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Spatial crowdsourcing is one of the prime movers for the orchestration of location-based tasks, and task recommendation

is a crucial means to help workers discover attractive tasks. While a number of existing studies place their focuses

on modeling workers’ geographical preferences in task recommendation, they ignore the phenomenon of workers’

travel intention drifts across geographical areas, i.e., workers tend to have different intentions when they travel in

different areas, which discounts the task recommendation quality of existing methods especially for workers that

travel in unfamiliar out-of-town areas. To address this problem, we propose an Adaptive Task Recommendation

(AdaTaskRec) framework. Specifically, we first give a novel two-module worker preference learning architecture that

can calculate workers’ preferences for POIs (that tasks are associated with) in different areas adaptively based on

workers’ current locations. If we detect that a worker is in the hometown area, we apply the hometown preference

learning module, which hybrids different strategies to aggregate workers’ travel intentions into their preferences while

considering the transition and the sequence patterns among locations. Otherwise, we invoke the out-of-town preference

learning module, which is to capture workers’ preferences by learning their travel intentions and transferring their

hometown preferences into their out-of-town ones. Additionally, to improve task recommendation effectiveness, we

propose a dynamic top-𝑘 recommendation method that sets different 𝑘 values dynamically according to the numbers

of neighboring workers and tasks. We also give an extra-reward-based and a fair top-𝑘 recommendation method,

which introduce the extra rewards for tasks based on their recommendation rounds and consider exposure-based

fairness of tasks, respectively. Extensive experiments offer insight into the effectiveness of the proposed framework.

CCS Concepts: ∙ Information systems → Location based services; ∙ Computing methodologies → Machine

learning; ∙ Human-centered computing → Empirical studies in collaborative and social computing.
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1 INTRODUCTION

Along with the ubiquity of GPS-equipped, networked devices and the accompanying deployment of sensing

technologies, Spatial Crowdsourcing (SC) has gained increasing popularity, where task requesters can issue

spatial tasks (e.g., taking a scenic photo or reporting a hot spot) to SC servers and a crowd of mobile

workers are engaged to provide pervasive and cost-effective services to finish these spatial tasks by physically

moving to the specified locations. To ensure the quality of SC services, SC servers can recommend spatial

tasks to workers based on their context information (e.g., spatio-temporal information) extracted from

their interactions with tasks and smartphone sensors, where spatio-temporal information (e.g., location and

mobility) plays an essential role in SC. Compared with mandatory task assignment, i.e., assigning a task to

each worker at a time and the worker is forced to perform the assigned task, a task recommendation system

provides a list of potential and available tasks that are more likely to be accepted by the worker. The worker

can select the most interested one from the recommended task list, which can ensure continuous and high

worker participation and satisfaction to some extent. Due to its natural connection to the physical world,

SC is relevant to a wide spectrum of daily applications, which need specialized algorithms to accomplish

effective task recommendation.

Existing studies on SC [2, 4, 13, 14] have contributed many techniques for task recommendation in

different application scenarios. They have explored approaches to provide workers with better opportunities

to obtain information when choosing tasks. For example, leveraging the designed privacy-preserving location

matching mechanism, Alamer et al. propose a location privacy-aware task recommendation framework,

achieving secure task recommendation while protecting location privacy for workers [2]. Chen et al. propose

a stochastic task recommendation framework, which considers workers’ historical trajectories, desired time

budgets, and the inherent probabilistic uncertainty about their future trajectories [4]. Gao et al. study

a top-𝑘 team recommendation problem and design a two-level-based framework that recommends some

suitable teams to crowd workers to satisfy the skill requirements of complex tasks [13, 14]. However, existing

studies focus mainly on task recommendation in an area (called hometown) where workers perform daily

activities or on traditional top-1 and top-𝑘 recommendation methods, and thus leave challenges related to

effective task recommendation largely unaddressed. We face three main challenges.

Challenge I: How to model workers’ preferences for spatial tasks adaptively when workers are in different

areas? Unlike traditional recommendation systems, workers do not provide their ratings on tasks in SC

systems, and thus we need to transform workers’ travel or task-performing behavior into ratings (e.g.,

preference scores). Most SC studies put their focuses on modeling workers’ preferences in a daily activity area

(i.e., hometown) [2, 4, 57, 62]. Inevitably, however, a worker may travel to a new place (i.e., an out-of-town

area) since human mobility has a high degree of freedom and variation [7, 40], where the worker has little or

no knowledge about the location-based tasks in this area. This leads to a new problem, namely out-of-town

task recommendation, which aims to find tasks that a worker may be interested in when the worker travels

out of the hometown. To be specific, out-of-town task recommendation is designed for those workers who

travel from their hometown areas to out-of-town areas they have seldom been to before. Individual workers’

hometown preferences cannot be directly used for the task recommendation when workers travel in unfamiliar

out-of-town areas due to the gap between hometown preferences and out-of-town behavior (i.e., travel

2
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Fig. 1. Framework Overview

intention drifts). Therefore, the crucial question that needs to be answered is how to consider worker’s

premises and still keep flexible.

Challenge II: How to recommend tasks to workers dynamically to achieve high task coverage rate?

Considering that the main common goals in SC are to achieve the maximal number of completed tasks

and to satisfy workers, a good task recommendation system needs to maximize the coverage rate of the

recommended tasks with a limited 𝑘 value while keeping high preference-based utility of workers, where 𝑘

is the number of recommended tasks for each worker. 𝑘 should be limited since a high 𝑘 value increases

difficulty of task selection for workers. Existing studies in SC generally ignore the dynamic spatio-temporal

distributions of workers and tasks, which can often lead to poor recommendation results. For instance, if we

use a traditional top-𝑘 recommendation method in which 𝑘 is fixed and the recommendation failure of some

tasks is ignored, some tasks are unlikely to be recommended/exposed to workers, which results in a low task

coverage rate.

Challenge III: How to take fairness into consideration when recommending tasks, ensuring that task

recommendation does not discriminate against certain tasks or task requesters? Traditional recommendation

methods have focused on maximizing worker/user satisfaction by tailoring the results according to the

personalized preferences of individual workers/users, largely ignoring the interest of task requesters. Several

item recommendation studies that recommend suitable items to users have shown that such user-centric

designs may undermine the well-being of item providers [1, 3, 11, 17, 20]. In SC, the competitive relationship

between tasks requires a fair way to allocate the exposure of tasks to workers. Unfair allocation-of-exposure

of tasks can cause the Matthew effect [17, 37], which means that the high-ranked tasks and their associated

points of interest (POIs) are more likely to gain additional attentions to influence future rankings, while

low-ranked tasks and their associated POIs will be marginalized gradually. Typically, an SC platform

recommends the 𝑘 most relevant/interested tasks to the corresponding workers [4, 13, 14]. While such

top-𝑘 recommendation methods achieve high worker utility, they may affect the fairness of tasks being

recommended/exposed to workers negatively, which leads to the turnover of task requesters.

Observing these unmet challenges, this paper will go beyond the state of the art and develop an SC

framework, called Adaptive Task Recommendation (AdaTaskRec), for effective task recommendation by

considering workers’ travel-intention-based preferences, the dynamic numbers of workers and tasks, and

the exposure-based fairness among tasks. The AdaTaskRec framework consists of two phases, i.e., a worker

preference learning and a task recommendation phase, as shown in Figure 1. In the first phase, we design an

Adaptive Worker Preference Learning (AWPL) model that learns worker preferences for tasks adaptively

based on workers’ current locations, where each task is associated with a POI. Considering that tasks (that

are often micro-tasks [41]) are highly dependent on locations and workers tend to perform tasks around the

3
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POIs that will be visited, learning workers’ preferences for various tasks becomes identical with learning

their preferences for the corresponding POIs that tasks are located at. Therefore, AWPL aims to learn

worker preferences for POIs that tasks are associated with. To be specific, AWPL consists of two modules,

a hometown and an out-of-town preference learning module. The first module hybrids different machine

learning techniques to model workers’ hometown preferences for different POIs. It adopts gated Graph

Neural Network (GNN) and Gated Recurrent Unit (GRU) to model the transition and the sequence patterns

among POIs, respectively, and then calculate workers’ hometown preferences with travel intentions that are

captured by a neural topic model. The second module learns workers’ out-of-town preferences by combining

workers’ preference embeddings obtained by an attention mechanism, travel intentions captured by an

improved neural topic model, and geographical distance embeddings of POIs, and meanwhile transferring

workers’ hometown preferences into their out-of-town behavior.

In the task recommendation phase, to maximize the coverage rate of recommended tasks with a limited

𝑘 value as well as keep high preference-based utility of workers, we propose a dynamic top-𝑘 and an

extra-reward-based top-𝑘 method, which consider the dynamic number distributions of workers and tasks,

and the round-based extra reward, respectively. To enable fair recommendation, we consider a notion of

fairness, task exposure-based fairness, and design a fair top-𝑘 method for achieving the long-term sustainability

of SC platforms. It is worth mentioning that each recommendation method has its own superiority in terms of

the coverage rate of recommended tasks, the average 𝑘 value, the average preference-based utility of workers,

and the exposure-based fairness of tasks, as demonstrated in the experimental evaluation (cf. Section 5).

Therefore, these methods can be chosen according to different application requirements.

Our contributions can be summarized as follows:

1) We propose a task recommendation framework for SC, called Adaptive Task Recommendation

(AdaTaskRec), that considers workers’ travel-intention-based preferences in task recommendation.

2) We propose an adaptive worker preference learning model, which calculates workers’ hometown and

out-of-town preferences adaptively according to workers’ current locations (solving Challenge I ).

3) Three strategies are given that consider different task recommendation concerns, i.e., the coverage rate

of recommended tasks, the average 𝑘 value, the preference-based utility of workers, and the exposure-based

fairness of tasks, solving Challenges II and III.

4) We report on experiments using real data, offering evidence of the effectiveness of the proposal.

The remainder of the paper is organized as follows. Section 2 covers the problem statement, and Section 3

details the worker preference learning architecture. We present the task recommendation algorithms in

Section 4, followed by a coverage of experimental results in Section 5. Section 6 surveys related work, and

Section 7 concludes the paper.

2 PROBLEM STATEMENT

We proceed to give necessary preliminaries and then define the problem addressed. Table 1 shows the

notation used throughout the paper.

Definition 1 (Worker). A worker, denoted as 𝑤 = (𝑙, 𝑑), is able to perform spatial tasks. A worker can

be in either online or offline. A worker is online when the worker is ready to accept tasks and offline when

unavailable to perform tasks. An online worker 𝑤 is associated with a current location 𝑤.𝑙 and a reachable

4
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Table 1. Summary of Notation

Symbol Definition

𝑤 Worker

𝑤.𝑙 Location of worker 𝑤

𝑤.𝑑 Reachable distance of worker 𝑤

𝑝 POI

𝑝.𝑙 Location of POI 𝑝

𝑝.𝑆 The set of tasks associated with 𝑝

𝑠 Spatial task

𝑠.𝑝 POI where 𝑠 is located

𝑠.𝑒 Expiration time of 𝑠

𝑠.𝑟 Reward of 𝑠

𝑠.𝑙 Location of 𝑠

RS(w) Reachable task set of worker 𝑤

𝑡(𝑎, 𝑏) Travel time from location 𝑎 to location 𝑏

𝑑(𝑎, 𝑏) Travel distance from location 𝑎 to location 𝑏

RTSk (𝑤) 𝑘-recommended-task-set of worker 𝑤

𝑈(RTSk (𝑤)) Preference-based utility of worker 𝑤

c𝑤(𝑠) Worker 𝑤’s preference score for task 𝑠

𝑅 A spatial task recommendation

R.C Task coverage rate for task recommendation 𝑅

R A spatial task recommendation set

Ropt Optimal task recommendation

distance 𝑤.𝑑. The reachable range of worker 𝑤 is a circle with center 𝑤.𝑙 and radius 𝑤.𝑑, within which 𝑤

can accept tasks.

Definition 2 (POI). A POI, denoted by p = (𝑙, 𝑆), consists of a location 𝑝.𝑙, and a set of tasks 𝑝.𝑆 that

are associated with the POI, i.e., the tasks in 𝑝.𝑆 are located at 𝑝.𝑙.

Definition 3 (Spatial Task). A spatial task, denoted by 𝑠 = (p, 𝑒, 𝑟), encompasses a POI s.p, a task

expiration deadline 𝑠.𝑒, and a reward 𝑠.𝑟 that the worker completing 𝑠 will obtain.

A spatial task 𝑠 can be finished only if a worker physically moves to its location (i.e., the location of

s.p) before the expiration time. For simplicity, we use 𝑠.𝑙 to denote the location of s.p, i.e., the location of

task 𝑠. Next, a task 𝑠 can be recommended to a worker only if the worker arrives at its location before its

expiration time 𝑠.𝑒. Although an SC server can recommend multiple tasks to a worker, a worker can only

choose one task at a time according to the single task assignment mode [24]. Once a worker chooses a task

to perform, the worker is offline until the task is finished.

Definition 4 (Reachable Task Set). Given an online worker 𝑤 and a set of tasks (to be recommended)

in the vicinity of 𝑤, a reachable task set for worker 𝑤, denoted as RS (𝑤), satisfy two conditions: ∀𝑠 ∈ RS (𝑤)

1) The worker 𝑤 is able to arrive at the location of task 𝑠 before its expiration time, i.e., 𝑡𝑛𝑜𝑤+𝑡(𝑤.𝑙, 𝑠.𝑙) <

𝑠.𝑒, and

2) The task 𝑠 is located in the reachable range of worker 𝑤, i.e., 𝑑(𝑤.𝑙, 𝑠.𝑙) ≤ 𝑤.𝑑,

where 𝑡𝑛𝑜𝑤 is the current time, 𝑡(𝑤.𝑙, 𝑠.𝑙) is the travel time from worker 𝑤’s location 𝑤.𝑙 to task 𝑠’s location

𝑠.𝑙, and 𝑑(𝑤.𝑙, 𝑠.𝑙) is the travel distance from location 𝑤.𝑙 to location 𝑠.𝑙.
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Definition 5 (𝑘-Recommended-Task-Set). Given an online worker 𝑤 and the reachable task set

RS (𝑤), a recommended task set with 𝑘 tasks, denoted as RTSk (𝑤), is a subset of RS (𝑤), where the tasks in

RTSk (𝑤) are ranked according to workers’ preferences, and 𝑘 can be specified by the SC platform.

The utility of worker 𝑤 obtained from a recommended task set RTSk (𝑤) is proportional to the sum of

preference scores of workers for the tasks in RTSk (𝑤). Therefore, the preferences of worker 𝑤 for RTSk (𝑤) can

be used to derive the preference-based utility that worker 𝑤 gains from the recommendation. Recommending

the 𝑘 most interested tasks will give the maximum possible utility.

Definition 6 (Worker Preference-based Utility). The preference-based utility of worker 𝑤 can be

defined as the ranking metric, Normalized Discounted Cumulative Gain (NDCG) [23], over the recommended

task set RTSk (𝑤):

𝑈 (RTSk (𝑤)) =
DCG (RTSk (𝑤))

DCG (RTS*
k (𝑤))

, (1)

DCG(RTSk (𝑤)) =
∑︁

𝑠∈RTSk (𝑤)

2c𝑤(𝑠) − 1

log2(rank(𝑤, 𝑠 | RTSk (𝑤)) + 1)
, (2)

where DCG(RTSk (𝑤)) denotes the discounted cumulative gain of worker 𝑤 over RTSk (𝑤) that can be

computed by Equation 2, RTS*
k (𝑤) is the expected optimal recommended task set for 𝑤 (i.e., the 𝑘 tasks with the

highest preference scores of 𝑤), c𝑤(𝑠) is 𝑤’s preference score for task 𝑠 ∈ RTSk (𝑤), and rank(𝑤, 𝑠 | RTSk (𝑤))

is the position that task 𝑠 is placed at in the ranking task set RTSk (𝑤) for 𝑤.

We use the terms “preference-based utility” and “utility” interchangeably when the context is clear.

Definition 7 (Spatial Task Recommendation). Given a set of workers 𝑊 and a set of tasks 𝑆, a

spatial task recommendation, denoted by 𝑅, consists of a set of pairs of a worker and a 𝑘-recommended-task-set

for the worker: (w1 ,RTSk (w1 )), (w2 ,RTSk (w2 )),...,(w|W |,RTSk (w|W |)), where |𝑊 | denotes the number of

the worker set.

Let 𝑅.𝐶 denote the task coverage rate for task recommendation 𝑅, which is the ratio between the number

of recommended tasks and the total number of tasks, i.e., 𝑅.𝐶 =
|∪𝑤∈𝑊RTSk (𝑤)|

|𝑆| , and R denote all possible

recommendations. The problem investigated can be stated as follows.

Problem Statement. Given a worker set 𝑊 and a task set 𝑆, the task recommendation problem is to

find an optimal task recommendation Ropt that achieves the following goals:

1) primary optimization goal: maximize the task coverage rate, i.e., ∀ Ri ∈ R (Ri .C≤Ropt .C ), with a

limited 𝑘 (𝑘 ≪ |𝑆|) value; and
2) secondary optimization goal: maximize the average worker preference-based utility.

3 WORKER PREFERENCE MODELING

With the rapid growth of Location-Based Social Networks (LBSNs), it is now available to study and

analyze workers’ mobility behavior in real world, which helps to explore workers’ preferences for tasks and

task-performing behavior in SC. Due to the fact that SC is highly dependent on spatial information like

mobility and spatial tasks are often micro-tasks (e.g., taking a scenic photo or reporting a hot spot), workers

tend to perform tasks according to their locations, i.e., workers accept tasks according to whether the tasks

are located in the interested POIs. In other words, workers often perform tasks around various POIs when

6
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Fig. 2. AWPL Model Overview

they visit these POIs. Therefore, the preferences of workers for tasks can be regarded as those for POIs.

When the context is clear, we use workers’ preferences for POIs to denote workers’ preferences for tasks that

are associated with these POIs.

Studies [35, 50] show that people usually visit nearby POIs that are located in small regions, called

hometown. However, due to the strong mobility characteristic of people, it is more likely for them to

travel out of their hometown areas. Previous task recommendation systems [4, 13, 14] mainly focus on

recommending tasks that may reside in a worker’s hometown where the worker performs daily activities,

which makes the recommendation results less useful. As a result, we propose an Adaptive Worker Preference

Learning (AWPL) model, which aims to learn worker preferences for POIs based on whether workers travel

in their hometown or out-of-town areas in order to recommend suitable tasks to workers. We first give an

overview of the AWPL model and then provide specifics on each module in the model.

3.1 Solution Overview

The AWPL model overview is shown in Figure 2. It is a two-module architecture, where one is to learn

workers’ hometown preferences and the other is to learn their out-of-town preferences. We give a set of

historical POIs where workers performed tasks, which include hometown and out-of-town POIs. In the

hometown preference learning module, we first construct a worker-specific interaction graph based on

the historical hometown POIs, which is fed into the gate Graph Neural Network (GNN) to get the POI

embeddings by modeling the transition patterns among these POIs. Then we use the Gated Recurrent

Units (GRU) to model the sequential patterns among POIs and learn workers’ preference embeddings.

Meanwhile, a Neural Topic (NT) model is adopted to capture the travel intention embeddings of workers.

Based on workers’ preference and travel intention embeddings as well as POI embeddings, we can get the
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𝑃𝑤 = ( p1, p2, p3, p2, p4 )

(a) POI Sequence of Worker 𝑤
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Fig. 3. Interaction Graph Construction

hometown preference scores of workers through the travel-intention-based hometown preference modeling.

We combine two loss functions, i.e., the travel-intention-based loss ℒ𝑡 and the preference score estimation

loss ℒ𝑛 generated from the NT model and the preference scores, respectively, to train this module.

The out-of-town preference module shares the same interaction graph and gate GNN, which aim to generate

the embeddings of hometown POIs. Then we adopt an attention mechanism to aggregate the embeddings

of these POIs to get the hometown preference embeddings of workers. An Improved NT (INT) model is

designed to model the out-of-town travel intention embeddings of workers, and the Graph Convolutional

Network (GCN) is introduced to model the geographical distance between out-of-town POIs, generating the

out-of-town POI embeddings. Finally, the travel-intention-based out-of-town preference modeling part learns

workers’ out-of-town preferences by taking their preference and travel intention embeddings and out-of-town

POI embeddings into account. This module considers three losses, i.e., the transfer loss ℒ𝑡𝑟𝑎𝑛𝑠 (that is to

transfer workers’ hometown preferences to their out-of-town behavior by Multi-Layer Perceptron (MLP)),

the travel-intention-based loss ℒ′
𝑡, and the preference score estimation loss ℒ′

𝑛, for training.

Note that the hometown and the out-of-town preference learning modules are trained separately, which

do not affect each other. After training, the trained model is transferred to a preference learner. When a

worker arrives, it first detects the current location of the worker and then feeds the worker into different

modules based on whether the worker travels in hometown or out of town to get the worker’s preference

scores for different tasks.

3.2 Hometown Preference Learning

3.2.1 Interaction Graph Construction. A sequence of POIs where a worker performs tasks can be represented

by a directed graph, where each node denotes a POI that tasks are associated with. The edge from node

𝑝𝑖 (denoting POI 𝑝𝑖) to node 𝑝𝑗 means that the worker performs tasks in 𝑝𝑗 after completing tasks in 𝑝𝑖.

Supposing that worker 𝑤 visits a sequence of POIs, denoted as 𝒫𝑤 = (𝑝1, 𝑝2, 𝑝3, 𝑝2, 𝑝4), the interaction

graph 𝐺𝑤 of 𝑤 can be constructed, as shown in Figures 3(a)–3(b). Following the weight normalization

principle [47], where the normalized weight of each edge is calculated as the occurrence of the edge divided

by the out-degree/in-degree of that edge’s start node, the outgoing (denoted as 𝐴𝑜𝑢𝑡
𝑤 ) and the incoming

(denoted as 𝐴𝑖𝑛
𝑤 ) adjacent matrices are normalized around rows, respectively. Taking the outgoing matrix

in Figure 3(c) as an example, the number of edges from 𝑝2 to 𝑝3 is 1 and the out-degree of 𝑝2 is 2, so the

normalized weight of the edge is 1/2. Then we use the concatenation of the two matrices to represent the

directed graph, i.e., 𝐴𝑤 = [𝐴𝑜𝑢𝑡
𝑤 ,𝐴𝑖𝑛

𝑤 ]. We use bold letters, e.g., 𝐴 and 𝑎, to denote matrices and vectors.

8
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3.2.2 Transition Pattern Modeling with Gated GNN. First, we adopt a randomly initialized embedding matrix

(i.e., 𝑃 0 = [𝑝0
1,𝑝

0
2, · · · ,𝑝0

𝑁 ] ∈ R𝑁×𝑑) to convert the hometown POIs into 𝑑-dimensional embeddings, where

𝑁 denotes the whole number of hometown POIs, and 𝑝0
𝑖 ∈ R𝑑 represents the embedding of POI 𝑝𝑖. Next,

we feed the embeddings of POIs visited by worker 𝑤 (i.e., 𝑃 0
𝑤 = [𝑝0

1,𝑝
0
2, · · · ,𝑝0

𝑛], where 𝑛 is the number of

POIs visited by 𝑤) and the concatenated matrix 𝐴𝑤 into the gated GNN to model the complex transition

patterns among the POIs, which can be described as follows.

𝑎𝑡
𝑖 = 𝐴𝑇

𝑝𝑖:[𝑝
𝑡−1
1 ,𝑝𝑡−1

2 , · · · ,𝑝𝑡−1
𝑛 ]𝑇𝐻 + 𝑏𝑎,

𝑧𝑡
𝑖 = 𝜎(𝒲𝑧𝑎

𝑡
𝑖 +𝑈𝑧𝑝

𝑡−1
𝑖 ),

𝑟𝑡
𝑖 = 𝜎(𝒲𝑟𝑎

𝑡
𝑖 +𝑈𝑟𝑝

𝑡−1
𝑖 ),

𝑝𝑡
𝑖 = 𝑡𝑎𝑛ℎ(𝒲𝑜𝑎

𝑡
𝑖 +𝑈𝑜(𝑟

𝑡
𝑖 ⊙ 𝑝𝑡−1

𝑖 )),

𝑝𝑡
𝑖 = (1− 𝑧𝑡

𝑖)⊙ 𝑝𝑡−1
𝑖 + 𝑧𝑡

𝑖 ⊙ 𝑝𝑡
𝑖,

(3)

where 𝑎𝑡
𝑖 denotes an aggregated embedding of 𝑝𝑖’s neighbors based on 𝐺𝑤 from the previous step, 𝐴𝑇

𝑝𝑖:

denotes the two columns of blocks in 𝐴𝑜𝑢𝑡
𝑤 and 𝐴𝑖𝑛

𝑤 corresponding to 𝑝𝑖, [𝑝
𝑡−1
1 ,𝑝𝑡−1

2 , · · · ,𝑝𝑡−1
𝑛 ] is a sequence

of POI embeddings in the historical data of worker 𝑤, 𝑝𝑡−1
𝑗 (1 ≤ 𝑗 ≤ 𝑛) denotes the embedding of 𝑝𝑗

in the (𝑡 − 1)th step (𝑡 ≥ 1), and 𝐻, 𝑏𝑎, 𝒲* and 𝑈* (* = 𝑧, 𝑟, 𝑜) are trainable parameters. Next, 𝑧𝑡
𝑖

and 𝑟𝑡
𝑖 are the update and reset gates, respectively, which are used for controlling the information flow

process, 𝜎(·) is a sigmoid activation function, and ⊙ represents the element-wise multiplication operator.

The embedding 𝑝𝑡
𝑖 can be calculated through the previous embedding (i.e., 𝑝𝑡−1

𝑖 ) and the fusion of the

current aggregated embedding (i.e., 𝑝𝑡
𝑖). Finally, the learned hometown POI embeddings of worker 𝑤 are

denoted by 𝑃𝑤 = [𝑝1,𝑝2, · · · ,𝑝𝑛].

3.2.3 Preference Summarization with GRU. Although gated GNN is proven to be helpful for capturing

transition patterns among locations [47, 50], the sequential patterns among locations cannot be well modelled.

Moreover, since we focus on the preference abstracted by historical visited POIs, we need to adopt a method

to summarize the historical POI embeddings into a worker’s hometown preference embedding. Bearing these

in mind, we adopt GRU [8], a well-known sequential model that considers temporal features using memory

cell units, to learn worker 𝑤’s hometown preference embedding, 𝑤.

𝑤 = GRU ([𝑝1,𝑝2, · · · ,𝑝𝑛]), (4)

where [𝑝1,𝑝2, · · · ,𝑝𝑛] is the input hometown POI embeddings learned from gated GNN.

3.2.4 Travel Intention Modeling with Neural Topic (NT) Model. For better understanding a worker’s mobility

patterns, we give a Neural Topic (NT) model to discover travel intention distribution of the worker. We

assume that each POI visit is generated by a latent topic mixture Θ ∈ R𝑀×𝑑, where 𝑀 stands for the

number of travel latent intentions and each row in Θ is a to-be-learnt vector representing the features of

each travel intention. Given the randomly initialized hometown POI embeddings 𝑃 0 ∈ R𝑁×𝑑, the 𝑖-th travel

intention distribution on the POIs, denoted as Φ𝑖, can be described as follows.

Φ𝑖 = softmax (𝑃 0Θ𝑖), (5)
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where Φ𝑖 ∈ R𝑁 , Θ𝑖 is the 𝑖-th row of Θ, and softmax(·) is a function to convert a vector of 𝑁 real values

into another vector of 𝑁 values that sum to 1.

Then, to capture the travel intentions of worker 𝑤, we convert the POIs into a bag-of-words vector

𝑔𝑤 ∈ R𝑁 , where each entry in 𝑔𝑤 denotes the number of visits. For instance, the entry 𝑔𝑤[𝑝𝑗 ] equals to 3 if

and only if 𝑤 visited 𝑝𝑗 three times before. Following the study [50], we hypothesize that the latent topic

mixture can be generated by Gaussian softmax construction, which means that a worker’s latent travel

intentions (i.e., 𝑥𝑤) are drawn from the standard Gaussian distribution (i.e., 𝑥𝑤 ∼ 𝒩 (0, 𝐼)). To make 𝑥𝑤

traceable, the variational posterior distribution is adopted, as shown in Equation 6.

𝑞(𝑥𝑤|𝑔𝑤) = 𝑁(𝜇𝑤, 𝜎
2
𝑤), (6)

where 𝜇𝑤 ∈ R𝑀 and 𝜎2
𝑤 ∈ R𝑀 are the mean and variance of the Gaussian distribution, respectively, which

are induced by the worker’s bag-of-words vector (e.g., 𝑔𝑤), as shown in the following equations.

𝑔𝑤 = 𝐹𝑒𝑛(𝑔𝑤),

𝜇𝑤 = 𝐹𝜇(𝑔𝑤),

log 𝜎2
𝑤 = 𝐹𝜎(𝑔𝑤),

(7)

where 𝑔𝑤 ∈ R𝑑 is the encoded embedding of 𝑔𝑤, and 𝐹𝑒𝑛(·), 𝐹𝜇(·), and 𝐹𝜎(·) represent the encoder, the

mean, and the variance layer, respectively, all of which are two-layer Multi-Layer Perceptrons (MLPs) with

ReLU activation. After obtaining the posterior distribution 𝑞(𝑥𝑤|𝑔𝑤), we adopt the reparameterization trick

to resample 𝑥𝑤 ∈ R𝑀 from this distribution. Then, we calculate worker 𝑤’s latent topic distribution (i.e.,

the travel intention embedding), 𝑢𝑤 ∈ R𝑀 , as follows.

𝑢𝑤 = softmax (𝒲𝑢𝑥𝑤 + 𝑏𝑢), (8)

where 𝒲𝑢 ∈ R𝑀×𝑀 and 𝑏𝑢 ∈ R𝑀 are the trainable parameters.

3.2.5 Travel-intention-based Hometown Preference Modeling. To obtain the preference of a worker 𝑤 on

howntown POIs with travel intentions, we concatenate the travel intention embedding (i.e., 𝑢𝑤) and the

worker’s preference embedding (i.e., 𝑤), as shown in Equation 9.

𝑟𝑤 = 𝒲𝑟[𝑢𝑤,𝑤] + 𝑏𝑟, (9)

where 𝒲𝑟 ∈ R𝑀+𝑑 and 𝑏𝑟 ∈ R𝑑 are the trainable parameters, which are used to map the concatenated

embedding into a 𝑑-dimensional space, and 𝑟𝑤 is the travel-intention-based preference embedding of worker

𝑤.

We calculate the similarity between the travel-intention-based preference embedding of worker 𝑤 and the

embeddings of POIs to obtain the worker’s hometown preference scores 𝑐𝑤 for POIs.

𝑐𝑤 = softmax (𝑃 0𝑟𝑤), (10)

where 𝑐𝑤 ∈ R𝑁 is a vector denoting 𝑤’s preference scores for POIs, the entry 𝑐𝑤[𝑝𝑗 ] represents the preference

score of 𝑤 for POI 𝑝𝑗 (i.e., the preference score of 𝑤 for tasks located in 𝑝𝑗), and 𝑃 0 denotes the whole

hometown POI embeddings, which are same with the input of gated GNN. The higher the preference score

𝑐𝑤[𝑝𝑗 ] is, the more likely it is that 𝑤 is willing to perform tasks in the location of 𝑝𝑗 .

10
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3.2.6 Training. For training the model, we linearly combine two different loss functions (i.e., travel-intention-based

loss ℒ𝑡 and preference score estimation loss ℒ𝑛) with a predefined balance weight 𝛼 as follows.

ℒ = 𝛼ℒ𝑡 + ℒ𝑛, (11)

where ℒ𝑡 is to reveal the latent travel intentions of workers from their historical visited POIs, and ℒ𝑛 is

to model workers’ preferences through fitting the predicted preference scores into the ground-truths. We

formally define ℒ𝑡 and ℒ𝑛 in Equations 12 and 13, respectively.

ℒ𝑡 = −
∑︁
𝑤∈𝑊

(︁
E𝑞(𝑥𝑤|𝑔𝑤)

(︀
𝑔𝑇
𝑤 log(𝑢𝑤Φ)

)︀
+ DKL

(︀
𝑞(𝑥𝑤|𝑔𝑤)||𝑝(𝑥𝑤)

)︀)︁
, (12)

ℒ𝑛 = −
∑︁
𝑤∈𝑊

∑︁
𝑝∈𝑃

(︀
𝒢𝑝𝑤 log(𝑐𝑤[𝑝])

)︀
, (13)

where 𝑊 and 𝑃 denote the total workers and POIs, respectively. The first term in Equation 12 is the

reconstruction error of historical POIs by travel intention modeling with the NT model. Next, D𝐾𝐿(·) is the

Kullback-Leibler divergence, which is adopted to minimize the difference between the posterior distribution

and the predefined prior standard Gaussian distribution, i.e., 𝑝(𝑥𝑤) ∼ 𝒩 (0, 𝐼). Equation 13 shows the

cross-entropy loss, in which the ground truth 𝒢𝑝𝑤 equals to 1 if the next POI where worker 𝑤 performs tasks

is 𝑝; otherwise, it is 0. Next, 𝑐𝑤[𝑝] is the estimated preference score of worker 𝑤 for POI 𝑝.

3.3 Out-of-town Preference Learning

Recommending a task to a worker in the out-of-town area is more difficult than in the hometown area due to

the data sparsity problem (i.e., a worker has seldom been to the out-of-town area) and travel intention drifts

(i.e., the behavior of a worker may be different when the worker travels in an unfamiliar area). To alleviate

these problems, we need to use the abundant visited POIs of workers in the hometown area to enhance

the accuracy of out-of-town preference learning, i.e., transferring the learned hometown preferences into

out-of-town preferences. Inspired by the success of TrainOR for out-of-town recommendation [50], we adopt it

to learn the preferences of workers for out-of-town POIs. Specifically, this module also involves the interaction

graph construction for the hometown POIs of workers and transition pattern modeling with gated GNN,

which are same with Sections 3.2.1–3.2.2. One difference with the hometown preference learning module

is that workers’ preference embeddings are obtained by concatenating the summarized POI embeddings

through an attention mechanism (instead of GRU), as shown in Figure 2. Then, an Improved Neural

Topic (INT) model is applied on the visited out-of-town POIs to model the travel intention embeddings

of workers. Moreover, we encode the geographical distances between out-of-town POIs into embeddings,

and the preference scores can be calculated using the dot-product operator between the out-of-town POI

embeddings and workers’ preference embddings.

3.3.1 Preference Summarization with Attention Mechanism. Considering the effectiveness of the attention

mechanism for summarizing the worker’s embeddings from POIs [50], we adopt a vanilla attention method

to aggregate the embeddings of hometown POIs of worker 𝑤 as follows.

𝛽𝑖 = 𝑞𝑇𝜎(𝒲𝑞𝑝𝑖 + 𝑏𝑞),

𝑤 =
∑︁

𝑝𝑖∈𝑃𝑤

𝛽𝑖𝑝𝑖,
(14)
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where 𝑞𝑇 , 𝒲𝑞, and 𝑏𝑞 are used to compute the attention weight, 𝑝𝑖 denotes the embedding of hometown

POI 𝑝𝑖 where worker 𝑤 performed tasks, 𝑃𝑤 denotes the set of hometown POIs that 𝑤 visited, and 𝑤 is

the preference embedding of 𝑤. We should note that the training of hometown and out-of-town preference

learning are separate. Thus, when the context is clear, we do not distinguish the symbols used in the two

modules, which means that 𝑤 is used to represent the preference embedding of worker 𝑤 in both modules.

3.3.2 Out-of-town Travel Intention Modeling with Improved Neural Topic (INT) Model. For better modeling

the out-of-town travel intentions of workers, we improve the original NT model proposed in Section 3.2.4 by

two aspects, i.e., the construction of bag-of-words and the calculation of the travel intention embeddings.

To be specific, the bag-of-words vector (i.e., 𝑔𝑤) is obtained by the visited out-of-town POIs of worker

𝑤. For the calculation of travel intention embeddings, we do not directly use the latent topic distribution

(i.e., 𝑢𝑤 in Section 3.2.4) to denote worker 𝑤’s travel intention embedding since it may result in the label

leakage problem. This is because the visited POIs in the out-of-town area will be used as labels to train the

preference learning model. Thus, we generate the travel intention embedding of worker 𝑤 from the worker’s

preference embedding (i.e., 𝑤) and the latent topic mixture (i.e., Θ) by using a cross attention mechanism,

as shown in Equation 15.

𝑢𝑤 = softmax (Θ𝑤)𝑇Θ (15)

We can see from the equation that the similarity between each latent travel intention and the workers’

preferences (i.e., Θ𝑤) is first computed, and then the similarity vector is converted into a distribution, where

the 𝑖-th entry in this distribution represents the probability that the worker travels a POI with the 𝑖th

latent travel intention. After that, we treat this distribution as a weighted vector to weight the whole latent

travel intentions to generate the worker-specific travel intention embedding (i.e., 𝑢𝑤).

3.3.3 Geographical Distance Modeling with Graph Convolutional Network (GCN). Since geographical distance

between POIs is a key factor for boosting POI embeddings, we adopt GCN to model the geographical

distance between POIs due to its effectiveness in modeling spatial data [53]. To achieve this, we first build an

undirected weighted geometric graph, in which each node represents an out-of-town POI, and the edge weight

is related to the distance of the connecting nodes. Specifically, we use an adjacent matrix 𝐴𝑔 ∈ R𝑁′×𝑁′
to

denote this graph, where 𝑁 ′ denotes the number of distinct POIs in the out-of-town area. An entry of 𝐴𝑔,

𝐴𝑔[𝑖, 𝑗], can be computed as exp(−𝑑(𝑝𝑖.𝑙, 𝑝𝑗 .𝑙)), where 𝑑(𝑝𝑖.𝑙, 𝑝𝑗 .𝑙) denotes the travel distance between the

locations of POIs 𝑝𝑖 and 𝑝𝑗 . Based on 𝐴𝑔, we use GCN to boost the POI embeddings in the following.

𝑃𝑜𝑢𝑡 = ReLU (𝐴𝑔𝑃
0
𝑜𝑢𝑡𝒲𝑔 + 𝑏𝑔), (16)

where ReLU (𝑥) = max{0, 𝑥}, 𝑃 0
𝑜𝑢𝑡 ∈ R𝑁′×𝑑 and 𝑃𝑜𝑢𝑡 ∈ R𝑁′×𝑑 are the randomly initialized and the updated

POI embeddings, respectively, and 𝒲𝑔 ∈ R𝑑×𝑑 and 𝑏𝑔 ∈ R𝑑 are the trainable parameters.

3.3.4 Travel-intention-based Out-of-town Preference Modeling. Similar to the hometown preference modeling,

we use a linear transform to convert the concatenation of the latent travel intention embedding of worker 𝑤

(i.e., 𝑢𝑤) and the worker’s preference embedding (e.g., 𝑤) into a 𝑑-dimensional space. Then the preference

scores 𝑐𝑤 between workers and out-of-town POIs can be obtained through the dot-product operator, shown

12
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in Equation 17.

𝑟𝑤 = 𝒲𝑟𝑟[𝑢𝑤,𝑤] + 𝑏𝑟𝑟,

𝑐𝑤 = softmax (𝑃out𝑟𝑤),
(17)

where 𝑟𝑤 is the travel-intention-based preference embedding of worker 𝑤, 𝒲𝑟𝑟 and 𝑏𝑟𝑟 are the trainable

parameters, and 𝑃out is the out-of-town POI embeddings learned by GCN.

3.3.5 Preference Transfer and Training. Considering travel intention drifts, we leverage a Multi-Layer

Perceptron (MLP) to transfer the hometown preferences into out-of-town behavior, which is inspired by the

cross-domain recommendation [32]. The transfer loss is defined as follows.

ℒtrans =
∑︁
𝑤∈𝑊

||MLP(𝑤)−𝑤0||, (18)

where MLP(·) is an MLP-based mapping function [32], and 𝑤0 is a randomly initialized out-of-town

preference embedding of 𝑤.

The whole training objective is described as follows.

ℒ = 𝛾1ℒ𝑡𝑟𝑎𝑛𝑠 + 𝛾2ℒ′
𝑛 + 𝛾3ℒ′

𝑡, (19)

where 𝛾1, 𝛾2, and 𝛾3 are parameters controlling the contributions of different parts, ℒ′
𝑛 denotes the loss of

out-of-town preference estimation based on the Bayesian Personalized Ranking (BPR) function [36], and ℒ′
𝑡

can be computed by Equation 12 based on the embeddings generated by INT in Section 3.3.2. To improve

the efficiency of the BPR calculation, we randomly select a fixed size of positive samples (i.e., the visited

POIs) and their counterparts (i.e., the unvisited POIs) at each training iteration.

4 TASK RECOMMENDATION

Once workers’ preferences for tasks are obtained, a typical recommendation method is top-𝑘 recommendation,

which recommends a list of the top-𝑘 most interested tasks to a worker to choose. The worker can choose any

task from the task list only if the task is available, i.e., the task is not selected by other workers currently.

Traditional top-𝑘 recommendation methods have focused on maximizing worker satisfaction by tailoring the

results only according to the personalized preferences of individual workers. However, such worker-centric

design may lead to low coverage rate of the recommended tasks, which impacts SC platforms adversely.

Considering the goals of our problem, we propose three methods, i.e., dynamic top-𝑘 recommendation,

extra-reward-based top-𝑘 recommendation, and fair top-𝑘 recommendation. Before introducing the three

methods, we detail how to generate reachable task sets for workers, which will be used throughout the task

recommendation process.

4.1 Reachable Task Set Generation

Due to the constraints of workers’ reachable distance and tasks’ expiration time, each worker can only access

a small subset of tasks, call Reachable Task Set, which is defined in Definition 4. The reachable task set for

a worker 𝑤, denoted by RS(w), should satisfy the following conditions: ∀𝑠 ∈ RS(𝑤)

1) 𝑡𝑛𝑜𝑤 + 𝑡(𝑤.𝑙, 𝑠.𝑙) < 𝑠.𝑒, and

2) 𝑑(𝑤.𝑙, 𝑠.𝑙) ≤ 𝑤.𝑑,
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where 𝑡now is the current time, 𝑡(𝑤.𝑙, 𝑠.𝑙) is the travel time from worker 𝑤’s location 𝑤.𝑙 to task 𝑠’s location

𝑠.𝑙, and 𝑑(𝑤.𝑙, 𝑠.𝑙) is the travel distance from location 𝑤.𝑙 to location 𝑠.𝑙. The above two conditions guarantee

that the worker can travel from the origin to the location of any reachable task 𝑠 in a reachable task set

before it expires. Accordingly, we can get an available worker set for each task 𝑠, denoted by AW (s).

4.2 Task Recommendation Methods

4.2.1 Dynamic Top-𝑘 Method. One way to maximize the recommended task coverage rate is to increase the

variability of the number (i.e., 𝑘) of recommended tasks among workers to adapt to the dynamic numbers of

workers and tasks. Therefore, we design a dynamic top-𝑘 method that recommends task lists with different

𝑘 values for different workers based on their neighbouring workers and tasks. The intuition is that a worker

is willing to have more choices when being in a task-intensive area.

Specifically, the 𝑘 value for worker 𝑤 is set according to the distribution of neighbouring workers and

tasks, as shown in Equation 20.

𝑘 =

⌈︃ ⃒⃒
∪𝑤∈NW𝑚(𝑤)RS(𝑤)

⃒⃒
𝑚

⌉︃
, (20)

where NW𝑚(𝑤) denotes the set of 𝑚 neighbouring workers of worker 𝑤, and 𝑚 is the number of the

neighbouring workers that is application-specific.

4.2.2 Extra-reward-based Top-𝑘 Method. Inevitably, if we only consider worker preferences in recommendation,

some tasks may always be ignored and never be selected by workers, which affects the task coverage rate

negatively. To solve this issue, we introduce the concept of extra reward to give priority to the ignored tasks

for improving the task coverage rate. More specifically, we introduce the extra-reward-based preference of

worker 𝑤 for task 𝑠, denoted by RP(𝑤, 𝑠), which is computed in Equation 21.

RP(𝑤, 𝑠) = 𝛼cw (s) + (1− 𝛼)Re(𝑠),

Re(𝑠) =
Nig(s)

Nexp(s)
,

(21)

where 𝛼 ∈ [0, 1] is a parameter controlling the contribution of 𝑤’s preference for 𝑠 (i.e., 𝑐𝑤(𝑠)) and 𝑠’s extra

reward (i.e., Re(𝑠)). Next, Re(𝑠) is the ratio between the number (Nig(s)) of task recommendation rounds

where task 𝑠 is ignored, i.e., task 𝑠 is not selected by workers for Nig task recommendation rounds, and the

expected number (Nexp(s)) of the task recommendation rounds for 𝑠, where Nexp(s) can be specified by the

task requester or the SC platform.

4.2.3 Fair Top-𝑘 Method. Although the above methods can achieve high task coverage rate, they generate

great disparity in the exposure of tasks (cf. Section 5.2.2), which is unfair for tasks and may also hurt SC

platforms in the long term. If only a few tasks get most of the exposure, the requesters of other tasks would

struggle on the SC platform, which will force them to either quit or switch to other platforms. This, in turn,

may limit the choices for workers, degrading the overall experience on the SC platform. Thus, it is important

to reduce exposure inequalities in task recommendation. To achieve this, we consider the exposure-based

fairness across tasks and ensure the task exposure-based fairness while giving personalized recommendations.

Following the previous studies [15, 39], we define the exposure of task 𝑠 over the task recommendation 𝑅 in

14
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Equation 22.

Exp (𝑠 | 𝑅) =
1

|𝑊 |
∑︁
𝑤∈𝑊

𝑏𝑤𝑠 ,

𝑏𝑤𝑠 =

⎧⎨⎩1 if 𝑠 ∈ 𝑅.RTSk (𝑤)

0 otherwise,

(22)

where Exp (𝑠 | 𝑅) denotes the exposure of 𝑠 over 𝑅, |𝑊 | denotes the number of workers, 𝑏𝑤𝑠 is an indicator

function, and 𝑅.RTSk (𝑤) is the 𝑘-recommended-task-set of worker 𝑤 in task recommendation 𝑅.

Based on Equation 22, an intuitive approach is to make the exposure of all tasks nearly equal. However,

such recommendation may decrease the overall worker utilities [34]. To solve this issue and achieve a good

trade-off between the overall worker utilities and task exposure-based fairness, we propose a fair task

recommendation with coarse-to-fine tuning. Specifically, we transform the task recommendation problem

into a non-shareable and discrete task allocation problem, where each task contains several copies and each

copy is non-shareable (i.e., no task copy can be allocated to multiple workers) and discrete (i.e., no task copy

can be broken into pieces). The number of task copies, 𝑋(𝑠) (𝑋(𝑠) is an integer), also called task exposure

limit, can be computed in Equation 23.

𝑋(𝑠) =

⎧⎨⎩
[︁⌊︁

𝑘|𝑊 |
|𝑆|

⌋︁
,
⌈︁

𝑘|𝑊 |
|𝑆|

⌉︁]︁
|AW (s)| ≥

⌈︁
𝑘|𝑊 |
|𝑆|

⌉︁
|AW (s)| otherwise,

(23)

where |𝑆| denotes the number of tasks, and |AW (s)| denotes the number of available workers for task 𝑠.

Since the total exposure of tasks remains limited 𝑘|𝑊 |, the average exposure for task can be approximated to

be
[︁⌊︁

𝑘|𝑊 |
|𝑆|

⌋︁
,
⌈︁

𝑘|𝑊 |
|𝑆|

⌉︁]︁
when |AW (s)| ≥

⌈︁
𝑘|𝑊 |
|𝑆|

⌉︁
, ensuring fairness to some extent. Otherwise (i.e., |AW (s)| <⌈︁

𝑘|𝑊 |
|𝑆|

⌉︁
), 𝑋(𝑠) should be set to the number of available workers, i.e., |AW (s)|. Intuitively, when each task 𝑠

is recommended to 𝑋(𝑠) workers, we can get the optimal or the near-optimal fair task recommendation,

where the exposure of all tasks nearly equal. Dividing each task into 𝑋(𝑠) copies, we use the coarse and fine

tuning to achieve fair task recommendation.

Coarse Tuning (CT). Algorithm 1 shows the coarse tuning process, which takes the reachable task

sets 𝑅𝑆 for all workers, the available worker sets 𝐴𝑊 for all tasks, a task set 𝑆, and a 𝑘 value as input.

After initialization (lines 1–2), for each worker, if the number of the recommended tasks is less than 𝑘 (i.e.,

|𝑅(𝑤)| < 𝑘), we allocate/recommend a task to the worker (lines 4–15). Specifically, we first compute a set

of copy-aware preference scores (i.e., 𝑐′𝑤(RS(𝑤))) for reachable tasks (i.e., tasks in RS(𝑤)) according to

whether there exist available task copies to be allocated (lines 6–9). If available copies of task 𝑠 exist (i.e.,

|𝑠.𝑐𝑝𝑠| > 0), the copy-aware preference score is same with the preference score of 𝑤 for 𝑠 (i.e., 𝑐′𝑤(𝑠)← 𝑐𝑤(𝑠));

otherwise, 𝑐′𝑤(𝑠) ← 0, where 𝑠.𝑐𝑝𝑠 denotes the copies of 𝑠. Next, we can get the task 𝑠 with the highest

copy-aware preference score (line 10). If the copies of 𝑠 are available (i.e., |𝑠.𝑐𝑝𝑠| ̸= 0), we allocate it to

worker 𝑤 (lines 11–12). Then one copy of task 𝑠 is removed from the copies 𝑆.𝑐𝑝𝑠 of 𝑆, all the copies of 𝑠

are removed from RS (𝑤), and worker 𝑤 is removed from AW (𝑠) (lines 13–15). The coarse tuning procedure

iteratively allocates each worker the most interested task from the current available tasks until no allocations

are given (lines 16–17).

Fining Tuning (FT). Algorithm 2 shows the fining tuning process, which takes a worker set 𝑊 , a task

set 𝑆, and a 𝑘 value as input and outputs a task recommendation 𝑅. We first compute the available worker
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Algorithm 1: Coarse Tuning (CT)

Input: Reachable task sets 𝑅𝑆, available worker sets 𝐴𝑊 , all tasks 𝑆, a specified value 𝑘
Output: Task recommendation 𝑅

1 𝑅← ∅;
2 𝑟 ← 0;

3 while True do
4 for each 𝑤 ∈𝑊 do
5 if |𝑅(𝑤)| < 𝑘 then
6 𝑐′𝑤(RS(𝑤))← ∅; /*𝑐′𝑤(RS(𝑤)) denotes the copy-aware preference scores of 𝑤 for reachable

tasks*/
7 for each 𝑠 ∈ RS(w) do
8 if |𝑠.𝑐𝑝𝑠| > 0 then 𝑐′𝑤(𝑠)← 𝑐𝑤(𝑠);/*𝑠.𝑐𝑝𝑠 denotes the copies of task 𝑠*/

9 else 𝑐′𝑤(𝑠)← 0;

10 𝑠← argmax𝑠∈RS(w) 𝑐
′
𝑤(𝑠); /*Find the task with the highest copies-aware preference score*/

11 if |𝑠.𝑐𝑝𝑠| ≠ 0 then
12 𝑅← 𝑅 ∪ (𝑤, 𝑠);

13 𝑆.𝑐𝑝𝑠← 𝑆.𝑐𝑝𝑠− 𝑠; /*𝑆.𝑐𝑝𝑠 denotes the copies of the task set 𝑆*/

14 RS (𝑤)← RS (𝑤)− 𝑠.𝑐𝑝𝑠; /*Remove all the copies of 𝑠 from the reachable task set of 𝑤*/

15 AW (𝑠)← AW (𝑠)− 𝑤; /*Remove 𝑤 from the available set of 𝑠*/

16 if |𝑅| == 𝑟 then
17 break;

18 𝑟 ← |𝑅|;
19 Return 𝑅;

set AW (s) for each task 𝑠 and make 𝑋 copies for 𝑠, where 𝑋 = min{
⌊︁

𝑘·|𝑊 ′|
|𝑆′|

⌋︁
, |AW (s)|} (lines 3–5). Then

we sort the workers in 𝑊 according to the number (i.e., |𝑅𝑆(𝑤)|) of their reachable tasks ascendingly, where

RS(w) is 𝑤’s reachable tasks computed based on AW (s) (line 7). The intuition is that workers with fewer

reachable tasks are more likely to be allocated unsuccessfully when they are allocated later, so we give priority

to them. Next, we call the Coarse Tuning (CT) algorithm to allocate task copies to workers (line 9). After

the first allocation, for each allocated task 𝑠 ∈ 𝑆−𝑆′ whose number of copies is 0, we relax the task exposure

limit by adding a copy to the task (i.e., 𝑠.𝑐𝑝𝑠← 𝑠.𝑐𝑝𝑠 ∪ {𝑠𝑋+1}) (lines 10–11). Getting a new unallocated

task set 𝑆′, we reallocate them to workers by CT to get a new task recommendation 𝑅 (lines 13–14). Finally,

for each worker 𝑤 whose number of recommended tasks is less than 𝑘′ (𝑘′ = min{𝑘, |RS(𝑤)|}), we further

relax the fairness condition and recommend tasks to 𝑤 according to the preference scores if the task is not

allocated to 𝑤 before (lines 15–20).

4.3 Limitation and Discussion of Task Recommendation Methods

The proposed task recommendation methods can be applied in real-world scenarios such as real-time

ride-hailing services (e.g., Uber1), on-wheel meal-ordering services (e.g., GrubHub2), etc., where suitable

tasks can be recommended to workers especially when the workers are unfamiliar with the areas they are

1https://www.uber.com/
2https://get.grubhub.com/
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Algorithm 2: Fining Tuning (FT)

Input: All workers 𝑊 , all tasks 𝑆, a specified value 𝑘
Output: Task recommendation 𝑅

1 𝑆′ ← 𝑆;

2 S ′.cps ← ∅;
3 for each 𝑠 ∈ 𝑆 do
4 Compute the available worker set AW (s);

5 s.cps ← {𝑠1, 𝑠2, ..., 𝑠𝑋}, where 𝑋 = min{
⌊︁

𝑘·|𝑊 |
|𝑆′|

⌋︁
, |AW (s)|}; /*Each task 𝑠 is divided into 𝑋

copies*/
6 𝑆′.𝑐𝑝𝑠← 𝑆′.𝑐𝑝𝑠 ∪ 𝑠.𝑐𝑝𝑠;

7 Sort workers in 𝑊 according to |RS(w)| ascendingly, where RS(w) is 𝑤’s reachable tasks computed

based on AW (s);

8 𝑅𝑆′ ← 𝑅𝑆;

9 𝑅′ ← CT (RS ′,AW ,S ′, k);

10 for each 𝑠 ∈ 𝑆 − 𝑆′ do
11 𝑠.𝑐𝑝𝑠← 𝑠.𝑐𝑝𝑠 ∪ {𝑠𝑋+1};
12 𝑆′.𝑐𝑝𝑠← 𝑆′.𝑐𝑝𝑠 ∪ 𝑠.𝑐𝑝𝑠;

13 𝑅′′ ← CT (RS ′,AW ,S ′, k);

14 𝑅← 𝑅′ ∪𝑅′′;

15 for each 𝑤 ∈𝑊 do
16 𝑘′ ← min{𝑘, |𝑅𝑆(𝑤)|};
17 if |𝑅(𝑤)| < 𝑘′ then
18 Sort tasks in RS ′(w) according to the preference scores of 𝑤 desendingly;

19 for each 𝑠 ∈ RS ′(𝑤) and |𝑅(𝑤)|< 𝑘′ do
20 𝑅← 𝑅 ∪ (𝑤, 𝑠);

21 Return 𝑅;

located. The dynamic top-𝑘 method uses a dynamic 𝑘 value to recommend tasks considering the distribution

of neighbouring workers and tasks, while the extra-reward-based top-𝑘 method combines the extra reward

with workers’ preferences that gives priority to the ignored tasks for improving the task coverage rate.

Although these two methods can achieve high coverage rate of the recommended tasks, leading more

tasks being recommended, the task recommendations show great disparity in the exposure of tasks (cf.

Section 5.2.2), where only a few tasks get most of the exposure. To solve the unfair task recommendation,

we propose the fair top-𝑘 method, which reduces exposure inequalities in task recommendation by taking

the exposure-based fairness across tasks and gives personalized recommendations.

Compared with the original top-𝑘 method that recommends each worker 𝑘 most interested tasks (i.e.,

𝑘 tasks with the highest preference scores) from reachable tasks of the worker, the above methods affect

the preference-based utilities of workers negatively to some extent. However, our proposed methods have

considerable performance in terms of the recommended task coverage rate, the average 𝑘 value, and the

individual exposure disparity of tasks, which can be applied in task recommendation scenarios with different

needs. The recommendation performance of these methods is affected by different parameters, e.g., the

numbers of tasks, workers, and POIs, the expiration time of tasks, the reachable distance of workers, and
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the number of recommended tasks, and we study the effects of these parameters in our experimental part in

Section 5.2.2.

5 EXPERIMENTAL EVALUATION

We evaluate the performance of the worker preference learning and the task recommendation on real data.

The experimental setup is presented in Section 5.1, followed by a coverage of key experimental results in

Section 5.2. We conduct the experiments on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 128 GB

RAM and an GeForce GTX 1080 GPU.

5.1 Experimental Setup

Due to the lack of benchmark for Spatial Crowsourcing (SC) task recommendation algorithms, we use

two real check-in datasets from Foursquare-Global3, IS→IZ (Istanbul → Izmir) and JA→BA (Jakarta →
Bandung), to simulate the task recommendation scenario, where IS→IZ stands for traveling from Istanbul

(hometown city) to Izmir (out-of-town city), and JA→BA stands for traveling from Jakarta (hometown

city) to Bandung (out-of-town city). The travel records of the above datasets are generated from April

2012 to September 2013. For ensuring the data quality, we filter out the POIs that are visited less than five

times in both datasets. Besides, the users whose hometown check-ins are less than five times or out-of-town

check-ins are less than three times are removed. After being filtered, the statistics of the datasets are given

in Table 2. It is expected that the numbers of out-of-town check-ins and POIs are far less than those of

hometown check-ins and POIs since most of the footprints of users are left in their hometown areas, leading

to the insufficiency of out-of-town check-ins [12, 45]. In particular, a previous study shows that the ratio of

the hometown and the out-of-town check-ins of a user is, on average, 1 : 0.0047 [38].

Table 2. Statistics of Datasets

Dataset # Users # POIs # Check-ins

IS→IZ
Istanbul

1,362
14,231 152,910

Izmir 1,317 28,865

JA→BA
Jakarta

1,405
15,208 160,673

Bandung 1,948 31,490

In our experiments, we assume that users are workers of the SC system since users who check in to

different spots are good candidates to perform spatial tasks in the vicinity of those spots. Each worker has

both hometown and out-of-town check-ins. When the historical check-ins are used to train the hometown

preference learning module, the out-of-town check-ins are removed. The check-in POIs are the locations

where workers perform tasks. We randomly split workers following the proportions: 80%, 10%, and 10%

to form a training set, a validation set, and a testing set. To train and evaluate the hometown preference

learning module, we follow the session-based recommendation paradigm [47] to augment the datasets, which

have been proven to be effective for improving the recommendation accuracy. For example, if the original POI

sequence of a worker is (𝑝0, 𝑝1, 𝑝2, 𝑝3), we can divide it as three sequences, i.e., ((𝑝0), (𝑝1)), ((𝑝0, 𝑝1), (𝑝2)),

and ((𝑝0, 𝑝1, 𝑝2), (𝑝3)), where the first part denotes the historical records, and the second denotes the location

that the worker will visit next and is used as a label to train the hometown preference learning module.

3https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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To train the out-of-town preference learning module, we follow the experimental settings in TrainOR [50],

where the hometown and out-of-town check-ins of the same user are used as training or testing sample. Then

we merge the two testing sets for the overall testing evaluation and report the results. In the whole Adaptive

Worker Preference Learning (AWPL) model that includes the hometown and the out-of-town modules, we

use the hometown module to calculate the preference scores of workers for POIs when we detect a worker is

in the hometown; otherwise, we adopt the out-of-town module to calculate workers’ preference scores.

For the task recommendation experiments, tasks are generated randomly on POIs, which means that

each POI has several tasks. It is common practice in experimental studies of SC platforms to use uniformly

(and randomly) distributed attribute values [41], the argument being that this captures the effects of the

attributes on a more fair basis. The reward of each task is set to 1, and the speed of workers in both

datasets is set to 5km/h. Since the numbers of users in both datasets are insufficient, we generate workers

based on the long-term check-in POIs. Specifically, for hometown workers, since we adopt a session-based

recommendation mechanism [47], we take each session to simulate a travel record of a worker. For example,

((𝑝0, 𝑝1, 𝑝2), (𝑝3)) is one of the hometown sessions of a worker, which is generated from (𝑝0, 𝑝1, 𝑝2, 𝑝3) by

augmentation. The second part (i.e., (𝑝3) used as the label for training) is discarded in the recommendation

experiments, and the last POI (i.e., 𝑝2) in the first part represents the current location of a worker, which is

to determine which modules (i.e., the hometown or the out-of-town modules) should be used. It should be

noteworthy that different sessions generated from the same sequence of check-ins correspond to travel records

of different workers. Thus, we can have enough workers to study the scalability of the proposed methods.

For simplicity and without loss of generality, we assume that the processing time of a task is 0, which means

that a worker will proceed to the location of the next task immediately upon finishing the current one. In

the experiments of task recommendation, we run the task recommendation methods over 10 rounds and

report the average results. In each round, a worker selects a task randomly from the recommended task list.

5.2 Experimental Results

5.2.1 Performance of Worker Preference Learning. In this set of experiments, we evaluate the performance of

the worker preference learning phase.

Evaluation Methods. We study the following methods.

1) TOP: A naive method, which recommends the top-𝑁 frequently visited POIs in the target city.

2) SR-GNN [47]: A GNN-based model, which utilizes GNNs to model the complex transitions of POIs.

To make this method applicable to out-of-town recommendation, we take hometown check-ins as input and

make predictions on the out-of-town POIs trained with Bayesian Personalized Ranking (BPR) [36], where

preference embeddings of workers can be obtained by gated GNN.

3) TrainOR [50]: An out-of-town POI recommendation method considering travel intentions, which is

adapted to enabling hometown recommendation by aggregating each hometown worker’s preferences and

travel intentions to obtain the hometown preference embedding of the worker. As a result, a worker’s

hometown preference scores over POIs are the inner product of the worker’s hometown preference embedding

and the POIs’ embeddings.

4) AWPL-I: A variant of the proposed AWPL model, which removes the travel intention modeling part.

As a result, it recommends only based on workers’ preferences.

5) AWPL: Our proposed model, which includes a hometown and an out-of-town module.
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Table 3. Accuracy on Two Datasets

Methods
IS→IZ JA→BA

Rec@10 Rec@20 Rec@30 MAP Rec@10 Rec@20 Rec@30 MAP

TOP 17.730% 25.577% 29.050% 17.153% 8.868% 14.790% 17.094% 11.293%
SR-GNN 14.806% 19.484% 21.667% 23.349% 7.852% 12.366% 15.283% 12.348%
TrainOR 18.021% 22.592% 27.131% 23.946% 12.119% 16.319% 18.954% 17.142%

AWPL-I 20.316% 26.751% 31.286% 25.299% 14.145% 19.693% 22.750% 17.551%
AWPL 22.576% 28.335% 33.569% 26.127% 14.788% 19.882% 23.464% 18.562%

Metrics. We use Recall@𝑁 (Rec@𝑁 , where 𝑁 = 10, 20, 30) and Mean Average Precision (MAP) to

evaluate accuracy of the above methods. The larger the values of the above metrics are, the more accurate

the model is. We also evaluate the efficiency of the methods, including training and testing time.

Parameter Settings. For all latent representations, the number of the hidden size is fixed to 128. In

the travel intention modeling, we set the topic number 𝑀 as 15. In the training stage, for simplification of

tuning hyper-parameters, we set 𝛾1=𝛾2=(1− 𝛾3)/2 (shown in Equation 19), where 𝛾3 is set to 0.9. We used

Adam optimizer to train our model with an initial learning rate 0.001 and an L2 regularization with weight

10−5. The testing is repeated over five times using different data splits, and the average result is reported.

Accuracy. We report the Rec@𝑁 (𝑁 = 10, 20, 30) and the MAP values in Table 3. The best performance

by an existing method (TOP, SR-GNN, and TrainOR) is underlined, and the overall best performance

is marked in bold. For both datasets, APWL achieves the highest Rec@𝑁 , which outperforms the best

among the baseline methods by up to 25.276% and 23.794% in IS→IZ and JA→BA, respectively. In terms

of MAP, APWL performs best among all methods, followed by its variant APWL-I and other methods in

both datasets, showing the superiority of the two-module architecture for worker preference learning. APWL

always achieves better accuracy than APWL-I regardless of metrics, which demonstrates the necessity of

travel intention modeling in worker preference learning.

Efficiency. We study the training time (of each epoch) and the testing time (of each worker) for all

methods on two datasets, as shown in Figure 4. We can see that our model and its variant, i.e., AWPL and

AWPL-I, take much more time for training compared with SR-GNN anf TRAINOR. This is because our

methods have to train a large amount of the augmented hometown data while others (i.e., SR-GNN and

TRAINOR) only need to train a small amount of out-of-town data. Although SR-GNN and TRAINOR are

more efficient for training and testing, they perform worse than AWPL and AWPL-I in terms of accuracy,

shown in Table 3. Figure 4 also shows that AWPL and AWPL-I run in less than six millisecond when

computing worker preferences, which indicates their feasibility in real task recommendation scenarios.

5.2.2 Performance of Task Recommendation. Next, we evaluate the performance of task recommendation.

Evaluation Methods. We study the following methods.

1) Top-𝑘: The traditional Top-𝑘 method, which recommends each worker 𝑘 most interested tasks (i.e., 𝑘

tasks with the highest preference scores) from reachable tasks of the worker.

2) DyTop-𝑘: The proposed Dynamic Top-𝑘 method, where the number of the neighbouring workers is set

to 5, i.e., 𝑚 = 5.

3) ERTop-𝑘: The proposed Extra-Reward-based Top-𝑘 method, where 𝛼 = 0.5.

4) FairRec [34]: A two-sided fair recommendation method that considers fairness for customers and

products, where customers are regarded as workers and products are regarded as tasks.
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Table 4. Experiment Parameters

Parameter Value

Number of tasks, |𝑆| 2K, 3K, 4K, 5K, 6K

Number of workers, |𝑊 | 2K, 4K, 6K, 8K, 10K

Number of POIs, |𝑃 | 1K, 2K, 3K, 4K, 5K

Expiration time of tasks (h), 𝑒 0.6, 0.9, 1.2, 1.5, 1.8

Reachable distance of workers (km), 𝑑 1, 2, 3, 4, 5

Number of recommended tasks (except for DyTop-𝑘), 𝑘 4, 6, 8, 10, 12, 14

5) FairTop-𝑘: The proposed Fair Top-𝑘 method.

Metrics. Four main metrics are compared for the above methods.

1) TCR: Task Coverage Rate that is the ratio between the number of recommended tasks and the total

number of tasks.

2) kmean : The average 𝑘 value, i.e., kmean =
∑︀

𝑤∈𝑊 𝑤.𝑘

|𝑊 | , where 𝑤.𝑘 denotes the 𝑘 value of worker 𝑤.

3) APU: The Average Preference-based Utility of workers, i.e., APU =
∑︀

𝑤∈𝑊 U (RTSk (w))

|𝑊 | , whereU (RTSk (w))

is the preference-based utility of worker 𝑤 that can be calculated by Equation 1.

4) IED: The Individual Exposure Disparity [26] of tasks, which is measured by the Gini coefficient [16] in

the following.

IED =

∑︀
𝑠,𝑠′∈𝑆 |Exp (s | R)− Exp (𝑠′ | 𝑅)|

2|𝑆|
∑︀

𝑠′′∈𝑆 Exp (𝑠′′ | 𝑅)
, (24)

where Exp (s | R) denotes the exposure of task 𝑠 over task recommendation 𝑅. It is easy to see that IED , the

range of which is [0, 1], measures the pairwise exposure disparity. When IED = 0, the task recommendation

𝑅 achieves the perfect equality (i.e., the best task exposure-based fairness) where all individual tasks have

the same exposure, while IED = 1 represents the maximal inequality in terms of individual task exposure.

The smaller the IED is, the more fair the method is.

Parameter Settings. Table 4 shows our experimental settings, where the default values of all parameters

are underlined. Note that we evaluate different 𝑘 values for all methods except for DyTop-𝑘 since its 𝑘 value

is set adaptively based on the numbers of neighboring workers and tasks.

Effect of |𝑆|. We first study the effect of the number of tasks |𝑆| on two datasets, IS→IZ and JA→BA.

From Figures 5(a) and 6(a), we can see that ERTop-𝑘 and FairTop-𝑘 always achieve higher Task Coverage

Rate (TCR) compared with Top-𝑘 by up to 25.3% and 28.0%, respectively, and DyTop-𝑘 outperforms better
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than Top-𝑘 when |𝑆| ≥ 3𝐾 on IS→IZ and when |𝑆| ≥ 4𝐾 on JA→BA, which shows the superiority of

our methods in terms of TCR. In most cases, our methods perform better than FairRec in terms of TCR.

Besides, the superiority is more prominent when the number of tasks increases, i.e., the performance gaps of

our methods and Top-𝑘 are increasing with |𝑆| grows. Apparently, the TCR of all methods decline with

increasing |𝑆|, but the TCR of our methods decline much more slowly, showing their good scalability, i.e., it

is able to adapt easily to the increasing number of tasks. Figures 5(b) and 6(b) show the average 𝑘 value

among workers, where Top-𝑘, ERTop-𝑘, FairRec, and FairTop-𝑘 have fixed 𝑘 values, i.e., 𝑘 = 10. It means

they recommend 𝑘 tasks to each worker at each task recommendation. We observe that when 3𝐾 ≤ |𝑆| ≤ 5𝐾

on IS→IZ and when |𝑆| ≥ 4𝐾 on JA→BA, DyTop-𝑘 has smaller average 𝑘 values but higher TCR values

than Top-𝑘, which demonstrates the advantage of using dynamic 𝑘 values. When it comes to the Average

Preference-based Utility (APU) of workers in Figures 5(c) and 6(c), since Top-𝑘 recommends the 𝑘 most

interested tasks for each worker, it achieves the highest APU (i.e., the optimal APU), followed by ERTop-𝑘,

FairRec, FairTop-𝑘, and DyTop-𝑘 in most cases on both datasets. ERTop-𝑘 can obtain 98.1%–99.2% of the

optimal APU, and its APU is consistently higher than those of FairTop-𝑘 (by up to 10.1%) and DyTop-𝑘

(by up to 11.0%), which demonstrates the advantage of the extra-reward-based strategy. FairTop-𝑘 and

DyTop-𝑘 can achieve up to 97.1% and 92.1% of the optimal APU, respectively. Although FairTop-𝑘 performs

worse than Top-𝑘 and ERTop-𝑘 in terms of APU, it performs best in the task exposure-based fairness, i.e.,

its Individual Exposure Disparity (IED) is the smallest on both datasets, as shown in Figures 5(d) and 6(d).

The performance of ERTop-𝑘 in exposure-based fairness is second only to FairTop-𝑘. This is so because

ERTop-𝑘 gives a higher priority to the tasks that are ignored in the previous recommendations by setting

the extra reward, which improves the average exposure of tasks. FairRec performs worse than our FairTop-𝑘

in terms of the task exposure-based fairness, which demonstrates the superiority of FairTop-𝑘.

Effect of |𝑊 |. Next, we study the effect of |𝑊 |, the number of workers to be recommended. As shown in

Figures 7(a) and 8(a), our proposed methods, i.e., DyTop-𝑘, ERTop-𝑘, and FairTop-𝑘, can always achieve

higher TCR than the traditional Top-𝑘 method and FairRec, which can improve the TCR by up to 57.1%

and 35.4%, respectively. In Figure 7(b), the 𝑘 values of DyTop-𝑘 are higher than those of others regardless of

|𝑊 | on IS→IZ. This may be due to the fact that tasks in this dataset are intensive around workers, leading

to high dynamic 𝑘 values for achieving high TCP. Figure 8(b) shows that DyTop-𝑘 is able to obtain higher

TCR with smaller 𝑘 values compared to Top-𝑘 when 2𝐾 ≤ |𝑊 | ≤ 6𝐾 on JA→BA. The APU of Top-𝑘 is the

highest, but it cannot achieve good task exposure-based fairness, as shown in Figures 7(c), 7(d), 8(c), and

8(c). FairTop-𝑘 is still the most fair method in most cases on both datasets, and always outperforms FairRec

in terms of fair task recommendation. We also observe that ERTop-𝑘 is able to achieve a good trade-off

between APU (second to Top-𝑘) and IED (that is even smaller than that of FairTop-𝑘 in some cases.).

Effect of |𝑃 |. Figures 9 and 10 show the effect of the number of POIs, |𝑃 |, on the performance of all

methods. When the number of POIs increases, the TCR of all methods are stable, as shown in Figures 9(a)

and 10(a). DyTop-𝑘, ERTop-𝑘, FairRec, and FairTop-𝑘 can obtain higher task coverage rate than Top-𝑘

while sacrificing some utility of workers, as shown in Figures 9(c) and 10(c). It is worth mentioning that the

average 𝑘 values of DyTop-𝑘 are always smaller than that of Top-𝑘 on JA→BA (cf. Figure 10(b)) while it

outperforms Top-𝑘 in terms of the task coverage rate by 9.1%–11.1%, which shows its superiority. From

Figures 9(d) and 10(d), we can see that FairTop-𝑘 still outperforms other methods in terms of fairness.
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Fig. 10. Effect of |𝑃 | on JA→BA
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Fig. 12. Effect of 𝑒 on JA→BA
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Fig. 13. Effect of 𝑑 on IS→IZ

Effect of 𝑒. Next, we study how the expiration time (𝑒) of tasks affects the recommendation performance.

Figures 11(a) and 12(a) show that Top-𝑘 performs worse than ERTop-𝑘 and FairTop-𝑘 and shows a downward

trend with increasing 𝑒. When 𝑒 gets larger, the average 𝑘 values of DyTop-𝑘 show an upward trend (see

Figures 11(b) and 12(b)) since each worker has more reachable tasks with more relaxed valid time, increasing

the dynamic 𝑘 value for the worker. Although Top-𝑘 obtains the highest APU among all methods, which is

shown in Figures 11(c) and 12(c), it performs worst in terms of TCR. As expected, FairTop-𝑘 is still the

most fair task recommendation method with the lowest IED, as shown in Figures 11(d) and 12(d). To save

space, in the following experiments, we omit results on JA→BA as these are similar to those on IS→IZ.

Effect of 𝑑. We study the effect of 𝑑, reachable distance of workers. Figure 13(a) shows that the TCR

values of all methods (except for Top-𝑘) increase gradually with increasing 𝑑 since a larger 𝑑 implies that

more tasks are reachable for workers and can be recommended to them. Top-𝑘 deteriorates at a significantly

faster pace in terms of TCR when 𝑑 ≥ 2. In Figure 13(b), when 3 ≤ 𝑑 < 5, the benefits of DyTop-𝑘 become

significant. It achieves higher task coverage rate than Top-𝑘 with a smaller 𝑘, which can effectively reduce

the difficulty of task selection for workers while guaranteeing more tasks being recommended. However,

DyTop-𝑘 performs the worst in most cases in terms of APU and IED, as shown in Figures 13(c) and 13(d).

Therefore, it is not suitable for the scenarios that pursuit high APU and task exposure-based fairness.

Effect of 𝑘. We also study the effect of 𝑘 on the performance of all methods by reporting the task

coverage rate results on the two datasets in Figure 14. When the 𝑘 value is limited, e.g., 𝑘 < 14, our proposed

methods including DyTop-𝑘, ERTop-𝑘, and FairTop-𝑘 can obtain higher task coverage rate than Top-𝑘 on

IS→IZ and JA→BA. We also observe that FairRec performs worse than our methods when 𝑘 ≥ 8 on IS→IZ
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Fig. 15. Task Recommendation Efficiency

and when 𝑘 ≥ 6 on JA→BA. The performance of DyTop-𝑘, ERTop-𝑘, and FairTop-𝑘 stay stable or are

improved gradually when 𝑘 grows, showing that they scale well to different 𝑘 values when 𝑘 is limited.

Task Recommendation Efficiency. In the final set of experiments, we study the task recommendation

efficiency, i.e., the CPU time for find a task recommendation. As illustrated in Figure 15, DyTop-𝑘 is the

most time-consuming method since it has to compute the dynamic 𝑘 value for each worker by finding the

neighboring workers. The other methods, i.e., Top-𝑘, ERTop-𝑘, FairRec, and FairTop-𝑘, are neck-to-neck in

terms of CPU time, which demonstrates that it is feasible to apply ERTop-𝑘, FairRec, and FairTop-𝑘 in real

SC task recommendation applications.

Summary of our empirical study. The findings of the empirical study can be summarized as follows:

1) Our APWL model achieves the highest accuracy in worker preference learning.

2) For task recommendation, ERTop-𝑘 and FairTop-𝑘 always achieve higher task coverage rate compared

with Top-𝑘. In most cases, DyTop-𝑘 has smaller average 𝑘 values but higher task coverage rate than Top-𝑘,

which means that DyTop-𝑘 can achieve considerable task coverage rate by recommending fewer tasks for

each worker. ERTop-𝑘 can obtain 80.9%–99.7% of the optimal APU (average preference-based utility of

workers), and FairTop-𝑘 achieves the best task exposure-based fairness. Our proposed methods can be

applied to different applications according to their requirements.
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6 RELATED WORK

Spatial Crowdsourcing (SC) is outsourcing location-dependent tasks to a large group of mobile workers in

the form of an open call to reduce the production cost, where workers perform spatial tasks that involve

traveling to specified locations [5, 6, 9, 18, 21, 25, 28–30, 44, 46, 49, 52, 55, 56, 59–61]. Depending on how

tasks are assigned to workers, SC can be classified into Server Assigned Tasks (SAT) mode and Worker

Selected Tasks (WST) mode [24]. Most studies [27, 42–44, 51, 54, 57, 58] assume the SAT mode, where an

SC server takes charge of the task assignment. For example, Li et al. assign a group of workers for each

task and take social impact into workers’ preference [27]. Zhao et al. design a preference-based algorithm to

assign tasks considering workers’ preference for different tasks [57]. Tong et al. propose a two-sided online

micro-task assignment problem in SC and design different task assignment methods to solve it [42]. Xu et al.

systematically study the generic insertion operator for dynamic ridesharing and propose a partition-based

framework to achieve efficient route planning in SC [51]. Further, an insertion-based framework is proposed

to solve the unified route planning problem for shared mobility in SC, where a novel dynamic programming

algorithm is designed to achieve linear time complexity [43]. However, one drawback of this mode is that the

SC server assigns tasks to workers compulsively without considering the willingness of workers. In practice,

a worker is unlikely to honestly and promptly complete the assigned task when the worker is not interested

in it, which cannot guarantee the quality of the task result. Under such a situation, workers are usually

provided with very limited support throughout the task selection and completion processes. Therefore, we

adopt the WST mode in this work, with which the SC server publishes the spatial tasks publicly and online

workers can choose any spatial tasks in their vicinity autonomously without the need to coordinate with

the SC server. However, a worker has to select a task from a large number of tasks to perform in order

to earn the associated reward. In particular, most workers must browse through a long list of open tasks

manually before they determine the suitable ones, which is time-consuming and tends to be sub-optimal due

to subjective, ad hoc worker behavior. Therefore, it is important to investigate on how to support workers to

select tasks on SC platforms easily and effectively. Task recommendation comes into being, which can help

workers to choose their satisfied tasks faster as well as help requesters to receive high-quality output quicker.

Recommendation systems are a kind of tools that provide suggestions of potentially useful items based

on individual preferences. They have achieved enormous success in many applications, such as product

recommendation in e-commerce [10, 34, 48] and POI recommendation in location-based services [50]. Recent

studies have explored the use of recommendation systems in SC, which can help workers to find their

appropriate tasks for achieving high-quality task results [2, 4, 13, 14, 31]. For example, Chen et al. [4]

formulate a task recommendation problem as a stochastic integer linear programming model and propose

a multi-agent task recommendation framework considering stochastic spatiotemporal uncertainty. Gao et.

al. [14] study a top-𝑘 team recommendation problem for complex tasks and propose a two-level-based

framework including an approximation algorithm with the provable approximation ratio and an exact

algorithm with pruning techniques. However, the above studies ignore workers’ travel intentions and their

drifts from their hometown areas to out-of-town areas during task recommendation. Travel intention is a key

context associated with spatio-temporal information, which plays a crucial role in SC. Besides, most of these

studies put their focuses on traditional top-𝑘 recommendation methods without considering the dynamic

numbers of workers and tasks, resulting in a low coverage rate of recommended tasks. Moreover, while the
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above approaches are followed to maximize the satisfaction of individual workers, they fail to address fairness

during task recommendation, which affects tasks and their requesters adversely at an SC platform. Recent

studies focus on the fairness of recommendation systems from the perspective of customers and/or from the

perspective of product providers [34, 48], where the customers can be regarded as workers and the product

providers can be regarded as task requesters. For example, Wu et al. propose a two-sided fairness-aware

recommendation model for both customers and providers [48]. However, they consider the group fairness

among providers by introducing a fair exposure baseline for each provider, while we put more focus on the

individual fairness among tasks in SC. Thus, this model cannot solve our problem well. The closest related

study to our fair task recommendation is the study [34], which develops a FairRec framework for two-sided

fair recommendation and considers the fairness among products. However, it differs from our work in terms

of problem setting and objectives. First, each item can be recommended to all the customers in FairRec,

while in our work, each task can only be recommended to its available workers (i.e., the recommended task

can be reachable to these workers) due to spatio-temporal constraints. Second, the goal of FairRec is to

maximize the customer utility (i.e., the satisfaction of individual customers) while minimizing the inequality

in product exposures. Nevertheless, we aim to maximize the coverage rate of recommended tasks and the

worker preference-based utility while reducing the individual exposure disparity of tasks. It is particularly

noticeable that we compare FairRec with our work in the experiments.

To enable the task recommendation quality, it is attractive to integrate mechanisms that can learn

workers’ preferences adaptively based on their current locations and different factors (e.g., the coverage

rate of recommended tasks, the 𝑘 value, the utility of workers, and the exposure-based fairness of tasks)

into account in task recommendation. Complementing existing studies, our study aims to learn workers’

hometown and out-of-town preferences and design a variety of recommendation methods to enable more

effective task recommendation in SC.

It is worth mentioning that food delivery [19, 22, 33] is one of the most common applications in SC,

where food orders can be regarded as spatial tasks, delivery vehicles can be regarded as workers, and food

delivery can be regarded as task assignment. Food delivery differs from our work in terms of the problem

definition and settings, as well as the objectives. First, most of the food delivery studies adopt the SAT mode

and define a task assignment and scheduling problem, in which a set of food orders are assigned to each

vehicle and a route plan is scheduled for each vehicle by the food delivery platform. In the task assignment

and scheduling setting, each vehicle must deliver (perform) the assigned food orders (tasks). In contrast,

we adopt the WST mode and define a task recommendation problem that recommends 𝑘 tasks to each

worker. In our problem setting, a task can be recommended to several workers, and each worker can choose

a satisfied task from the recommended tasks. Second, most of the food delivery studies aim to minimize the

(expected) delivery time, while we aim to maximize the coverage rate of recommended tasks and the average

worker preference-based utility. Due to the different problem definition, settings, and objectives, the food

order assignment methods cannot solve our problem.

7 CONCLUSION AND FUTURE WORK

We propose an Adaptive Task Recommendation (AdaTaskRec) framework that is capable of learning workers’

preferences for tasks in different areas adaptively and recommending tasks to workers for particular goals.

To model worker preferences in different areas (including hometown and out-of-town areas), we design a
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two-module architecture that involves workers’ travel intentions and their drifts, thus capturing the hometown

and the out-of-town preferences of workers more accurately. For task recommendation, we design three

methods, i.e., dynamic top-𝑘, extra-reward-based top-𝑘, and fair top-𝑘, to meet different application needs,

i.e., maximizing the task coverage rate, limiting the 𝑘 values, maximizing workers’ utility, and achieving task

exposure-based fairness. An extensive empirical study with real data offers evidence that the framework

is capable of advancing the state of the art in terms of preference learning accuracy, task coverage rate of

recommended tasks (with limited 𝑘), and task exposure-based fairness. One interesting research direction is

to consider worker fairness into spatial crowdsourcing task recommendation since maintaining task fairness

can cause an overall loss in worker utility and the utility loss is likely to be distributed unfairly among

workers. Therefore, we need to recommend tasks in a way such that the utility loss is allocated among

workers fairly. The other direction is to explore the factors, such as the time that a worker performs a task,

task features (e.g., task popularity, task complexity, task difficulty, task risk level, skill requirement, etc.),

and social impact, when modeling workers’ preference in spatial crowdsourcing.
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[20] Aniko Hannak, Claudia Wagner, David Garćıa, Alan Mislove, Markus Strohmaier, and Christo Wilson. Bias in online

freelance marketplaces: Evidence from taskrabbit and fiverr. In CSCW, pages 1914–1933, 2017.

[21] Danula Hettiachchi, Vassilis Kostakos, and Jorge Gonçalves. A survey on task assignment in crowdsourcing. CSUR,
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