,i = wu,i . Here, since we have set the same

weight, i.e., 1, to the unvisited locations, there is a trick to speed up its calculation [15] by making

use of Wu = W̃u + IN such thatW̃ u
i,i is nonzero only if ru,i � 0. In particular, QT Wu Q = QT W̃u Q +

QT Q. In this case, the second part is independent of users so that it can be precomputed, costing

O (NK2), while the first part only requires O (‖ru ‖0K2), being in proportion to the number of

visited locations of the user au . Here the �0 norm of the matrix (vector) is the number of nonzero

entries in this matrix (vector). For the inverse of a K × K matrix, we assume it requires O (K3) time
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even though more efficient algorithms exist, particularly for a positive-semidefinite matrix, but

probably are less relevant for the typically small values of K . Applying a similar trick to calculate

the other part,

QT Wu (ru − Yxu ) = QT Wu ru − QT W̃u Yxu − QT Yxu ,

where the rightmost term could be precomputed for all users, costing O ((‖X‖0 + ‖Y‖0)K ). If first

computing (W̃u Y)xu , the second term costs O (‖ru ‖0‖xu ‖0 + ‖ru ‖0K ). The first term is computa-

tionally less than another two terms, only costing O (‖ru ‖0K ). Completing the final matrix multi-

plication between the inverse matrix and the resultant vector requires O (K2) time. Therefore, it

totally costs O (‖ru ‖0 (K2 + ‖xu ‖0) + K3) to update latent factors for the user au , without taking

precomputation overhead into account. When we update all users’ latent factors in sequence, the

overall worst-case time complexity is O (‖R‖0K2 +MK3 + (‖X‖0 + ‖Y‖0)K + ‖X‖0‖R‖0,∞), where

we borrow the notation of the �2,1 norm of matrices to denote ‖R‖0,∞ = maxu ‖ru ‖0. It is worth

noting that there is no independence of updating latent factors among different users, so that it is

possible to resort to parallel updating for acceleration.

Similarly, we update the latent factor qi of a location li , corresponding to the ith row of Q, by

qi = (PT Wi P + γ I)−1
(
PT Wi (ri − Xyi )

)
, (9)

where Wi is an M ×M diagonal matrix, subject toW i
u,u = wu,i . Applying the similar optimization

trick, we can complete the update of latent factors for all locations in sequence in O (‖R‖0K2 +

NK3 + (‖X‖0 + ‖Y‖0)K + ‖Y‖0‖RT ‖0,∞).
In summary, the total complexity of updating latent factors in one iteration is O (‖R‖0K2 + (M +

N )K3 + ‖X‖0 (K + ‖R‖0,∞) + ‖Y‖0 (K + ‖RT ‖0,∞)). It is easy to note that the sparsity structure of

both X and Y is also important for the efficiency of updating these latent factors. Hence, at the same

time of imposing �1 norm on the user activity area matrix X, we also assume that two-dimensional

normal distribution for generating location influential areas is truncated. In other words, only

those areas within a certain threshold of distance (i.e., d km) from a location are considered its

influential areas. This is reasonable to some extent since normal distribution usually decays quickly

with the increase of the distance from its center.

4.3.2 Learning User Activity Areas. Now let’s turn to learning the user activity area matrix X.

When fixing user/item latent factors, the objective function in Equation (7) with respect to X is

similar to a sparse and nonnegative weighted least squares problem, which can be further general-

ized as a bounded-variable least squares problem [17]. Such kinds of problems have been solved by

several approaches, including the active set method [17], sequential coordinate-wise algorithm [9],

and projected gradient descent method [25]. Among these methods, projected gradient descent is

highly efficient and has been extensively studied in nonnegative matrix factorization, which can

also be cast into two subproblems related to nonnegative least squares [25]. The general idea of

the projected gradient descent algorithm is to update parameters by gradient descent and then

to project the updated ones into feasible regions defined by bound constraints. Nevertheless, the

choice of learning rate in gradient descent needs to guarantee that the projected parameters can

sufficiently decrease the objective function in Equation (7). Thus, we leverage the methods pro-

posed in [25] to update the user activity area matrix. However, due to the existence of the weighting

matrix, the gradient of Equation (7) with respect to X is a full matrix. It is impractical to update all

the parameters at one time. Hence, we instead update each user’s activity areas independently.

Let’s rewrite the objective function with respect to the activity area vector of a user au and

discard the irrelevant terms:

Ω(xu ) = ‖ (Wu )◦
1
2 (ru − Qpu − Yxu )‖22 + λ‖xu‖1,

subject to xu ≥ 0.
(10)

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 33. Publication date: March 2018.



GeoMF++: Scalable Location Recommendation via Joint Geographical Modeling 33:11

The gradient of Ω(xu ) with respect to xu is

∇Ω(xu ) = YT Wu Yxu︸������︷︷������︸
∇1

+ λ − YT Wu (ru − Qpu )︸����������������������︷︷����������������������︸
∇2

. (11)

Note that ∇1 = YT W̃u Yxu + YT Yxu , where the first term costs O (‖ru ‖0‖xu ‖0 + ‖ru ‖0nī ) and the

second term costs O (‖xu ‖0F ) by precomputing YT Y. Here we assume there are the approxi-

mate same number of influential areas of different locations, denoted by nī . This could be true

when the spatial grids are sufficiently small. And ∇2 = λ − YT Wu ru + YT W̃u Qpu + YT Qpu , cost-

ing O (‖ru ‖0nī + FK + ‖ru ‖0K ) by precomputing YT Q. Based on this gradient, we update xu as

follows:

x
(t+1)
u = P+ (x(t )

u − α∇Ω(x(t )
u )), (12)

where the initial x
(0)
u is set as zero and P+ (x) is a function to project a vector x ∈ RF onto its

nonnegative orthant RF
≥0. In particular,

P+ (x j ) =

{
x j if x j > 0

0 otherwise
, дj ∈ G. (13)

The learning rate, α , is chosen so as to ensure the sufficient decrease of Ω(xu ), i.e.,

Ω(x(t+1)
u ) − Ω(x(t )

u ) ≤ ε∇Ω(x(t )
u )T (x(t+1)

u − x
(t )
u ), (14)

where ε is a parameter of this condition and commonly set as 0.01. Since Ω(xu ) is a quadratic

function with respect to xu , this condition can be quickly evaluated via the gradient and Hessian

matrix (∇2Ω(x(t )
u ) = YT Wu Y), i.e.,

(1 − ε )∇Ω(x(t )
u )T Δx

(t )
u +

1

2
Δx

(t )
u

T
∇2Ω(x(t )

u )Δx
(t )
u ≤ 0, (15)

where Δx
(t )
u = x

(t+1)
u − x

(t )
u . In this case, in each step, although the objective function has decreased

sufficiently, it requires repeatedly searching for a valid learning rate based on some heuristic rules.

Assume #trials is the number of trials for searching the valid learning rate. Then, during searching

the valid learning rate, the following two observations could make it fast to compute the projected

gradient.

Observation 1. If x (t )
u, j = 0 and [∇Ω(x(t )

u )]j > 0, then x (t+1)
u, j = 0,∀t ∈ [0, #trials] according to

Equation (12), where [∇Ω(x(t )
u )]j � ∂Ω(xu )

∂xu, j
|
xu=x

(t )
u

.

Observation 2. If x
(0)
u = 0, then x (t )

u, j = 0,∀t ∈ [2, #trials] if x (1)
u, j = 0.

Proof. If x
(0)
u = 0, then [∇2]j > 0 if x (1)

u, j = 0, according to Observation 1. And following

Equation (11), [∇Ω(x(t )
u )]j = [∇2]j + yT

j Wu Yx
(t )
u > 0,∀t ∈ [1, #trials] since each vector/matrix of

yT
j Wu Yx

(t )
u is nonnegative. Then, recursively applying Observation 1, we can complete the

proof. �

Based on Observation 2, it is obvious that the following observation could be satisfied.

Observation 3. ∀t ∈ [2, #trials], ‖x(t )
u ‖0 ≤ ‖x(1)

u ‖0.

However, there is no deterministic relationship between ‖x(t )
u ‖0 and ‖x(t+1)

u ‖0. This is because

we may not only add relevant activity areas but also remove some redundant activity areas. By

comparing kernel density estimation in Figure 9(a) of one sample user’s visited locations with

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 33. Publication date: March 2018.



33:12 D. Lian et al.

Figure 9(c), which plots the user activity area learned from GeoMF, we can clearly see these two

possibilities.

And note that ‖x(1)
u ‖0 depends on the parameter λ, so λ determines the sparsity level of activity

areas of each user. Hence, it further determines the time complexity of computing activity areas

for each user. In the following, for the sake of making complexity analysis easy, we assume ‖X‖0
is known in advance.

Complexity Analysis. The time complexity analysis of gradient computation in Equation (11)

shows that it costs O (‖ru ‖0‖xu ‖0 + ‖xu ‖0F + ‖ru ‖0nī + FK + ‖ru ‖0K ) without precomputation

overhead. Due to ‖Δx
(t )
u ‖0 ≤ ‖x(1)

u ‖0,∀t ≥ 2, the evaluation of a sufficient decrease condition

doesn’t cost as much as the computation of the projected gradient. Assume that #iter is the

number of iterations for projected gradient descent; when we perform an updating operation for

each user in sequence (it can be done in parallel), the overall complexity is O (#iter × #trials ×
(‖X‖0‖R‖0,∞ + ‖X‖0F +MFK + ‖R‖0 (nī + K ))). Here, we once again observe that the sparse

structure of user activity areas plays an important role in improving the efficiency of learning

algorithms.

Connection with Kernel Density Estimation. When users’ preference for locations are

not taken into account and activity area vector xu of a user au is initialized to zero, x
(1)
u =

αP+ (YT Wu ru − λ). Therefore, after the first iteration, activity areas of the user au include the

regions that can be directly reached from the user’s visited locations by means of Y. And the pos-

sibility of showing up in a spatial grid depends on the visit frequency via the weighting matrix

Wu . Thus, the update in this first iteration is similar to kernel density estimation except that it is

subject to a sufficient decrease of Ω(xu ). In the subsequent iterations, the user’s activity areas are

expanded or shrunken due to YT Wu Y under the condition of decreasing Ω(xu ). It is worth noting

that YT Wu Y actually encodes the personalized spatial correlation between grids.

5 GEOMF++

In spite of excellent explainability, GeoMF suffers from computational issues when the number of

spatial grids (F ) is large, according to the analysis of time complexity. To overcome the computa-

tional issues, we further propose GeoMF++ by mapping each spatial grid into a low-dimensional

latent space. The subsequent analysis to GeoMF++ reveals its strong connection with two other

widely used algorithms for joint geographical modeling and matrix factorization.

5.1 Loss Function

For making GeoMF++ more flexible and scalable, each spatial grid is simply mapped into the same

latent space as that formed by weighted regularized matrix factorization, as shown in Figure 3.

Therefore, we can not only add them into location latent factor but also take their dot product

with user latent factor to represent user preference for spatial grids. Denoting the mapping matrix

from spatial grids to the latent space is V ∈ RF×K , and user preference matrix R is then estimated

by

R̂ = PQT + P(YV)T = P(Q + YV)T = [ P, P ]

[
Q

YV

]T

.

Such an estimation could have the following three ways of explanation. First, each user’s prefer-

ence for locations includes not only interest-based preference but also geographical preference.

Second, each location latent factor includes random effect of both location itself and influential

areas. Third, similar to GeoMF, we augment location latent factor with YV, a linear mapping im-

age of Y. However, we don’t augment user latent factor with XV since X is unknown. In principle,
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Fig. 3. The framework of GeoMF++.

we can augment user latent factor with any matrix of the same size as P. Choosing P can reduce

the number of parameters and thus decrease the model complexity of GeoMF++. Besides, it also

simplifies the optimization procedure, as shown in the next subsection.

Based on such an estimation of the preference matrix, we then formulate the objective function

as follows:

min
P,Q,V

‖W◦ 1
2 � (R − P(Q + VY)T )‖2F + γP ‖P‖2F + γQ ‖Q‖2F + η‖V‖

2
F . (16)

Note that compared to WRMF, the regularized coefficient of P is distinguished from that of Q,

since Q should not be varied as much as P when there is auxiliary spatial information provided

for locations. This is very close to feature-based matrix factorization [3] except that GeoMF++ has

taken the characteristics of implicit feedback into account in a better way. Following the suggestion

in [20], we introduce another matrix variable Q̂ = Q + YV, and then simplify Equation (16) as

min
P,Q̂,V

‖W◦ 1
2 � (R − PQ̂T )‖2F + γP ‖P‖2F + γQ ‖Q̂ − YV‖2F + η‖V‖

2
F . (17)

Now it is close to regression-based latent factor models [1], and in this case the optimization

can be easily achieved by alternating least squares with respect to these three parameters. When

convergent, we can employ Q = Q̂ − YV to obtain the random effect of locations themselves.

5.2 Optimization

Fixing Q̂, we derive the gradient of Equation (17) with respect to pu and set it to zero. Due to it

being quadratic with respect to pu , we can obtain the closed update formulation for latent factor

of the user au :

pu = (Q̂T Wu Q̂ + γP IK )−1Q̂T Wu ru . (18)

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 33. Publication date: March 2018.



33:14 D. Lian et al.

Similarly, fixing P and V, we can derive the closed updating formulation for latent factor q̂i of

the location li as follows:

q̂i = (PT Wi P + γQ IK )−1 (PT Wi ri + γQ VT yi ). (19)

Here we see that q̂i indeed captures the effect of its visit history and influential areas, whose

balance is determined by γQ .

Finally, fixing Q̂, we can derive the gradient with respect to V and set it to zero. Then the up-

dating formulation for V involves solving the system of linear equations as follows:

V =

(
YT Y +

η

γQ
IF

)−1

YT Q̂. (20)

When F  N , we can apply the matrix inversion lemma for converting it as follows:

V = YT

(
YYT +

η

γQ
IN

)−1

Q̂. (21)

Hence, it only requires the inverse of a matrix of size N × N instead of F × F . If the matrix to

be inverted is still of large size, a much more practical solution is to leverage conjugate gradient

descent, since it does not explicitly precompute and store the coefficient matrix YT Y, and only

depends on the multiplication between these matrices.

Complexity Analysis. According to previous analysis, the time complexity of updating each

row of P in sequence according to Equation (18) and each row of Q̂ in sequence according to Equa-

tion (19) is O (‖R‖0K2 + (M + N )K3 + ‖Y‖0K ). The time complexity of conjugate gradient descent

for solving the system of linear equations is O (‖Y‖0K#iter ), where #iter is the number of itera-

tions of conjugate gradient descent to reach a given threshold of approximation error. Therefore,

the overall complexity of GeoMF++ at each iteration is O (‖R‖0K2 + (M + N )K3 + ‖Y‖0K#iter ). It

is worth noting that pu and q̂i could be updated by entry-wise coordinate descent [13], so that the

inverse of theK × K matrix could be avoided. Hence, based on entry-wise coordinate descent algo-

rithms, the time complexity of each iteration is O (‖R‖0K + (M + N )K2 + ‖Y‖0K#iter ), but it may

require more iterations for convergence. Besides, more importantly, there is no dependence on up-

dating latent factors among users and among locations given V fixed, so that parallel computing

techniques could be exploited for further speedup.

5.3 Recovering User Activity Areas

Since q̂i indeed captures the effect of its visit history and influential areas, the dependence of pu

on Q̃ = [q̃1, . . . , q̃N ] will lead to the dependence of pu on not only a user’s visited locations but

also all influential areas of a user’s visited locations. Hence, it is possible to recover user activity

areas xu from pu via the following sparse and nonnegative least squares problem:

min
xu

1

2
‖pu − VT xu ‖22 + β

∑
i

xu,i

subject to xu,i ≥ 0,∀li ∈ L.
(22)

Here we can still leverage projected gradient descent for learning user activity areas xu . One ex-

ample of user activity areas recovered from a user’s latent factors has been shown in Figure 9(d).

By comparing it with kernel density estimation in Figure 9(a) of this user’s visited locations, we

see that the recovered user activity areas are meaningful and reasonable to some extent. It is worth

mentioning that xu is not used for location recommendation anymore; thus, the efficiency of learn-

ing activity areas for all users doesn’t affect the training efficiency of GeoMF++.
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5.4 Connection with Other Models

We have shown the relationship of GeoMF++ with feature-based matrix factorization [1, 3], so that

location influential areas are actually considered as features of locations. In the following, we will

show its strong connection with other widely used algorithms for joint geographical modeling

and matrix factorization. Both of them take geographical influence into account by incorporating

distance between locations. However, distance has been required to convert similarity for further

use. In particular, according to [18, 30], the similarity si,i′ between locations li and li′ is usually

computed as follows:

si,i′ =

⎧⎪⎪⎨⎪⎪⎩e
−

d2
i,i′

4σ 2 , if di,i′ < ϵ
0, otherwise,

(23)

where di,i′ denotes the distance between them, and 4σ 2 is used instead of σ 2 for conveniently

establishing the connection. Note that because similarity decays exponentially with the increase

of squared distance, it sets a cutoff point ϵ to not take distant locations into account. Importantly,

this makes similarity matrix S = [si,i′] sparse, and thus reduces the time and space complexity of

any algorithm based on the similarity matrix.

5.4.1 Connection with Neighbor Additive Models. The first model estimates the preference ma-

trix R = [ru,i ] by r̂u,i = r̃u,i +
∑

i′ si,i′r̃u,i′ , where r̃u,i = pT
u qi . Hence, it is a hybrid model that com-

bines content-based filtering with collaborative filtering. Rewriting the estimated preference in a

matrix form, we have R̂ = P(Q + SQ)T , so that user preference for a location takes its neighbor

locations into account in a linear way. Hence, we call it the Neighbor Additive Models (NAM).

To establish the connection of GeoMF++ with NAM, we first derive a close relationship between

the similarity matrix S and the location influential area matrix Y, which could be stated in the

following theorem.

Theorem 5.1. Assume the influential areas are restricted within r = ϵ
2 from locations. If e−

ϵ 2

4σ 2 →
0, then yT

i yi′ → 1
2ΔA

si,i′ , where ΔA is the area of any grid 2.

Proof. If the distance between two locations is larger than ϵ , their influential areas don’t in-

tersect with each other, so yT
i yi′ = 0 = 1

2ΔA
si,i′ . Hence, the approximation is exact. Otherwise, the

dot product between them corresponds to the summation of yi, jyi′, j over any grid дj within the

intersection of their respective influential areas, as shown in Figure 4(a). Due to symmety, we split

it into four parts and focus on a upper right corner Ω:

yT
i yi′ =

2

ΔAπσ 2

∑
дj ∈Ω

e−
d2

i, j
+d2

i′, j

2σ 2 ΔA

≈ 2

ΔAπσ 2

�
Ω
e−

d2
i, j
+d2

i′, j

2σ 2 dxdy,

where the last approximation is based on assumption that ΔA is sufficiently small. Then we

transfer the Cartesian coordinate system to a polar coordinate system, which is established

at the middle of two locations as in Figure 4(a). Assuming grid lj located at angle θ , its

maximum distance from origin is ρ (θ ) =

√
4r 2−d2

i,i′ sin2 θ−di,i′ cos θ

2 , which is determined by using

2The grid size should be sufficiently small so that the density within one grid is almost the same.
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Fig. 4. (a) The illustration for proving Theorem 5.1. (b) The comparison of cosine similarity of influential area
vector between locations li and l ′i versus distance with si,i′ (Exp2). “Analytic” exploits numeric computation
of integral, while “Approx” directly uses the dot product of influential area vector. “LB” and “UB” correspond
to its lower bound and upper bound by changing the integral zone to the inner dot circle and outer dot circle.

ρ (θ )2 + (
di,i′

2 )2 + di,i′ρ (θ ) cosθ = r 2:

yT
i yi′ =

2

ΔAπσ 2

∫ π
2

0

dθ

∫ ρ (θ )

0

ρe−
2ρ2+

d2
i,i′
2

2σ 2 dρ

=
1

ΔAπ
e−

d2
i,i′

4σ 2

∫ π
2

0

dθ

∫ ρ (θ )

0

e−
ρ2

σ 2
1

σ 2
dρ2

=
1

ΔAπ
e−

d2
i,i′

4σ 2

∫ π
2

0

dθ

∫ ρ (θ )

0

e−
ρ2

σ 2
1

σ 2
dρ2

=
1

ΔAπ
e−

d2
i,i′

4σ 2

∫ π
2

0

(
1 − e−

ρ (θ )2

σ 2

)
dθ

=
1

ΔAπ
e−

d2
i,i′

4σ 2 	
π2 − e−
r 2

σ 2

∫ π
2

0

e−
α (θ )

4σ 2 dθ�� ,
where α (θ ) = d2

i,i′ cos 2θ − 2di,i′ cosθ
√

4r 2 − d2
i,i′ sin2 θ .

Since e−
r 2

σ 2 → 0, yT
i yi′ → 1

2ΔA
e−

d2
i,i′

4σ 2 = 1
2ΔA

si,i′ . �

From the theorem, it directly follows that
yT

i yi′
‖yi ‖2 ‖yi′ ‖2

→ si,i′ . In order to see how well the similar-

ity could be approximated, we compare them empirically using grids of size about 250m × 250m.

The empirical results in Figure 4(b) show that they are consistent with the theoretical results. If

we rewrite this theorem via matrices, we have

S ≈ 2ΔAYYT . (24)

This means that we can approximate the similarity S via location influential areas Y. Based on this

decomposition of S, we will show that GeoMF++ is strongly connected with NAM. In particular,

if we introduce a new matrix V = 2ΔAYT Q in the NAM, then Q̂
def
= Q + SQ = Q + YV, and the
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objective function of NAM becomes

min
P,Q̂,V

‖W◦ 1
2 � (R − PQ̂T )‖2F + γP ‖P‖2F + γQ ‖Q̂ − YV‖2F

subject to
(
YT Y +

1

2ΔA
IF

)
V = YT Q̂.

Note that the equality constraint is equivalent to minV ‖Q̂ − YV‖2F +
1

2ΔA
‖V‖2F . Therefore, if alter-

nating optimization is exploited after scalarizing this two-objective problem, that is, to update P, Q̂,
and V in turn in NAM, it is almost the same as GeoMF++ except that the regularization coefficient

of ‖V‖2F changes.

5.4.2 Connection with Graph Regularized Models. In graph regularized models, the similarity

matrix S is used for constructing a graph Laplacian regularizer, tr(Q′(D − S)Q) = 1
2

∑
i,i′ si,i′ ‖qi −

qi′ ‖22 , such that latent factors of more similar locations are closer to each other. Here D is a diago-

nal matrix, subject to di,i =
∑

i′ si,i′ . Therefore, extending WRMF, the graph Laplacian regularized

model, called GWMF, optimizes the following objective functions:

min
P,Q
‖W◦ 1

2 � (R − PQT )‖2F + γ (‖P‖2F + ‖Q‖
2
F ) + ξ tr(QT (D − S)Q). (25)

Setting the gradient with respect to qi to zero, we can derive the analytic solution for updating qi

when pu is fixed:

qi = (PT Wi P + (γ + ξdi,i )IK )−1 (PT Wi ri + ξQT si ). (26)

Recall that in GeoMF++, the updating formulation of V has a closed form, so that it can be sub-

stituted back to the updating formulation of q̂i . After applying the matrix inversion lemma, we

finally get

q̂i = (PT Wi P + γQ IK )−1 (PT Wi ri + γQ QT ŝi ),

where ŝi = (YYT +
η

γQ
IM )−1Yyi ≈ (S +

2ΔAη

γQ
IM )−1si , indicating Ŝ ≈ (S +

2ΔAη

γQ
IM )−1S. The rela-

tionship between S and Ŝ can be more clear by using eigenvalue decomposition of the real symmet-

ric similarity matrix S = UΛUT , where Λ is a diagonal matrix whose entries are the eigenvalues

of S, and U is an orthogonal matrix whose columns are the corresponding eigenvectors. Then

Ŝ = U(Λ + 2ΔAη

γQ
IM )−1ΛUT , and thus it just shrinks the eigenvalues to [0,1).

5.4.3 Connection with Collective Matrix Factorization. According to [38, 52], Y is considered a

location-feature matrix. Then collective matrix factorization for joint geographical modeling and

matrix factorization optimizes the following objective function:

min
P,Q,V

‖W◦ 1
2 � (R − PQT )‖2F + γ (‖P‖2F + ‖Q‖

2
F ) + γ1‖QVT − Y‖2F + γ2‖V‖2F , (27)

where V ∈ RF×K and thus QVT is considered low-rank factorization for the location-feature matrix

Y. Fixing all parameters except V, the optimal solution for V is

V = YT

(
QQT +

γ2

γ1
IN

)−1

Q, (28)

where the matrix inversion lemma has been applied for easy subsequent comparison. Compared

to Equation (21), the difference from GeoMF++ lies in how to perform normalization (shrinking

singular values). GeoMF++ is based on the location-feature matrix, making it less sensitive to its

preprocessing, while collective matrix factorization is based on the location latent matrix.
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Table 1. Data Statistics of Two Datasets after Preprocessing

Dataset #Check-ins #Users #Locations Density

Gowalla 3,487,258 72,953 131,328 1.75e-04

Jiepang 2,985,136 29,763 41,222 1.30e-03

6 EXPERIMENTS

6.1 Datasets

We evaluate the proposed algorithms on two location-based social network datasets. One is the

publicly available Gowalla dataset [6], which contains 6,423,854 check-ins at 1,280,969 locations

from 107,092 users, where each user has 60 check-ins and checks in at 37 locations on average. The

other one is a self-crawled Jiepang dataset, which contains 3,464,798 check-ins at 213,684 locations

from 55,650 users. This subset was first collected by crawling all Beijing POIs and then aggregating

all check-ins from users who have checked in at any of these Beijing locations. In this dataset, each

user made 62 check-ins on average, and these check-ins are dispersed at 16 locations on average.

In both datasets, we select locations that are visited by at least 10 users and users who have visited

at least 10 distinct locations. The statistics of these two datasets after preprocessing are shown in

Table 1.

6.2 Evaluation Framework

In the evaluation, we investigate the effectiveness and efficiency of the proposed algorithms for

incorporating geographical information. Following [42], we conduct evaluation from the perspec-

tives of in-matrix recommendation and out-of-matrix recommendation. The former task, corre-

sponding to a warm-start scenario, can be addressed by collaborative filtering techniques, while

the latter task corresponds to the well-known location cold-start problem in recommendation and

cannot resort to collaborative filtering.

In-matrix recommendation. In this evaluation, we use fivefold cross-validation. For each user,

we evenly split all his or her user-location pairs into five folds. We then iteratively consider each

fold to be a test set and aggregate the other folds to be a training set. For each fold, we train the

proposed models and baselines on the training set and test the generated top-p recommendations

against the within-fold locations for each user. We calculate recommendation performance of test-

ing within each fold and report average performance metrics.

Out-of-matrix recommendation. This evaluation, corresponding to location cold-start prob-

lems, considers the case where a new collection of locations appear and no user has ever visited

them. In this case, we evenly split all locations into five folds. For each fold of locations, we re-

move visiting history to them and train the recommendation algorithms on the remaining visiting

history. After that, we test the top-p recommendations for each user against within-fold locations.

We also calculate recommendation performance of testing within each fold and report average

performance metrics.

6.3 Evaluation Measures

The learned model is then assessed by its capacity of finding the ground-truth locations for each

user among the top-p recommended locations. We exploit Recall and NDCG at a cutoff p for mea-

suring such a capacity. Formally, we denote the top-p recommended locations by Su (p), the visited

locations of user au by Vu , and whether the recommendation at the position k is in the test set by

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 33. Publication date: March 2018.



GeoMF++: Scalable Location Recommendation via Joint Geographical Modeling 33:19

relu,k ,

Recall@p =
1

M

M∑
u=1

|Su (p) ∩ Vu |
|Vu |

NDCG@p =
1

M

M∑
u=1

DCGu @p

IDCGu @p
,

(29)

where DCGu @p =
∑p

k=1
2

r elu,k −1
log2 (k+1) and IDCGu @p is considered a normalization constant so that a

perfert ordering (i.e., ranking locations by relevance scores) getsNDCGu @p score 1 for the userau .

Compared to Recall, NDCG puts large emphasis on the top-ranked recommendation and is better

suited for assessing top-k recommendation performance. However, Recall, without discounting

ranking positions, also could be used for assessing the recommendation performance of long-tail

locations.

6.4 Parameter Settings

All these parameters are set by fivefold cross validation. wu,i = 1 + log(1 + cu,i × 10α ) accord-

ing to [15]. After searching α over {1, 10, 30, 50, 100, 500, 1,000, 5,000, 10,000}, α = 30 on the

Jiepang dataset and α = 1,000 on the Gowalla dataset. Note that when α >= 500, this func-

tion could not be accurately evaluated due to floating overflow, so we simply set wu,i =

α since it is almost not affected by visit frequency. The dimension of the latent space is

set as 150 for all factorization-based algorithms without exception after searching K over

{50, 100, 150, 200, 250, 300}. We also study the effect of latent space dimension K . We search γQ

over {1,000, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000}, and set them as 50,000 and 500,000

for the Jiepang dataset and for the Gowalla dataset, respectively. The γ in GeoMF and γP in Ge-

oMF++ is insensitive, and simply set as 0.01. λ in GeoMF is set as 10 on the Jiepang dataset and 50

on the Gowalla dataset. The spatial grids are of size about 250m × 250m and considered influential

areas of a location if they are within d = 1km. Since λ, grid size, and distance threshold have been

studied in the conference paper, we do not present more results about them.

6.5 Baselines

We have proposed GeoMF and GeoMF++3 for joint geographical modeling and matrix factoriza-

tion, and compare them with the following baselines:

• GWMF is the graph Laplacian regularized matrix factorization model, which has been in-

troduced in Section 5.4.2. The efficiency of graph Laplacian regularizer is searched over

{0.1, 0.5, 1, 5, 10}.
• WRMF [15] is weighted regularized matrix factorization, which doesn’t take geographical

modeling into account.

• IRenMF [30] is a state-of-the-art location recommendation algorithm according to [29] and

is considered a Neighbor Additive Model in Section 5.4.1. For fair comparison, locations

within 2km are considered similar in IRenMF since GeoMF++ takes influential areas within

1km as input. Other parameters are set as default values.

• UCF [46] has been studied in location recommendation, where the similarity between users

is related to the number of their common visited locations and the preference of a user for

a location is 0/1, indicating whether the user has visited the location. In other words, UCF

is built based on R.

3The source codes can be downloaded via https://github.com/DefuLian/recsys.git.
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Fig. 5. In-matrix evaluation results. Error bars are too small to show.

• HPF [12] is a hierarchical Poisson-based matrix factorization and extended from nonneg-

ative matrix factorization by additionally placing hierarchical gamma prior on user/item

factors. We use their source code in Github and follow the default settings for parameters.

• BPRMF [37], also proposed for recommendation from implicit feedback datasets, optimizes

a pairwise ranking objective function for learning latent factors. Its important parameters

including learning rate and regularized coefficients are tuned by fivefold cross-validation.

• PD [46], a state-of-the-art algorithm of estimating geographical influence according to [29],

assumes that the distance between any pair of visited locations satisfies power-law distri-

bution. PD is only compared in out-of-matrix recommendation to see the effectiveness of

the proposed algorithms for geographical modeling.

6.6 Results

6.6.1 In-Matrix Recommendation. The evaluation results of in-matrix recommendation are

shown in Figure 5, where we set K as 50 for GeoMF on the Jiepang dataset, according to the

trend of its performance with respect to the increase of K in Figure 6(a). From these four figures,

we have the following observations.

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 33. Publication date: March 2018.



GeoMF++: Scalable Location Recommendation via Joint Geographical Modeling 33:21

Fig. 6. Effect of latent space dimension and training data size.

First, GeoMF++ consistently outperforms GeoMF on both datasets in terms of both Recall

and NDCG. This may not only lie in the dimension reduction techniques to figure out the

semantic similarity of spatial grids but also in the usage of simple yet much more efficient

optimization algorithms. More importantly, the application of dimension reduction techniques

allows geographical modeling to be better aligned with matrix factorization, compared to GeoMF.

However, interestingly, as shown in Figure 6(a) and Figure 6(c), when K is small, GeoMF is still

better than GeoMF++. This may arise from a much larger dimension of augmented latent space

in GeoMF. With the increase of K , since more useful information can be captured, GeoMF++

gradually becomes better and better than GeoMF. Such an observation aligns with the fact that

GeoMF approaches and even surpasses GeoMF++ when more user-location interaction data are

used, as shown in Figure 6(b) and Figure 6(d). It is worth noting that on the Gowalla dataset,

with the increase of K , it is empirically better to decrease the γQ . One of the reasons is data

sparsity of the Gowalla dataset, so we need to put more emphasis on memorizing more interaction

history between users and locations when using a larger dimension of latent space. This point

is consistent with gradual improvement of recommendation performance of WRMF with the

increase of K on the Gowalla dataset. In contrast, due to the higher density of the Jiepang dataset,
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there is little improvement of recommendation performance with the increase of K, so that

GeoMF++ almost cannot benefit from lowering γQ when increasing K .

Second, GWMF could not perform as well as GeoMF and GeoMF++. Due to the coupling of

learning location latent factor, GWMF is sensitive to the order of updating. The commonly used

random order may make GWMF suboptimal. Besides, according to Figure 6(c), though the rec-

ommendation performance of both GWMF and WRMF improves with the increase of K, WRMF

becomes better than GWMF when K > 200. This may indicate that fixing the coefficient of the

graph Laplacian regularizer along the whole training process may also lead to the suboptimal so-

lutions. Besides, the same coefficient for the graph Laplacian regularizer among all locations also

may be suboptimal. In particular, when some locations have sufficient interaction data to deter-

mine their latent factors, its regularization coefficient should be smaller so that similar locations

take less effect.

Third, IRenMF also does not perform as well as GeoMF and GeoMF++, and does even worse

than GWMF. One of the important reasons is that the objective function is difficult to reduce

when applying the accelerated proximal gradient (APG) for updating latent factors of all locations

together, particularly when spatial similarity between locations is taken into account. This again

validates the effectiveness of the proposed alternative optimization algorithm.

Forth, GeoMF++ and GeoMF outperform WRMF, indicating the benefit of knowledge of geo-

graphical information. The superiority of GeoMF++ to GeoMF indicates its more powerful capacity

of geographical modeling within the matrix factorization framework. We have also tried to train

geographical modeling and matrix factorization separately in GeoMF; in spite of not reporting the

results, the recommendation performance is not as good as the joint approach in GeoMF. Hence,

this illustrates the necessity of joint geographical modeling and matrix factorization.

Fifth, user-based collaborative filtering (UCF) performs well compared to WRMF, in particular

for the sparser Gowalla dataset. Comparing it with the results from the Jiepang dataset, it can

be explained by that the sparser dataset requires a larger dimension of latent space for capturing

more useful user-location interaction information. This is in line with the improvement of WRMF’s

recommendation performance on the Gowalla dataset with the increase of K.

Finally, WRMF outperforms HPF, and the gap between them is much larger on the Gowalla

dataset. This is because HPF only models the observations, while the Gowalla dataset is much

sparser than the Jiepang dataset. In addition, WRMF is also better than BPRMF, though it ex-

ploits the ranking-based objective function and negative sampling techniques. In summary, WRMF

works better for collaborative filtering from implicit feedback datasets than the other forms of ma-

trix factorization. This provides evidence that GeoMF and GeoMF++ are designed based on WRMF.

6.6.2 Out-Matrix Recommendation. Although we have observed the superiority of GeoMF++

to GeoMF and other competing baselines in incorporating geographical modeling into matrix fac-

torization when we have user-location interaction histories, it is also interesting to investigate

their performance difference in the out-matrix recommendation scenario. The results of compar-

ison are shown in Figure 7, where IRenMF is not reported anymore since it does not perform as

well as GWMF in case of in-matrix recommendation. In this case, WRMF and other collaborative

filtering methods fail due to the lack of training data and predict users’ preference score for items

in a random way. Thus, the recommendation performance is close to zero in terms of Recall and

NDCG. Note that, although there is no overlap of locations in the training set with that in the

testing set, locations in the test set are still kept in the original user-location matrix. In this case,

GeoMF and GeoMF++ could learn latent factors for testing locations based on influential areas,

while GWMF could learn them based on similar locations. The results of comparison reveal the

following interesting observations.
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Fig. 7. Out-matrix evaluation results. Error bars are too small to show.

First, GeoMF++ can be better than GeoMF in the most cases when K = 150, particularly on the

denser Jiepang dataset. However, on the sparser Gowalla dataset, GeoMF is better than GeoMF++

in terms of NDCG with respect to the top-p recommendation when K = 150. The major reason

lies in its sparsity. The locations on the Gowalla dataset span over the whole America, so that its

geographical density is much lower than the Jiepang dataset. This leads to the necessity of a much

larger dimension of latent space for capturing more geographical information using dimension

reduction approaches, as shown by the comparison between GeoMF++(300) and GeoMF. Note

that GeoMF is not affected by the dimension of latent space, since only the geographical modeling

part in GeoMF takes effect.

Second, both GeoMF++ and GeoMF outperform GWMF in terms of both NDCG and Recall,

again verifying the superiority of the proposed framework for joint geographical modeling and

matrix factorization. Note that all regularization coefficients are simply set to the same values as in-

matrix recommendation. This is because in practice, it is not easy to collect a sufficient amount of

new locations in location-based services to construct validation sets for fine-tuning regularization

coefficients, in particular after running for a long time of service.

Finally, PD, as a state-of-the-art geographical modeling algorithm according to [29], doesn’t

perform as well as GeoMF++ on both datasets. The improvement is pretty large on the Jiepang
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Fig. 8. Efficiency study.

dataset, mainly due to much more densely distributed locations. However, on the Gowalla dataset,

whose locations are dispersed across all the of America, the performance gap between PD and

GeoMF++ is not large, and PD is better than GeoMF. This is mainly because GeoMF imposes spar-

sity constraints on user activity areas for the sake of efficiency, so that distant spatial grids are

not considered user activity areas. Hence, geographical influence of distant locations, which fall

outside user activity areas, is estimated as zero. As a result, GeoMF improves much less with the

increasing number of recommended locations. Due to the usage of dimension reduction for geo-

graphical modeling, GeoMF++ discards user activity areas and doesn’t need sparsity constraints, so

it is possible to recommend distant locations. This explains the superior performance of GeoMF++

to GeoMF for geographical modeling.

6.6.3 The Study of Efficiency. We have shown that the recommendation performance has been

significantly improved after resorting to dimension reduction techniques. In this section, we show

the comparison of training efficiency. As shown in Figure 8, by comparing GeoMF++ with GeoMF

on both datasets, dimension reduction techniques greatly reduce the running time of training.

Parallel computing achieves further speedup according to the comparison of pGeoMF++ with

GeoMF++. Although GeoMF could also be accelerated by parallel computing, according to the
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superior efficiency of GeoMF to GWMF in Figure 8(a) and Figure 8(b), in the Matlab environment,

it is easy to suffer from out-of-memory issues due to the necessity of replicating Y in multiple

processes. That leads to the failure of parallel computing on the Gowalla dataset due to the large

size of Y, so that GeoMF is not as efficient as GWMF when K is small. In spite of this, when re-

sorting to dimension reduction techniques, GeoMF++ becomes much more efficient than GWMF,

because GeoMF++ uses a much smaller size of the matrix Y instead of location spatial similarity

matrix S ≈ 2ΔAYYT . In spite of not reporting efficiency of IRenMF, it is easily presumed that it is

at most the same as that of GWMF since IRenMF also uses location similarity matrix S instead of

the matrix Y. Moreover, GWMF cannot leverage parallel computing techniques for acceleration

due to the coupling of updating among different locations. Finally, according to these figures,

the trend of running time with the increase of K and data size shows that GeoMF++ is pretty

scalable, aligning with the analysis of time complexity. However, GeoMF++, GeoMF, and GWMF

are almost invariant to the change of data size. This is because ‖R‖0 is far smaller than ‖Y‖0 on

both datasets, so that the running time is dominated by updating parameters that depend on Y.

6.6.4 Interpretability. As pointed out by [23], GeoMF is interpretable since its component-

GeoWLS subsumes two-dimensional kernel density estimation. However, since GeoMF++ exploits

dimension reduction approaches for the sake of efficiency, it is unclear whether user latent factor

indeed captures geographical information so that user activity areas can be accurately recovered.

To this end, we randomly pick one Beijing user who has made more than 100 check-ins, and plot

kernel density estimation of her visit history in Figure 9(a). The activity areas learned from Ge-

oWLS, GeoMF, and GeoMF++ are plotted in the other three figures in Figure 9, respectively. Here,

it is worth mentioning that for the sake of learning user activity robustly, the dimensionK of latent

space is set as 300. Compared to Figure 9(a), GeoWLS not only expands but also shrinks the areas of

KDE. Both GeoMF and GeoMF++ also show the expansion and shrinkage of the areas of KDE, but

their expansion is more but shrinkage is less, by comparing corresponding annotations in these

figures. The more expansion and the less shrinkage of user activity areas can help users discover

more potentially attractive locations, implying the benefit of the joint approach of geographical

modeling and matrix factorization. As representatives of joint geographical modeling and matrix

factorization, their derived user activity areas are almost around the areas of KDE yet difficult to

distinguish from each other. This implies that GeoMF++ can be as well interpreted as GeoMF, in

spite of recovering user activity areas from user latent factors. It is worth pointing out that Ge-

oMF++ recovers some new user activity areas (outside the map) to which the user has never paid

a visit before. This is the side effect of dimension reduction techniques in GeoMF++, but it may

also help users find out more potentially attractive locations.

6.7 Discussions

After resorting to dimension reduction techniques, GeoMF++ becomes a flexible framework,

so that it could make use of other location features. Though the Gowalla dataset doesn’t carry

content information, we can leverage the timestamps of visiting records to infer the category

according to [45]. Hence, we feed visiting time distribution over 1 to 24 hours (distinguishing

weekday from weekend) of each location as their features. However, the experimental results do

not show significant improvement of recommendation performance in terms of Recall and NDCG.

This is reasonable to some extent, since these features are even insufficiently discriminative for

classifying locations into 21 categories according to [45]. Fortunately, other metrics like AUC [37]

and MPR (mean percentile rank) [15] can improve on both datasets, indicating that it can still take

some effect. In the future, we can exploit richer information from locations and even from the user

side for further improvement. However, when multiple types of content information are taken
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Fig. 9. Activity areas of one Beijing user using different algorithms based on the Jiepang dataset.

into account, we should carefully deal with their heterogeneity for better recommendation perfor-

mance. Another interesting point is that, during searching regularization coefficients, we found

that the change of latent space dimension K may lead to the change of optimal regularization

coefficients. Therefore, it is necessary to develop automatic hyperparameter learning algorithms.

7 CONCLUSIONS

In this article, based on previously developed GeoMF, we propose a scalable and flexible frame-

work, dubbed GeoMF++, for joint geographical modeling and implicit feedback-based matrix fac-

torization. GeoMF++ improves the training efficiency of GeoMF by mapping location influential

areas into the same low-dimensional latent space as that formed by matrix factorization and also

improves the effectiveness of GeoMF since it leverages continuous latent factors to represent in-

fluential areas, so that it not only captures the semantic similarity between areas but also removes

redundant and noisy information. By establishing the relationship of location influential areas
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with the location spatial similarity matrix, GeoMF++ is strongly connected with neighbor ad-

ditive models and graph Laplacian regularized models as well as collective matrix factorization.

GeoMF provides good interpretability since it subsumes two-dimensional kernel density estima-

tion for geographical modeling, while GeoMF++ is still well explained by that the user activity

area can be recovered from user latent factors. The extensive evaluation on two large-scale LBSN

datasets reveals that (1) geographical modeling not only improves recommendation performance

in the warm-start scenario but also makes recommending cold-start locations possible, (2) both

GeoMF++ and GeoMF outperform several competing baselines in terms of NDCG and Recall on

both recommendation scenarios, and (3) GeoMF++ is the most efficient algorithm compared to

GeoMF and those baselines for joint geographical modeling and matrix factorization.
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