
The VLDB Journal (2012) 21:729–751
DOI 10.1007/s00778-012-0266-x

REGULAR PAPER

Spatial query processing for fuzzy objects

Kai Zheng · Xiaofang Zhou · Pui Cheong Fung ·
Kexin Xie

Received: 21 February 2011 / Revised: 14 November 2011 / Accepted: 26 January 2012 / Published online: 14 February 2012
© Springer-Verlag 2012

Abstract Range and nearest neighbor queries are the most
common types of spatial queries, which have been investi-
gated extensively in the last decades due to its broad range
of applications. In this paper, we study this problem in the
context of fuzzy objects that have indeterministic bound-
aries. Fuzzy objects play an important role in many areas,
such as biomedical image databases and GIS communities.
Existing research on fuzzy objects mainly focuses on mod-
eling basic fuzzy object types and operations, leaving the
processing of more advanced queries largely untouched. In
this paper, we propose two new kinds of spatial queries for
fuzzy objects, namely single threshold query and continu-
ous threshold query, to determine the query results which
qualify at a certain probability threshold and within a prob-
ability interval, respectively. For efficient single threshold
query processing, we optimize the classical R-tree-based
search algorithm by deriving more accurate approximations
for the distance function between fuzzy objects and the query
object. To enhance the performance of continuous thresh-
old queries, effective pruning rules are developed to reduce
the search space and speed up the candidate refinement pro-
cess. The efficiency of our proposed algorithms as well as the

K. Zheng (B) · X. Zhou · P. C. Fung · K. Xie
School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, QLD 4072, Australia
e-mail: kevinz@itee.uq.edu.au

X. Zhou
e-mail: zxf@itee.uq.edu.au

P. C. Fung
e-mail: g.fung@itee.uq.edu.au

K. Xie
e-mail: kexin@itee.uq.edu.au

X. Zhou
NICTA Queensland Research Laboratory, Sydney, NSW, Australia

optimization techniques is verified with an extensive set of
experiments using both synthetic and real datasets.

Keywords Range query · Nearest neighbor query ·
Fuzzy database · Probabilistic database

1 Introduction

The capability of supporting spatial queries is one of the key
features in spatial database management system (SDBMS),
due to its broad range of applications including molecular
biology [5], medical imaging [23], multimedia databases
[38], and so on. After extensive study during the last decades,
numerous efficient algorithms have been proposed in previ-
ous literatures [20,23,30,39,44,45], most of which target
traditional SDBMS where the locations of data and queries
are precise and static.

Recently, with the advent of mobile and ubiquitous com-
puting, many spatial queries, such as range and kNN queries,
have also been extended to moving object databases [7,42]
and uncertain databases [11]. This work has collectively
made significant advances in improving the efficiency of
search algorithms and enriching the queries to support more
complex data types. To the best of our knowledge, one com-
mon assumption of these work is that the data to be processed
are all crisp objects, i.e., the compositions and boundaries of
objects are deterministic. However, in some real applications,
such as biomedical image analysis and geographical infor-
mation systems, this assumption may not be satisfied.

Microscope images are typical sources of such kind of
non-crisp data. Nowadays, as the high-throughput micro-
scopes are producing images much faster than before, the
huge size of the datasets rules out the traditional approach
of identifying objects and relationships manually. Instead,

123

730 K. Zheng et al.

Fig. 1 A typical cell image in biomedical analysis. Darker pixels have
higher probability of belonging to the cell

we must rely on automatic techniques. However, it is often
impossible to interpret the objects in microscope images
unequivocally due to the limitation of image resolution and
interference of electronic noises. In order to reflect the uncer-
tainty embedded in images and offer subsequent analysis
more information to work with, probabilistic mask is pro-
duced on the extent of identified cells by probabilistic seg-
mentation [25]. For example, Fig. 1 shows a typical cell
image in biomedical analysis. The boundary of the cell can-
not be identified easily, i.e., it is not crisp. Under the model
of probabilistic mask, different pixels in the image will be
assigned different probabilities to indicate the likelihood that
the pixel belongs to the cell. By this means, each object is
transformed into a collection of points with probabilities. As
such, uncertainty lies in their compositions, i.e., a point may
or may not belong to the object. Therefore, they are essen-
tially different from the uncertain databases in which the
objects are assumed to have probabilistic locations at query
time.

The concept of probabilistic mask essentially represents
the cells in images as fuzzy objects. Although fuzzy objects
have long been studied in GIS community [3,33,36,40],
common spatial queries such as range and kNN queries still
remain untouched at large. In this paper, we will study effi-
cient algorithms to support the most common types of spatial
queries, namely range and kNN queries, over fuzzy objects.
These kinds of queries have many applications in the bio-
medical field such as brain aging study [32], Alzheimer’s
disease analysis [28], and so on.

Before stepping further to propose our own model, we
have to raise the question: does the fuzziness of objects
change the nature of traditional spatial queries? Or can we
adopt existing solutions to support this type of data? Based
on our study, the answer is negative. For example, the most
common type of nearest neighbor query is the point-kNN
query that finds the k points from a dataset which are clos-
est to a query point. If we want to plug the fuzzy type into
existing point-kNN algorithms, an object should be rep-
resented by single point. Then, a problem arises: how to
find this point? Usually it is not easy to choose a suitable

representative point because the underlying object (e.g., neu-
ron cells) has complex shape, and more importantly, not all
parts of the object are equally important (kernel vs. boundary)
in terms of their confidence. Hence choosing arbitrary points
will cause considerable information loss and even produce
misleading results.

To address this problem, we identify the key issue as how
to define a meaningful query in which the fuzzy informa-
tion is taken into account along with spatial proximity. In
this work, instead of mixing the probability and distance into
some unified similarity function, we offer the users freedom
to choose the confidence level on which the query answering
set is required. Specifically, we introduce probability thresh-
old as a user-defined parameter in the definitions of spatial
queries. Once the threshold is given, we can know which
parts of objects should be counted in, and then, distances
between objects and queries are also adjusted accordingly.
Users can benefit from this kind of query by tuning the prob-
ability threshold to compare outcomes on different fuzzy lev-
els. Considering the biomedical image analysis again as an
example, if the nearest cells are needed merely based on the
clearest region (e.g., kernel), one can specify a high thresh-
old. On the other hand, if he/she wants to perform the search
by considering fuzzier region, a query with low threshold
can be issued. The major difference between our new que-
ries and the traditional spatial queries lies in that the fraction
of objects which will be taken into consideration is unknown
until the query is given. Consequently, while this novel query
offers more flexibility to users, it also brings difficulties to our
indexing and search algorithms, which will be investigated
and overcome in the rest of the paper.

A preliminary version of this paper appeared in [47], in
which we mainly focused on efficient nearest neighbor query
processing for fuzzy objects. Here in this paper, we extend
the work in several ways. First, we complement our previous
work by introducing two new types of range queries, as the
counterparts of the kNN queries for fuzzy objects. Second,
we propose efficient processing algorithms for range queries
within the same framework as the kNN queries. Third, we
present more efficient online algorithms for evaluating α-dis-
tance. Fourth, the performance of our proposed approaches
for range query processing as well as α-distance computation
is demonstrated by more experiment results.

The remainder of this paper is organized as follows.
In Sect. 2, the fuzzy object model and two new types of
spatial queries are introduced. Proposed algorithms for
answering single threshold and continuous threshold query
are presented in Sects. 3 and 4. Then, in Sect. 5, we propose
algorithms as well as optimizations to evaluate the α-distance
more efficiently. It is followed by a brief analysis to estimate
the average number of object access in Sect. 6. We show the
experiment results in Sect. 7 and review the related work in
Sect. 8. Finally, we conclude the paper in Sect. 9.

123

Spatial query processing for fuzzy objects 731

2 Models and queries

In this section, we firstly introduce a fuzzy object model
based on fuzzy set theory. Then, we define the notion of
α-distance to measure spatial closeness between two fuzzy
objects in Euclidean space. Finally, two types of range and
kNN queries are proposed in order to meet different user pur-
poses. Table 1 summarizes the notations we use through out
the paper.

2.1 Fuzzy object model

Fuzzy objects are usually modeled by fuzzy sets [46], which
are characterized by their membership function μ : R

d →
[0, 1], mapping any element in the object space to a real value
μ(x) within the interval [0, 1]. An element mapped to zero
means that the member is not included in the fuzzy set, while
one describes a fully included member. Values strictly in
between characterize the fuzzy members. Fuzzy objects can
be defined in continuous space if a continuous membership
function can be given. But in real applications, such a mem-
bership function is often not explicitly available due to the
diversity of fuzzy objects. Besides, fuzzy objects identified
from raster images are normally represented by pixels which
are actually discrete points. For these reasons, we adopt a
very general discrete form to model fuzzy objects.

Definition 1 A fuzzy object in d-dimensional space is rep-
resented by a set of probabilistic spatial point

A = {〈a, μA(a)〉|μA(a) > 0}
where a is a d-dimensional point and μA(a) is the member-
ship value of a which indicates the probability of a belonging
to A.

Table 1 Summary of notations

Notation Definition

D Fuzzy object dataset

α Probability threshold

As The support set of fuzzy object A

Ak The kernel set of fuzzy object A

Aα The α-cut of fuzzy object A

||a − b|| Euclidean distance between point a and b

dα(A, B) α-Distance between A and B

d+(−)
α (A, B) Upper (lower) bound of dα(A, B)

MA The MBR of As

MA(α) The MBR of Aα

MA(α)∗ The approximated MBR of Aα

UA The distinct membership value set of A

Ω(A) The critical probability set of A

μA The highest membership probability of A

Similar as the fuzzy sets, we can also define the following
terms for convenience of use.

Definition 2 Given a fuzzy object A, the set As = {a ∈
A|μA(a) > 0}, Ak = {a ∈ A|μA(a) = 1} and Aα = {a ∈
A|μA(a) ≥ α} is called the support set, the kernel set, and
the α-cut of A, respectively. Besides, we use μA to denote
the highest membership probability of all points in A.

Different from our preliminary version of the paper which
assumes an non-empty kernel for the fuzzy objects, in this
work the kernel of a fuzzy object can be either non-empty
or empty. This relaxation of assumption is desired in varies
situations like the produced images are of low quality, such
that some objects may not exist at all.

Naturally, in order to define spatial queries, we need a
scoring function to measure spatial closeness between two
fuzzy objects in space. There exists some work [9,10] in
mathematics and image processing field which proposed to
measure the distance between fuzzy sets. The basic idea is
to calculate the distance for each α-cut and then do integra-
tion over the entire interval [0,1]. The final score calculated
in this way is actually the expected distance by treating the
probability as the weight of each distance. Based on this
definition, a fuzzy object with low probability region may
never be regarded as the query result even it is very close
to the query object in terms of spatial locations. In other
words, users cannot explore the different possibilities of out-
comes inherently existing in reality, because the information
with low probability can be easily dominated and ignored. In
light of this observation, we in this paper define the distance
between fuzzy objects as follows.

Definition 3 For two fuzzy objects A and B, their α-dis-
tance is given by the function:

dα(A, B)

=
{

min〈a,b〉∈Aα×Bα ||a − b||, if α ≤ min(μA, μB)

+∞, otherwise
(1)

where α is a user-specified probability threshold.

The merit of this distance definition is that we do not mix
probabilities into the final score computation. On the con-
trary, we leave it as a parameter for users to set. Given a user-
specified probability threshold α, if the α-cuts of both objects
are not empty, i.e., α ≤ min(μA, μB), we defuzzy the objects
to their α-cuts and adopt the minimum distance as their dis-
tance measurement; otherwise, their α-distance is defined to
infinite. Minimum distance is commonly used in the cases
that an object cannot be abstracted by single point due to
its relatively large size. For example, when we say a coffee
shop is beside (near to) a football stadium, their minimum
distance is what we really refer to. Evaluating α-distance
involves finding the closest pair (CP) between two α-cuts,
for which we will propose efficient algorithms in Sect. 5.

123

732 K. Zheng et al.

A
B

0.3

0.5
0.3

0.5

d0.3(A,B)

d0.5(A,B)

Fig. 2 α-Distance of fuzzy objects

The advantage of this definition is that users can explore
the possible distances between two fuzzy objects by setting
different probability thresholds. It is easy to verify that the
α-distance is a monotonically non-decreasing function of α,
i.e., ∀α1 < α2, dα1(A, B) ≤ dα2(A, B). Figure 2 exempli-
fies the α-cuts of two fuzzy objects and their corresponding
α-distances. We would like to clarify that there is no assump-
tion for the probability distribution of fuzzy objects in this
paper. The monotonicity of the α-distance directly comes
from the shrinking property of α-cut.

2.2 Query definitions

In this subsection, we propose two new types of range and
kNN queries for fuzzy objects, namely the single threshold
query (STQ) and continuous threshold query (CTQ).

Definition 4 (Single threshold range query) Given a fuzzy
object dataset D, a radius r , a probability threshold α, and a
query (fuzzy) object Q, a single threshold range query (STR)
retrieves the objects from D, whose α-distances with respect
to Q are not above r .

Definition 5 (Single threshold kNN query) Given a fuzzy
object dataset D, natural number k, probability threshold α,
and query (fuzzy) object Q, a single threshold kNN query
(STN) retrieves k objects from D which have the smallest
α-distances with respect to Q.

The intuition behind this query definition is that we give
users the freedom to decide the confidence level of infor-
mation in the objects based on which the query results will
be derived. In some other cases, one may want to try differ-
ent probability thresholds to examine the differences of the
results, to make sure no valuable information is discarded.
Motivated by this kind of applications, we generalize the STQ
by replacing the single probability threshold with a contin-
uous interval of probability thresholds, resulting in the con-
tinuous threshold version of query definitions.

Definition 6 (Continuous threshold range query) Given a
fuzzy object dataset D, a radius r , a continuous probability
interval I = [αs, αe], and a query (fuzzy) object Q, a con-
tinuous threshold range query (CTR) returns a set of objects
{〈A, IA〉|IA ⊆ [αs, αe]}, where ∀α ∈ IA, A belongs to the

0 1

A

B

C

D

0.60.3

0.45

0.55

d

r

Fig. 3 Illustration of STQ and CTQ

CTR query results and ∀α /∈ IA, A does not belong to the
CTR query results. IA is called the qualifying interval of A.

Definition 7 (Continuous threshold kNN query) Given a
fuzzy object dataset D, a natural number k, a probability
range I = [αs, αe], and query (fuzzy) object Q, a contin-
uous threshold kNN query (CTN) returns a set of objects
{〈A, IA〉|IA ⊆ [αs, αe]}, where ∀α ∈ IA, A belongs to the
CTN query results and ∀α /∈ IA, A does not belong to the
CTN query results. IA is called the qualifying interval of A.

Continuous threshold query is more powerful (yet more
computationally challenging) since it allows the user to spec-
ify a range of probability thresholds and returns all the possi-
ble results along with their qualifying ranges. Note that in this
paper, the order of k nearest neighbors is not important (i.e.,
order insensitive). But our algorithms can be easily extended
to handle the case where the order does matter.

We use Fig. 3 to exemplify the intuition of STQ and CTQ,
where the α-distances of four fuzzy objects A, B, C, D with
respect to the query object are shown as piecewise func-
tion curve. If we set probability threshold to 0.4, the STR
query with radius r (indicated as the horizontal line) and
the STN query with k = 2 will return the set {A, B} as the
result. But if we raise α to be 0.5, the result of the STR and
STN query with the same parameters becomes A and {A, C},
respectively. Furthermore, if we change the single thresh-
old to a continuous threshold interval I = [0.3, 0.6], the
result set of the corresponding CTR and CTN query should
be {〈A, [0.3, 0.6]〉, 〈B, [0.3, 0.45]〉} and {〈A, [0.3, 0.6]〉,
〈B, [0.3, 0.45] ∪ (0.55, 0.6]〉, 〈C, (0.45, 0.55]〉}.

The new types of spatial queries for fuzzy objects are quite
different from the traditional ones such as queries for point
objects or continuous queries for moving objects, in the sense
that each object may be fully, partially, or not involved at all
in the query evaluation process, depending on the probability
threshold specified by the users. In other words, objects them-
selves are not determined until the query is issued, which
poses great challenges on the efficiency of query process-
ing algorithms. In the following two sections, we will try to

123

Spatial query processing for fuzzy objects 733

overcome these difficulties and design efficient solutions to
answer these kinds of queries.

3 Single threshold query processing

3.1 Basic algorithms

The most straightforward approach for answering the single
threshold query is to linearly scan the whole dataset and cal-
culate the α-distance with the query object for each object
encountered. However, this method could be both CPU and
IO intensive. First, the evaluation of α-distance is quadratic
with the number of points in fuzzy objects. In addition, the
whole dataset usually cannot fit into the memory due to its
high space cost. Therefore, to improve the efficiency, we bor-
row some ideas from traditional query processing, i.e., use
R-tree as the index structure to prune the search space. How-
ever, we need to make some modifications to suit the char-
acteristic of fuzzy objects.

First, each leaf node of the R-tree corresponds to a fuzzy
object. Instead of storing all the points, we just keep the MBR
of its fuzzy region in the main memory along with a pointer
which refers to the actual location on hard disk. It can be
easily proved that the minimum distance MinDist between
the MBRs of two fuzzy objects is a lower bound for their
α-distance. Compared to the original α-distance, the evalua-
tion of MinDist is much more efficient and does not require
the retrieval of the object. After all the objects are trans-
formed to hyper-rectangles and indexed by R-tree, we can
adopt the traditional spatial query processing techniques such
as [20,30] to find a set of candidates for STR(STN) queries
and obtain the final results by calculating the α-distances
between the candidates and the query object.

Second, we additionally keep record of the highest mem-
bership probability μA in the leaf node of each object A, and
further propagate the maximum value to their parent node. As
such, during the search process, whenever the highest prob-
ability of a node (either branch node or leaf node) dequeued
from the heap is found to be less than α, we can immediately
skip this node since all the objects in this node have infinite
distance with the query object according to Definition 3.

3.2 Improving the lower bound distance

The basic algorithm adopts MinDist between the MBRs of
fuzzy objects as the lower bound of their α-distance. Though
computationally simple, this lower bound is relatively loose,
especially in the cases that α is set high. This is due to the fact
that theα-cut of a fuzzy object shrinks asα increases. Accord-
ingly, the size of MBR of its α-cut reduces as well. However,
we approximate the object by the MBR of its support all the
time, making the lower bound much smaller than the actual

0 1

Lopt
UCH

Fig. 4 Approximating boundary function

distance. In order to improve it, the key is to use more accu-
rate MBR to represent the α-cut whenever α changes. Of
course it is not realistic to pre-compute the MBR for every
possible α-cut since it is extremely space costly. Is there any
way to capture the shrinking trend of fuzzy objects, in the
mean time cost little extra space?

Given a fuzzy object A in d-dimensional space, we denote
the MBR of its α-cut by

MA(α) = (M1+
A (α), M1−

A (α), . . . , Md+
A (α), Md−

A (α))

where Mi+
A (α) (Mi−

A (α)) represents the upper (lower) bound
of the i th dimension of Aα . Without loss of generality, we just
use the Mi+

A (α) with arbitrary i to illustrate our idea, since
the same techniques apply for other dimensions as well as
the lower bounds.

By the definition of fuzzy object, Aα will gradually shrink
from the support As to the kernel Ak as α increases from 0 to
1. In the mean time, Mi+

A (α) will also approach Mi+
A (1). Let

δ(α) denote the difference between Mi+
A (α) and Mi+

A (1), i.e.,
δ(α) = |Mi+

A (α)− Mi+
A (1)|, then we can obtain the bound-

ary function (bf) for Mi+
A by calculating all pairs 〈α, δ(α)〉

for each α ∈ UA, i.e.,

bf = {〈α, δ(α)〉|α ∈ UA}
where UA is the set of all distinct membership values of A,
i.e., UA = {r ∈ (0, 1]|∃a ∈ A, μA(a) = r}. Naturally, from
the shrinking property of α-cut, we have ∀αi < α j , δ(αi) ≥
δ(α j). If we treat bf as a series of 2d points, it should be
plotted as a decreasing curve, as shown by the dashed line in
Fig. 4. We would like to approximate this bf so that with any
give α, we can have a better estimation for the Aα . Ideally, bf
can be approximated by arbitrary function. But computing
and storing a linear function need considerably less over-
head than a higher order function. For this reason, we focus
on using a linear function to approximate bf and leave other
functions as future work.

There are many applications where it is necessary to deter-
mine a classical regression line without any constraint condi-
tions. A conventional regression line is to find the parameters
(m, t) of the linear function y = m · x + t which minimizes
the least square error. This line, however, is not a conser-
vative approximation of the bf and hence cannot satisfy the

123

734 K. Zheng et al.

lower bounding property for the MBR. In order to guarantee
no false dismissals, we need to find a line which minimizes
the above condition while meeting the constraint that the esti-
mated y values are more than or equal to the actual δ values,
i.e., (m · α + t) ≥ δ(α). We formally define this line as
follows.

Definition 8 The optimal conservative approximation of the
boundary function is a line

Lopt : y = mopt · x + topt

with the following constraints:

1. Lopt is a conservative approximation of δ, i.e.,

∀α ∈ UA, δ(α) ≤ mopt · α + topt

2. Lopt minimizes the mean square error, i.e.,

∑
α∈UA

((mopt · α + topt)− δ(α))2 = min

Then, the only problem left is how to construct this opti-
mal line when the boundary function is given. We can use
the algorithm proposed by Achtert et al. [1] where they try to
conservatively approximate the k-nearest neighbor distances
for every k by a linear function. We briefly summarize this
algorithm below.

– First, this optimal line must interpolate at least one point,
called anchor point, of the upper convex hull (UCH) of
the bf. The UCH is a sequence extracted from bf,

UCH = (〈α1, δ(α1)〉, . . . , 〈αu, δ(αu)〉

where α1 = 0, αu = 1 and ∀i < j, αi < α j . The most
important property of UCH is that the line segments com-
posed by connecting adjacent points form a “right turn”,
i.e., the slopes of the line segments are monotonically
decreasing. Given the bf, its UCH can be constructed
efficiently in linear time [4].

– Next, a bisection search is performed to find the correct
anchor point. The algorithm selects the median point p
of the UCH as the first anchor point and computes its
anchor optimal line (AOL), which is a line interpolating
the anchor point while minimizing the objective function.
(a) If both the direct predecessor and successor of p are
not above AOL, the global optimal line is found. (b) If
successor (predecessor) of p is above AOL, the algorithm
proceeds recursively with the right (left) half of the UCH.

Figure 4 illustrates the UCH as well as the Lopt. Once the
Lopt has been derived, it can be used to estimate the MBR of
α-cut of a fuzzy object A, by the following formula,

M ()Q

M (0)A

M ()*A

MinDist

d (A,Q)

d (A,Q)-

Fig. 5 Improvement of lower bound

Mi+
A (α)∗ = min

{
Mi+

A (1)+ (mi+
opt(A) · α + t i+

opt(A)),

Mi+
A (0)

Mi−
A (α)∗ = max

{
Mi−

A (1)− (mi−
opt(A) · α + t i−

opt(A)),

Mi−
A (0)

(2)

The purpose of using min (max) operator is to assure
MA(α)∗ not worse than the MBR of As . Moreover, the con-
servative property of Lopt guarantees that MA(α) is always
enclosed by MA(α)∗. Then, we can safely use the MinDist
between MA(α)∗ and MQ(α) as a tighter lower bound for
their α-distance, i.e.,

d−α (A, Q) = MinDist (MA(α)∗, MQ(α))

Figure 5 demonstrates the improvement of the lower
bound, where d−α is closer to the actual α-distance compared
to the original MinDist .

To improve the basic algorithms with d−α , we only need
to make slight modifications to the indexing structure. First,
we additionally store the Lopt (i.e., mopt and topt) as well
as the MBR of the kernel for each fuzzy object in the leaf
node of the R-tree. Whenever a leaf node A is dequeued from
the heap, we compute the tighter MBR, MA(α)∗ first using
the additional information, and then evaluate d−α (A, Q) as the
associated value of this entry. By this means, some objects
can be filtered without accessing its content in the disk.

Second, in an intermediate entry e of the index, we keep
e.MBR−, e.MBR+ which are the MBRs of the estimated
boundary MA(0)∗ and kernel MA(1)∗ for all the objects A
under e. Then, a linear function e.L can be calculate based
on each side of e.MBR− and e.MBR+. When this entry is
popped out from the heap at some stage of the search pro-
cess, we can use e.L to estimate an MBR e.M(α)∗, which
guarantees to cover the α-cuts of all the objects within the
node e. As such, the minimum distance between e.MBR(α)∗
and Mq lower bounds the α-distances between all the query
object and all the objects in e.

3.3 Lazy probe

The basic algorithm probes the object in disk and evalu-
ates its actual α-distance with the query object for all the
candidates. This method is suitable for the point objects
since the distance evaluation is very efficient. But for the
fuzzy object, we may want to avoid this costly evaluation

123

Spatial query processing for fuzzy objects 735

as much as possible. This motivates us to propose the lazy
probe optimization to further reduce the distance evalua-
tion cost. The basic idea of this optimization is to include
some objects based on an upper bound of the α-distance
which is relatively easy to derive, rather than the α-distance.
Before detailing the algorithms, we define the maximum dis-
tance between MA(α)∗ and MQ(α) as the upper bound of
their α-distance, which can be computed by the following
equation given two MBR, MA and MB in d-dimensional
space.

Max Dist (MA, MB)

=
√√√√ d∑

i=1

max{|Mi+
A − Mi−

B |, |Mi−
A − Mi+

B |}2
(3)

Lazy probe for STR query. For the STR query, after the
candidate set is derived as in the basic method, we do not
access the content of each candidate immediately. Instead,
their upper bound distances are evaluated and compared with
the radius r . If the upper bound distance is smaller than r ,
the object is certain to be a query result, without its α-dis-
tance computed. Only when the upper bound is greater than
or equal to r , we need to retrieve the object and figure out
the α-distance.
Lazy probe for STN query. For the STN query, we maintain
another priority queue G which can accommodate at most k
elements as a buffer. The search principle is still the same
with the basic method. But when a leaf node E is deque-
ued, we do not immediately probe the object it refers to.
Instead, we compare its distance lower bound against the
upper bound of every element U already in the buffer G
and re-insert E into G. If there exists some element U in
G satisfying d+α (U, Q) < d−α (E, Q), we can be sure that
U is better than all objects left in H. Even though we can-
not decide whether U is better than the objects in G, since
there are at most k elements in G, U is guaranteed to be
in the top-k. Algorithm 1 illustrates the main structure of
this optimization. This algorithm will not retrieve the object
until it has to do so, i.e., the buffer G is overflow. In other
words, the lazy probe makes all the object retrieval manda-
tory.

Figure 6 shows how this optimization works for STN que-
ries. Suppose a new STN query with k ≥ 2 is issued from Q.

MQ()

MA()* MC()*

MB()*

Fig. 6 Lazy probe optimization

Algorithm 1: Lazy Probe for STN Query
Input: root, Q, α, k
Output: N N : the result set
initialize priority queue H← 〈root, MinDist (MQ(α), Mroot)〉;1
initialize priority queue G ← ∅;2
while |N N | < k and H, G is not empty do3

if |G| > k − |N N | then4
E ← dequeue G;5
if E is a leaf node then6

probe E and enqueue 〈E, dα(E, Q)〉 into H;7

else8
add E to N N ;9

else10
E ← dequeue H;11
if E is a leaf node or object then12

add U ∈ G that d+α (U, Q) < H(E).key into N N and13
remove U from G; // U is true hit without refinement
enqueue 〈E, H(E).key〉 into G;14

else15
for each sub-entry V of E do16

if V is a leaf node then17
enqueue 〈V, d−α (V, Q)〉 into H;18

else19
enqueue 〈V, MinDist (V, Q)〉 into H;20

return N N ;21

At some stage of the search, the priority queue H contains
leaf nodes A, B, C , and queue G is empty. Then, A is popped
from the queue first since it has smallest d−α (A, Q), and
re-inserted into G. The next element dequeued is B. Since
d−α (B, Q) < d+α (A, Q), we insert B into G as well. After-
ward, C is popped and found that d−α (C, Q) > d+α (A, Q),
then A can be removed from G and directly added to the result
set without probing on hard disk.

Remark Improving the performance by utilizing both lower
and upper bounding distances has also been proposed in
[24]. The main differences between their method and lazy
probe algorithm proposed in this paper are twofold. First,
[24] adopts a multi-step paradigm for nearest neighbor search
based on [39] while the lazy probe algorithm takes the incre-
mental best-first search style originally proposed in [20].
Second, in [24], the search algorithm fetches the first k can-
didates from the ranking list based on lower bounding dis-
tance and identifies the true hits by using the upper bounding
distances. Our algorithm tries to detect the true hits with the
upper bounds promptly, whenever the next element is popped
out from the priority queue. As such, our method may report
parts of the results more quickly. Of course, this benefit comes
with costs—the overall processing time may increase due to
the prompt detection. We will include [24] for comparison
in the experiments.

123

736 K. Zheng et al.

3.4 Improving the upper bound

In this part, we propose two independent techniques for
improving the tightness of the upper bounding distance
Max Dist , in order to maximize the benefit of the lazy probe
algorithm.
MinMax distance-based method. Roussopoulos et al. [30]
proposed a metric, MinMax Dist , which computes the min-
imum value of all the maximum distances between a query
point and each face of an MBR. It was proved to be an upper
bound for the distances between the query point and all the
points within the MBR. Following this idea, we can extend
this metric for two hyper-rectangles.

Given an d-dimensional rectangle M , we denote its face by
fi (M), i = 1, 2, . . . , 2d. Each face fi (M) has 2(d − 1) ver-
tex points, denoted as vi j (M), j = 1, 2, . . . , 2(d−1). Then,
the MinMax distance between two n-dimensional rectangles
MA and MB can be calculated as:

MinMax Dist R(MA, MB)

= min
i∈[1,2d] max

j∈[1,2(d−1)]MinMax Dist (vi j (MA), MB)

(4)

In the above equation, MinMax Dist is defined the same
as in [30]. In analogy to MinMax Dist, MinMax Dist R
upper bounds the distances between the points in MA and
MB . Motivated by this, we can precompute the MBR of the
kernel for each fuzzy object and store it in the leaf node. In
the case that the candidates have no kernel, we replace it with
the MBR of the points with the highest probabilities (if there
this point is unique, the MBR degenerates to the point). Then,
given a fuzzy object A and a query object Q, their α-distance
is upper bounded by:

d+α (A, Q) =
{

MinMax Dist R(MA, MQ), if α ≤ μA

+∞, otherwise
(5)

Sampling-based method. According to the definition of
α-distance, for any point a ∈ A, b ∈ B, if μA(a) ≥
α,μB(b) ≥ α, then the distance between a and b naturally
upper bounds the α-distance of A, B. In light of this obser-
vation, we propose to improve the upper bound of α-distance
by the following offline processing.

– We randomly choose one of the points with the highest
probabilities in A as its representative point, denoted by
rep(A), and store it in the leaf node of the R-tree.

– For the query object Q, we randomly sample w points
from its α-cut and form the sample set Q′α , where n �
|Qα|.

Given a fuzzy object A and a query object Q, their α-dis-
tance is upper bounded by the minimum distance between
rep(A) and Q′α , i.e.,

rep(A)

M (0)A

q
1

q
2

q
3

q
4

M ()Q
M ()*A

MaxDist

d (A,Q)
d (A,Q)+

Fig. 7 Sampling-based improvement of upper bound

d+α (A, Q) =
{

minq∈Q′α ||rep(A), q||, if α ≤ μA

+∞, otherwise
(6)

The effect of the sampling-based method is shown in
Fig. 7, where q1, q2, q3, q4 are the sampled points from Qα .

4 Continuous threshold query processing

The single threshold queries restrict the user to examine the
query results on a single probability threshold. But some-
times, they may want to see how the query results vary with
different thresholds. In such cases, they can issue a continu-
ous threshold query where a probability threshold interval is
accepted.

To process a CTQ, the most straightforward approach is
to issue a STQ query at every probability within the interval.
Despite the interval is continuous, we can always discretize
it by enumerating all values in UD, which is the universe of
all the membership values of the whole object set, since the
α-distances of all objects with respect to Q do not change
at α /∈ UD. However, the cardinality of UD is usually huge
even in the dataset with moderate size, making this method
prohibitive. We call this method naive approach.

In the sequel, we will first introduce the basic methods
for CTR and CTN queries, which are more efficient than the
naive approach. Afterward, we develop several optimization
techniques to further improve the performance.

4.1 Basic algorithms

Before discussing the algorithms, we first introduce the con-
cept of critical probability set.

Definition 9 Given a fuzzy object A and a query object Q,
the critical probability set of A with respect to Q, denoted
by ΩQ(A), is defined as

ΩQ(A) = {α ∈ (0, 1]|�β > α, dβ(A, Q) = dα(A, Q)}
Intuitively, ΩQ(A) refers to all the end points of the hor-

izontal line segments on the curve of dα(A, Q), as shown in
Fig. 8. The semantics of its each element is that the α-distance
is about to change (increase) beyond this probability.
Basic CTR algorithm. First, we have the following lemma.

123

Spatial query processing for fuzzy objects 737

d (A,Q)

0 1

Q(A)

Fig. 8 Critical probability set

Lemma 1 Suppose object A is a result of a STR query at
some probability α. Let α′ denote the minimum critical prob-
ability not less than α, i.e., α′ = min{β ∈ ΩQ(A)|β ≥ α}.
Then, A remains in the result set within the interval [α, α′].
Proof By definition, the α-distance between A and Q does
not change within the interval [α, α′]. Hence A is guaranteed
to remain in the result set within this interval. ��

Based on Lemma 1, we propose a basic CTR algorithm as
follows. Given an CTR query with [αs, αe] as the threshold
interval, we issue an STR query at αs and find the result set,
denoted as Rαs . For each object A ∈ Rα , we find the next
smallest critical probability after αs , and choose their min-
imum value, denoted by α′. According to Lemma 1, Rα is
valid within the entire interval since the distance of all objects
in Rα do not change. Then, another STR query is issued again
to find the new result set at probability threshold of α′ + ε,
where ε is a small enough real value (e.g., the precision of
floating number). The above steps will repeat until it reaches
αe.
Basic CTN algorithm. Similarly, the following lemma also
holds for CTN queries.

Lemma 2 Suppose object A is one of the k nearest neighbors
at some probability α. Let α′ denote the minimum critical
probability not less than α, i.e., α′ = min{β ∈ ΩQ(A)|β ≥
α}. Then, A remains in the kNN set within the interval [α, α′].
Proof By definition, the α-distance between A and Q does
not change within the interval [α, α′]. On the other hand,
though the distances of other objects with Q may vary, they
are only possible to increase according to the monotonicity
of α-distance. So A is guaranteed to remain in the kNN set
within this interval. ��

Motivated by Lemma 2, we can design a basic CTN algo-
rithm as follows. Given an CTN query with [αs, αe] as the
threshold interval, we issue an STN query at αs and find the
k nearest neighbor set N Nαs . For each object A ∈ N Nα , we
find the next smallest critical probability after αs , and choose
their minimum value, denoted by α′. According to Lemma 2,
the distance of all objects in N Nα will not change within the
interval [αs, α

′]. Then, another STN query is issued again to
find the new kNN set at probability α′ +ε, where ε is a small

Algorithm 2: Basic CTQ Algorithm
Input: root, Q, [αs , αe]
Output: R: the result set
α← αs ;1
while α ≤ αe do2

Rα ← STQ at threshold α;3
for each A ∈ Rα do4

βA ← minα′∈ΩA {α′ ≥ α} ;5

α∗ ← minA∈Rα βA;6
add 〈Rα, [α, α∗]〉 into R;7
α← α∗ + ε;8

return R9

0 1

A

B
C
D

0.60.3

d

r

Fig. 9 Reducing search space for CTR query

enough real value (e.g., the precision of floating number).
The above steps will repeat until it reaches αe.

The structures of CTR and CTN algorithms are very sim-
ilar, and can be summarized by Algorithm 2. This method is
more efficient than the naive method since it only considers
the critical probability values which is only a small fraction
of the original membership set.

4.2 Reducing search space

Although the size of critical probability set is considerably
smaller than UD in the naive approach, the basic algorithm
still requires to issue large number of single threshold que-
ries against the whole dataset, which will cause a number
of R-tree traversal and hence great IO overhead. To enhance
its efficiency, our first goal is to reduce the search space by
pruning most disqualifying objects.

CTR query

Lemma 3 Given a CTR query (Q, r, [αs, αe]), if the α-dis-
tance of a fuzzy object A with Q is greater than r when
α = αs , then A cannot be a result of this CTR query.

Proof Due to the monotonicity of α-distance, if dαs (A, Q) >

r , then for any α ∈ [αs, αe], we have dα(A, Q) > r . So A
cannot be the query result in the entire interval. ��

Consider a CTR query with radius r and I = [0.3, 0.6]
illustrated in Fig. 9. According to Lemma 3, objects C and

123

738 K. Zheng et al.

0 1

A

B
C
D

0.60.3

d

d0.3(D,Q)

d0.6(B,Q)

Fig. 10 Reducing search space for CTN query

D cannot be the query results since their distance with Q is
greater than r when α = 0.3.

Based upon Lemma 3, we first issue a STR query with the
same radius and α = αs against the R-tree to find the candi-
date set, which includes the objects likely to be the results.
Then, we do the refinement by evaluating the α-distances at
the critical probabilities of this candidate set instead of the
whole dataset. Compared to the whole dataset, the candi-
date set is usually much smaller and can be loaded into main
memory, thus saving considerable amount of I/O costs.

CTN query

Lemma 4 Given a CTN query (Q, k, [αs, αe]), B is the kth
nearest neighbor at αe, then object A cannot be a result of
this CTN query if dαs (A, Q) > dαe (B, Q).

Proof Let N Nαe be the k nearest neighbor set at αe. For any
α ∈ [αs, αe] and P ∈ N Nαe , we have

dα(P, Q) ≤ dαe (P, Q) ≤ dαe (B, Q)

< dαs (A, Q) ≤ dα(A, Q) (7)

So all the objects in N Nαe have smaller α-distance than A
to Q. In other words, there are at least k objects closer than
A at any α ∈ [αs, αe], which means A cannot be a result in
this range. ��

Consider an CTN query with k = 2 and I = [0.3, 0.6]
is issued against the four objects in Fig. 10. According to
Lemma 4, object D cannot belong to the result set within the
range I , since B is the 2nd nearest neighbor at α = 0.6 and
d0.3(D, Q) > d0.6(B, Q).

Algorithm 3 shows the new search strategy optimized
by Lemma 4. Specifically, given an CTN query with I =
[αs, αe], we first find the k nearest neighbor set by issuing
an STN query with α = αe. Then, we use the kth nearest
neighbor distance as the radius to perform a range search at
α = αs . Only the objects included within the radius are the
candidates which are possible to be the k nearest neighbors
at some probabilities within I . So we only need to search
for the final results from candidate set C instead of the whole

Algorithm 3: Reducing Search Space for CTN query
Input: root, Q, k, [αs , αe]
Output: N N : the result set
N Nαe ← STN query at αe;1
r ← the kth nearest neighbor distance at αe from N Nαe ;2
candidate set C← STR query with radius r and α = αs ;3
N N ← refine candidate set C using the method of basic STN4
algorithm;
return N N5

dataset at each critical probability. The size of set C is usually
small and can fit into main memory, thus a large amount of
IO operations can be avoided.

4.3 Improving candidate refinement

With the help of the optimization introduced in the last sub-
section, the search space is significantly reduced. However,
high computation cost still exists for the candidate refine-
ment, where we have to check lots of critical probability
values within the range. So our next goal is to accelerate the
candidate refinement.

CTR query

Lemma 5 Given a CTR query (Q, r, [αs, αe]), if the α-dis-
tance of a fuzzy object A with Q is greater than r at α′, α′ ∈
[αs, αe], then A cannot belong to the results of this CTR query
within the interval [α′, αe].
Proof Due to the monotonicity of α-distance, if dα′(A, Q) >

r , then for any α∗ ∈ [α′, αe], we have dα∗(A, Q) > r . So A
cannot be the query result in the interval [α′, αe]. ��

Motivated by Lemma 5, in the refinement process when-
ever a critical probability threshold α′, which makes some
candidate A beyond the query range, is encountered, there is
no need to refine A further. Instead, we can remove A from
candidate set as well as its critical probability thresholds, and
report 〈A, [αs, α

′]〉 as a result.

CTN query

Lemma 6 Suppose an object A belongs to the kNN set at
some probability α, and object B is the (k + 1)th nearest
neighbor at α. Then, A is guaranteed to be in the kNN set
within the range [α, α′] as long as dα′(A, Q) < dα(B, Q).

Proof Let P be any object that does not belong to the
k nearest neighbors of Q at α, i.e., P ∈ D\N Nα . Nat-
urally, dα(P, Q) ≥ dα(B, Q). Then, for any probability
β ∈ [α, α′], we have

dβ(A, Q) ≤ dα′(A, Q) < dα(B, Q)

≤ dα(P, Q) ≤ dβ(P, Q) (8)

123

Spatial query processing for fuzzy objects 739

0.3 0.60.5

A

B

C

d

d0.3(C,Q)

d0.5(A,Q)

d0.5(B,Q)

d0.6(A,Q)

Fig. 11 Improving candidate refinement

That means all the objects in D\N Nα have larger distance
than A at any probability within [α, α′]. In other words, there
are at most k − 1 objects which could be closer than A with
respect to Q. Therefore, A must be one of the k nearest neigh-
bors within [α, α′]. ��

As a special case of Lemma 6, if we set α to αs and α′ to
αe, then it is safe to conclude that object A is a qualifying
result across the entire probability range.

Figure 11 illustrates how Lemma 6 can help improve the
candidate refinement. Consider an CTN query with k = 2 and
I = [0.3, 0.6]. Since object C is the 3rd nearest neighbor at
α = 0.3 and d0.5(A, Q) < d0.3(C, Q), by Lemma 6 object A
is guaranteed to be in the 2NNs within [0.3, 0.5]. The refine-
ment continues until it reaches α = 0.5. Again, as object
B is the 3rd nearest neighbor at α = 0.5 and d0.6(A, Q) <

d0.5(B, Q), A is still a result in [0.5, 0.6]. Thus, by checking
only two probability thresholds, we can already conclude A
is a result within the range [0.3, 0.6].

Motivated by Lemma 6, whenever we have obtained the
kNN set at some α, it is often helpful to look for the “safe
range” for each object in the kNN set. By this means, a large
number of probability checking can be avoided. Based on
this, we modify the basic CTN algorithm to improve can-
didate refinement, which is shown in Algorithm 4. In each
iteration of the algorithm, we search the candidate set C to
get the k nearest neighbors at current threshold α. In addi-
tion, we also obtain the k + 1th nearest neighbor distance
at α, denoted by dk+1. Then, for each object A ∈ N Nα , we
remove the elements α1 < α2 < · · · < αn of ΩQ(A) at
which its distance is less than dk+1. Since A is guaranteed to
be a result within [α, αn], we can immediately add A along
with this range into the result set N N . At the next round, we
first obtain the objects which are still in the safe range into
a set C′. Then, we only need to search the set C\C′ for the
top k−|C′| objects. This algorithm is more efficient than the
basic CTN algorithm, since it removes lots of critical prob-
ability values during the refinement process, which should
have been checked by the basic method.

Algorithm 4: Improving candidate refinement for CTN
query

Input: C, Q, k, [αs , αe]
Output: N N : the result set
α← αs ;1
initialize C′ to be empty;2
while α ≤ αe do3

C′ ← find the objects in N N which qualify at α;4
N Nα ← search C\C′ for the k − |C′| nearest neighbors at α;5
dk+1 ← the k + 1-th nearest neighbor distance at α;6
for each A ∈ N Nα do7

β ← maxα∈ΩQ (A){dα(A, Q) < dk+1}8

add 〈A, [α, β]〉 into N N ;9
ΩQ(A)← ΩQ(A)\{α ∈ ΩQ(A)|dα(A, Q) < dk+1};10

α∗ ← minA∈N Nα∪C′ ΩQ(A);11
α← α∗ + ε;12

return N N13

5 α-Distance evaluation

Essentially, obtaining the α-Distance is to find the closest
pair of qualified points of two fuzzy objects. This actually is
to solve the bichromatic closest pair (BCP) problem which
is the generalization of the closest pair (CP) problem. CP
problem is well studied in many algorithm textbooks [12,29]
and published literature [2,13,14,19,22,37]. One of the most
influential work is [13], which utilized two R-tree, one for
each set of points, to prune some points which are unlikely
to be the closest and speed up the search. According to their
experimental study, however, their algorithms are quite sen-
sitive to the degree of overlap of two sets of points. More
specifically, the performance gets worse when the portion
of overlap increases. This phenomenon can be explained by
two extreme cases: (a) when two sets of points are well sep-
arated, i.e., their overlap is zero, algorithms will only search
the branches of R-tree which are near to each other, and go
deep to the leaf nodes quickly since all other branches are
pruned by the MINDIST metric; (b) if two sets of points
fully overlap with each other, almost all branches need to be
examined because the MINDIST of most pair of MBRs are
very small thus cannot be pruned. As discussed before, after
the filtering strategy in KNN search, most candidates left for
verification are very close to or highly overlap with query
object, which makes it not ideal to adopt the algorithm in
[13]. Hence, in the context of our problem, an appropriate
α-Distance computation algorithm should have better per-
formance when two objects are close to or overlap with each
other than when they are far away.

The brute-force way to get the α-Distance of two fuzzy
objects is to use a nested loop to check every pair of points
and find the minimum distance. The advantage of this method
is the simplicity of structure and stability in running time
regardless of any variation of fuzzy objects, in terms of dif-

123

740 K. Zheng et al.

A

B

LA

LB+LB-

(a) plane sweep

A

B

a

b

|a.y - b.y|

(b) pruning condition 1

A

B

a

b

|a.x - b.x|

(c) pruning condition 2

A

B

a

b

|a.x - b.x|

(d) pruning condition 3

Fig. 12 Illustration of Plane Sweep algorithm

ferent size, probability distribution, relative positions, and
so on. However, this method can be very costly when the
number of points in fuzzy objects goes large, since it enu-
merates all pairs of points completely. In the experiment part,
this method is used as the baseline approach for comparison.
In the sequel, we will illustrated the ideas and techniques
in two-dimensional space. However, all the proposed algo-
rithms can be extended to higher dimensionality in straight-
forward manner.

5.1 Plane sweep algorithm

One of the key techniques in computational geometry is the
plane sweep algorithm which is a type of algorithm that uses a
conceptual sweep line or sweep surface to solve various prob-
lems in Euclidean space. [18] applied plane sweep algorithm
to find the closest pair in a set of points. A critical observa-
tion made in their algorithm is that as the sweep line passing
through a point, there are at most constant number of points
need to be checked. But this property does not exist in our
case which essentially is the BCP problem, because the num-
ber of points with monochromatic color cannot be bounded.
Hence in this section, we propose a new plane sweep
method which utilizes two sweep line to facilitate the search.
Figure 12 illustrates the basic idea of our scheme, in which
points of two fuzzy objects A, B are represented by circle
and square, respectively. When algorithm starts, we first ini-
tialize a line L A which horizontally sweeps A’s points from
left to right. Whenever L A encounters a new point a which
A(a) ≥ α, another two lines L B− and L B+ originate from
L A and start to scan B’s points in the left and right directions.

Similar to the nested loop method, if the probability of point
b being scanned by L B− (L B+) is higher than α, Euclidean
distance will be calculated and update dmin when necessary.
The major advantage of Plane Sweep is that the speed of
search process can be improved by several fast checking of
Pruning Conditions.

- Pruning condition 1. Whenever the distance of a, b along
y-dimension is already greater than current dmin, b can be
safely skipped without knowing the their exact Euclidean
distance because ||a − b|| ≥ |a.y − b.y| (Fig. 12b).

- Pruning condition 2. Whenever the distance of a, b along
x-dimension is already greater than current dmin , sweep
of B in this direction can terminate, since any further point
b′ will have greater distance with a than dmin by the in-
equation ||a − b′|| ≥ |a.x − b′x | ≥ |a.x − b.x | > dmin

(Fig. 12c).
- Pruning condition 3. If b is the rightmost point being

scanned by L B−, and the distance of a, b along x-dimen-
sion is greater than current dmin , algorithm can terminate
since any further point pair (a′, b′) will have greater dis-
tance than dmin (Fig. 12d).

The intuition of this method is that it tries to find a rela-
tively close pair as early as possible and use the small dis-
tance to prune more other pairs. Note that checking all the
above pruning conditions need only minus operations which
run much faster than the calculation of Euclidean distance.
Besides, even if no condition is satisfied, the intermediate
results (difference along some dimensions) can be used for
the calculation of Euclidean distance, which causes no extra
cost.

Algorithm 5 illustrates this process, for which we just
explain two functions:

- IsPrunable. There are some cases where no points of A, B
can be pruned by the conditions. In this case, we just use
nested loop method because it benefits from its brief struc-
ture. Function IsPrunable checks if it is possible for A, B
to meet any pruning condition. We use ||A− B||min, |A−
B|xmax, |A − B|ymax to represent the minimum distance,
maximum distance along x-dimension and y-dimension
between the MBRs of A and B, respectively. All these
metrics can be obtained very fast by existing geometry
approaches. If the in-equation ||A− B||min > max{|A−
B|xmax, |A − B|ymax} holds, no points can be pruned by
Plane Sweep.

- CheckRelativePosition. The relative position of A, B is
important to the performance of Plane Sweep algorithm.
That our scheme sweeps A from left to right is based on the
assumption the leftmost point of A is on the right of that
of B. This is because it gets higher chance to find closer

123

Spatial query processing for fuzzy objects 741

Algorithm 5: Plane Sweep

initialize dmin ←∞;1
if IsPrunable(A,B) then2

sort the points in A, B according to their x-coordinates;3
if CheckRelativePosition(A,B) then4

exchange the roles of A and B;5

/*right sweep of A */
for a = a1 to a|A| do6

if A(a) < α then7
continue;8

/*Pruning Condition 3 */
if a.x − b|B|.x > dmin then9

break;10

else11
bm ← arg minb.x≥a.x {b.x − a.x};12
/*right sweep of B */
for b = bm to b|B| do13

if B(b) < α then14
continue;15

/*Pruning Condition 2 */
if |b.x − a.x | > dmin then16

Break;17

/*Pruning Condition 1 */
else if |b.y − a.y| > dmin then18

Continue;19

else if ||b − a|| < dmin then20
update dmin ← ||b − a||;21

/*left sweep of B */
for b = bm−1 to b1 do22

the same as right sweep process;23

else24
use Nested Loop method;25

return dmin26

point pair and achieve better pruning effects. Function
CheckRelativePosition examines this condition by com-
paring a1.x and b1.x . If a1.x < b1.x , the roles of A, B
are exchanged before sweep process starts.

5.2 Probability neighbor list

By the definition of α-Distance, only the qualified pairs
need to be considered during the procedure. However, Plane
Sweep always scans the same set of pairs for the same objects,
no matter what α is. This is because all pruning conditions of
the algorithm are based only on spatial relationship between
objects, but do not take their probability information into
account. Motivated by this, we build Probability Neighbor
List (PNL) for each fuzzy object to further improve the speed
of Plane Sweep.

For fuzzy object A, PNLA maintains a list of entries. The
entry corresponding to the point a is a tuple of the form
〈a.le f t, a.right〉, where a.le f t and a.right is called the left

a1 (0.7)

a2 (0.4)

a3 (0.7)

a4 (0.9)

a6 (0.6)

a7 (0.4)

a5 (0.7)

(a) (b)

Fig. 13 Example of PNL

neighbor and right neighbor of point a, which refer to another
two points of A:

a.le f t = arg min
a′∈A,a′.x≤a.x

{a.x − a′.x}
a.right = arg min

a′∈A,a′.x≥a.x
{a′.x − a.x}

Simply speaking, a.le f t (a.right) is the nearest neighbor on
the left (right) side of a among those points whose probability
is greater than that of a.

With the help of PNL, whenever the sweeping line encoun-
ters a point a with A(a) < α, it checks a.le f t or a.right
according to its sweeping direction and “jump” to that point
instead of moving to the next point sequentially. By this
means, a large number of unqualified points can be pruned
without even checking the positions.

Consider the fuzzy object A in Fig. 13a and its PNL shown
in Fig. 13b. Suppose α = 0.8 and the sweep line is scanning
A from left to right. When a1 is under scanned, because
A(a1) = 0.7 < 0.8, we use a1.right which refers to a4 as
the next point to be scanned, thus skipping a2 and a3. Sim-
ilarly, when a5 is swept, we check a5.right which is null.
That means no probabilities of points on the right are higher
than 0.7, so the sweep process can terminate without looking
at the following points.

6 Complexity analysis

In this section, we try to estimate the number of object access
during the STR and STN query processing since retrieving
objects from hard disk and computing their α-distances to
query are the most costly parts in the whole algorithm. In
order to make the analysis feasible, we assume the dataset is
formed by ideal fuzzy objects.

Definition 10 An ideal fuzzy object A is circle (or sphere),
and the radius of its α-cut is characterized by a function
R : α→ radius.

By assuming the data space is composed of a set of ideal
fuzzy objects in 2d space, our problem is, given a query object

123

742 K. Zheng et al.

Q and a probability threshold α, to estimate the number of
object access in the basic STQ algorithms.

For the basic STR algorithm, we can apply the formula
given in [27] to estimate the leaf node access of the R-tree
by a range query:

L = N − 1

Cavg
·
((

Cavg

N

)1/D0

+ 2d

)D2

Cavg = Cmax ·Uavg

(9)

where d is the search range, D0 is the Hausdorff fractal
dimension of the dataset (≈ 2 for uniform set), Cmax is the
maximum node capacity, and Uavg is the average space uti-
lization of the R-tree nodes. However, this formula was pro-
posed for the point object set, which means each fuzzy object
is represented by its center. In order to make it suitable for
fuzzy object set, we need to enlarge the search radius r by
twice the radius of the fuzzy object, i.e., 2R(0). By substi-
tuting d with the query range, we get

L = N − 1

Cavg
·
((

Cavg

N

)1/D0

+ 2r + 4R(0)

)D2

(10)

For the basic STN query, the objects to be accessed are
the ones whose MinDist with Q is smaller than dknn(α),
where dknn(α) is the α-distance between Q and its kth near-
est neighbor. So we need to estimate dknn(α) first. To this
end, we can borrow other formulas from [27] to estimate the
average number of neighbors nb(ε, ‘shape’) of a point Q
within distance ε from Q, using the concept of correlation
fractal dimension of the point set:

nb(ε, ‘shape’) =
(

vol(ε, ‘shape’)

vol(ε, ‘rect’)

) D2
E · (N − 1) · (2ε)D2

where N is the number of points, D2 is the correlation frac-
tal dimension, and vol(ε, ‘shape’) indicates the volume of
a shape of radius ε. In a 2-dimensional space (E = 2),
we want to estimate the minimum ε that encloses k points.
As vol(ε, ‘circle’) = πε2 and vol(ε, ‘rect’) = (2ε)2, the
above equation can be simplified to:

nb(ε, ‘circle’) =
(

πε2

4ε2

) D2
2

· (N − 1) · (2ε)D2

= (N − 1) · (ε√π)D2

By substituting nb(ε, ‘circle’) with k, and D2 = 2 for a
uniform dataset, we get:

ε = 1√
π

√
k

N − 1
(11)

The ε derived from Eq. (11) can be treated as distance from
the center of query to the center of its kth nearest neighbor.

So their α-distance is:

dknn(α) = ε − 2 · R(α)

Then, the problem turns into estimating the number of
leaf node accessed by a range query, for which we can apply
Eq. (9) again. Finally, by substituting d with dknn(α)+R(α),
we can estimate the average number of object accessed as the
function of α:

L= N−1

Cavg
·
(√

Cavg

N
+ 2

(
1√
π

√
k

N − 1
−R(α)

))2

(12)

From Eq. (12) we can see that more objects need to be
accessed as N , k or α increases independently.

7 Experiments

In this section, we perform extensive experiments to verify
the efficiency of the proposed methods and optimizations on
both synthetic and real datasets. All the algorithms are imple-
mented in Java and run on a normal PC with Pentium IV 2.4
GHz CPU and 1GB memory.

7.1 Dataset

The datasets we use for experiments are setup as follows.

– For the synthetic dataset, each object is a circle with
radius of 0.5 containing n points. We place the points
within the circle following two kinds of distributions,
namely uniform and Zipf. For the uniform distribution,
the points have equal probability to locate anywhere
within the circle. For the Zipf distribution, the points
are more dense around the center of the circle and get
sparse quickly toward outside. Normally, given a Zipf
function f (k, s, N) = 1/ks∑N

n=1(1/ns)
, we can use s to con-

trol the skewness of the distribution – greater s means
more skewed distribution. The membership probabili-
ties of the points follow the Gaussian distribution with
the mean at the center of the circle and stand devia-
tion of 0.5. We normalize the probability values across
0 to 1.

– For the real dataset, each object is formed by n points
randomly sampled from the horizontal cell identified by
probabilistic segmentation [25,26]. Then, we normalize
the positions of all points to restrict them into a 1 × 1
square. Similar with the synthetic dataset, we also nor-
malize the probability values across 0 to 1.

For both datasets, we generate N objects and randomly
distribute them into 100 × 100 space. All the actual points
are stored in files and we index the fuzzy regions by R-tree. In

123

Spatial query processing for fuzzy objects 743

Table 2 Parameter settings

Parameter Default
value

Number of points, n 1,000

Number of objects, N 50,000

Query radius, r 5

Number of results, k 20

Probability threshold, α 0.5

Length of probability interval, L 0.2

Number of samples for improving upper bound, w 100

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

real uniform Zipf s=1 Zipf s=2 Zipf s=3

R
un

ni
ng

 ti
m

e
[m

s]

NL
PS

PNL

Fig. 14 Effect of point distribution

the following experiments, we measure the number of object
access from hard disk and running time of the algorithms
under different parameter settings. Table 2 summarizes the
parameters and their default values.

7.2 Performance of distance computation algorithms

In this subsection, we study the running time of different
methods for computing α-distance, namely nested loop (NL),
plane sweep (PS), and improved plane sweep (PNL). For each
experiment, we randomly choose 1,000 pairs of fuzzy objects
from the dataset, evaluate their α-distances, and record the
average running time.

7.2.1 Effect of point distribution

First, we study the performance of all the α-distance com-
putation algorithms on different objects. As we can see from
Fig. 14 that the NL method has the same runtime cost on
all kinds of objects since it only depends on the number of
points in each fuzzy object. As expected, the PS method out-
performs NL constantly for all the objects. Besides, PS con-
sumes more time on synthetic objects with Zipf distribution
than uniform distribution. This is because more points tend
to locate around the center of the circle which are assigned
higher probabilities in a Zipf distribution with greater s. So
more qualifying pairs of points need to be examined by PS.
Another observation we made is that PNL can reduce more
time cost on synthetic objects. This is due to Gaussian distri-
bution of the probability in synthetic objects that points with
lower probabilities always locate further from the kernel.
This characteristics greatly benefits the PNL method since a
large portion of disqualifying points (with probabilities lower
than the probability threshold) can be ruled out directly.

For the rest of experiments, we only show the results on
the real objects as the algorithms exhibit the similar perfor-
mances on other kinds of objects.

7.2.2 Effect of n

Then, we study the scalability of all three α-distance com-
putation algorithms by varying the number of points in each
fuzzy objects from 500 to 10,000. According to the results
shown in Fig. 15a, though all the algorithms have similar
complexity with the number of points, PS and PNL save
considerable running time in practice by leveraging several
pruning conditions.

7.2.3 Effect of α

Next we investigate the impact of probability threshold by
varying α from 0.3 to 0.9. As shown in Fig. 15b, the time
cost of all methods decreases as α increases, since there are
less qualifying pairs involved in the distance evaluation. We
also notice that, when the probability threshold is low, PS

 10

 100

 1000

 10000

 100000

R
un

ni
ng

 ti
m

e
[m

s]

500 1000 5000 10000

(a)

 10

 100

 1000

R
un

ni
ng

 ti
m

e
[m

s]

0.3 0.5 0.7 0.9

(b)

 10

 100

 1000

R
un

ni
ng

 ti
m

e
[m

s]

1000 5000 10000 50000 100000 500000

(c)

NL
PS

PNL

NL
PS

PNL

NL
PS

PNL

Fig. 15 Performance of α-distance computation algorithms

123

744 K. Zheng et al.

(a) STR Query (b) STR Query

(c) STN Query (d) STN Query

Basic STR

LB

LB-LP

LB-LP-UB

Basic STN
LB

LB-LP

LB-LP-UB

Basic STN

LB

LB-LP
LB-LP-UB

Basic STR

LB

LB-LP

LB-LP-UB

Fig. 16 Effect of dataset

and PNL have similar performance. The advantage of PNL
becomes obvious only when α is beyond 0.5. This is because
most points are qualified when α is small and are more dif-
ficult to prune by the PNL.

7.2.4 Effect of N

We also present analysis on the relationship between the per-
formance of distance computation algorithms and the size of
dataset. As we can see from Fig. 15c, while the basic approach
is not affected by this parameter, the other two methods run
faster as N increases. Recall that our purpose of designing
the plane sweep algorithms as well as its optimization is to
improve the efficiency of α-distance evaluation especially
when two fuzzy objects heavily overlap with each other. As
N increases, the fuzzy object set becomes more dense, mak-
ing our proposed methods more effective.

7.3 Performance of STQ Algorithms

In this subsection, we compare the performance of the basic
STQ algorithm against its competitors, namely STQ algo-
rithm with improved lower bound (LB), LB with lazy probe
(LB-LP), and LB-LP with improved upper bound (LB-LP-
UB) on an extensive set of parameters. For the improved
upper bounding technique (LB-LP-UB), we choose the sam-
pling-based method with 100 samples by default. Then, we
investigate the tightness of different upper bounding dis-
tances. Lastly, we compare the performance of the proposed
lazy probe technique against the multi-step kNN search algo-
rithm proposed in [24].

 0

 100

 200

 300

 400

 500

 600

 700

1000 5000 10000 50000 100000 200000

of

 o
bj

ec
t a

cc
es

s

Basic STR
LB

LB-LP
LB-LP-UB

(a) STR Query

 0

 10

 20

 30

 40

 50

 60

1000 5000 10000 50000 100000 200000

R
un

ni
ng

 ti
m

e
[s

]

Basic STR
LB

LB-LP
LB-LP-UB

(b) STR Query

 40

 60

 80

 100

 120

 140

 160

 180

1000 5000 10000 50000 100000 200000

of

 o
bj

ec
t a

cc
es

s

Basic STN
LB

LB-LP
LB-LP-UB

(c) STN Query

 0

 5

 10

 15

 20

 25

 30

 35

 40

1000 5000 10000 50000 100000 200000

R
un

ni
ng

 ti
m

e
[s

]

Basic STN
LB

LB-LP
LB-LP-UB

(d) STN Query

Fig. 17 Effect of N

7.3.1 Effect of dataset

First, we investigate the impact of different kinds of object
sets on the performance of STQ processing algorithms. The
results are illustrated by Fig. 16. Easy to see that the IO
costs of the algorithms on synthetic datasets are lower than
that on the real dataset (Fig. 16a, c). This is caused by the
fact that synthetic objects usually have more regular and
smaller α-cuts (with α = 0.5 by default), which makes the
approximations of their α-distances more tight. Besides, the
LB technique is more effective on Zipf distributions with
greater s values than the uniform distribution, since more
points are located around the center of the circle making
their α-cuts more compact. Another interesting observation
is, even though the IO costs on Zipf distribution are lower,
their running time is higher than that on uniform distribution
(Fig. 16b, d). This is because the evaluation of α-distances
for objects with Zipf distribution is more expensive than that
of uniform distribution, as we mentioned in the last subsec-
tion. For presentation convenience, we only report the results
on real dataset for the rest of the experiments, as the trends
of algorithms on synthetic dataset are similar.

7.3.2 Effect of N

We study the impact of dataset size on the performance of
STR and STN algorithms by varying the number of objects
from 1K to 200K. As shown in Fig. 17a and c, all the meth-
ods need to access more objects in order to determine the
query results with the growth of the dataset. This is due to
the fact that, when the number of objects grows, the density
of whole data space becomes higher, which makes it more
difficult to prune objects by checking distance lower bound.
From the time cost aspect, as we can observe from Fig. 17b

123

Spatial query processing for fuzzy objects 745

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 5 10

of

 o
bj

ec
t a

cc
es

s
Basic STR

LB
LB-LP

LB-LP-UB

(a) STR Query

 0

 10

 20

 30

 40

 50

 60

1 2 5 10

R
un

ni
ng

 ti
m

e
[s

]

Basic STR
LB

LB-LP
LB-LP-UB

(b) STR Query

Fig. 18 Effect of r

 0

 50

 100

 150

 200

 250

5 10 20 50

of

 o
bj

ec
t a

cc
es

s

Basic STN
LB

LB-LP
LB-LP-UB

(a) STN Query

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 20 50

R
un

ni
ng

 ti
m

e
[s

]

Basic STN
LB

LB-LP
LB-LP-UB

(b) STN Query

Fig. 19 Effect of k

and d, their running time also increases because more IO
operation is invoked and more α-distances need to evalu-
ated. We also notice that the performances of all algorithms
are still comparable when the dataset is relatively small, since
the simple lower bound serves as a tolerable approximation
when the data space is sparse. The advantages of the pro-
posed optimizations become more obvious in larger data-
set.

7.3.3 Effect of r

We then examine how the performances of STR approaches
are affected by the search radius r , the results of which are
shown in Fig. 18. As expected, all the algorithms need to
access more objects and consume more time when r expands,
since more leaf nodes of R-tree are included as candidates and
more α-distance needs to be evaluated for refinement. How-
ever, compared to the basic approach, the algorithm with all
optimizations is much less sensitive to the increases of r .

7.3.4 Effect of k

Next we compare the performance of all STN algorithms by
varying k from 5 to 50. According to Fig. 19a and b, the per-
formance of all algorithms deteriorates as k increases. This
is due to the fact that the best-first search strategy has to
verify all the objects A satisfying d−α (A, Q) ≤ dknn where
dknn is the α-distance of kth nearest neighbor. As k increases,
dknn increases as well, which means more objects need to be
retrieved. On the other hand, the optimized algorithms are
less sensitive to the variation of k, due to the more accurate
estimation of α-distance.

 50

 100

 150

 200

 250

 300

 350

0.3 0.5 0.7 0.9

of

 o
bj

ec
t a

cc
es

s

Basic STR
LB

LB-LP
LB-LP-UB

(a) STR Query

 0

 10

 20

 30

 40

 50

 60

0.3 0.5 0.7 0.9

R
un

ni
ng

 ti
m

e
[s

]

Basic STR
LB

LB-LP
LB-LP-UB

(b) STR Query

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

0.3 0.5 0.7 0.9

of

 o
bj

ec
t a

cc
es

s

Basic STN
LB

LB-LP
LB-LP-UB

(c) STN Query

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

0.3 0.5 0.7 0.9

R
un

ni
ng

 ti
m

e
[s

]

Basic STN
LB

LB-LP
LB-LP-UB

(d) STN Query

Fig. 20 Effect of α

7.3.5 Effect of α

We also study the impact of the probability threshold by
varying α from 0.3 to 0.9. As shown in Fig. 20a, the object
access number of the basic STR algorithm is not affected by
this parameter since it approximates each fuzzy object by its
MBR regardless of the α-cut. As a comparison, the optimized
methods perform better as α rises as the distance bounds are
tighter. However, the running time of all algorithms decrease
with α even for the basic approach, according to Fig. 20b.
This is because the α-distance computation algorithm is more
efficient at higher probability threshold. On the other hand,
the behavior of STN algorithms is slightly different. From
Fig. 20c and d, we can observe that the number of object
access as well as the running time increases for the basic
search method. This is due to the greater α-distance of the
kth nearest neighbor when α is higher. As a consequence,
more candidates are retrieved for verification. Although the
optimized algorithms face the same situation, their perfor-
mances are heading for the opposite direction, i.e., fewer
objects accessed and less CPU cost. This is because, as α

increases, the improved lower and upper bound can reflect
the actual α-distance more accurately, making the best-first
search more efficient.

7.3.6 Sensitivity of α

Sometimes it is difficult for a user to choose a desired α when
he/she issues the kNN queries. Although we have also pro-
posed the continuous threshold queries to address this issue,
it might still be valuable to give some insight on the sensi-
tivity of α, i.e., how significantly the result set will change
when α is tuned. To this end, we continuously increase the
value of α from 0 to 1 with a step of 0.01, and issue a STQ

123

746 K. Zheng et al.

for each α. We adopt two similarity measures to evaluate the
differences of two result sets on consecutive α. More specif-
ically, we use Jaccard similarity for the result sets of STR
queries, and Kendall tau similarity for the top-k lists of STN
queries. Kendall tau distance [16] is a metric that counts the
number of pairwise disagreements between two ordered lists.
Given two ordered lists τ1 and τ2 of size n, their normalized
Kendall tau distance is defined as

K (τ1, τ2) =
∑
{i, j}∈P K̄i, j (τ1, τ2)

n(n − 1)/2

where P is the set of unordered pairs of distinct elements in
τ1 and τ2. K̄ = 0 or 1 if i and j are in the same or opposite
order in the two lists. Kendall tau similarity is defined based
on Kendall tau distance as follows:

K S(τ1, τ2) = 1− K (τ1, τ2)

In this way, the Kendall tau similarity and Jaccard similarity
are consistent and both lie in the interval [0, 1].

To ease the interpretation, we show the results on the gran-
ularity of 0.1, and each value at some α is the average sim-
ilarity of the records within (α − 0.1, α]. For instance, the
result similarity at α = 0.5 is calculated by

Similarity(0.5) = 1

10

0.49∑
α=0.4

S(Rα, Rα+0.01)

where Rα is the result set of STQ at α, and S is either Jaccard
or Kendall tau similarity measure, depending on the query
type. A higher similarity value means the result sets on con-
secutive α are more consistent. In other words, the result set
is not very sensitive to the change of α within this range.

The experimental findings for STR and STN queries are
shown in Fig. 21a and b, respectively, in which we also vary
the query range r or the required number of results k to study
their effects on the sensitivity of α. From Fig. 21a, we can see
that the Jaccard similarity is stable when α is very small and
undergoes a dramatic decrease when 0.3 ≤ α ≤ 0.6. After
that the J S value quickly climbs up with the increase of α.
The reason for this phenomenon is a real fuzzy object usu-
ally consists of a compact set of points with high probabilities
and a large and irregular fuzzy area with low probabilities.
As such, varying α within ranges of lower values affects the
shapes of the α-cuts for fuzzy objects significantly. Conse-
quently, the α-distances with the query object may also alter
dramatically, which makes the result set more sensitive to
α. However, as α increases to a higher level, the shapes of
α-cuts do not change too much since the sets of points with
high probabilities are already very compact. Thus, the result
set becomes less sensitive to α. The stable J S values at very
low α are caused by the fact that the membership probabil-
ities of most points in our dataset are above 0.3. Therefore,
altering α within [0, 0.3] has little impact on the result set.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
im

ila
rit

y

r=1
r=2
r=5

r=10

(a) STR Query

(b) STR Query

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
im

ila
rit

y

k=5
k=10
k=20
k=50

Fig. 21 Sensitivity of α

Besides, with a greater query range r , the overall J S value
rises, which means the result sets are less sensitive to α. This
is easy to understand, since an object is less unlikely to be
excluded from the result set if its α-distance has slight change
when the query range is large. Figure 21b shows the simi-
larity results for STN queries by analogous reasons, except
that the overall Kendall tau similarity are lower than the STR
queries. This implies that the STN queries are more sensitive
to α than STR queries.

7.3.7 Memory cost

In this part, we study the memory costs of the proposed index-
ing structure as well as the STQ processing algorithms. First,
the memory cost of index structure (excluding the actual data
objects) is shown in Fig. 22a, from which we can see the size
of R-tree increases with the cardinality of dataset. The index
structure for improved lower bounds (LB) consumes more
space than the basic structure since it stores the coefficients
of linear functions to approximate the boundaries of α-cuts in
each node. The little extra overhead of the index for improved
upper bounds is caused by keeping the representative point
for each object. We omit the memory cost for LB-LP as it is
the same as LB. In addition, we also show the sizes of pri-
ority queues for STR and STN query processing in Fig. 22b
and c. Consistent with the IO and runtime cost in previous
experiments, our proposed optimization schemes with lower

123

Spatial query processing for fuzzy objects 747

 0

 5

 10

 15

 20

 25

 30

 35

 40

10000 20000 50000 100000 200000

S
iz

e
of

 R
-t

re
e

[M
B

]

Basic
LB

LB-LP-UB

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 5 10

Q
ue

ue
 s

iz
e

[K
B

]

Basic STR
LB

LB-LP
LB-LP-UB

(b)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5 10 20 50

Q
ue

ue
 s

iz
e

[K
B

]

Basic STR
LB

LB-LP
LB-LP-UB

(c)

Fig. 22 Memory costs of index and STQ algorithms

 100

 200

 300

 400

 500

 600

 700

 800

 900

2 3 4 5

of

 o
bj

ec
t a

cc
es

s

Basic STR
LB

LB-LP
LB-LP-UB

(a) STR Query

 10

 20

 30

 40

 50

 60

 70

 80

 90

2 3 4 5

R
un

ni
ng

 ti
m

e
[s

]

Basic STR
LB

LB-LP
LB-LP-UB

(b) STR Query

 50

 100

 150

 200

 250

 300

2 3 4 5

of

 o
bj

ec
t a

cc
es

s

Basic STN
LB

LB-LP
LB-LP-UB

(c) STN Query

 5

 10

 15

 20

 25

 30

 35

 40

 45

2 3 4 5

R
un

ni
ng

 ti
m

e
[s

]

Basic STN
LB

LB-LP
LB-LP-UB

(d) STN Query

Fig. 23 Effect of dimensionality

and upper bounding distances can also reduce the queue size
by identifying the true drops and true hits in earlier stage.

7.3.8 Effect of dimensionality

We also investigate the performances of the proposed algo-
rithms on higher dimensions. As shown in Fig. 23, the IO
and runtime costs of all the algorithms deteriorate with
the increasing dimensionality. This is as expected since the
overlap ratio of the nodes in the R-tree increases with the
dimensionality, which consequently reduces the spatial dis-
crimination of the indexing structure. This also explains the
phenomenon that the improved lower bounds can save more
IO and running time on higher dimensions. However, it is
worth pointing out that, though all our proposed techniques
can extend to any multidimensional space, considerable per-
formance deterioration will be experienced on high dimen-
sional spaces (e.g., d > 10). This is due to the intrinsic
difficulties for R-trees to index objects with such high dimen-
sionality. Though this issue can be tackled to some extent by
adapting other indexing structures designed for high dimen-
sional spaces (e.g., X-tree [8]), in-depth study about it is
beyond the scope of this paper.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0.3 0.5 0.7 0.9
tig

ht
ne

ss

MaxDist
MinMaxDist

Sampling based w=50
Sampling based w=100
Sampling based w=150
Sampling based w=200

Fig. 24 Tightness of upper bounding distances w.r.t. α

7.3.9 Comparison of upper bounding distances

We compare the tightness of different upper bounding dis-
tances proposed in this paper, which is measured by the ratio
between the exact α-distance and the upper bounds. Higher
values of tightness means a better upper bound. As shown
in Fig. 24, all the upper bounds get more tightened with
the increasing α since the α-distance tends to increase for
a greater α. Not surprisingly, both MinMax distance-based
and sampling-based upper bounds constantly improve the
MaxDist-based method on the entire range of α. The tight-
ness of sampling-based method rises if more points from the
query object are sampled, and eventually exceeds the Min-
Max-based method when the number of samplings w ≥ 150.
However, we also notice that, with the further increase of
samplings, the marginal benefit becomes less obvious. This
is due to the fact that, as the α-cut of the query object
becomes smaller for greater α, a moderate number of sam-
plings already provides a good approximation for the true
α-distance.

7.3.10 Comparison of lazy probe algorithms

Lastly, we compare the performance of the lazy probe algo-
rithm proposed in this paper (referred to as incremental
method) against the multi-step kNN search based on lower
and upper bounds proposed in [24], by varying k from 5 to

123

748 K. Zheng et al.

 20

 40

 60

 80

 100

 120

 140

5 10 20 50

of

 o
bj

ec
t a

cc
es

s

k

multi-step
incremental

(a) # of object access

 0

 2

 4

 6

 8

 10

 12

 14

5 10 20 50

ru
nt

im
e

(s
)

k

multi-step
incremental

multi-step first hit
incremental first hit

(b) time cost

Fig. 25 Comparison of lazy probe algorithms w.r.t. k

50. As we can see from Fig. 25, the number of object acces-
ses, which is equivalent to the number of refined objects in
[24], are almost the same for both techniques. As we pred-
icate in Sect. 3.3, due to the prompt utilization of the upper
bounds of the candidate, the elapsed time when the incre-
mental algorithm confirms the first true hit is less than that of
multi-step algorithm, especially for a greater k. This means
the incremental algorithms can report parts of the results to
the users more quickly. However, the price of this benefit is
the slight increase of overall time cost, as proved by Fig. 25b.

7.4 Performance of CTQ Algorithms

To verify the efficiency of our proposed methods for answer-
ing CTQ queries, we compare the performance of the basic
algorithm with the optimized algorithms, i.e., basic CTQ
algorithm with reduced search space (RSS) and RSS with
improved candidate refinement procedure (RSS-ICR).

7.4.1 Effect of N

The first set of experiments tests the scalability of all CTN
schemes by varying the dataset size from 1K to 200K. Results
are shown in Fig. 26, from which we can see that perfor-
mance of all algorithms degrade as the dataset grows, but the
optimized algorithms are constantly superior than the basic
method by at least one order of magnitude. Since the basic

 10

 100

 1000

 10000

 100000

1000 5000 10000 50000 100000 200000

of

 o
bj

ec
t a

cc
es

s

Basic CTR
RSS

RSS-ICR

(a) CTR Query

 1

 10

 100

 1000

1000 5000 10000 50000 100000 200000

R
un

ni
ng

 ti
m

e
[s

]

Basic CTR
RSS

RSS-ICR

(b) CTR Query

 10

 100

 1000

 10000

1000 5000 10000 50000 100000 200000

of

 o
bj

ec
t a

cc
es

s

Basic CTN
RSS

RSS-ICR

(c) CTN Query

 1

 10

 100

 1000

1000 5000 10000 50000 100000 200000

R
un

ni
ng

 ti
m

e
[s

]

Basic CTN
RSS

RSS-ICR

(d) CTN Query

Fig. 26 Effect of N

 10

 100

 1000

 10000

1 2 5 10

of

 o
bj

ec
t a

cc
es

s

Basic CTR
RSS

RSS-ICR

(a) CTR Query

 1

 10

 100

 1000

1 2 5 10

R
un

ni
ng

 ti
m

e
[s

]

Basic CTR
RSS

RSS-ICR

(b) CTR Query

Fig. 27 Effect of r

method relies on invoking lots of STQ procedure, it needs
to traverse the R-tree many times and incurs high IO and
computation cost. With the performance of STQ algorithms
getting worse in a larger dataset, the basic CTQ approach
deteriorates very faster. On the other hand, RSS only issues
an STQ query at the end of the probability range, and then
finds all the candidates by a range search at the beginning of
the probability range. Other than that no extra IO operation
is invoked. That explains why the number of object access
by RSS is within the same magnitude as the corresponding
STQ method. RSS-ICR adopts the same strategy to obtain
the candidate set, thus having the same performance in terms
of object probe. But its CPU cost is lower than RSS since it
avoids a lot of critical probability checking in the candidate
refinement process.

7.4.2 Effect of r

In this part, we investigate the impact of query radius to the
efficiency of CTR algorithms. The results are illustrated by
Fig. 27, from which we can see that the performance of all
approaches deteriorates as r increases since each STR query
is less efficient. However, as in the last set of experiments,
the optimized schemes constantly outperform the baseline at
all radius.

123

Spatial query processing for fuzzy objects 749

 10

 100

 1000

 10000

5 10 20 50

of

 o
bj

ec
t a

cc
es

s
Basic CTN

RSS
RSS-ICR

(a) CTN Query

 10

 100

 1000

 10000

5 10 20 50

R
un

ni
ng

 ti
m

e
[s

]

Basic CTN
RSS

RSS-ICR

(b) CTN Query

Fig. 28 Effect of k

 100

 1000

 10000

 100000

0.05 0.1 0.2 0.5

of

 o
bj

ec
t a

cc
es

s

Basic CTR
RSS

RSS-ICR

(a) CTR Query

 10

 100

 1000

 10000

0.05 0.1 0.2 0.5

R
un

ni
ng

 ti
m

e
[s

]

Basic CTR
RSS

RSS-ICR

(b) CTR Query

 100

 1000

 10000

0.05 0.1 0.2 0.5

of

 o
bj

ec
t a

cc
es

s

Basic CTN
RSS

RSS-ICR

(c) CTN Query

 10

 100

 1000

 10000

0.05 0.1 0.2 0.5

R
un

ni
ng

 ti
m

e
[s

]

Basic CTN
RSS

RSS-ICR

(d) CTN Query

Fig. 29 Effect of L

7.4.3 Effect of k

Then, we study performance trend of all algorithms when
different numbers of results are required. Figure 28a and b
clearly demonstrates the remarkable advantage of our opti-
mizations, the cause of which is similar with the first set of
experiments. For all algorithms, their running time increases
are also caused by more critical probability values to be
checked as k increases.

7.4.4 Effect of L

Finally, we examine the impact of different lengths of proba-
bility range on the performance of all algorithms by varying
L from 0.05 to 0.5. As shown in Fig. 29, with L increas-
ing, the performance of the basic algorithm deteriorates very
fast. This is because the number of STQ issued by the basic
algorithms increases rapidly. On the contrary, the number of
object access for the optimized algorithms is not sensitive
to the variation of L . Their running time increase is mainly
caused by the longer candidate refinement process. By avoid-
ing exhaustively checking all critical probability values, the
advantage of RSS-ICR becomes more significant when the
probability range is broader.

8 Related work

Query processing for traditional objects. The most com-
mon and traditional type of object is the static point object,
for which spatial query processing algorithms have been long
studied. R-trees [6,17] are the most popular indexes for query
processing on this kind of objects due to their simplicity and
efficiency. The R-tree can be viewed as a multidimensional
extension of the B-tree. Points that are close in space are clus-
tered in the same leaf node represented as a minimum bound-
ing rectangle (MBR). Nodes are recursively grouped together
following the same principle until the top level, which con-
sists of a single root. R-trees are motivated by the need to
efficiently process range query, where the range usually cor-
responds to a rectangular window or a circular area around the
query point. Given a range query, the root is first retrieved and
the entries that intersect the range are recursively searched
because they may contain qualifying points. A nearest neigh-
bor query retrieves k(k ≥ 1) data points closest to the query
point q. Numerous algorithms have been proposed based
on R-trees. Roussopoulos et al [30] proposed a depth first
method that, starting from the root of R-tree, visits the entry
with the minimum distance from q. The process is repeated
recursively until the leaf level. During the backtracking to the
upper level, the algorithm only visits entries whose minimum
distance is smaller than the distance of the nearest neighbor
already found. Hjaltason and Samet [20] implemented a best-
first traversal that follows the entry with the smallest distance
among all those visited. In order to achieve this, the algo-
rithm keeps a priority queue with the candidate entries and
their minimum distances from the query point. Furthermore,
conventional nearest neighbor search and its variations in low
and high dimensional spaces have also received considerable
attention due to their applicability in domains such as con-
tent-based retrieval and multimedia database [23,39,44,45].
But since it is difficult to map a fuzzy object to a single point
while keeping the original information, the proposed query
processing algorithms for point objects cannot be directly
applied to our problem.
Query processing for moving objects. With the prolifera-
tion of location-based e-commerce and mobile computing,
a lot of attention has been received for moving object dat-
abases, where the locations of data objects or queries (or both)
are changing. Assuming object movement trajectories are
known a priori, Saltenis et al [31] proposed the Time-Param-
eterized R-tree (TPR-tree) for indexing moving objects, in
which the location of a moving object is represented by a
linear function. Benetis et al [7] developed query evaluation
algorithms for NN and reverse NN search based on TPR-
tree. Tao et al [43] optimized the performance of the TPR-tree
and extended it to the TPR∗-tree. Continuous range and kNN
monitoring for moving queries has also been investigated on
stationary objects [42] and linearly moving objects [21]. The

123

750 K. Zheng et al.

l1-

l2-

l2+

l1+

o.ur

rq

o.pcr(0.2)

Fig. 30 Illustration of probabilistic constrained region

work in this category shares some features in common with
our proposed spatial queries for fuzzy objects. In continu-
ous spatial queries, the result set is only valid within certain
time span. Correspondingly, in our work each query result is
associated with its qualifying probability interval. Yet essen-
tial differences still exist. In moving object databases, what
varies is the location of an object; while in fuzzy object dat-
abases, the dynamic part is the composition of an object,
which alters with the probability threshold.
Query processing for uncertain objects. As data uncer-
tainty attracts more research interests, spatial query has also
been extended to uncertain databases. Cheng et al. [11] pro-
posed the range and nearest neighbor queries in uncertain
environments, which finds a set of data objects that have
non-zero probability to be the nearest neighbor of the query
point. Tao et al [41] developed the concept of probabilis-
tic constrained region (PCR), which can assist pruning a
non-qualifying object or validate a qualifying object for a
probabilistic range query, without computing the accurate
appearance probability. Based on PCR, they further propose
U-tree to index multi-dimensional uncertain data with arbi-
trary probability density functions. A 2D example of PCR is
illustrated by Fig. 30, where the polygon represents the uncer-
tain region o.ur of the uncertain object o. Its PCR o.pcr(p)

is decided by four lines l1+, li−, l2+, l2−. Line l1+ splits o.ur
into two parts and the appearance probability of o in the right
part equals to p. Similarly, the other lines are obtained in the
same way. Now suppose the gray area represents o.pcr(0.2),
and there is range query rq with the probability threshold 0.8.
Then, o cannot qualify rq since the appearance probability
of o in rq must be smaller than that of the left side of l1+,
i.e., 1-0.2 = 0.8, where 0.2 is the probability of o falling on
the right side of l1+.

Although an uncertain object is often represented by an
uncertain region, which looks similar with the fuzzy region
in our object model for the fuzzy object, we cannot adapt
the similar techniques such as PCR to process the queries for
fuzzy objects. To understand this, the probabilities within the
uncertain region of an uncertain object sum up to one, since
each point inside the region represents a possible instance
exclusive with other instances. This is the basic assumption

for the PCR as well as U-tree to work correctly. Recall the
example in Fig. 30, we can safely conclude the probability
of o on the left side of l1+ is 0.8 once we know the probabil-
ity on the other side is 0.2. However, the fuzzy object does
not possess this property since each point inside the fuzzy
region represents a member of this object whose existence
probability is independent of other points. For this reason,
we cannot adopt a U-tree like structure to index and support
the queries on fuzzy objects in this paper.
Fuzzy objects. On the other hand, the notion of fuzzy objects
has not been introduced to database field until Altman [3]
adopted fuzzy set theoretic approach for handling impreci-
sion in spatial databases. Afterward, fuzzy data types such
as fuzzy points, fuzzy lines, and fuzzy regions were defined
in [15,33]. Based upon that simple metric operations such
as the area of a fuzzy region and the length of a fuzzy line
were further developed in [34], in which only unary functions
were considered. On relationship between fuzzy objects, dif-
ferent models of fuzzy topological predicates, which char-
acterize the relative position of two fuzzy objects toward
each other, were discussed in [35,36,40]. However, it remains
largely untouched to answer more advanced spatial queries
such as the range and nearest neighbor queries, which have
been addressed in this paper.

9 Conclusion

Although range and nearest neighbor queries are the most
classical spatial queries and fuzzy objects can often be
found in many important applications, considering both have
received rather limited attention. In this paper we have stud-
ied this problem in depth, defining new types of range and
kNN queries for fuzzy objects, namely single threshold que-
ries and continuous threshold queries. We have developed
efficient algorithms to answer these queries by extending the
R-tree indexing structure and deriving several highly effec-
tive heuristic rules. Extensive experiments on both synthetic
and real datasets have shown that our optimized algorithms
achieve superior performance than the baseline approaches
constantly. Given the relevance of fuzzy objects to a wide
range of applications, we expect this research to trigger fur-
ther work in this area, opening a way for other advanced
queries such as spatial join queries, reverse nearest neighbor
queries, and skyline queries.

References

1. Achtert, E., Bohm, C., Kroger, P., Kunath, P., Pryakhin, A., Renz,
M.: Efficient reverse k-nearest neighbor search in arbitrary metric
spaces. In: Proceedings of SIGMOD, pp. 515–526 (2006)

2. Agarwal, P., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.: Euclid-
ean minimum spanning trees and bichromatic closest pairs. Discret.
Comput. Geom. 6(1), 407–422 (1991)

123

Spatial query processing for fuzzy objects 751

3. Altman, D.: Fuzzy set theoretic approaches for handling impreci-
sion in spatial analysis. Int. J. Geogr. Inf. Sci. 8(3), 271–289 (1994)

4. Andrew, A.M.: Another efficient algorithm for convex hulls in two
dimensions. Inf. Process. Lett. 9, 216–219 (1979)

5. Badel, A., Mornon, J., Hazout, S.: Searching for geometric molec-
ular shape complementarity using bidimensional surface profiles.
J. Mol. Graph. 10(4), 205–211 (1992)

6. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The
R∗-tree: an efficient and robust access method for points and rect-
angles. ACM Sigmod Rec. 19(2), 322–331 (1990)

7. Benetis, R., Jensen, C., Simonas, G.: Nearest neighbor and reverse
nearest neighbor queries for moving objects. In: Proceedings of
IDEAS, pp. 44–53 (2002)

8. Berchtold, S., Keim, D., Kriegel, H.: The x-tree: An index structure
for high-dimensional data. In: Proceedings of VLDB (1996)

9. Bloch, I.: On fuzzy distances and their use in image processing
under imprecision. Pattern Recogn. 32(11), 1873–1895 (1999)

10. Chaudhuri, B., Rosenfeld, A.: On a metric distance between fuzzy
sets. Pattern Recogn. Lett. 17(11), 1157–1160 (1996)

11. Cheng, R., Kalashnikov, D., Prabhakar, S.: Evaluating probabilistic
queries over imprecise data. In: Proceedings of SIGMOD, pp. 551–
562 (2003)

12. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to
algorithms. The MIT Press (2001)

13. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopou-
los, M.: Closest pair queries in spatial databases. SIGMOD
Rec. 29(2), 189–200 (2000)

14. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.:
A reliable randomized algorithm for the closest-pair problem.
J. Algorithms 25(1), 19–51 (1997)

15. Dilo, A., Rolf, A., Stein, A.: A system of types and operators for
handling vague spatial objects. Int. J. Geogr. Inf. Sci. 21(4), 397–
426 (2007)

16. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In:
ACM-SIAM Symposium on Discrete algorithms, pp. 28–36 (2003)

17. Guttman, A.: R-trees: a dynamic index structure for spatial search-
ing. ACM Sigmod Rec. 14(2), 47–57 (1984)

18. Hinrichs, K., Nievergelt, J., Schorn, P.: Plane-sweep solves the
closest pair problem elegantly. Inf. Process. Lett. 26(5), 255–
261 (1988)

19. Hjaltason, G., Samet, H.: Incremental distance join algorithms for
spatial databases. ACM SIGMOD Rec. 27(2), 237–248 (1998)

20. Hjaltason, G., Samet, H.: Distance browsing in spatial dat-
abases. TODS 24(2), 265–318 (1999)

21. Iwerks, G., Samet, H., Smith, K.: Continuous k-nearest neighbor
queries for continuously moving points with updates. In: Proceed-
ings of VLDB, pp. 512–523 (2003)

22. Khuller, S., Matias, Y.: A simple randomized sieve algorithm for
the closest-pair problem. Inf. Comput. 118(1), 34–37 (1995)

23. Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas,
Z.: Fast nearest neighbor search in medical image databases. In:
Proceedings of VLDB, pp. 215–226 (1996)

24. Kriegel, H., Kröger, P., Kunath, P., Renz, M.: Generalizing the
optimality of multi-step k-nearest neighbor query processing. In:
Advances in Spatial and Temporal Databases, pp. 75–92 (2007)

25. Ljosa, V., Singh, A.: Probabilistic segmentation and analysis of
horizontal cells. In: Proceedings of ICDM, pp. 980–985 (2006)

26. Ljosa, V., Singh, A.: Top-k spatial joins of probabilistic objects. In:
Proceedings of ICDE, pp. 566–575 (2008)

27. Papadopoulos, A., Manolopoulos, Y.: Performance of nearest
neighbor queries in R-trees. In: Proceedings of ICDT, pp. 394–408
(1997)

28. Peng, S., Urbanc, B., Cruz, L., Hyman, B., Stanley, H.: Neu-
ron recognition by parallel potts segmentation. Natl Acad
Sci 100(7), 3847–3852 (2003)

29. Preparata, F., Shamos, M.: Computational Geometry: An Introduc-
tion. Springer, Berlin (1985)

30. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries.
In: Proceedings of SIGMOD, pp. 71–79 (1995)

31. Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.: Indexing
the positions of continuously moving objects. ACM Sigmod
Rec. 29(2), 331–342 (2000)

32. Schmitz, C., Grolms, N., Hof, P., Boehringer, R., Glaser, J., Korr,
H.: A stereological study using a novel three-dimensional analysis
method to estimate the nearest neighbor distance distributions of
cells in thick sections. Cereb. Cortex 12(9), 954–960 (2002)

33. Schneider, M.: Uncertainty management for spatial data in dat-
abases: fuzzy spatial data types. In: Proceedings of SSD, pp. 330–
354 (1999)

34. Schneider, M.: Metric operations on fuzzy spatial objects in dat-
abases. In: Proceedings of ACM GIS, pp. 21–26 (2000)

35. Schneider, M.: A design of topological predicates for complex crisp
and fuzzy regions. In: Proceedings of ICCM, pp. 103–116 (2001)

36. Schneider, M.: Fuzzy topological predicates, their properties, and
their integration into query languages. In: Proceedings of GIS,
pp. 9–14 (2001)

37. Schwarz, C., Smid, M., Snoeyink, J.: An optimal algorithm for the
on-line closest-pair problem. Algorithmica 12(1), 18–29 (1994)

38. Seidl, T., Kriegel, H.: Efficient user-adaptable similarity search in
large multimedia databases. In: Proceedings of VLDB, pp. 506–
515 (1997)

39. Seidl, T., Kriegel, H.: Optimal multi-step k-nearest neighbor
search. In: Proceedings of SIGMOD, pp. 154–165 (1998)

40. Tang, X., Kainz, W.: Analysis of topological relations between
fuzzy regions in a general fuzzy topological space. In: Symposium
on Geospatial Theory, Processing and Applications (2002)

41. Tao, Y., Cheng, R., Xiao, X., Ngai, W., Kao, B., Prabhakar, S.:
Indexing multi-dimensional uncertain data with arbitrary proba-
bility density functions. In: Proceedings of VLDB, pp. 922–933
(2005)

42. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor
search. In: Proceedings of VLDB, pp. 287–298 (2002)

43. Tao, Y., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-
temporal access method for predictive queries. In: Proceedings of
VLDB, pp. 790–801 (2003)

44. Weber, R., Schek, H., Blott, S.: A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional
spaces. In: Proceedings of VLDB, pp. 194–205 (1998)

45. Yu, C., Ooi, B., Tan, K., Jagadish, H.: Indexing the distance: an
efficient method to kNN processing. In: Proceedings of VLDB,
pp. 421–430 (2001)

46. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
47. Zheng, K., Fung, P., Zhou, X.: K-nearest neighbor search for fuzzy

objects. In: Proceedings of SIGMOD, pp. 699–710 (2010)

123

	Spatial query processing for fuzzy objects
	Abstract
	1 Introduction
	2 Models and queries
	2.1 Fuzzy object model
	2.2 Query definitions

	3 Single threshold query processing
	3.1 Basic algorithms
	3.2 Improving the lower bound distance
	3.3 Lazy probe
	3.4 Improving the upper bound

	4 Continuous threshold query processing
	4.1 Basic algorithms
	4.2 Reducing search space
	4.3 Improving candidate refinement

	5 α-Distance evaluation
	5.1 Plane sweep algorithm
	5.2 Probability neighbor list

	6 Complexity analysis
	7 Experiments
	7.1 Dataset
	7.2 Performance of distance computation algorithms
	7.2.1 Effect of point distribution
	7.2.2 Effect of n
	7.2.3 Effect of α
	7.2.4 Effect of N

	7.3 Performance of STQ Algorithms
	7.3.1 Effect of dataset
	7.3.2 Effect of N
	7.3.3 Effect of r
	7.3.4 Effect of k
	7.3.5 Effect of α
	7.3.6 Sensitivity of α
	7.3.7 Memory cost
	7.3.8 Effect of dimensionality
	7.3.9 Comparison of upper bounding distances
	7.3.10 Comparison of lazy probe algorithms

	7.4 Performance of CTQ Algorithms
	7.4.1 Effect of N
	7.4.2 Effect of r
	7.4.3 Effect of k
	7.4.4 Effect of L

	8 Related work
	9 Conclusion
	References

