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Accurately recommending the next POI has become a fundamental problem with the rapid growth of location-
based social networks (LBSNs). However, sparse, imbalanced check-in data and diverse user check-in patterns
pose severe challenges for POI recommendation tasks. Knowledge-aware models are known to be primary in
leveraging these problems. However, as most knowledge graphs are constructed statically, sequential informa-
tion is yet integrated. In this work, we propose a meta-learned sequential-knowledge-aware recommender
(Meta-SKR), which utilizes sequential, spatio-temporal and social knowledge to recommend the next POI for
an LBSN user. The framework mainly contains four modules. First, in graph construction module, a novel
type of knowledge graph, sequential knowledge graph (SKG), which is sensitive to the check-in order of POIs,
is built to model users’ check-in patterns. To deal with the problem of data sparsity, a meta-learning module
based on latent embedding optimization is then introduced to generate user-conditioned parameters of the
subsequent sequential-knowledge-aware embedding module, where representation vectors of entities (nodes)
and relations (edges) are learned. In this embedding module, gated recurrent units are adapted to distill intra-
and inter-SKG sequential information. We also design a novel knowledge-aware attention mechanism to
capture information surrounding a given node. Finally, POI recommendation is provided by inferring potential
links of knowledge graphs in the prediction module. Evaluations on three real-world check-in datasets show
that Meta-SKR can achieve high recommendation accuracy even with sparse data.
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1 INTRODUCTION
Proliferation of GPS enabled devices and location based social networks (LBSNs) has promoted
users to check-in at points of interest (POIs) so as to keep mementos and share life experience
with friends. One of the most fundamental techniques maintaining LBSNs is POI recommendation,
which assist users’ decision making when they face huge volumes of information. For example, a
travel recommendation system can help a user arrange trips and discover next places to visit based
on her own preference.

As an important feature, people’s mobile behavioral patterns can be significantly influenced by
their own historical experiences [7, 20, 29, 44, 48, 50]. As a consequence, POI recommendation based
on historical spatio-temporal data has proven to be effective. Traditionally, LRT [10] incorporates
temporal feature as one of the properties of user behavior in LBSNs. It models users’ check-in
temporal patternsweekly/monthly/yearly with check-in matrix C(t ) and then implements matrix
factorization to learn user and POI representation vectors, in which user vectors are of time slots.
More recently, machine learning methods have POI recommendation accuracy greatly increased.
To capture temporal patterns of user preference, [17, 19, 44, 50] jointly learn users’ long- and
short-term preferences via attention mechanism for next POI recommendation with sequential and
contextual information considered. ST-RNN [18] models local temporal and spatial contexts with
recurrent neural networks (RNNs), where there are time-specific transition matrices for different
time intervals and distance-specific transition matrices for different geographical distances in
each layer. DeepMove [7] learns user preference using recurrent neural networks for historical
sequence and short-term current sequence. [48] profiles the temporal popularity of POIs and then
incorporates the degree of temporal matching between users and POIs into personalized POI
recommendations. [54] hierarchically learns user’s check-in patterns with state-based stacked
RNNs. Despite superior results those models get, massive training data is required to obtain such a
performance, which is probably inaccessible for the majority of LBSNs in real practice.

The recent advances in meta-learning has made it prevalent in instantiating a model with limited
training data [3, 9, 23, 30, 47]. Meta-learned predictions based on sequential data has proven to be
effective in domains including traffic forecasting [28, 47], taxi demand prediction [28], resource
quality prediction [47], on-line item recommendation of E-commerce [6] and so forth. However,
there have been several differences between above tasks and POI recommendation, which make it
hard to implement those approaches directly. 1) Temporally imbalanced data. In problem settings
such as traffic prediction, it is easier to obtain continuous temporal sequences, while in LBSNs,
people’s check-ins are discrete and unevenly distributed, which makes it rather unpredictable. For
example, a user may create extensive check-in records during national holidays while rarely visit
POIs on work days. 2) Complex interactions. Sequential relation is the primarily consideration
of those tasks. However, given the explicit and potential interactions between users and/or POIs, in
the task of POI recommendation, side information in LBSNs is also of great significance.

In this paper, to tackle the above challenges, we take two special considerations:

• Sequential knowledge. Interactions between users and/or POIs can be utilized to give
accurate recommendations. [24] These interactions are hidden in spatial, temporal and
social context of LBSNs. There have been works taking advantage of knowledge graphs
to build context-aware recommender [27, 29, 32, 35, 51]. However, most of them ignore
sequential information, which might lead to the problem of either forgetting past experience
or “over recommendation". For example, a well trained model that has accurately learned
the preference of a user might continuously recommend the same type of POI to her, which
is definitely an unpleasant experience. Thus, it is desirable to incorporate user’s sequential
check-in behaviors when building such a knowledge-aware recommender.
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• Sparse data with large number of null intervals. Predicting user behavior from limited
and sparse data is one of the fundamental research problems in POI recommendation. To
remedy the problem of data sparsity, some works ignore the exact physical time of check-in
and deal with sequential pattern merely. However, this practice spoils the check-in patterns
hidden in “null intervals", which refers to the intervals in a check-in graph when user does
not make any check-in. Consider a scenario where two users have visited the same POIs
during a certain period of time, while the first has regular check-in patterns (e.g. everyday)
while the other finished all the check-ins in a few days but stays off-line for the rest of the
time. Apparently the recommender should not make the same recommendations to them
though they share the same check-in sequence. A recommender should be able to capture
the difference between the two users. Therefore, a model that is adaptive to various check-in
habits on sparse data is required.

In this work, we propose ameta learning framework, namedMeta-learned Sequential-knowledge-
awareRecommender (Meta-SKR) for next POI recommendation.We deal with the first consideration
by constructing sequential knowledge graphs (SKGs) from users’ check-in sequences, which is
a novel type of knowledge graph that jointly models sequential, geographical, temporal and so-
cial information. Specifically, we take users and POIs as entities (nodes) and link them with five
types of relations (edges) that capture check-in features hidden in POI visiting orders and null
check-in intervals. Each SKG is constructed on the basis of the check-in order a user made and
thus sequential information can be integrated and users’ dynamic and evolving preferences can be
distilled. Regarding the second consideration, to fast learn from sparse training data, we introduce
a meta-learner that can generate user-specific parameters based on the input check-in sequence,
which are then used in subsequent embedding network to learn representation vectors of entities
and edges of SKGs. Finally, the task of POI recommendation can be accomplished by predicting
links between user and POI nodes.

Our contributions are summarized as follows:
• We propose a novel meta-learned framework that leverages both fine-granularity sequential
patterns and spatial-temporal-social context information for POI recommendation. To the best
of our knowledge, this is the first work to jointly model these factors into a shared knowledge
graph and adopt meta-learning to address the challenges of user behavior modeling and data
sparsity in POI recommendation tasks.
• To learn representations vectors of users and POIs from sequential knowledge graphs, we
develop an attention-based graph embedding method that first extracts intra- and inter-SKG
information for a node and then propagates the information to the node with edge directions
considered.
• We conduct extensive experiments on three public real-world check-in datasets to evaluate
the performance of our model. The favorable results verify our expectation that the proposed
framework can reach a high accuracy even with sparse data.

2 PRELIMINARIES
In this section, we briefly introduce a set of preliminary concepts in the context of spatio-temporal
social-based knowledge graph, and then give an overview of our framework.

2.1 Definitions and Notations
Definition 1. Check-in Seqence. Each check-in c includes user ID u, POI ID pc , check-in

time τc and check-in location in terms of (latitude, longitude). Given the overall check-in sequence
of user u, i.e. Cu = [c1, c2, ..., cn], where the check-ins are ordered in time, a set of subsequences,
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Table 1. Summary of Notations.

Notation Description

c A check-in.
u,U A user and a set of users.
p, P A POI and a set of POIs.
s,S A check-in sequence and a set of sequences.
e, E An entity and a set of entities.
r ,R A relation and a set of relations.

G,G
A sequential knowledge graph (SKG) and a
set of sequential knowledge graphs.

t = (ei , rk , ej )
A triple with head entity ei , tail entity ej and relation rk
of a knowledge graph.

Mtr ,Mval ,Mts The meta-training, meta-validation, meta-test set.
(Dtr , Dts ) A meta learning task, composed of training set and test set.

τ A time instance.
lp The location of POI p.

d+/−i The out/in degree of node i .
Ni The set of neighbors of node i .
λ The length of a check-in sequence s
T The number of SKGs in Dtr .
h The representation vector of an entity.
g The representation vector of a relation.
x The representation vector of a triple.
Θ General notation for parameters in SKR network.
ŷt The estimated probability of triple t being valid in a knowledge graph.

Su = {s1, ..., sm}, can be built by continuously sampling λ-length subsequences from Cu with stride r ,
i.e. si = [ci1, ci2, ..., ciλ].

Definition 2. Seqential KnowledgeGraph (SKG).Given a sequence si , a sequential knowledge
graph (SKG) denoted as Gi = (E,R) can be constructed by generating triples that retrieving certain
check-in patterns in si , where E is the set of entities (nodes) and R is the set of relations (edges). A
triple in a SKG can be denoted as t = (ei , rk , ej ), which describes entities ei and ej are connected by
relation rk . The set containing all SKGs that constructed from Su is denoted as Gu = {G1, ...,Gm}.

Table 1 summarizes the major notations of this paper.

2.2 Problem Statement
Before mathematically defining the problem, we first introduce the meta training paradigm used
in this paper, which is based on the mainstream episodic formulation [40]. Suppose we have a
group of users and their check-in history, we split each user’s check-in data into meta-training
setMtr

u , meta-validation setMval
u and meta-test setMts

u , for model training, selection and final
test respectively. Each task sampled from the meta set has two components: Dtr and Dts . Dtr is
composed ofT successive check-in sequences and is used for user-specific parameter generation, i.e.
Dtr = {si1, ..., siT }. Dts , a randomly chosen sequence with Dtr ∩ Dts = ∅, is used for evaluating
the generated parameters and making predictions.
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Fig. 1. Overview of Meta-SKR. In the meta-embedding network, for limited space, only data-flow of GT is
fully depicted, while the same flow exists in all SKGs.

Given a set of users U = {u1, ...,un} and their check-in sequences {S1, ...,Sn}, we aim to
recommend the next POI that might be visited by ui after her most recent check-in sequence srui in
the meta-test set, i.e.

tnextui = argmax
tnextui

f (tnextui |s
r
ui ,дΘ),

where tnextui is the next check-in of ui in the form of triple, which consists of two entities (the user
and a POI that is going to be visited) and a relation (a specific check-in pattern), f denotes meta-SKR
that computes the probability of whether tnextui is a valid triple, дΘ denotes the the initialized model
with parameters adapted from Dtr of the task.

2.3 Framework Overview
As illustrated in Fig. 1, the proposedMeta-SKR contains four modules. 1) TheGraphConstruction
Module. In this module, to distill sequential, geographical, temporal and social information from
user check-in history and model user check-in patterns, we design a novel type of knowledge graphs
named sequential knowledge graphs (SKGs). The triples of SKGs are construed sequentially based
on check-in sequences. Five types of relations are built to extract certain check-in patterns. 2) The
Meta-learner. We sample tasks in the form of (Dtr , Dts ) from SKGs of each user, which are then
taken as inputs of the meta-learner, where user-dependent latent representations of parameters
in subsequent meta-embedding module are learned. Gradient-based adaptation is performed in
the latent space with training loss (the red flow). The meta-learner is optimized based on test loss
(the blue flow). 3) The Meta-embedding Module. In this module, nodes and edges embeddings
are obtained. Intra- and inter-SKG sequential correlations are captured by adapting GRUs, and
then graph attention networks (GATs) that use triple head/tail-dependent connection matrix to
incorporate context-aware edges in the nodes’ neighborhood. 4) The Link Prediction Module.
At last, we make recommendations on users’ next POIs by computing the probability of whether
potential triples are valid using ConvE [5], where a multi-layer convolutional network is adopted.
The four modules can be categorized into two parts: the base model, SKR, which is composed of
the Graph Construction Module, Meta-embedding Module and Link Prediction Module, and the
meta learner.

3 PROPOSED METHOD
In this section, we describe the framework of Meta-learned Sequential-knowledge-aware Recom-
mender (Meta-SKR) for POI recommendation. The section is organized as follows. In subsection 3.1,
we introduce the algorithm for graph triple generation, where sequential, spatio-temporal and social
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Fig. 2. Sequential knowledge graph: a running example (better viewed in color). In this example, the user u0
(triangle) checked-in at p0 → p1 → p2 → ... sequentially, while her friend f0 (brown rectangle) checked-in
at p2 ahead of her. For simplicity, only edges related to the toy checkin sequence sample p0 → p1 → p2 are
labeled with weights, while for others only direction and edge type are illustrated. Weights of edges need to
be normalized within edges of the same type.

relations are explored to generate triples from check-in sequence set S. In subsequent subsection
3.2, an embedding network is designed to learn representations of users and POIs, followed by a
discussion on how to make POI recommendations by inferring potential links in subsection 3.3. In
subsection 3.4, we provide a description of the meta-learning strategy for advanced adaption of
user-specific model parameters of the embedding network discussed in subsection 3.2.

3.1 Sequential-knowledge Graph Construction
For a given user u and one of her check-in sequence s = {c1, ..., cλ}, a sequential knowledge graph
(SKG) can be constructed with the following entities and relations.

3.1.1 Entities of SKG. There are three kinds of entities in SKG:
• User. It represents the user who creates the current check-in sequence, denoted as u.
• POI. It represents a specific POI, denoted as pi .
• Friend. It represents a friend of u, denoted as fi .

There is friend entity in SKG, if existing check-in cfi in one of the friend’s check-in sequences sfi
such that:

i. pcfi = pcu ,
ii. τcfi ≺ τcu ,

where pcfi denotes POI ID of check-in cfi . The intuition of above friend-based entity conditions is
that the user and her friend check-in at the same location but the check-in time of her friend is
earlier.

The reasons for leveraging this kind of interaction are twofold. First, people, especially friends,
who check-in at similar POIs have greater similarities. Second, there is potential possibility that
user visited the location is because a friend, who had been there before, explicitly or implicitly
recommend it to her. By this way, we could make sure that the social effect imposed by friends
sharing similar check-in behavior is incorporated in SKGs.

3.1.2 Relations of SKG. Five types of relations can be defined as follows. Note that all edge weights
are normalized within their edge types.
• Temporal Seqential-check-in. If the time-interval between two successive check-ins in su
is no longer than ∆τ , then nodes of the two corresponding POIs can be linked by a temporal
sequential-check-in edge, which is denoted as rt , directed from the earlier check-in POI to
the later one. The weight of rt is defined as the time-interval between the two check-ins.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.



Sequential-knowledge-aware Next POI Recommendation:
A Meta-learning Approach 1:7

Algorithm 1: Sequential Knowledge Graph (SKG) Construction
Input: Check-in sequence s = {c1, ..., cλ} of user u, F , P , ∆s , ∆t .
Output: A SKG in the form of ordered triples: {t1, ..., tm}.
Initialize SKG set Gs={ };
pprev ← the POI in check-in c1;
for c in s do

SizeGs = |Gs |;
for r in {rt , rs } do

if corresponding conditions could be satisfied then
Gs ← ((p

prev , r ,pc ),weiдht) ∪ Gs
end

end
if friend-visited check-in condition could be satisfied then

find the closest satisfied check-in record from friend f ;
Gs ← ((u, rf , f ),weiдht) ∪ Gs ;
Gs ← ((f , rv ,p

c ),weiдht) ∪ Gs
end
if SizeGs == |Gs | then

Gs ← ((u, rd ,p
c ),weiдht) ∪ Gs

end
end

• Spatial Seqential-check-in. If the distance of two successive check-in records in su is
no farther than ∆d , then nodes of the two corresponding POIs can be linked by a spatial
sequential-check-in edge, which is denoted as rs , directed from the temporally checked-in
earlier POI to the later one. The weight of rs is defined as the Euclidean distance between the
two POIs.
• Friend Visited. If a friend visited a POI earlier than the user with friend-based entity
conditions satisfied, then the friend node and the POI node can be linked by a friend visited
edge, denoted as rv , directed from the friend node to POI node. The weight of rv is defined
as the frequency the friend visited the POI in her check-in history.
• Friendship. The friendship relation exists between the user and her friend, denoted as rf , if
friend-based entity conditions can be satisfied by certain check-in (s) of the friend. The edge
is directed from the user to the friend. Weight of the edge is defined as:

γ
|Fu ∩ Ffi |

|Fu ∪ Ffi |
+ (1 − γ )

|Pu ∩ Pfi |

|Pu ∪ Pfi |
,

where Fu , Pu and Ffi , Pfi are the friend set and POI set of user u and her friend fi respectively,
γ is a manually set parameter for the trade off between the two factors.
Friend visited and friendship relations (edges) always co-exist. In other words, if there is a
POI, user and friend satisfying friend-based entity conditions, a friendship edge and a friend
visited edge will be added to connect the three entities (nodes).
• Direct Check-in. For a given check-in, if all above relations can not be established, then
a direct check-in edge will be built between the user and the POI, denoted as rd , directed
from the user to the POI. It represents an independent check-in. Edge weight is defined as
the frequency the user visiting the POI in sequence s .
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With the above defined entities and relations, we can now construct an SKG for the sequence s
by sequentially traversing s , as described in Algorithm 1. For each check-in, we first try to construct
the first four relations, if none of the four relations’ conditions could be satisfied, a direct check-in
relation will be added to the graph.
An example describing elements in a SKG is demonstrated in Fig. 2. Note that all edges are

directed, from head entity eh to tail entity et .
There are various advantages for constructing such sequential knowledge graphs. First, there

can be multiple edges containing comprehensive information between two nodes since that triples
are constructed sequentially in the order of check-ins. Second, information for why a triple is
constructed (the relation) and how strong the connection is (the weight) are included in SKGs as
well. Moreover, by defining rt , rs , rv , rf , rd , null values in the check-in data can be translated into
relations of SKGs, and is thus expected to provide more insights of user check-in behaviors.

3.2 Sequential Knowledge-aware Embedding
With SKGs obtained, we now discuss how to learn representation vectors for entities and relations.

Graph attention networks (GATs) [39] are extensions of graph convolutional networks (GCNs)
[15], which learn to assign varying importances to a given node’s neighbors rather than treat all
neighboring nodes equally.

However, in KGs, entities play different roles depending on the relations they are associated with
[25]. Though advanced in correlation modeling, GATs ignore context information in edges. To this
end, Nathani et al. proposed an extension of GAT that incorporates relation and neighboring node
features with attention mechanism [25]. This idea forms the basis of the embedding network we
propose for sequential knowledge-aware recommender.

3.2.1 Intra- and Inter-SKG Memory Modeling. Inspired by [25], the representation of a triple
tki j = (ei , rk , ej ), denoted as xi jk , can be calculated as linear transformation of the concatenation of
its components’ representation vectors, i.e.

xi jk =W1[hi ∥hj ∥gk ], (1)

where hi and hj are embeddings of ei and ej respectively and gk denotes the representation vector
of rk , hi , hj , gk ∈ Rκ andW1 ∈ R

κ×3κ . Thus, with constructed SKGs, which can be treated as series
of triples, we take the transformed representation vectors of triples as inputs of the embedding
network.

Temporal correlation is an important factor affecting people’s check-in behaviors. The order of
check-in implies a user’s check-in pattern and more recent items in a sequence may have larger
impact on the next item [37]. However, to the best of our knowledge, very few knowledge-aware
POI recommendation models take temporal correlations into account. To leverage information
hidden in check-in orders, we model intra-SKG (sequence) and inter-SKG (sequence of sequences)
memories with gated recurrent units (GRUs) [4].
GRUs have proven to be effective in processing sequential data because of the structure of

update gates, denoted as a, and reset gates, denoted as r , which can effectively control information
pipelines. We here adopt a standard GRU unit. Formally, for each current evaluated SKG Gi , the
embedding update formulas can be written as:
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Fig. 3. The connection matrix of SKG in Fig. 2. The connection matrix describes the role each node playing in
all triples. Taking entry (u0, t0) as an example, its value 0.23/6 is resulted from: 1) u0 is the head node of triple
t0; 2) the weight of the corresponding edge is 0.23 and the out degree of u0 is 6.

aτ = σ (Wavτ−1 + Uaxτ + ba),
rτ = σ (Wrvτ−1 + Urxτ + br ),
v̂τ = tanh(Wv (rτ ⊙ vτ−1) + Uvxτ + bv ),
vτ = (1 − aτ ) ⊙ vτ−1 + aτ ⊙ v̂τ ,

(2)

where xτ is the initial embedding of the τ th triple in Gi , τ ∈ [0, |R |], Wϵ , Uϵ , ϵ ∈ {a, r ,v} are
learnable parameters, bϵ , ϵ ∈ {a, r ,v} are bias of the function, σ (·) is the sigmoid function and ⊙ is
the Hadamard product.

As discussed in Section 2, in each training set there areT SKGs, it is desirable and doable to make
use of past experience for embedding learning of the current SKG. To capture long term correlations
between SKGs and eliminate the problem of catastrophic forgetting in continual meta-learning tasks
[23], we feed the embedding network with hidden state embedded in historical graphs. Therefore,
the specific description of vτ can be written as follows. Note that the notation i has been omit in
previous equations, which denotes the current graph (the i-th) we modeled.

viτ =


vi−1
|Gi−1 |

i , 1, τ = 1;
0, i = 1, τ = 1;
calculated recursively, otherwise.

(3)

where vi−1
|Gi−1 |

denotes the last hidden state of previous SKG. Then the hidden state vτ is taken as
the updated embedding of xτ .

3.2.2 Entity Embeddings Update. We propose an attention-based approach with graph neural
networks (GNNs) to propagate information from triples to nodes, considering the role (head/tail)
the node playing in triples. It is worth to mention that our approach shares some similarities
with [43], where the in- and out-flowing features of a node’s neighbors are modeled. However,
connections in [43] are between homogeneous nodes, while in our problem setting, triple is the
minimum operable unit. Therefore, their approach can not be directly adopted. To fit the natural
instinct of SKGs, we adapt incidence matrix to model the connection between entities and triples.
Moreover, in SKGs, an entity can be of different meanings given it is the head or tail in a triple.
For example, a temporal sequential-check-in from POI A, a hot-pot restaurant in Chengdu, China
to POI B, a bubble-tea shop would be less unusual if inversed. Thus, it is problematic to use a
global representation of triples as [43] deals with nodes when propagating informations from a
nodes’ neighbors. To deal with this problem, we apply a linear transformation layer to expand the
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representation vector of a triple into head and tail partitions. Mathematically, the approach can be
described with the following formulas:

xhead/tailτ =Whead/tail
2 xTτ , (4)

whereWhead
2 ,Wtail

2 ∈ Rκ×κ are the head- and tail-related triple transformation matrices and the
calculated xheadτ , xtailτ are taken as outgoing and incoming representation vectors of the τ th triple
respectively.
Obtaining outgoing and incoming latent vectors of each triple, we get the absolute value of

attention of a triple from the following formula:

αhead/tailτ = LeakyReLU (W3x
head/tail
τ ), (5)

whereW3 ∈ R
1×κ is the shared weight matrix. Thus, the absolute graph attention for entity ei over

all triples can be described as:

β ′i : = As ,i : ⊙ [(α
head
1 , ...αheadτ , ...,αhead

|R |
)| |(α tail1 , ...α tailτ , ...,α tail

|R |
)], (6)

where As ∈ R
|E |×2 |R | is the connection matrix that describes incoming and outgoing neighbors

of the unique entity set E of the evaluated SKG, |2R| is two times of the number of triples in
the SKG, As ,i : is the specific row corresponding to entity ei . As is defined as the concatenation of
two weighted incidence matrices Ahead

s and Atail
s , which represent connections of outgoing and

incoming edges in the SKG respectively and are calculated as:

Ahead/tail
s ,i j = wi j

1
d+/−i

, (7)

where wi j is the weight of edge between entity ei and ej , and d+/−i denotes the out/in degree of
entity ei . For example, in the running example of Fig. 2, As can be calculated as shown in Fig. 3,
where t0, t1, t2, t3 are the first four generated triples as marked in Fig. 2.

Softmax is then applied over β ′i : to get the relative attention values between a head (tail) entity
and its tail (head) neighbors, i.e.,

βi j = so f tmax j (β
′
i j ) =

exp(β
′

i j )∑2 |R |
k=1 exp(β

′

ik )
. (8)

Multi-head attention is first implemented by Valičković et al. [39] to stabilize the learning
process and encapsulate more information of the neighbor. Inspired by [25, 39], we also adopt M
independent attention layers to calculate the embeddings and then they are concatenated by the
following formula:

h
′

i = ∥
M
m=1σ (

2 |R |∑
k=1

βmikx
m
k ), (9)

where ∥ denotes concatenation operation.
Multiple layers can be stacked to propagate information from a node’s higher level neighbors. In

the final layer, instead of concatenating output of different layers, we take the average of M layers
to get the final embedding.
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3.2.3 Edge Embeddings Update. Relations are far less complex than entities. For simplicity, linear
transformation is then performed on relation embedding matrix GR , where GR = [g1 | |g2 | |...| |gn]
and n is the number of relation types, to get further representation of relations in a similar fashion
with [25], i.e.

G
′

R = GRWR, (10)
where WR is a parameterized transformation matrix.

3.3 Recommendation Based on Knowledge Inference
Thus far we have obtained the embeddings of entities and relations.We thenmake recommendations
by scoring potential triples using a link predictor. Given a triple t = (ei , rk , ej ), where rk is one of
the possible check-in relation that the head entity ei can generate, we predict the probability a
user would take a specific POI as her next destination using the state-of-the-art relation inference
method ConvE [5]. The scoring function is defined as:

ŷt ,next = f (t) = f (vec(f [hi ; gk ] ∗ Ω)W4) ◦ hj , (11)

where hi and gk are 2D reshaping of hi and gk , * represents convolution operator. Accordingly to
[5], the model first reshapes hi and gk ∈ Rκ into hi , gk ∈ Rκw×κh , where κw × κh = κ. Then the
reshaped matrices are taken as inputs for 2D convolutional layer with filter Ω. The output tensors
is then subsequently reshaped into a vector vec() and be linearly transformed byW4 ∈ R

|vec |×κ .
The returned vector of κ dimension is then used to compute the dot product, which is denoted by
◦, with tail entity embedding vector hj .
Parameters can be learned by minimizing the following binary cross entropy loss:

Lr ec = −

n∑
i

yit ,next loд(σ (ŷ
i
t ,next )) + (1 − y

i
t ,next )loд(1 − σ (ŷ

i
t ,next )), (12)

where yit ,next is the ground-truth value of whether triple t is valid, which is 1 if t is in the generated
triple set of the user’s next check-in, 0 otherwise, and σ (·) denotes the sigmoid function.

The link predictor serves as a decoder of the encoded embeddings. Besides ConvE [5], there can
be other implementations for this module, such as ConvKB [26] and so forth.

3.4 The Meta-learner
In the scenario of POI recommendation, it usually does not have massive data of users that could
be used for training due to check-in sparsity. It is desirable to design a model that could fast
learn with limited data. Additionally, people having different sequential check-in patterns may
require different parameterized models for next check-in prediction. To this end, in this section, we
present a meta-learner adapted from LEO [30], which automatically adjusts model weights of the
embedding network of SKR by users instead of making predictions of all users’ next check-ins with
unified model weights.
As one of the state-of-the-art works on optimization-based meta-learning, LEO [30] proves

that latent embedding optimization is beneficial to decouple optimization-based meta-learning
techniques from high dimensional space of model parameters. We extend LEO for the problem of
POI recommendation for that it is straightforward to feed embeddings of SKR to LEO and LEO can
be extended to fit the graph-structured of SKGs.
The meta-learning approach is developed as a two-stage process. In the first stage, named

the "inner loop", the meta-learner generates parameterized weights to its subsequent embedding
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network of SKR and then update the weights based on the returned loss after training data passing
through the initialized embedding network. After several iterations in "inner loop". The optimized
SKR is believed to be fitted to the training data. In the subsequent stage, which is called "outer loop",
we then use test data to evaluate the generated embedding network and then make predictions,
and the returned loss will be used to update parameters of the meta-learner itself.

3.4.1 Generate Parameters—Optimization on Training Set (the "inner loop"). Letu represent a specific
user, we encode user-specific latent vector zu from embeddings of SKGs as:

µeu,σ
e
u =

1
T

∑
Gk ∈D

tr
u

1∑
i ∈EGk

di

∑
i ∈EGk

∑
j ∈Ni

∑
k ∈Ri j

дϕr (дϕe (hi),дϕe (hj),дϕe (gk)),

zu ∼ q(zu |Dtr
u ) = N(µ

e
u ,diaд(σ

e
u
2
)),

(13)

where T is the number of SKGs inDtr
u ,di denotes the degree of node i ,Ni denotes the neighborhood

of entity ei , Ri denotes the set of relations connecting entity ei and ej , дϕe ,дϕr are encoder network
and relation network respectively that are used to obtain data-dependent multivariate Gaussian
distribution with a diagonal covariance N ∼ (µeu,σ e

u), where e denotes encoder. zu can then be
sampled from the obtained distribution. As a common practice, we adopt re-parameterization trick
to deal with the undifferentiable problem of sampling operation.
As the embedding network has multiple parameters to learn, it is unreasonable to define a

single decoder and expect that it could fit all parameters. Thus, in a similar fashion to [28], after
obtaining the latent vector zu of a user, we then generate Gaussian distribution of parameters via
parameter-specific decoders. For a given parameter θ , the decoding formulas are:

µdn,θ ,σ
d
n,θ = д

θ
ϕd
(zn),

ωθ
n ∼ p(ω

θ |zn) =N(µdn,θ ,diaд(σ
d
n,θ

2
)),

(14)

where дθϕd is the decoder, ωθ
n represents sampled user-specific weights of parameter θ , e.g.Wa

in Equation 2, and d denotes the decoder.
The decoded parameters are taken as user-specific temporal model weights of SKR, using which

we update triples, node and edge embeddings according to Equation 1-10. We define the "inner
loop" training objective function using hinge loss:

Ltru (дΘu ) =
∑
ti j ∈T

∑
t ′i j ∈T

′

max{lti j − lt ′i j
+ ζ , 0}, (15)

where lti j is the L1-norm dissimilarity measure given by lti j = | |hi + gk − hj | |, ζ > 0 is a marginal
hyper-parameter, T is the valid triple set and T ′ is a set of randomly sampled invalid triples. Then,
latent representation zu can be updated with

zu
′

= zu − η ▽zu L
tr
u (дΘu ), (16)

where η is the learning rate. We adopt the architectures of encoder, decoder and relation net-
works similar as presented in [30]. The "inner loop" runs multiple times and finally reaches a new
embedding network of SKR, д′Θu .

3.4.2 Meta-learning Strategy—Optimization on Test Set (the "outer loop"). Parameters of the meta-
learner hold through the optimization process in the "inner loop". We now discuss how to evaluate
the parameter generating performance of the meta-learner. According to LEO [30], with a goal of

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.



Sequential-knowledge-aware Next POI Recommendation:
A Meta-learning Approach 1:13

Algorithm 2: Framework of Meta-SKR.
Input: SKGs of users Gu , u ∈ U ; hyper parameters T, γ1, γ2, η, ζ .
Output: Topk recommended POIs.
Randomly initialize ϕe , ϕr , ϕd , hidden state of GRU;
Compute connection matrix A;
while not converged do

Sample a batch of users from U ;
for user u in batch do

Sample task instances (Dtr
u , Dts

u ) fromMtr
u ;

Encode Dtr
u to zu ;

Decode zu to Θu ;
z
′

u ← zu , Θ
′

u ← Θu ;
/*Compute user specific parameters based on Dtr

u .*/;
for number of adaption iterations do

Feed the SKR with Dtr
u ;

Update node and relation embeddings with Equation 9 and Equation 10;
Compute training loss Ltru (дΘu );
Update Θu performing gradient steps w.r.t. Equation 16 to obtain z

′

u ;
Decode z′u to Θ

′

u ;
end
/*Make predictions based on Dts

u */;
Feed the network with Dts

u and compute test loss Ltsu ;
Make predictions with Dts

u ;
Compute recommendation loss Lr ec ;

end
Update ϕe , ϕr , ϕd and the link prediction module by gradient descend;
/* We ignore the validation process in this pseudo code */;

end
for user u in U do

Sample task instances (Dtr
u , Dts

u ) fromMtest ;
Encode Dtr

u to zu and then decode zu to Θu ;
Make predictions with Dts

u ;
end

fast adapting to new data, given a test set Dtr of user u, the optimization strategy of meta-learner
can be defined as follows:

min
ϕe ,ϕr ,ϕ

θ1 . . .,θm
d ,

Ltsu (д
′

Θu
) + γ1DKL(q(zu | |Dtr ),p(zu)) + γ2 | |stopдrad(zu

′

) − zu | |22 + R, (17)

where p(zu) = N(0,I), DKL(·) denotes the KL divergence, stopдrad(·) is the function used to stop
gradient computation, γ1 and γ2 are term importance hyper-parameters and R is a regularizer
that calculated as L2 regularization of all the weights in the encoder model with the layer-wise
orthogonality constraint on decoder network weights. Similar to [12, 30], we use the second term to
regularize the latent space and encourage the generative model to learn a disentangled embedding,
and use the third term to encourage the encoder and relation net to output a parameter initialization
that is close to the adapted code, which are beneficial to simplify the adaptation procedure [30].

The overall algorithm for Meta-SKR is shown in Algorithm 2.
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4 EXPERIMENTS AND RESULTS
All the algorithms are implemented on an Intel(R) Xeon(R) CPU E5-2650 v4@ 2.20GHz, two GeForce
GTX 1080 GPUs and two TITAN XP GPUs.

4.1 Datasets
We use three real public location-based social network (LBSNs) datasets collected from Gowalla 1

and Weeplaces 1[22] and Yelp 2[21] respectively. The Gowalla dataset spans from January 1st, 2011
to May 31st, 2011. It contains user profiles, user friendship, location profiles, and users’ check-in
history. Each check-in is associated with user ID, POI ID, check-in time. Weeplaces is an application
mapping an individuals’ shared locations on other LBSNs such as Foursquare. In Weeplaces, users
can login using their LBSN accounts and connect with their friends in the same LBSN who are
also using this application [22]. The Weeplaces dataset, which contains user friendship and users’
check-in history, spans from March 1st, 2010 to November 30th, 2010. For each check-in, user ID,
POI ID, check-in time, latitude, longitude, city and category are recorded. Yelp dataset spans over
several metropolitan areas in five years: January 1st, 2010 to August 1st, 2015. Each POI is tagged
with category ID and location. Users’ check-in history and social relations are also provided.

The statistics of preprocessed datasets are described in Table 2.

Table 2. Statistics of dataset.

Attribute Gowalla Weeplaces Yelp

# of check-ins 1922604 1819632 473439
# of POIs 29976 37802 18990
# of users 22566 10287 6563

4.2 Implementation Details
Data Preprocessing.We divide each dataset into 6:2:2 for training, validation and test. We filter
out users with less than 30 check-ins. The pre-trained embeddings of entities and relations are
obtained via TransE [2], with random initialization and embedding size of κ = 100.
Hyper Parameter Settings. The embedding layer described in section 3.2 is set as 1. We

optimize all models with Adam optimizer, where the batch size is fixed at 64, all learning rates are
initialized as 1× 10−3 and weight decay of 1× 10−5. The hyper parameters ∆τ and ∆d in Section 3.1
are set as 2h and 3km separately for graph construction. Trade off parameter γ is set as 0.5. We
report the results with default parameter values T = 4 and λ = 5 to fit the size of our datasets. In
all experiments, except when studying the effect of r in section 4.5.2, sampling stride r is set as
r = λ. Unless otherwise stated, we choose the best settings for other hyper parameters regarding
each dataset using random grid search.

4.3 Evaluation Metrics
Accuracy@k is commonly adopted to measure next POI recommendation results [13, 45]. Given a
set of test usersU , Accuracy@k can be described as:

Accuracy@k =

∑ |U |
i=0 Avд_hiti@k

|U |

1https://www.yongliu.org/datasets/index.html
2http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/data/Yelp.zip
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where Avд_hiti@k is the average of hit@k , which is calculated as

Avд_hiti@k =
|Topki ∩Ground − truthi |

min{k, |Ground − truthi |}

whereTopki is the set of top-k prediction results of user ui andGround − truthi is the ground-truth
triple set of the user, which is generated in a similar strategy as described in Section 3.1, which
means there might be multiple ones.

4.4 Performance Comparison
To evaluate the performance of our model, we first compare our Meta-SKR with the following
models.

• LRT [10]: LRT is a variant of Matrix Factorization (MF) model, which makes POI recommen-
dation based on both user features and users’ temporal check-in patterns..
• USG [49]: It adopts the Collaborative Filtering (CF) framework for POI recommendation,
which incorporates the geographical influence, social influence and user preference.
• LORE [52]: As a hybrid model, LORE employs Additive Markov Chain (AMC), CF and kernel
density estimation to exploit the sequential influence, social and geographical influence
between users and POIs.
• GE [45]: GE is a graph-based embedding POI recommendation model that integrally captures
sequential effect, geographical influence, temporal cyclic effect and semantic effect into a
shared low dimensional space.
• SASRec [13]: SASRec is a self-attention based sequential model that allows to capture long-
term semantics (like an RNN), but, using an attention mechanism, makes its predictions based
on relatively few actions.
• Caser [38]: Convolutional sequence embedding recommendation model (Caser) proposes a
convolutional network structure for capturing both general user preferences and sequential
behavior patterns.
• KBGAT [25]: The recent proposed KBGAT learns graph attention based embeddings that
cater to relation prediction on KGs.
• NEXT [53]: NEXT Incorporates meta-data information and temporal contexts, i.e. time
interval and visiting time, to predict user’s next move.
• LSTPM [34]: Themethod LSTPMmodels user’s long-term preferencewith a nonlocal network
and short-term preference with a geo-dilated RNN.

4.4.1 Recommendation effectiveness. We first present comparison results on the three datasets in
terms of Accuracy@k in Fig. 4, where k ∈ {1, 5, 10, 15, 20}, for that a greater value of k is usually
ignored in top-k recommendation tasks [45].
As presented in Fig. 4, it can be observed that our proposed Meta-SKR outperforms other

baselines in terms of Accuracy@k on all three datasets and nearly all cases. Some other interesting
observations are in the following:
i. Meta-SKR achieves 84%, 34% relative improvements of Accuracy@1 on Gowalla, Weeplaces

and 5.2%, 8.2%, 7.3% relative improvements of Accuracy@20 on Gowalla, Weeplaces and Yelp
respectively over the best results of the baselines, which demonstrates the superiority of our model.

ii. Another observation is the evaluated models gain their best performances on Gowalla, while
perform the worst on Yelp. An explanation could be that though Gowalla and Yelp is of similar
dense in terms of the average number of check-in per user, data collected form Yelp is of a much
longer time-span, which might lead to weak user behavior patterns.
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Fig. 4. Recommendation effectiveness comparisons.

Table 3. Effect of data sparsity on Gowalla dataset (-20%). "-" denotes the method with reduced data.

k
Acc M LRT USG LORE GE Caser

LRT LRT- USG USG- LORE LORE- GE GE- Caser Caser-

1 0.0011 0.0005 0.0165 0.0125 0.0119 0.0081 0.0201 0.0134 0.0330 0.0149
5 0.0030 0.0005 0.0630 0.0535 0.0462 0.0211 0.0810 0.0622 0.1023 0.0558
10 0.0035 0.0010 0.1065 0.0799 0.0681 0.0342 0.1346 0.1101 0.1539 0.0887
15 0.0041 0.0011 0.1261 0.1095 0.0782 0.0460 0.1493 0.1354 0.1901 0.1187
20 0.0072 0.0020 0.1461 0.1250 0.0819 0.0527 0.1745 0.1563 0.2151 0.1421

k
Acc M SASRec KBGAT NEXT LSTPM Meta-SKR

SASRec SASRec- KBGAT KBGAT- NEXT NEXT- LSTPM LSTPM- Meta-SKR Meta-SKR-

1 0.0179 0.0112 0.0214 0.0089 0.0344 0.0101 0.0263 0.0131 0.0634 0.0547
5 0.1163 0.0674 0.1531 0.0976 0.1731 0.1109 0.1712 0.1129 0.1869 0.1255
10 0.1599 0.1012 0.2268 0.1426 0.2400 0.1402 0.2346 0.1671 0.2403 0.1831
15 0.1921 0.1259 0.2623 0.1670 0.2698 0.1837 0.2747 0.1972 0.2815 0.2239
20 0.2119 0.1459 0.2754 0.1812 0.2882 0.2120 0.2973 0.2250 0.3126 0.2660

iii. Though GE uses the same type of information as Meta-SKR, it performs significantly worse.
This might be due to their different embedding strategies. To be more specific, different from
Meta-SKR that jointly models context information, GE encodes sequential effect, geographical
effect, temporal effect separately in different graphs (models) and then optimizes the embedding
model together by a fusing objective function.
iv. LRT performs significantly worse than other algorithms. This might because LRT only

considers temporal information and the explicit check-in behaviors while ignores geographical
and other side information that is important as well in location recommendation.

4.4.2 Impact of data sparsity. In this part, we study the effect of data sparsity. To simulate datasets
with different sparsity, we randomly reduce the training data by a ratio of 5%, 10%, 15% and 20%. For
limited space, we only report the recommendation accuracy when 20% data is reduced on Gowalla
and Yelp dataset, as listed in Table 3 and Table 4.
As expected, when more data is reduced, the recommendation accuracy of all methods drops.

However, Meta-SKR still outperforms all the other methods in most of the cases. It could be observed
that when evaluating Accuracy@1 on Yelp dataset, Caser performs slightly better than Meta-SKR.
However, when it comes to relative accuracy drop, Meta-SKR is 4.1% less than Caser. It also worth
mention that the relative advantage of Meta-SKR over other methods becomes more significant. For
example, compared with the state-of-the-art baseline model LSTPM, Meta-SKR achieves 317.6%, 35%
relative improvements of Accuracy@1 and 18.2%, 16.3% relative improvements of Accuracy@20 on
the two reduced datasets, which indicates Meta-SKR is more robust on sparse data. This is probably
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Table 4. Effect of data sparsity on Yelp dataset (-20%). "-" denotes the method with reduced data.

k
Acc M LRT USG LORE GE Caser

LRT LRT- USG USG- LORE LORE- GE GE- Caser Caser-

1 0.0002 / 0.0040 0.0021 0.0088 0.0014 0.0059 0.0032 0.0180 0.0164
5 0.0012 0.0005 0.0333 0.0180 0.0285 0.0042 0.0297 0.0101 0.0624 0.0470
10 0.0027 0.0017 0.0506 0.0289 0.0380 0.0141 0.0474 0.0229 0.1002 0.0728
15 0.0054 0.0029 0.0739 0.0375 0.0411 0.0223 0.0665 0.0400 0.1280 0.0972
20 0.0060 0.0043 0.0892 0.0433 0.0447 0.0284 0.0782 0.0683 0.1514 0.0984

k
Acc M SASRec KBGAT NEXT LSTPM Meta-SKR

SASRec SASRec- KBGAT KBGAT- NEXT NEXT- LSTPM LSTPM- Meta-SKR Meta-SKR-

1 0.0126 0.0040 0.0044 0.0031 0.0221 0.0092 0.0152 0.0120 0.0170 0.0162
5 0.0725 0.0597 0.1053 0.0400 0.1169 0.0418 0.1142 0.0857 0.1247 0.0979
10 0.1266 0.0735 0.1691 0.0790 0.1818 0.1043 0.1776 0.1248 0.1993 0.1536
15 0.1735 0.1017 0.2121 0.1116 0.2197 0.1345 0.2253 0.1723 0.2342 0.1992
20 0.1871 0.1273 0.2344 0.1380 0.2411 0.1376 0.2522 0.1892 0.2716 0.2201

resulted from two reasons. Firstly, accuracy on baseline models drops faster. On account of their
data-driven nature, their advanced performances are heavily relied on large datasets. Once the
dataset becomes sparser and smaller, the model might fail to draw a complete picture of users’
behavior patterns. Second, with the implementation of meta-learning strategy, Meta-SKR is trained
to leverage user-specific features from limited data, thus it is less sensitive to the reduction of data
size.
As for the experiments on other reduction values (5%, 10%, 15%) and on Weeplaces dataset, we

observe similar trends.

4.5 Study of Meta-SKR
In the above subsection we compare our Meta-SKR model with other approaches. To further
study the benefits of hyper parameters and components of Meta-SKR, we design three groups of
experiments to evaluate how they affect recommendation accuracy on datasets of Gowalla and
Yelp.
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Fig. 5. Effect of check-in sequence length λ.

4.5.1 Effect of check-in sequence length λ. Parameter sequence length λ as defined in Definition. 1 of
triple generator directly influences what knowledge graphs are consist of, and thus eventually effects
Accuracy@k. Four comparisonmethods are designed to evaluate the impact of λ on recommendation
accuracy: Meta-SKR-λ-3, Meta-SKR-λ-5, Meta-SKR-λ-7, Meta-SKR-λ-9, Meta-SKR-λ-11, which
represents the Meta-SKR model with λ = {3, 5, 7, 9, 11} respectively, and 5 is chosen to be the
default value of λ in our Meta-SKR.
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The results are depicted in Fig. 5. It can be observed that both a super short sequence and a
super long sequence contribute negatively to model performance. From the figures we can tell that
relatively longer sequence benefits recommendation (see, Meta-SKR-λ-5 and Meta-SKR-λ-7).
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Fig. 6. Effect of sampling stride r .

4.5.2 Effect of sampling stride r . Sampling stride r not only influence the size of training data but
also has effect on the granularity of the modeled user behavior patterns. With λ fixed as 5, we
increase r from 1 to 7 with step size 2.

Some observations of Fig. 6 are as follows. Middle sized sampling stride benefits recommendation
the most. This could be resulted from that for the current λ, which is set as 5, r = 3 and r = 5 covers
all source data and the observed user behavior patterns are dynamic and coherent enough for the
model to learn. Stride 7 gives the lowest accuracy probably because not all data is observed by the
model thus the prediction of user’s next move is based on incoherent patterns. Though model with
stride 1 performs slightly worse than r = 5, it is worth mentioning that generating a set of SKGs
with r = 1 is rather time consuming, given the large number of previous SKGs that need to be
considered for the construction of the later ones.

4.5.3 Effect of SKG number in Dtr . In order to study the impact of length of SKG sequence in the
meta-training process, we increase the number of SKGs of Dtr from 1 to 5 by step size 1, where 4 is
taken as the default value. The experiment results are shown in Fig. 7.

Overall, recommendation accuracy tends to raise as the number of SKGs increases. It can also be
observed that with SKG number increasing, recommendation accuracy first increases significantly,
then shows signs of slow-growth and finally becomes relatively stable when the SKG number is
around 4. This might be resulted from: first, when more SKGs are fed into the model, more data
can be utilized to obtain a comprehensive user profile; moreover, long-term preference can also be
extracted with more SKGs. This trend indicates that making use of inter-SKG information is likely
to be beneficial for good performance.
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Fig. 7. Effect of SKG number in Dtr .
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Fig. 8. Effect of model components.

4.5.4 Effect of model components. The major results of ablation study regarding Meta-SKR with
different components on Gowalla and Yelp dataset are shown in Fig. 8. We design three variants of
Meta-SKR, Meta-SKR-w/o-M, Meta-SKR-w/o-A and Meta-SKR-w/o-Meta.

Meta-SKR-w/o-M is a variant related to sequential memory extracting. To investigate the effect
of retrieving memory from previous sequences, Meta-SKR-w/o-M reduces the hidden state initial-
ization function (see Equation 3) by replacing the initialization when i , 1, τ = 1 with vector 0 as
well. It can be told from Fig. 8 that the performance of Meta-SKR-w/o-M is significantly worse than
Meta-SKR. Without inheriting status from prior SKGs, only intra-sequence sequential information
can be extracted for temporal correlation modeling, which inevitably leads to poor performance.

Meta-SKR-w/o-A represents a variant of attention-based knowledge propagation part. Instead of
building head/tail-specific triple connection matrix, Meta-SKR-w/o-A treats head and tail related
triples symmetrically. Specifically, if an entity ei is of the triple tj , regardless of whether it is the
head or tail, ei is considered connected with tj . Direction information eliminated by this strategy.
Accordingly, the recommendation accuracy suffers an even more significant drop.

Meta-SKR-w/o-Meta simply uses the sequential-knowledge-aware recommender defined in
Section 3.1 - 3.3 to recommend next POIs, with shared model weight for all users. Comparing
Meta-SKR-w/o-Meta with baseline models in Fig. 4, in most cases, the variant still outperforms
most baseline models. Moreover, comparing Meta-SKR-w/o-Meta with other methods in Fig. 8,
models with parameter generating, i.e. Meta-SKR, Meta-SKR-w/o-M and Meta-SKR-w/o-A, perform
better in most cases, among which the performance improvement of Meta-SKR and Meta-SKR-
w/o-M is more significant. These results indicate first, the proposed sequential-knowledge-aware
recommendation network is effective; second, parameter adaptation significantly contributes to
the model’s performance.

5 RELATEDWORK
5.1 POI Recommendation
POI recommendation can be deemed as one of the main enablers of location based social networks.
As a special branch of context-aware recommendation [29], POI recommendation methods take
(combinations of) geographical, temporal, social, sequential and categorical information into
account. According to the utilized techniques, they can be categorized into Collaborative Filtering
(CF) based [10, 11, 46], Matrix Factorization (MF) based [22, 49], Poisson Factor Models (PFM),
Hybrid Models [8, 52], Embedding Based Models [29, 53] and deep models [7, 18, 34, 44].

The recent advances in knowledge graph embedding and completion [5, 25] have greatly helped
with the problems of properly incorporating context-aware information and data sparsity [21,
29, 41, 45, 51]. For example, [29] proposes a spatio-temporal context-aware and translation-based
recommender framework (STA) to model the third-order relationship among users, POIs, and
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spatio-temporal contexts. [45] models sequential effect, geographical influence, temporal cyclic
effect and semantic effect into four corresponding relational graphs. Although these methods have
provided strong performance, most of them require rich types of side information and rely on
massive training data, which are inaccessible in most real-world check-in datasets. Moreover, since
the interactions are constructed in a statistic setting, they might not well model users’ sequential
check-in orders. Based on embedding based models, our model takes the idea of meta-learning and
sequential knowledge-aware graph embeddings to solve the above problems.

5.2 Meta-learning
Meta-learning studies how to distill the prior knowledge from past experiences and enable fast
adaptation to novel tasks with only a limited amount of samples [23]. The main researches in
meta-learning include 1) learning a widely generalizable initialization or leveraging an optimizer
as the meta-learner to adjust model weights [3, 9, 30]; 2) learning an embedding function that can
embed inputs into a shared spaces where there are distance metrics serving as the meta-learner
[14, 23, 33, 36, 40]; 3) learning with memories of previous task obtained from recurrent neural
networks [31].
Meta-learning has been proven to be promising in recommender systems, especially in the

task of cold-start recommendation. The most relevant work to our study includes [1, 6, 16, 42].
Compared to [1, 16, 42], which use MAML [9] for fast user adaptation, our work is adapted from
latent embedding optimization (LEO) [30] since it well suits our problem where embeddings can
be easily obtained and taken as inputs of the meta-learner and the original LEO model can be
extended to adapt to our graph structured data. To make full use of sequential information, we also
propose a memory transmission strategy to utilize inter-SKG interactions during meta-learning.
From the perspective of problems, though a great number of algorithms have been proposed with
meta-learning in recommender systems, e.g. [1, 16, 42] introduce meta-learning to the task of
general recommendations and [6] is designed for e-commerce sequential recommendation, our
work is the first to study the problem of meta-learning through knowledge-aware graph neural
networks in the context of POI recommendation, which requires providing spatio-temporal-aware
recommendations based on users and and items’ spatio-temporal context.

6 CONCLUSIONS
In this work we study the problem of utilizing user sequential check-in and spatio-temporal-social
information in SKGs for next POI recommendation. We propose a meta-learning framework named
Meta-SKR, which contains four modules. Our solution starts with graph construction where triples
of sequential knowledge graphs (SKGs) are built, followed by the embedding network with a
meta-learning paradigm and at last we provide the next POI recommendation by scoring potential
triples in the link prediction module. Extensive experiments based on real check-in datasets are
conducted and the favorable results confirm the superiority of our framework with sparse training
data.
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