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ABSTRACT

Query optimization has long been a fundamental yet challenging

topic in the database field. With the prosperity of machine learning

(ML), some recent works have shown the advantages of reinforce-

ment learning (RL) based learned query optimizer. However, they

suffer from fundamental limitations due to the data-driven nature

of ML. Motivated by the ML characteristics and database maturity,

we propose LEONśa framework for ML-aidEd query OptimizatioN.

LEON improves the expert query optimizer to self-adjust to the par-

ticular deployment by leveraging ML and the fundamental knowl-

edge in the expert query optimizer. To train the ML model, a pair-

wise ranking objective is proposed, which is substantially different

from the previous regression objective. To help the optimizer to es-

cape the local minima and avoid failure, a ranking and uncertainty-

based exploration strategy is proposed, which discovers the valuable

plans to aid the optimizer. Furthermore, an ML model-guided prun-

ing is proposed to increase the planning efficiency without hurting

too much performance. Extensive experiments offer evidence that

the proposed framework can outperform the state-of-the-art meth-

ods in terms of end-to-end latency performance, training efficiency,

and stability.
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1 INTRODUCTION

The query optimizer, a crucial part of databasemanagement systems

(DBMS), is the most significant aspect that can affect a DBMS’s

performance. It aims to find the optimal query execution plans for

a given SQL query before the actual execution. With the increasing

complexity of DBMS, the query optimizer needs to be carefully

tuned by database experts. Despite decades of research [34], query

optimizer still struggles to deliver satisfactory performance and is

time-consuming to maintain [16].

Background: Recently, studies on machine learning for databases

(ML4DB) have attracted more and more attention and shown the

superiority of boosting traditional database performance in a data-

driven way [3, 17, 20, 35, 50]. In particular, reinforcement learning

(RL) is applied to build a standalone query optimizer to generate

query plans and demonstrates its advantages in finding competitive

query plans without the help of a traditional query optimizer [15,

22, 23, 46]. However, none of the łreplacementž methods have been

applied the practical usage. Commercial suppliers are still hesitant

to incorporate them into their DBMSes.

Based on the lessons learned from previous work, we argue

that machine learning (ML) can hardly replace the traditional query

optimizer. We make our argument based on the fact that ML-based

methods learn domain-specific knowledge in a data-driven manner.

Thus, it suffers from the following two fundamental limitations:

(L1): ML is not omnipotent. It cannot replace the basic knowl-

edge and axioms embedded in database systems like relational

algebra, query rewriting rules and logical equivalent rules. Pre-

vious RL-based methods only solve simplified select-project-join

(SPJ) queries but are unable to handle complicated situations such

as subquery where much more rules and search space should be

learned. In addition, the ML model needs to learn from scratch once

more transformation rules are added to the optimizer. Otherwise,

it could fail due to the unknown search space. On the contrary, the

traditional query optimizer is a full-fledged and general-purpose

system that has been studied for more than three decades [34]. It is

widely used to handle almost any situation and there are various

optimizations for it.

(L2): ML methods suffer from the infamous cold-start prob-

lem [5]. Query optimizers are łsafety-criticalž systems where sig-

nificant query performance regression should be avoided [7, 21].



However, the performance of ML models might fluctuate signif-

icantly during the training phase when the data is a bottleneck.

Previous research on learning-based methods assumes that there is

enough training data available [22, 23], which is not always the case

in practice. In contrast, traditional query optimizers are known to

be efficient and effective in producing reasonable execution plans

in most cases. Even though some knowledge can be learned by ML,

it is more reasonable for a well-established DBMS to continue utiliz-

ing existing knowledge (an expert optimizer) rather than replacing

it. For example, for a low selectivity scan operator, the DBMS knows

there is a high chance that the index scan will be much more ef-

ficient than the sequential scan, while the ML methods have to

collect many execution feedback to recognize that.

According to the aforementioned limitations, we summarize the

following key design principles:

(P1): ML should aid the traditional query optimizer instead of

replacing it. As mentioned in (L1), the traditional query optimizer

is general-purpose. As a result, it is only capable of maintaining

coarse-grained knowledge, such as histograms and knobs, rather

than fully utilizing domain-specific knowledge, such as database

instances, execution engines, and underlying data distribution, at

which ML is skilled. In fact, the most imperfectness of traditional

query optimizers results from the inability to perceive such domain-

specific factors, leading to poor cardinality estimation, cost mod-

eling, or knob configuration [4, 13, 16, 21, 36, 37]. In other words,

ML should aid the traditional query optimizer to compensate for

the aforementioned flaws.

(P2):ML can utilize the prior knowledge from the traditional query

optimizer to accelerate training and avoid failure. Most previous

works start training ML models from an empty or randomly filled

knowledge base, which is time-consuming to surpass the traditional

optimizer. As mentioned in (L2), expert knowledge in databases

can be helpful when ML faces practical challenges. Thus, instead of

learning from scratch, the ML model can start from the knowledge

of the traditional query optimizer.

Our approach: Based on the design principles, we propose a differ-

ent framework for leveragingML to aid the query optimizerÐLEON .

Specifically, we leverage the power of ML to make the traditional

query optimizer start from current performance and self-adjust to

a certain dataset or workload, which is beyond what a database

architect or human expert can do manually. LEON combines the

advance of learning-based methods and expert knowledge in the

query optimizer. Even if the ML model fails, it can easily fall back

to the traditional query optimizer.

Specifically, we leverage the basic knowledge including rewriting

rules, transformation rules, and standard search strategy from the

DBMS. And we only use ML to enhance the cost model since we

find it is more effective compared to other factors, which will be

further illustrated in Sec. 2.3 and Sec. 6.5. We design a mixed cost

estimation combining both the expert cost model and the ML model

to guide the plan search process. LEON takes the cost model as the

initial cost estimation and use an ML model for cost calibration, to

make the cost model more consistent with the user-defined goal

(e.g., latency). The ML model will only calibrate the erroneous

cost estimation from the cost model based on execution history or

existing query logs instead of learning from scratch. For example,

when LEON finds the cost model over-estimates a sub-plan during

plan search, it will automatically calibrate the cost to a lower value

compared to other plans. In this way, the cost model will guide the

query optimizer to find the best execution plan. In Sec. 6.6, we find

that leveraging expert knowledge has a strong inductive bias and

a restriction when the learning component is not effective, which

gives the learned optimizer’s performance a great lower bound

guarantee.

While this might sound like a straightforward solution, it is not.

In fact, as we will show, learning the cost model is a non-trivial

task. There are two key concepts serving as learning objectives:

(O1): The query optimization problem is essentially a ranking

problem instead of a regression problem. Existing works typically

treat cost estimation as a supervised regression problem [36, 37].

However, the widely used accuracy metric for cost estimation can-

not reflect a method’s end-to-end query performance [29], which

prevents them from deployment in DBMSes. Intuitively, regardless

of the absolute value, the plan decision is only based on the ranking

of the candidate execution plans. No matter how terrible the tail

plans are, the best plans can be chosen from the top-𝑘 candidate

plans. Actually, the Learning to Rank (LTR) problem has been stud-

ied extensively in recommendation systems [8, 48]. It has been

shown that pair-wise ranking approaches are more widely used

compared to point-wise approaches (i.e., learning absolute values).

In this paper, we formalize cost estimation as a contextual pair-

wise ranking problem. We train the ML model to learn the relative

order between two plans regardless of the absolute value of cost

estimation.

(O2): Based on (O1), we consider ranking and quantify the uncer-

tainty of ML model to explore valuable plan space to enhance model

performance. Exploitation versus exploration is a critical topic in

the ML community, which also applies to the learning-based opti-

mizers [21, 22, 42]. We design a robust plan exploration strategy

to strike a great balance. There are two important factors: (1) To

explore more efficiently, our first insight is that a plan with a higher

ranking position should be explored with a higher probability since

the optimizer inherently cares more about the higher-ranked plan

than the lower one. (2) To explore more effectively, our second in-

sight is that the learned optimizer should correct its errors that lead

to sub-optimal query plans. We extend the ML model to generate

cost calibration and corresponding uncertainty for that calibration

simultaneously. We dig deep into them and find that the erroneous

execution plans have a positive correlation to the uncertainty of the

ML model. Thus, we define two exploration criteriaÐ top-𝑘 rank-

ing and uncertainty to solicit the potential plans. Finally, selected

samples will be executed to collect execution feedback for training.

Query optimization efficiency is an important criterion that we

believe for a learned query optimizer in practical usage. The plan

searching method in the traditional query optimizer is typically

dynamic programming (DP) [34]. One of the main concerns for the

ML-aided query optimizer is that ML models bring extra computa-

tion overhead to query optimization since the ML model needs to

evaluate the candidate plans. To improve the plan search process,

we use ML model-guided pruning strategy during searching for the

optimal plans. The key idea is that many inferior subplans during

plan search cannot be extended to the complete plan so the ML

model can learn to prune the redundant search space based on the



Table 1: A summary of learning-based query optimization methods, which can be categorized into four categories: (1) RL-based

end-to-end query optimizer, (2) learned knob/hint tuner (3) learned cardinality estimation (CardEst), (4) learned cost model

(CostEst).

Characteristics

Methods

ML-Replaced ML-Aided

RL-based KnobTuner CardEst CostEst LEON

[15, 22, 23, 42, 46] [4, 18, 21, 47, 49] [13, 22, 25, 26, 30, 41, 43] [24, 36, 37] (Ours)

DB Knowledge ś ! ! ! !

Black/White-Box Black-Box Black-Box White-Box White-Box White-Box

Ranking/Regression Regression Regression Regression Regression Ranking

Exploration ! ! ś ś !

DB Integration ś Deep Shallow Shallow Deep

overall ranking for the complete plan. With the ML model guidance,

we find that the search space can be pruned safely without hurting

too much performance.

We conduct extensive experiments on the complex public bench-

mark. In our evaluation, LEON achieves state-of-the-art (SOTA)

performance in terms of training efficiency and latency perfor-

mance. LEON outperforms the expert DBMS consistently with 3-

hours training, which is around 2× speedup compared to the SOTA

RL-based optimizer. In addition, LEON shows a much more stable

performance on both single query performance and average per-

formance compared to previous works (about 8× less performance

deterioration compared to other learning-based methods).

In summary, we make the following contributions:

• We analyze the fundamental limitations of ML for query

optimization and point out design principles for ML-aided

query optimizer (in Sec. 2).

• We present LEON , an ML-aided learning framework for the

expert query optimizer. LEON integrates ML models deeply

into traditional optimizers, combining both ML and expert

knowledge. (in Sec. 3).

• We propose a contextual pairwise ranking objective for

query optimization, which aims to help the ML-aided opti-

mizer to learn better decisions (in Sec. 4).

• We propose a robust plan exploration strategy to help ML-

aided optimizers improve performance (in Sec. 5.1).

• We introduce an ML model-guided pruning to improve the

planning efficiency (in Sec.4.3).

• We conduct extensive experiments on benchmarks, demon-

strating the superiority and practicality of LEON (in Sec. 6).

We also integrate LEON into GaussDB(DWS).

2 BACKGROUND AND MOTIVATION

In this section, we first describe the traditional query optimizer.

Then we analyze how ML methods tackle query optimization and

compared them to traditional query optimizers. We summarize

the existing learning-based query optimization methods and corre-

sponding characteristics in Table 1. In general, we can categorize

them into two classes: ML-replaced and ML-aided.

2.1 Standard Query Optimizer

The basic paradigm of a traditional query optimizer is to enumerate

candidate plans and then search for the optimal one among them

with a cost model. Dynamic programming (DP) is utilized as the

core search strategy [11, 12, 34]. The DP enumeration module is

based on the optimality principle and memorization. Optimality

principle: DP decomposes the global optimal solution into itera-

tions for the local optimal solution. To illustrate, given a complete

logical expression (query) 𝑄 , the equivalent set 𝑆 is defined by a

combination of logical expression 𝑞 (𝑞 can be a partial expression

of 𝑄) and physical property 𝜔 , which is denoted by 𝑆 = (𝑞,𝜔). DP

continuously enumerates larger 𝑆 into physical plans 𝑝 and obtains

the optimal solution until 𝑆 is as large as 𝑄 . Memorization: A look-

up table keeps track of the optimal plan for explored equivalent

sets. The suboptimization decisions (subplans) in the look-up table

can be used in the complete plan.

Here we describe an overview of the bottom-up search engine.

The search engine finds possible execution plans for a query by

successively iterating on the number of relations joined so far. The

input to the search engine is a set of base relations (denoted by

Rel(𝑞)). Then for each level 𝑖: (1) Plan Enumeration: The plans

containing 𝑖 base relations for the same equivalent set 𝑆 will be

generated based on the combination of former optimal plans saved

in a look-up table. (2) Cost Computation: The statistic for every

plan will be derived to compute the cost by a cost model. (3) Cost

Comparison and Memorization: The optimal plan and corre-

sponding cost from equivalent set 𝑆 is chosen and memorized in

the look-up table. (4) If 𝑖 = |𝑅𝑒𝑙 (𝑞) |, the search process finishes, and

the optimal plan is returned. Otherwise, go back to step (1).

There is no heuristic involved in the plan enumeration. Theoret-

ically, as long as the cardinality estimations and the cost model are

accurate, this architecture obtains the optimal query plan.

2.2 Why Learn What We Already Know?

Recent works leverage reinforcement learning (RL) techniques to

learn an end-to-end query optimizer to replace the traditional query

optimizer [15, 22, 23, 42, 46]. We call themML-replaced methods. In

this subsection, we compare these methods with the standard query

optimizer in two crucial components in detail. We find that the

fundamental knowledge and axioms in traditional query optimizers

cannot be and need not be learned by ML models.

Plan Enumeration. The transformation rules exhibit the basic

knowledge of query optimization, which should be preserved. Trans-

formation rules, specifying equivalence transformations for logical

expressions and physical implementations, represent the knowl-

edge of algebraic law for plan enumeration in an equivalent set. For

example, the transformation rules can unnest an IN/EXISTS sub-

query to a semi-join, which expands search space. A subquery can

also be pushed up to be evaluated in advance, so that it can appear
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Figure 1: An overview of the ML-aided query optimizer. The optimizer maintains the DB knowledge and self-adjusts towards a

database instance by ML models.

in the earlier steps of the overall execution plan, thereby obtaining

a better execution plan. On the contrary, an ML model, learned in

a data-driven fashion, can hardly reason out such complex rules

and patterns. As a result, existing ML-replaced methods enumerate

plans based on fixed rules: 1) basic associative and commutative

laws for joins; 2) pushing projection and predicates to leaf nodes for

scan and filtering. This can lead to an incomplete plan enumeration

and potentially suboptimal query plans.

In addition, modern query optimizers have great extensibility.

They can be extended with new operators, cost models, properties,

and rules. As DBMSes advance, more rules and implementation

algorithms can be added as the basic knowledge of a DBMS since

components are independently modularized. For comparison, the

learned query optimizer has to learn from the exponential growth

equivalent sets in a trial-and-error manner.

Cost Model. After enumerating various candidate plans, the op-

timizer selects an optimal plan and then prunes other plans in an

equivalent set. The traditional query optimizer uses a heuristic-

based cost model 𝐶 (·) to estimate the execution cost of plan 𝑝

denoted as 𝐶 : 𝑝 → cost. The expert-implemented cost model also

contains a large amount of knowledge. The cost estimation is based

on knowledge of multiple factors, such as the cost of IO count, CPU

time, and coarse-grained statistics for data distribution, etc. The

cost model, although not accurate, is an off-the-shelf score function

with decent performance. More importantly, it is robust to the dy-

namic workload and data shifting, which is what ML models suffer

from. Recent RL-based methods all try to learn from existing cost

models. For example, Neo [22] collects expertise experience from a

traditional query optimizer. RTOS [46] pre-trains the ML model by

cost as supervision. As certain database applications are critical to

organizational mission and operations, maintaining a worst-case

optimal cost model is necessary for DBMS vendors. Although it is

desirable to replace this model, it is currently impractical. There-

fore, for established database systems, it is unwise to abandon all

existing work. Instead, our approach is to supplement the current

model with a new technique.

Given the shortcoming of the ML-replaced methods, in the next

subsection, we analyze how different learning-based approaches

aid an expert query optimizer.

2.3 What Should We Learn to Aid Query
Optimizer?

The ML-aided approaches build ML models on top of traditional

query optimizers to enhance optimizer performance. The ML-aided

approaches can be categorized into two classes: black-box andwhite-

box. The white-box methods influence query optimizer behavior for

sub-optimization (e.g., changing a join algorithm to another for a

specific join operator), while black-box methods can only influence

the entire plan. In this subsection, we analyze those two types of

methods and give our opinions.

Black-box Methods. The black-box methods include knob/hint

Tuner. DBMSes provide some knobs for DBAs to fine-tune their

performance for specific applications. Learning-based knob tun-

ing [4, 18, 47] uses RL to fine-tune the parameters (e.g., working

memory). Specifically, many DBMSes provide hint sets for DBAs to

fine-tune query optimizer behavior. Bao [21], different from the pre-

vious methods, steers an expert query optimizer by tuning hint sets

(e.g., disabling nested loop join) for each query. The hint choices

depend on the latency prediction from Bao’s predictive model. How-

ever, black-box methods have a fundamental limitation: it only has

coarse-grained optimization choices (enabling/disabling operators

for the entire plan). For example, a subplan is optimal with a nested

loop join but it can be discarded because a nested loop join has a

poor performance on the other irrelevant equivalent set. On the

contrary, by manipulating the cost model, the potential set of plans

that can be generated extends strictly beyond that of Bao’s.

White-box Methods. The while-box methods include learned car-

dinality estimation (CardEst) [13, 22, 25, 26, 30, 41, 43] and learned

cost estimation (CostEst) [24, 36, 37]. They aim to learn a param-

eterized model to steer the expert cost model or the cardinality

estimator. However, they have some drawbacks that are deeply

related to query optimization.

(1) Query optimizer only cares about the ranking of plans. Previ-

ous work normally leverages an ML model to predict the latency

of a plan. However, learning the absolute value is hard for an ML

model considering the latency can be vastly different between two

plans. Instead, the ML model only needs to learn the relative rela-

tionship between two plans, which relaxes the requirement for ML

model training. Moreover, the ML model needs to learn more about

higher-ranked plans instead of less favorable plans. For a bad plan,

the exact performance prediction is uncritical.

(2) Plan ranking is onlymeaningful for the candidate planswithin

the same equivalent set i.e., logically equivalent plans with the same

physical property. Previous methods learn plans without the equiv-

alent set restriction. Instead, they should focus on comparing plans

within the same equivalent set, which could reduce unnecessary

plan comparisons.

(3) Finding better plans has to jump out of the existing experience,

which shows the necessity of plan exploration. Only relying on the



current optimal plans can make optimization performance stuck

at local minima. Instead, a query optimizer can only progress if it

explores extra potentially good execution plans. However, previous

white-box methods do not pay attention to exploration but only

train the ML models on a static workload. Once the data shifts, the

ML model can be fragile.

In summary, none of the existing approaches can integrate deeply

into the expert query optimizer and influence the optimization

decisions effectively. However, each method has its advantages,

which make us decide to go the way of a white-box ML-aided query

optimizer. To train ML models, we should first make the expert

optimizer an initialization. Then we need to make the ranking

an objective and explore potentially better optimization decisions.

In this way, we can fully leverage the knowledge in the expert

query optimizer. The ML-aided optimizer starts from the current

expert performance and self-adjusts towards the deployed database

instance.

3 FRAMEWORK OVERVIEW

In this section, we introduce a new framework for ML-aided query

optimization called LEON . LEON trains an ML model to aid the

expert query optimizer tailored to the specific database instance

(dataset, workload, and hardware). The workflow of LEON is shown

in Fig. 1. We first introduce how LEON utilizes an ML model to aid

an expert query optimizer and then we describe how to train ML

models.

ML-aided Query Optimizer. The standard search process is de-

scribed in Section 2.1. ML model influences a standard query opti-

mizer’s optimization decision in the following two aspects (green

box ① and ② in Fig 1).

① The first aspect is for intra-equivalent set optimization deci-

sions (cost computation and cost comparison in Section 2.1). Instead

of relying on the expert cost model, LEON learns a score function

𝑀𝐼 : (𝐿𝐹, 𝑃𝐹 ) → (score, uncertainty).

𝑀𝐼 maps a (logical feature (𝐿𝐹 ), physcial feature (𝑃𝐹 )) pair to a

scalar value (score) to rank plans from the same equivalent set 𝑆 .

𝐿𝐹 = (𝑄,𝑞) is defined by complete query 𝑄 and current logical

expression 𝑞 and 𝑃𝐹 = (𝜔, 𝑝) is defined by physical property 𝜔 and

current plan 𝑝 . Thus, the ranking position of a plan in the equivalent

set 𝑆 is reordered by the score. The optimal plan in the equivalent

set is chosen by selecting the plan with the lowest estimated score

from𝑀𝐼 . Note that𝑀𝐼 also computes the uncertainty of the score

(details in Section 5.1). The uncertainty indicates how confident is

the model 𝑀𝐼 to the predicted ranking position, which is aimed

at plan exploration. 𝑀𝐼 can easily disable the exploration mode

during the online inference.

② The second aspect is for inter-equivalent set pruning. LEON

learns a second score function:

𝑀𝑂 : (𝐿𝐹, 𝑃𝐹 ) → overall score.

Given 𝐿𝐹 = (𝑄,𝑞) and 𝑃𝐹 = (𝜔, 𝑝),𝑀𝑂 predicts an overall ranking

of executing the complete query 𝑄 when the (sub)plan 𝑝 is used as

a partial step. Then, the equivalent set 𝑆 with an inferior ranking

position will be pruned from the look-up table.

Compared to the expert cost model, the absolute value from the

score function has no semantic meaning since it only learns the

relative ranking position for plans in intra- or inter-equivalent sets

(formally defined as context in Section 4.1). In addition, the learned

score function is non-trivially built. It incorporates the expert cost

model as an initialization (𝑀𝐼 (𝐿𝐹, 𝑃𝐹 ) ≈ 𝐶 (𝑝) at the beginning).

This approach solves the cold start problem as it avoids the need

to collect a large amount of data when the ML model is unstable

and reduces the risk of unexpected performance regression during

the learning process. We call𝑀𝐼
𝜃
a mixed cost model. Furthermore,

it leverages collected execution feedback to make the expert cost

model tailored to the target database instance. If the optimal ranking

can be ordered by the score function, the optimal plans can be

searched by the query optimizer. We discuss the configuration and

training of the score function as follows.

ML Model. LEON trains a neural network with parameter 𝜃 to

approximate the optimal score function 𝑀𝐼
𝜃
and 𝑀𝑂

𝜃
. Note that

𝑀𝐼
𝜃
and 𝑀𝑂

𝜃
use the same backbone network but only different

prediction heads. The inputs to the neural networks are encoded

as logical and physical feature vectors: The logical feature vector

encodes information in𝑄 and𝑞. The physical feature vector encodes

information in 𝜔 and 𝑝 (details in Section 4.2).

Model Updating. For the task of updating ML model, LEON col-

lect experience and use it to train ML models. Specifically, in every

iteration, LEON leverages the current ML-aided query optimizer

to search plans for the training workload. During the plan search,

LEON will collect extra experience. After the plan search, LEON

train ML models with collected experience. The following two steps

(a) experience collection (details in Section 5.1) and (b) model train-

ing (details in Section 5.2) alternate until the predefined stopping

condition. The workflow of model updating is illustrated in Fig 1.

(a) Experience Collection. LEON maintains an experience pool

𝐸 = {(𝑞,𝑄, 𝑝, 𝜔,𝐶 (𝑝), 𝐿(𝑝), 𝐿𝑂 (𝑝))} to collect execution

feedback including logical expression 𝑞, complete query

𝑄 , plan 𝑝 corresponding to 𝑞, physical property 𝜔 , cost

𝐶 (𝑝), immediate latency 𝐿(𝑝) and overall latency 𝐿𝑂 (𝑝).

What experience to collect is a non-trivial problem. For

each query in the training workload, LEON uses a standard

plan enumerator in the query optimizer. Specifically, LEON

uses an ML-aid query optimizer to search plans. For every

equivalent set, LEON has a plan exploration strategy to

pick valuable (sub)plans. The plan exploration is based on

two criteria: ranking and uncertainty derived from current

𝑀𝐼
𝜃
to discover potentially better plans. The selected plans

will be used to collect their execution feedback saved in 𝐸.

(b) Model Training. Model training aims to let the twoMLmod-

els learn from the collected experience 𝐸. In the beginning,

LEON initializes the mixed cost model𝑀𝐼
𝜃
from the expert

cost model. LEON borrows ideas from the recommendation

system and formalizes query optimization as a contextual

pair-wise plan ranking problem to train twomodels tailored

to the goal (details in Section 4.1). For every iteration, LEON

pick several batches of plan pairs (𝑝1, 𝑝2) in experience pool

𝐸 under certain contexts for the ML model. Then, LEON

trains two ML models𝑀𝜃 with standard supervised learn-

ing fashion by our proposed contextual ranking objective

and safety regularization serving as the loss function. ML



models are trained on the collected experience iteratively

to approximate the optimal score function.

4 PLAN RANKING MODEL

In this section, we first formalize the query optimization problem as

a pair-wise classification problem in Section 4.1. Then we describe

the key aspects to build an effective ML model in general. After

that, we describe how to use LEON .

4.1 Problem Formulation

The goal of query optimization is to pick the best query execution

plan regarding latency. The previous learning-based method uses

anMLmodel to predict the plan performance in a supervised regres-

sion manner, i.e., learning the exact latency. However, in practice,

such learning objective has significant prediction errors [1].

Instead, what we really need is the correct order of candidate

plans. Thus, we formalize query optimization as a contextual plan

ranking problem.

Definition 1 (Contextual Plan Ranking). Given the context

defined by restrictions from three aspects: complete query 𝑄 , the

logical expression𝑞, and physical property𝜔 , give order to enumerated

physical plans from the same context. The order complies with the

relative position of the target optimization goal (e.g., latency) without

actually executing the plans.

Intuitively, the plan ranking problem is relatively easier than the

supervised regression problem. Accurate latency prediction of a

plan implies the correct ranking, while correct ranking does not

need accurate prediction for a fixed value. Note that our search

strategy is based on DP, we mainly care about the plan ranking in

the same context. For intra-equivalent set optimization, context is

defined as restrictions on the same𝑄 , 𝑞, and𝜔 . For inter-equivalent

set pruning, context is defined as restrictions on the same 𝑄 but

different on equivalent set (𝑆 = (𝑞,𝜔)). The context restriction

helps LEON reduce unnecessary plan comparison.

Plan ranking naturally has transitivity property, i.e., given the

score function 𝑀𝐼 ,∀𝑝1, 𝑝2, 𝑝3 enumerated from the same context:

𝑀 (𝑝1) > 𝑀 (𝑝2) ∩ 𝑀 (𝑝2) > 𝑀 (𝑝3) → 𝑀 (𝑝1) > 𝑀 (𝑝3), where

𝑀 (·) denotes a score function in general and we omits the same

context input. Thus, we can formalize a plan ranking problem to a

pair-wise ranking/classification problem.

Definition 2 (Contextual Pair-wise Classification). Given

a pair of physical plans ∀𝑝1, 𝑝2 derived from the same context, predict

which plan has higher ordering according to the contextual plan

ranking without actually executing the plans.

Learning to Rank (LTR) has been studied in the recommenda-

tion system. It has been shown that forecasting relative order is

more closely related to the nature of ranking than predicting abso-

lute value so pairwise techniques perform better in practice than

pointwise approaches [8, 48]. In addition, the pairwise classification

formulation is a more feasible way to train the MLmodel as we only

need two labels to train the model instead of the whole ranking list.

4.2 ML Model

Here we describe the details of how to build appropriate ML mod-

els. The model architecture is shown in Fig. 2. The input to the
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Figure 2: ML Model Architecture.

feature extractor contains two aspects: logical features and phys-

ical features. The logical features is encoded by a one-hot vector

to represent logical properties including output cardinality and

join graph from (sub)query 𝑞 and complete query 𝑄 . The physical

feature maintains a tree structure to represent the plan tree 𝑝 and

physical property 𝜔 , where every tree node is represented by a

one-hot vector indicating the physical operators and sort order.

The logical one-hot encoding then merges with every tree node

vector as final encoding. Pattern matching for plan trees is com-

monly used and empirically verified by previous works [21, 22, 42].

LEON builds two ML models tasked to learn such patterns.𝑀𝑂
𝜃

and

𝑀𝐼
𝜃
share the same backbone network called feature extractor. The

choice of feature extractor is not our contribution and is orthogonal

to techniques of LEON . Users can use other network architectures.

In our implementation, we use tree convolution networks including

convolution and pooling operations in Neo [22] (denoted as filters

in Fig. 2). After the feature extractor, there are two output heads.

Each head is a multilayer perceptron (MLP), which takes the feature

vector as the input to predict the desired outputs.

Although the two models share part of the parameters, they are

trained by different signals under different contexts in a pairwise

manner. We defer the details of pairwise training to Section 5.2.

Next, we introduce the differences between the two models.

Intra-equivalent set Model. LEON trains an intra-equivalent set

ML model 𝑀𝐼
𝜃
to influence the optimization decisions within an

equivalent set. Based on Definition 2, the intra-equivalent set ML

model training is supervised by the immediate latency performance

of plan pairs from the same 𝑆 . However, learning the parameterized

cost model 𝑀𝐼
𝜃
from scratch can be hard considering 𝑀𝐼

𝜃
has to

evaluate a large number of plans, especially when training data

is a bottleneck. To this end, we propose to represent a mixed cost

model𝑀𝐼
𝜃
by applying a parameterized calibration function 𝑔𝜃 (·, ·)

to the traditional cost estimation 𝐶 (·):

𝑀𝐼
𝜃
(𝐿𝐹, 𝑃𝐹 ) = 𝑔𝜃 (𝐿𝐹, 𝑃𝐹 )𝐶 (𝑝),

where 𝑔𝜙 maps logical and physical features to a calibration ratio.

In the beginning, the classification ratio will be initialized close

to one (𝑔𝜃 ≈ 1) as a much simpler initialization for practice. For

the uncertainty measurement, we add dropout layers into the MLP

of𝑀𝐼
𝜃
to introduce randomness (red cross in Fig 2). Thus,𝑀𝐼

𝜃
can

measure uncertainty based on multiple predictions. The rationale

will be illustrated in Section 5.1.

Inter-equivalent set Model. LEON trains another ML model𝑀𝑂
𝜃

for inter-equivalent set ranking. Different from𝑀𝐼
𝜃
,𝑀𝑂

𝜃
is used to

prune the redundant search space. Thus,𝑀𝑂
𝜃

needs to identify the



inferior plans. 𝑀𝑂
𝜃

is supervised by the overall latency signal of

executing the complete query 𝑄 when using the current (sub)plan

𝑝 as a partial step. Note that 𝑀𝑂
𝜃

is trained in a pairwise fashion,

however, with plan pairs from different equivalent sets.

4.3 Using LEON to Aid Query Optimizer

LEON , as a white-box method, deeply integrates the ML model into

the DP. It ensures to use of complete plan space as the traditional

query optimizer does and enhances the cost model to give accurate

ranking to the candidate plans. LEON learns a ranking-based model

within the context: intra-equivalent set and inter-equivalent set,

which eliminates unnecessary plan comparison and model training

in vast plan space. These advantages ensure that LEON employs a

ranking-based ML model that is significantly more accurate than a

regression model and expert cost model.

ML Model Integration into DP. LEON integratesMLmodels into

DP search including two parts: the intra-equivalent set model𝑀𝐼
𝜃

and the inter-equivalent set model𝑀𝑂
𝜃
.𝑀𝐼

𝜃
is used to change the

optimization decisions of the query optimizer in the equivalent set

(under context ∀𝑝1, 𝑝2, 𝑆1 = 𝑆2, 𝑄1 = 𝑄2). The usage is illustrated

in Section 3. Here we focus on the usage of the inter-equivalent

set model𝑀𝑂
𝜃
, which is used to improve the planning efficiency by

pruning inter-equivalent set decisions.

𝑀𝑂
𝜃

is used to prune the inferior equivalent sets with the same

number of join tables (in the same DP level). Specifically, after the

cost comparison is finished for the same level, all equivalent sets

memorize corresponding optimal plans. We use 𝑀𝑂
𝜃

to evaluate all

optimal plans for a level (under context ∀𝑝1, 𝑝2, 𝑆1 ≠ 𝑆2, 𝑄1 = 𝑄2)

and prune 𝐿% last ranked equivalent sets. Those pruned plans

will not be considered in the next level plan enumeration, thus

it improves the inference efficiency dramatically. 𝑀𝑂
𝜃

is used for

pruning as it intuitively represents the overall performance for that

subplan. Therefore, we can prune it greedily based on the overall

performance. The pruning percentage 𝐿% and corresponding effect

will be further shown in Section 6.6.

5 MODEL UPDATING

Model updating consists of two steps: experience collection and

model training. Two ML models are trained iteratively. For every it-

eration, the current ML-aided optimizer collects execution feedback

to experience pool 𝐸 with our plan exploration strategy. The two

models are trained by learning from the pairwise samples in the ex-

perience pool to improve current ML-aided optimizer performance.

Here we describe the details of two modules.

5.1 Experience Collection

The plan exploration inherently connects closely to the plan enu-

meration in DP since the mixed cost model𝑀𝐼
𝜃
is tasked to find the

optimal plans among enumerated plans i.e., from the equivalent

set 𝑆 . We pick not only the optimal one but also sub-optimal plans

from 𝑆 to the experience 𝐸. Later, the collected training data will

be executed to collect corresponding execution feedback denoted

as 𝐸 = {(𝑞,𝑄, 𝑝,𝐶 (𝑝), 𝜔, 𝐿(𝑝), 𝐿𝑂 (𝑝))} (L(p) for𝑀𝐼
𝜃
and 𝐿𝑂 (𝑝) for

𝑀𝑂
𝜃
) The plan exploration strategy specifies how to select the valu-

able training data from 𝑆 into experience 𝐸.
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Figure 3: An empirical study on the relationship between

uncertainty and wrong samples. Wrong samples are defined

by the contextual pair-wise classification problem.

A unique challenge in query optimization is that it is time-

consuming to get the execution feedback [21, 42]. LEON aims to

collect a limited amount of additional execution feedback with our

exploration techniques. Here we have two important considerations

as the exploration criteria:

(1) Top-𝑘 plans matter more. Normally, with more plans collected

into 𝐸, the calibration model will perform better and lead to a better-

calibrated cost model for query optimizer since the ML model can

perform well with a large amount of data. However, collecting bad

plans has little contribution to the mixed cost 𝑀𝐼
𝜃
final decision

since they can hardly influence the ranking of top-𝑘 candidate

plans. This is intuitively correct because the higher-ranked plans

hurt the ranking performance of the current model more than the

lower-ranked ones.

(2) In addition, the ML-aided optimizer should correct its errors

that lead to a sub-optimal query plan. Based on Definition 2, the

error refers to the wrong ranking/classification of a plan pair 𝑝1, 𝑝2
enumerated from 𝑆 . Ideally, if we know how confident a𝑀𝐼

𝜃
is to

its estimation, the low-confidence predictions are more likely to

make mistakes.

Model Uncertainty. Bayesian Neural Network (BNN) [14] pro-

vides a framework to measure the uncertainty of a predictive model.

Different from the point estimation, given the prior distribution

of model parameters 𝑃 (𝜃 ), BNN learns the posterior distribution

𝑝 (𝜃 ′ | 𝐸) from experience 𝐸. When using a BNN for prediction, the

probability distribution 𝑝 (score | 𝐿𝐹, 𝑃𝐹, 𝐸) can be marginalized by

by the posterior distribution 𝑝 (𝜃 ′ | 𝐸) for every 𝜃 :

𝑝 (score | 𝐿𝐹, 𝑃𝐹, 𝐸) =

∫
𝜃
𝑝 (score | 𝐿𝐹, 𝑃𝐹, 𝜃 ′)𝑝 (𝜃 ′ | 𝐸)𝑑𝜃 ′ . (1)

Based on Eq. (1), themodel output can be approximated byE(score |

𝐿𝐹, 𝑃𝐹 ) ≈ 1
𝑁

∑︁𝑁
𝑖=1𝑀

𝐼
𝜃
(𝐿𝐹, 𝑃𝐹 ), The uncertainty 𝑢 (𝐿𝐹, 𝑃𝐹 ) for pre-

diction (𝐿𝐹, 𝑃𝐹 ) is defined as 𝑢 (𝐿𝐹, 𝑃𝐹 ) = 𝑉𝑎𝑟 (score) ≈
∑︁𝑁
𝑖=1

𝑀𝐼
𝜃
(𝐿𝐹, 𝑃𝐹 )2 − E(score | 𝐿𝐹, 𝑃𝐹 )2. 𝑁 is times of sampling the pa-

rameters from its posterior distribution. BNNs are data-efficient as

it can learn from a limited data without overfitting [27].

We dig deep into the plan pairs and measure the uncertainty of

the right and wrong classified plan pairs. We show an empirical

study on the relationship between uncertainty and wrong samples.

It can be shown from Fig. 3 that the uncertainty is unstable at the

beginning of the training phase. With an increasing number of

training epochs, the wrong sample’s uncertainty is obviously larger

than the right sample, which indicates a positive relationship with

estimation error.



Recent research in recommendation systems [8, 48] provides

theoretical proof and empirical evidence that a high-ranked sample

with larger uncertainty is helpful for model training. To this end,

we propose a two-stage plan exploration strategy including top-𝑘

exploration and uncertainty-based exploration.

Stage 1: Top-𝑘 Exploration. At the first stage, we choose top

⌊𝑘% × |𝑆 |⌋ number of potential plans from the same equivalent set

𝑆 , where 𝑘% is a tuneable parameter based on the training time

budget.

Stage 2: Uncertain-based Exploration. In the second stage, for

every plan we get from stage one, we select the most or several

uncertain plans. We measure the uncertainty of the model to a plan

denoted as 𝑢 (𝐿𝐹, 𝑃𝐹 ) as a criterion to collect plans. When the ML

model learns from limited experience 𝐸, it will update the uncer-

tainty to them and solicit for the more uncertain data samples. To

measure𝑢 (𝐿𝐹, 𝑃𝐹 ) in a deep neural network, we adopt Monte Carlo

dropout [14] by plugging dropout layers into𝑀𝐼
𝜃
. Based on Eq (1),

we run𝑀𝐼
𝜃
for 𝑁 times. We calculate its variance as an approxima-

tion to the uncertainty and calculate its mean as an approximation

to its mixed cost estimation. The actual exploration number de-

pends on the training time budget. Note that the exploration mode

can be easily disabled by disabling dropout layers.

5.2 Model Training

As described in Definition 2, we train the score function𝑀𝐼
𝜃
and𝑀𝑂

𝜃
in a supervised classification manner under different contexts. To

train model𝑀𝐼
𝜃
, we first pick several batches of plan pairs (𝑝1, 𝑝2)

satisfying 𝑄1 = 𝑄1 and 𝑆1 = 𝑆2, then we assign correct training

labels. We assign the pair with a positive label if 𝐿(𝑝1) < 𝐿(𝑝2).

Otherwise, it will be assigned a negative label. Similarly, to train

model𝑀𝑂
𝜃
, we pick several batches of plan pairs (𝑝1, 𝑝2) satisfying

𝑄1 = 𝑄2 and 𝑆1 ≠ 𝑆2. We assign correct label by 𝐿(·)𝑂 instead of

𝐿(·). Next, we describe the loss function to train two ML models.

Note that we use classification loss with regularization to train𝑀𝐼
𝜃
.

We only use classification loss to train𝑀𝑂
𝜃
.

Classification Loss.Weadopt softmax binary cross entropy loss [6]

as follows:

L(𝜃 ) = −(𝑦 log(𝜎 (𝐿𝐹𝑖 , 𝑃𝐹𝑖 )) + (1 − 𝑦) log(1 − 𝜎 (𝐿𝐹𝑖 , 𝑃𝐹𝑖 )))

where 𝜎 (𝐿𝐹𝑖 , 𝑃𝐹𝑖 ) =
𝑒−𝑀𝜃 (𝐿𝐹𝑖 ,𝑃𝐹𝑖 )∑︁2
𝑗=1 𝑒

−𝑀𝜃 (𝐿𝐹𝑖 ,𝑃𝐹𝑖 )
𝑓 𝑜𝑟 𝑖 = 1, 2.

(2)

𝜎 is a softmax projection from the score to a probability to choose

plan 𝑝𝑖 and 𝑦 is a true label by classifying a better plan in plan pair

(𝑝1, 𝑝2) based on the order of latency. Then the cross entropy loss

will penalize the wrong classification. Therefore, learning the loss

L will make the calibrated cost model rank plan pair correctly.

Training the mixed cost model while maintaining its prior knowl-

edge is not an easy task. Learning aggressively can result in unstable

performance since the learned model tends to overfit on the limited

data [45]. In the jargon of ML, researchers often include regulariza-

tion to the objective function to avoid overfitting. In practice, we

add KL divergence by measuring the difference in intra-equivalent

set ranking before and after parameter updates as a soft constraint

in our objective function similar to TRPO [33].

6 EXPERIMENTS

6.1 Experiment Setup

Datasets. The four widely-used datasets listed below serve as

benchmarks for the evaluation of LEON :

• Join Order Benchmark (JOB): JOB is a real-world dataset that

provides realistic workloads based on IMDB. There are 113 ques-

tions among 33 templates. It has 3.6GB of data (11GB when indexes

are included) and 21 tables. The range of relations in each query is

between 4 and 17.

• Extended JOB (JOB-EXT): Ext-JOB is a demanding workload

that presents a hard generalization challenge [22, 42]. The dataset

consists of 24 new queries based on the IMDb dataset. Each query

involves 2 to 10 joins, with an average of 5 joins per query. These

queries are particularly challenging because they are out of distri-

bution, meaning they utilize entirely different join templates and

predicates compared to the original JOB.

• STACK: The Stack dataset is an extensive collection of over 18

million questions and answers sourced from 170 different Stack-

Exchange websites. The entire dataset occupies 100GB of storage

space. For our purposes, we utilized the workload generated by [21],

which includes 16 query templates. The number of relations in each

query varies between 4 and 12.

• TPC-H: TPC-H is a database benchmark for industrial testing,

including data obtained from decision support applications. It con-

sists of eight tables and 61 columns and generates queries based on

22 templates. We produced 10GB of data in total.

We employed varying levels of difficulty in our training/test

spilt to validate the effectiveness of LEON . In the case of JOB and

TPC-H benchmarks, we conducted evaluations under average cir-

cumstances. We randomly selected a query from each template to

form the test set, while the remaining queries were utilized for the

training set. Furthermore, for the JOB-EXT benchmark, we exam-

ined the generalization capability of different methods to handle

difficult, unseen queries. We used the JOB dataset for training and

JOB-EXT for testing. Finally, we conducted tests on large-scale

workloads for the STACK benchmark. We randomly select 100

queries for training and use 500 queries with distinct templates and

predicates for testing.

Baselines. The baselines are shown as below:

• PostgreSQL [10]. PostgreSQL is an open-source DBMS, and

we use it to represent the traditional method. PostgreSQL uses

the histogram method to estimate the cost and then searches the

execution plan by dynamic programming.

• Balsa [42]. Balsa is a query optimizer based on reinforcement

learning and learned models, and we utilize its source code [2] to

reproduce the results. For a fair comparison with LEON , we use

the expert cost model in the simulation stage, thus improving its

performance. We configue Balsa in a non-parallel mode, with the

same resource usage as other methods.

• Bao [21]. Bao uses machine learning models to aid the query

optimizer of the DBMS in searching for an optimal execution plan.

Similar to Bao’s design, we obtain the final execution plan by letting

Bao choose the hint set corresponding to the query statement, and

record the result. In the same manner, as Balsa, we reproduce the

results using the source code [32] of Bao.



Expert Engines. For a fair comparison, all learning-based query

optimization methods are implemented based on PostgreSQL. Sim-

ilar to previous works [16, 42], We set up PostgreSQL with 32GB

shared buffers and cache size, along with 4GB work RAM, with

GEQO turned off.

Evaluation Metrics: Unless otherwise specified, we report the

workload runtime as an evaluation metric. The workload runtime

is defined as the sum of latencies for each query. When presenting

normalized runtimes, we calculate them with respect to the ex-

pert’s runtimes. To demonstrate overall performance, we also report

the Geometric Mean Relevant Latency (GMRL) which is adopted

from [46]:𝐺𝑀𝑅𝐿 =
∏︁𝑛

𝑖=1
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑞)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑒𝑥𝑝𝑒𝑟𝑡 (𝑞)
. The GMRL reflects the

geometric average ratio of query execution time consumption be-

tween the learning-based model and the expert optimizer. A lower

numerical value indicates better latency performance compared to

the expert optimizer. Note that a GMRL value of 1 indicates expert

optimizer latency performance. We chose to use GMRL because it

can demonstrate the average performance without being affected

by the latency of individual queries.

Table 2: Overall performance of LEON and baselines.

Methods
Datasets Workload Runtime (Seconds/Normalized) GMRL

JOB JOB-EXT STACK TPC-H JOB JOB-EXT STACK TPC-H

PostgreSQL 45.06/1.0 290.1/1.0 916.4/1.0 93.8/1.0 1.0 1.0 1.0 1.0
Balsa 32.81/0.72 279.1/0.96 637.2/0.69 78.7/0.76 0.62 1.01 0.67 0.74
Bao 34.68/0.77 243.5/0.83 646.5/0.70 89.2/0.95 0.95 1.08 1.13 0.94

LEON 28.54/0.63 197.4/0.68 476.7/0.52 66.3/0.70 0.54 0.77 0.49 0.72

6.2 LEON Performance

To demonstrate the overall performance of LEON , we conduct

end-to-end training on four benchmarks with different levels of

difficulty in the training/test split. We ensure that all learning-based

algorithms are trained until convergence, and we test them on the

unseen test split. We repeat each end-to-end training 5 times and

report average results.

6.2.1 Overall Latency Performance After Training. Table 2 summa-

rizes the overall latency performance of all baselines after training.

In general, LEON achieves the best performance compared with

PostgreSQL, Balsa, and Bao on JOB, JOB-EXT, STACK, and TPC-H.

LEON outperforms PostgreSQL, with speedups of 1.57×, 1.46×,

1.92×, 1.41× in workload runtime for JOB, JOB-EXT, STACK, and

TPC-H, respectively. TPC-H has the least improvement due to the

evenly distributed data. These findings showcase the benefits of

utilizing an ML-aided query optimizer, which improves the adapt-

ability of expert optimizers to deployed datasets and workloads.

Compared with SOTA learning-based query optimizer, LEON

also achieves the best query latency performance. Compared with

Balsa, LEON achieves 1.14×, 1.41×, 1.33×, 1.08× speedup in terms

of workload runtime on JOB, JOB-EXT, STACK, and TPC-H respec-

tively. Compared with Bao, LEON achieves 1.21×, 1.23×, 1.35×,

1.34× speedup in terms of workload runtime on JOB, JOB-EXT,

STACK, and TPC-H respectively. On JOB-EXT, Balsa shows the

least improvement compared to ML-aided methods. That is because

the ML-replaced methods lack essential knowledge in the expert

query optimizer, which makes them less adaptable to changes in

workload distribution.

The GMRL metric evaluates the overall relative latency perfor-

mance of the queries regardless of their individual latencies. The

results show that LEON outperforms Balsa and Bao on two diffi-

cult benchmarks, JOB-EXT and STACK. Interestingly, Balsa and

Bao show similar results to PostgreSQL in terms of GMRL, despite

having lower workload runtimes. We observed that both of them

tend to focus only on improving the slowest queries and neglect-

ing other queries. In contrast, LEON can improve the performance

of the slowest queries while maintaining latency performance for

other queries that have less optimization potential. This finding is

also supported by the results presented in Section 6.2.2.

6.2.2 Query Regression Analysis. Fig. 4 presents the normalized

runtime of each learning-based query optimizer (Balsa, Bao, and

LEON ) over PostgreSQL plans on a per-query basis. The x-axis

denotes PostgreSQL expert runtime for every query. This figure

provides an overview of the performance of each optimizer on

individual queries. Additionally, for the STACK benchmark, we

plot 100 test queries’ performance from the test set to improve the

visualization, while the overall trend remains the same.

Overall, Balsa, Bao, and LEON reduce the latency of slow queries

from PostgreSQL, which explains why they can outperform the

expert query optimizer. It is worth mentioning that LEON exhibits a

significant reduction in query performance regression while main-

taining similar performance on queries that are inherently fast to

execute. Specifically, for the four benchmarks, Balsa causes 40%

queries with performance regression. Bao causes 38% queries with

performance regression. By contrast, LEON only causes 19% queries

with performance regression. In terms of the extent of the perfor-

mance regression, Balsa and Bao have 7.4× and 9.6× slowdown in

query performance on JOB and STACK respectively, while LEON

causes up to 1.6× slowdown among four benchmarks.

LEON reduces such performance regression for two reasons: 1)

Compared to ML-replaced methods, LEON maintains the expert

query optimizer knowledge asmuch as possible. 2) Compared toML-

aidedmethods, LEON learns to rank effectively instead of predicting

the absolute latency, which introduces less error to the prediction.

In addition, LEON , as a white-box method, deconstructs the search

space and concentrates on the crucial aspect of query optimization

(such as higher-ranked plans), which also makes the ML model

learn faster and generate effective predictions.

6.2.3 Training Efficiency. In this section, we analyze the training

efficiency of LEON , i.e., the change of the test query performance

with the training time. Fig. 5 shows the training curve with variance

of learning-based query optimizers on JOB, JOB-EXT, STACK and

TPC-H. The shaded area represents the range between the mini-

mum and maximum values obtained from five different runs using

different random seeds

LEON achieves efficient training on four benchmarks. LEON

outperforms PostgreSQL consistently by about 2.5 hours, 3 hours,

3 hours, and 1 hour on JOB, JOB-EXT, STACK, and TPC-H re-

spectively. Compared to Balsa, LEON demonstrates superior initial

performance, lower variance, and faster convergence during train-

ing. This highlights the inherent superiority of ML-aided methods

over ML-replaced methods, as the former can leverage more basic

knowledge from the expert optimizer.
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Figure 4: Breakdown of LEON ’s per-query performance compared to the PostgreSQL runtime on different datasets.
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Figure 5: Training curves with variance on different datasets. The shaded area represents the range between the minimum and

maximum values obtained from five different runs using different random seeds.
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Figure 6: Breakdown of optimization and execution time on

a different number of join tables.

As training time increases, the performance gap between LEON

and Bao widens, particularly on two challenging workloads: JOB-

EXT and STACK. On JOB and TPC-H, Bao outperforms LEON at the

beginning. However, after several hours, LEON outperforms Bao

consistently. This demonstrates that the upper limit of white-box

methods is higher and LEON effectively explores potential better

query plans.

The performance of LEON remains robust compared to other

learning-based methods during the training process. In comparison

to Bao and Balsa, LEON exhibits more consistent performance and

lower variability. This is due to our contextual learning-to-rank
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Figure 7: Training curve of dynamic workload.

objective, which is inherently suited to the query optimization

problem. Additionally, this objective assists in the validation and

debugging of our ML models.

6.3 Optimization time.

We conducted experiments on the JOB benchmark to compare the

efficiency of LEON and PostgreSQL (PG) in terms of optimization

(opt) time and execution time for a different number of joins. The

results are presented in Fig. 6. Our findings suggest that LEON takes

longer to optimize than PostgreSQL, mainly due to its modification

of the PostgreSQL estimation and the additional computational

overhead of evaluating candidate plans using the ML model. How-

ever, the ML-aided optimizer still achieves significant savings in
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execution time, except for the 17-relation join, where both opti-

mization time and execution time are comparable to PostgreSQL.

Moreover, there is room for engineering optimizations in the imple-

mentation of LEON , which could further improve the performance

of large queries. Overall, our results demonstrate that LEON can

effectively find query plans that execute faster at a lower cost.

6.4 Adapting to Dynamic Workload

In this section, we demonstrate how LEON adapts to a dynamic

workload during the course of training. We leverage the IMDB

dataset and a dynamic workload generated from the original JOB

workload. To showcase the change in workload, every two hours,

we dynamically introduce two new templates to the current training

and testing queries while keeping the previous queries. Each tem-

plate contains ten training queries and ten distinct test queries. We

continue this process until we have a total of 200 training queries

and 200 testing queries, with join sizes ranging from 4 to 12. Fig 7

shows the training curse during the whole procedure. We only

report Bao as a baseline because Balsa does not achieve competitive

performance. We mark the initial performance of LEON and Bao at

the beginning of each stage with dots and pentagrams, respectively.

Overall, LEON consistently outperforms PostgreSQL and Bao at

every stage, with less initial performance regression. After about

half an hour, LEON converges and continues to outperform the

other methods due to its white-box approach that allows for a more

complete search space without the restriction of a hint set. As more

queries are accumulated, Bao shows larger performance regression,

particularly at the beginning of stage five. In contrast, LEON ex-

hibits less regression due to its ranking-based enhancement of the

expert cost model, which is more accurate than a regression model.

This experiment clearly demonstrates the adaptability of LEON to

dynamic workloads.
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ration strategies.

We further compare the tail latency of different methods during

the whole process. It can be shown from Fig 8 (left) that LEON

outperforms PostgreSQL or remains stable at the 50%, 75%, 99%, and

99.5% percentiles. However, Bao exhibits performance regression at

the 99% and 99.5% percentiles. It shows that Maintaining stability

throughout the entire training process is a challenging task and

stability of LEON .

Fig 8 (right) displays the fluctuations in uncertainty estimated by

MLmodels during training. The red line demarcates different stages.

In each stage, the uncertainty initially increases due to unseen data

and then decreases as more training iterations are performed. This

finding highlights the adaptability of LEON in scenarios where

system dynamics are changing over time. In such cases, LEON’s

uncertainty estimates can enable the expert optimizer to identify

system changes and modify its decisions about updating MLmodels

accordingly.

6.5 Comparison with White-Box Methods

Here, LEON compares its performance with white-box methods,

including CardEst and CostEst. We have implemented open-source

SOTA learning-based methods, such as NeuroCard [44] as the

CardEst work, and Tpool [37] as the CostEst. NeuroCard uses

the IMDB dataset as training data, while we have used training

queries provided by [37] for Tpool. We have injected their predicted

cardinality and cost into PostgreSQL (PG) DP search to measure

end-to-end latency performance. Similar to [42], we have split the

slowest queries from JOB as the test workload. Fig 9 shows the

detailed workload runtime of different methods on every query

template, and the last bar shows the average result. On average,

LEON outperforms PG, CostEst, and CardEst by about 33%, 34%,



and 81%, respectively. LEON outperforms the baselines due to its ac-

curate ranking-based model and exploration strategy. CardEst does

not outperform CostEst for two reasons. 1) The training dataset

for Tpool is large enough to boost performance of ML models. 2)

CardEst methods can be influenced by PG’s inaccurate cost model,

which has been studied in [16].

6.6 Analysis of design choices

Differet rankingmodels. In this section, we will analyze the rank-

ing objective of LEON , which includes three types: pointwise, pair-

wise, and listwise. We have implemented Regression as a pointwise

method, MarginLoss [19] and Cross Entropy as two pairwise meth-

ods, and List Loss [40] as a listwise method. Fig 10 (left) displays

the training curve of different ranking models. We can observe

that the Regression method has inferior performance and more

fluctuation, which is expected as proven by other works in rec-

ommendation systems. List Loss outperforms Regression, and the

pairwise methods have the best performance. This is because it is

unrealistic to collect all plans’ execution feedback in an equivalent

set, while pairwise learning avoids such shortcomings. This result

shows pairwise ranking is more suitable for query optimization.

Fig 10 (right) shows the accuracy of contextual pairwise rankingML

models trained by different ranking models. The accuracy results

of different methods also demonstrate our conclusion.

Different prior knowledge. In this context, łprior knowledgež

refers to using information that is available before the model is

trained, such as empty knowledge basis (Rand), the estimated cardi-

nality (Card), and the expert cost model (Cost). In LEON , we use this

three initialization for ML models. In the case of Fig. 11 (left), the

effect of choosing different priors is analyzed by comparing the con-

vergence speed and latency of the ML-aided optimizer on the JOB

benchmark when using different types of prior knowledge. The re-

sults show that using prior knowledge can improve the convergence

speed of the model, and using cost-based correction can prevent

the generation of bad plans (performance regression). Therefore,

incorporating prior knowledge into the model can improve its per-

formance. This helps to greatly alleviate the cold-start problem,

which can be a significant challenge for ML models deployed in

real-world systems.

Different sampling strategies. In Fig. 11 (right), three different

sampling strategies are compared based on the training process

on JOB: łRandExpž, which randomly samples plans for training,

"TopkExp", which selects the top 𝑘% of plans based on LEON ’s

score, and "TopkExp+U", which selects plans with larger variance

in addition to the top 𝑘% of plans based on LEON ’s score. The

results show that "TopkExp+U" has the fastest convergence speed

and the lowest latency. This is because the uncertainty measure is

used to further screen out data samples with little training value,

which helps to avoid wasting training time on worthless samples.

In this way, the model can focus on learning the core knowledge of

the data, which improves its generalization ability.

Pruning ratio. Tab. 3 shows the results of our analysis of the

pruning ratio, as can be seen from the table. When the pruning ratio

is 30%, the model has the lowest GMRL, the longest optimization

time, and the most searched plans. This is because as the pruning

ratio decreases, the number of execution plans that can be searched

increases. It takes longer to optimize for selection, but a better

execution plan can be found.

Table 3: Results of Different Pruning Ratios

Pruning ratio Optimization time(s) GMRL Number of plans

70% 0.2389 0.7145 352

50% 0.4125 0.6513 778

30% 0.6742 0.5827 1026

7 RELATED WORK

ML-aided query optimizer. Leo [25] is the pioneer work that

makes use of learning-based concepts to assist the query optimizer

and advance it. Leo proposes to collect more statistics for the opti-

mizer histogram during the query execution. Encouraged by the

recent popularity of ML, many researchers apply ML techniques

to help resolve subproblems in the query optimizer. Data-driven

methods like [39, 41, 43, 51] and query-driven methods like [9, 29]

are proposed to solve the cardinality estimation. Deep neural net-

works [36, 37] are trained in a supervised learning fashion to resolve

cost estimation. Reinforcement learning (RL) helps solve decision-

making problems such as database tuning problems [18, 38, 47].

Bao and its following works [21, 28, 49] propose to tune hint sets

for each query, which is promising for practical usage.

Learned query optimizer. Recently, RL is applied to learn an

optimizer to generate query execution plans. Neo [22] builds an

end-to-end query optimizer that produces complete execution plans.

However, Neo is trained completely based on latency signals, which

requires DBMS to execute numerous plans including potentially

bad ones. Some other similar works including Rejoin [23], DQ [15]

and RTOS [46] leverage cost as a trade-off to increase training

efficiency and then transfer the pre-trained model based on the

cost to a new model that can adapt to latency signals. DQ and

RTOS leverage inductive transfer learningmethods [31] that change

representations in the output layer. Balsa [42] shows the insight

of learning an optimizer without the expert and achieves SOTA

performance.

8 CONCLUSION

In this paper, we propose LEON , a framework for ML-aided expert

optimization. Different from the existing learning-based methods,

LEON train an ML model based on the fundamental knowledge of

the expert query optimizer and aims to help the expert query opti-

mizer self-adjust to the deployment environment. We conducted ex-

tensive experiments on four public benchmarks, providing evidence

that LEON exhibits superior performance in terms of execution

latency, training efficiency, and stability.
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