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Abstract Due to the prevalence of GPS-enabled devices
and wireless communications technologies, spatial trajecto-
ries that describe the movement history of moving objects are
being generated and accumulated at an unprecedented pace.
Trajectory data in a database are intrinsically heterogeneous,
as they represent discrete approximations of original contin-
uous paths derived using different sampling strategies and
different sampling rates. Such heterogeneity can have a neg-
ative impact on the effectiveness of trajectory similarity mea-
sures, which are the basis of many crucial trajectory process-
ing tasks. In this paper, we pioneer a systematic approach to
trajectory calibration that is a process to transform a hetero-
geneous trajectory dataset to one with (almost) unified sam-
pling strategies. Specifically, we propose an anchor-based
calibration system that aligns trajectories to a set of anchor
points, which are fixed locations independent of trajectory
data. After examining four different types of anchor points
for the purpose of building a stable reference system, we pro-
pose a spatial-only geometry-based calibration approach that
considers the spatial relationship between anchor points and
trajectories. Then a more advanced spatial-only model-based
calibration method is presented, which exploits the power of
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machine learning techniques to train inference models from
historical trajectory data to improve calibration effective-
ness. Afterward, since trajectory has temporal information,
we extend these two spatial-only trajectory calibration algo-
rithms to incorporate the temporal information, which can
infer a proper time stamp to each anchor point of a calibrated
trajectory. At last, we provide a solution to reduce cost, i.e.,
the number of trajectories thatis necessary to be re-calibrated,
of the updating of the reference system. Finally, we con-
duct extensive experiments using real trajectory datasets to
demonstrate the effectiveness and efficiency of the proposed
calibration system.

Keywords Similarity measure - Trajectory database -
Trajectory calibration

1 Introduction

Driven by major advances in sensor technology, GPS-
enabled mobile devices and wireless communications, a
large amount of data recording the motion history of mov-
ing objects, known as trajectories, are currently gener-
ated and managed in scores of application domains. This
inspires a tremendous amount of research effort on analyz-
ing large-scale trajectory data from a variety of aspects in the
last decade. Representative work includes designing effec-
tive trajectory indexing structures [4,6,12,34,37], efficient
trajectory query processing [9,16,46], and mining knowl-
edge/patterns from trajectories [24,25,28,30], to name a few.

In theory, a trajectory can be modeled by a continuous
function mapping time to space; in practice, however, a tra-
jectory can only be represented by a discrete sequence of
locations sampled from the continuous movement of the
moving object, due to limitations of location acquisition tech-
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K Table 1 Effect of sampling rates
H Distance
Rate ED DTW LCSS EDR
10 0.35 0.21 0.71 0.75
P >, B A * 20 0.21 0.09 0.27 0.37
~ P i 30 0 0 0 0
T i e——— 60 0.24 0.15 0.47 0.53
(b) Raw trajectories 100 0.25 0.21 0.75 0.68
-~ 3“2 035 5a4 e database. It is easy to observe that the two trajectories may
\ EF i i have a greater distance (than they are supposed to be) based
oq, é o) e | on most trajectory similarity measures. A system relying on

(c) After calibration

Fig. 1 Motivation of calibration. a Original routes. b Raw trajectories.
¢ After calibration

nologies. In other words, when a raw trajectory is reported
to the server and stored in the database, it is just a sample
of the original travel history. The sampling strategies used to
generate trajectory data can vary significantly for several rea-
sons. First of all, the sampling methods can be different, such
as distance-based methods (e.g., report every 100 m), time-
based methods (e.g., report every 30 s) and predication-based
methods (e.g., report when the actual location exceeds a cer-
tain distance from the predicted location). Secondly, different
parameters may be used even for the same sampling strategy.
For example, based on the time-based sampling strategy, a
geologist equipped with specialized GPS-devices can report
her locations with high frequency (say every 5s), while a
casual mobile phone user may only provide one location
record every couple of hours or even days (via, for example, a
Web check-in service). Such variations can also be imposed
by external factors (such as availability of on-device battery
and wireless signal) and may change at owner’s discretion.
As such, trajectory data in real-world database appli-
cations are heterogeneous by nature. This, however, can
be problematic when these heterogeneous trajectories are
processed directly. For example, as we shall illustrate later,
it does not make much sense to compare two trajecto-
ries obtained using different sampling strategies by directly
applying existing trajectory similarity measures like Euclid-
ean distance, DTW [27], LCSS [26] or EDR [8]. This is
because these measures are all based on the spatial proxim-
ity between sampled locations and hence easily affected by
the sampling strategies adopted. Consider in Fig. 1a that two
moving objects follow highly similar routes in an urban area,
but adopt different sampling strategies. As a result, the raw
trajectory (denoted by the solid line) of object A has fewer
sample points than that of B (denoted by the dashed line).
Figure 1b illustrates the actual trajectory data stored in the
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trajectory similarity search may produce misleading results
to the users if these trajectories are processed without the
awareness of this issue. Therefore, this issue of trajectory
heterogeneity must be dealt with in order to make meaning-
ful similarity-based trajectory processing.

1.1 Problem analysis: a case study

Now let us examine the impact of sampling strategies on tra-
jectory similarity analysis through a case study. We test with
four commonly used trajectory distance measures: Euclid-
ean Distance, DTW [27], LCSS [26] and EDR [8]. These
distance measures perform reasonably well according to the
reported results. However, whether it is explicitly mentioned
or not, a prerequisite for these measures to be effective is that
the sampling strategies of all trajectory data must be compat-
ible (that is, very similar). In the sequel, we will demonstrate
that the effectiveness of these distance measures are highly
sensitive to how trajectory data are sampled.

In this experiment, we first select 500 densely sampled
trajectories on a network as the original routes. For each of
them, we adopt a time-based sampling method with vari-
able sampling rates of 10, 20, 30, 60 and 100s (denoted by
T1o0, T20, T30, Tep and Tiqp, respectively). Then we choose
T30 as the baseline trajectory and calculate the distance
between T3¢ and other variants using these four trajectory dis-
tance measures. The average measured normalized distance
values are reported in Table 1. One can see that, although
all the trajectories re-sampled using different sampling rates
refer to exactly the same original trajectory, the reported dis-
tance values vary widely no matter which distance measure
is adopted. Consequently, all the data analysis tasks relying
on such distance measures can be ineffective as similar tra-
jectories may not be properly identified as such. The root
cause of this phenomenon is that all these distance measures,
as well as many other trajectory processing techniques, are
merely sample based. In other words, all the distance evalu-
ations are performed between sample points. These distance
measures can work only based on some assumptions such
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as very dense point sampling. As we discussed earlier, these
assumptions may no longer hold for many real-life trajectory
datasets. This case study also illustrates the severity of the
trajectory heterogeneity problem.

1.2 Challenges and contributions

With the observation and awareness of this heterogeneity
problem for trajectory data, a calibration process is neces-
sary before raw trajectory data can be used for subsequent
data analytics to transform a set of heterogeneous trajecto-
ries into one with more unified sampling strategies. The goal
of this calibration processing is to reduce or even eliminate
the negative impact of the sampling strategies on measur-
ing trajectory similarity. In other words, all trajectories after
calibration should better resemble their original continuous
routes thus can be more accurately compared with each other
regardless of the sampling strategies used in generating the
raw trajectories. In order to achieve this goal, we need to con-
struct a reference system that is trajectory independent and
then rewrite raw trajectories based on the same reference
system.

It is a non-trivial task to perform trajectory calibration.
First, building a good reference set is the stepping stone for
the entire system. Since our goal is to rewrite the trajec-
tory data using the reference set, we expect a good refer-
ence set to be stable, independent of data sources, and have
a strong association with the trajectory data. The first and
second properties are essential for producing trajectories in
a unified form, while the third property ensures that the cali-
bration process will not introduce a large deviation from the
original routes. Trajectory calibration may encounter three
circumstances when rewriting a trajectory with the reference
set: (1) a trajectory point may need to be shifted and aligned
onto the reference; (2) some trajectory points may need to be
removed or merged (when the sampling rate is higher than
necessary); (3) some new trajectory points may need to be
inserted (when the sampling rate is too low), all in the context
of the chosen reference system. Further, the criteria to judge
the goodness of the calibration results need to be established,
for the system to enforce efficiently and effectively and for
the users to understand to what extent the calibration can
improve the data analysis results.

In this paper, we propose an anchor-based calibration sys-
tem for heterogeneous trajectory data. It comprises two com-
ponents: a reference system and a calibration method. For
the first component, we present several reference systems by
defining different types of anchor points (space-based, data-
based, POI-based and feature-based), which are fixed small
regions in the underlying space. A series of strategies are
designed for the calibration component, including the meth-
ods to insert anchor points to trajectories in order to make
them more complete without sacrificing geometric resem-

blance to the original routes. To this end, we first derive the
transfer relationship among anchor points by learning from a
historical trajectory dataset and then infer the most probable
alignment sequence and complement points with high accu-
racy by exploiting the power of the Hidden Markov Model
and Bayesian Network. We also perform an empirical study
to examine the effect of calibration process, using the tra-
jectories with a very high- sampling rate as the ground truth
data (the original route) and generate raw trajectories using
a different sampling rate in a controlled way. Then we mea-
sure the similarities between the raw trajectories, with a set of
commonly used distance functions, before and after the cal-
ibration process. We will show in the experiment that while
the similarities between the raw trajectories heavily depend
on the sampling rates, with calibrated trajectories, their sim-
ilarities always highly resemble those of the original routes
for a wide range of sampling rates.

Continuing with the previous example in Fig. 1, one pos-
sible approach is to use the turning points ay, ..., ajg as the
reference system as shown in Fig. 1c, and rewrite both tra-
jectories with these points. Since trajectory B has enough
samples to describe its route, it is fairly simple to calibrate—
just align each sample to its nearest turning point. However,
there is so much information lost in trajectory A that sim-
ply aligning each sample to its nearest turning point (i.e.,
ay, ag, ag) still results in a low-quality trajectory. A good cal-
ibration system should help to infer that a7, as, a4 are very
likely (indicated by a confidence value) to be passed by the
routes from a; — ag, and ag — ag. After both trajectories
have been calibrated, they can become similar again.

Our previous work [42] has demonstrated the effective-
ness and efficiency of the proposed techniques for trajectory
calibrating. However, the ignorance of temporal information
causes the existing trajectory calibration to work for spatial-
only trajectory similarity measures while leaving the spatial-
temporal distance measures (e.g., Synchronous Euclidean
distance [38] and Spatial-Temporal LCSS [46]) uninvesti-
gated, which violates the ultimate goal to reduce or even
eliminate the negative impact of the heterogeneous sampling
strategies on the effectiveness of trajectory similarity mea-
sures. Therefore, it is critical to extend these two spatial-only
trajectory calibration algorithms to incorporate the temporal
information, which can infer a proper time stamp to each
anchor point of a calibrated trajectory.

Besides, though overall the reference system is stable in a
relatively long time, small updates, such as insertion or dele-
tion of a few anchor points, can happen in practice. Obvi-
ously, it wastes a lot of time if we re-calibrated the whole
trajectory set from scratch due to some local changes of the
reference system. So a solution, which can reduce the number
of trajectories that are necessary to be re-calibrated for both
the geometry-based approach and the model-based approach,
should be provided.
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To sum up, we make the following major contributions.

— We make a key observation that widely existing hetero-
geneity in trajectory data caused by different sampling
strategy can harm the effectiveness of trajectory data
analysis, thus calls for a calibration system to reduce or
eliminate the impact of the sampling heterogeneity.

— We design an anchor-based calibration system in two
phases: building a reference system and performing cal-
ibration. As a comprehensive solution, we present four
types of anchor points, which are suitable for building
a stable reference system. On this basis, we propose
two spatial-only approaches, geometry based and model
based, to effectively align and complement trajectories
using the anchor points.

— We extend the spatial-only calibration approaches to
make them to incorporate temporal information. In
extending geometry-based calibration, we introduce a
time stamp inference mechanism, which does not affect
the calibration results of the geometry-based alignment
and complement in spatial dimension. In extending
model-based calibration with temporal information, we
use historical travel time to infer the real path that a low-
sampled trajectory travelled by and thus estimate the cor-
responding time stamps for each anchor point more accu-
rately.

— We control the update of reference system by providing
a solution to reduce the number of trajectories that are
necessary to be re-calibrated for both the geometry-based
approach and the model-based approach.

— We conduct extensive experiments based on large-scale
real trajectory dataset, which empirically demonstrates
that the calibration system can significantly improve the
effectiveness of most popular similarity measures for het-
erogeneous trajectories.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the preliminary concepts and overviews the
calibration system. We discuss the reference systems and cal-
ibration approaches in Sects. 3 and 4, respectively, followed
by extending the calibration approaches to incorporate with
temporal information in Sect. 5. The updates handling of ref-
erence system is presented in Sect. 6. Section 7 reports the
experimental observations. We review the related work on
several different research topics in Sect. 8. Section 9 con-
cludes the paper and outlines some future work.

2 Problem statement
In this section, we present some preliminary concepts and

give an overview of the proposed calibration system. Table 2
summarizes the major notations used in the rest of the paper.
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Table 2 Summary of notations

Notation Definition

T A raw trajectory

T A calibrated trajectory

p A sample point of a trajectory

p.t The time stamp of p

P All the sample points of a dataset

a Anchor point

a.t The time stamp of a

A The set of anchor points in a reference system
T(a; — aj) A trajectory traveling from g; to a;

T(a; — aj) All the trajectories traveling from g; to a;
d(ai,a;j) Distance between anchor points a; and a;
d(T;, Ty) Distance between trajectories 7; and T;
t(ai — aj) The average time cost from a; to a;

2.1 Preliminary concepts

Definition 1 (Original route) An original route of a moving
object is a continuous mapping from time domain to spatial
coordinates (i.e., longitude and latitude), indicating the exact
path travelled by the object.

The original route does not exist in a practical database
since no positioning technique can acquire location records
continuously. Instead, only a set of samples from the original
route can be obtained and stored in the database.

Definition 2 (Raw trajectory) A raw trajectory T is a finite
sequence of locations sampled from the original route of a
moving object, i.e., T = [p1, p2, ..., Pnl.

Simply speaking, the raw trajectory of a moving object is
only one possible sample from its original route by using
a specific sampling strategy. A sampling strategy is the
mechanism based on which the object decides to report
its location. Time-based sampling, distance-based sampling,
turning-based sampling and prediction-based sampling are
among the most widely used sampling strategies. Besides,
the object can also adopt different sampling rates, which is
the frequency of reporting the location depending on the sam-
pling strategy (e.g., every 500m or 30s). In the rest of the
paper, we will use trajectory and raw trajectory interchange-
ably when the context is clear.

Definition 3 (Anchor point) An anchor point is a fixed spa-
tial location in the space, which is stable and independent of
the trajectory data source.

An anchor point can either refer to a geographical object
that physically exists such as a point of interest (POI), or can
be virtually defined such as the centroid of a grid. Actually,
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Fig. 2 System overview
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any kind of entities in space can serve as the anchor points
as long as they are stable and not affected by the trajectory
data input. Based on it, even a turning point extracted from
historical trajectories can be an anchor point since a turning
point is always stable in a network and is not affected by the
input trajectory which needs to be processed.

Definition 4 (Reference system) A reference system is a set
of anchor points in a certain region.

A reference system could comprise anchor points of dif-
ferent types. For example, a reference system of a city could
consist of all the POIs and the road intersections. For the
sake of simplicity, in the following discussion, we focus on
reference systems whose anchor points are of the same type.
However, our technique can easily generalize to reference
systems of heterogeneous anchor points.

Definition 5 (7rajectory calibration) Given a reference sys-
tem with anchor point set 4, trajectory calibration for T =
[p1, p2, ..., pn]is aprocess that transforms 7 into another
trajectory T = [ay, as, ..., a,] where aq; € A(1 <i < m).
T is called the calibrated trajectory of 7.

We expect the new trajectory T after calibration to pre-
serve the original route of 7" as much as possible, which is
critical to reduce the erroneous adjustments to the original
route. Ideally, the trajectories that share the same original
route will have the same calibrated trajectory no matter what
sampling strategies they adopt. Therefore, an evaluation cri-
terion is how well the calibrated trajectory resembles the
original route.

2.2 System overview
Figure 2 shows the overview of the proposed calibration sys-

tem, which comprises two parts: the reference system gener-
ation module and the trajectory calibration module (with or

without temporal information). In this work, we study four
types of anchor points for constructing a reference system,
i.e., space-based, data-based, POI-based, and feature-based
anchor points. The reference system is independent of the
input data and thus can be built offline. We also provide effi-
cient algorithms to further reduce the cost of updating the
reference systems.

The calibration process can be categorized into two
approaches: geometry-based calibration and model-based
calibration. Geometry-based calibration uses the spatial rela-
tionship between the trajectories and the anchor points, i.e.,
it aligns points to their nearest anchor points, and try to
calibrate the trajectory by linear interpolation. Model-based
calibration exploits the correlations between anchor points
learned from historical trajectories, and uses a probabilistic
approach to do calibration. We also extend both calibration
approaches to incorporate temporal information. Regardless
of the approaches, the calibration process can be divided into
two phases: alignment and complement. Generally, the align-
ment phase maps existing sample points of a trajectory to the
anchor points. The complement phase completes the trajec-
tory by inserting additional anchor points, which is especially
important for trajectories with low-sampling rates. The cali-
bration process can be either online or offline depending on
the application requirement (e.g., an on-the-fly process or a
batch process). We will discuss each part in details in the next
sections.

3 Reference systems

In this section, we will define several different types of anchor
points for building a reference system. Although any fixed
entity in the space can be an anchor point, not all of them are
suitable for calibration. First, a reference system should have
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a sufficient number of anchor points in order to describe any
given trajectory with high quality. For example, if we simply
use all cinemas in a city as the reference system, a trajec-
tory may have too few points after calibration. As such, most
information in the raw trajectories will be lost. Second, a ref-
erence system should be stable and does not require substan-
tial changes to calibrate new data. This property is crucial as
itensures that most new trajectories can be calibrated without
refurbishing the reference system. Based on this guideline,
we propose four types of anchor points that are expected to be
suitable for building a reference system. We will study their
effects on the calibration process with experiments later in
this paper.

It is worth noting that road intersections and segments are
natural choices for anchor points if a digital road map is avail-
able. But we will not adopt it in this work for two main rea-
sons. First we attempt to make the proposed methods general
enough to fit both constrained and unconstrained trajectories
(e.g., traces of hiking, boating, walking, and many outdoor
activities), and second, most digital maps actually have legal
or technical restrictions on their use [22,35], which hold back
people from using them in creating new applications. There-
fore, in this work, we will build reference systems based on
resources that are easier to acquire.

3.1 Space-based anchors

The most straightforward idea is to divide the entire space
into uniform grid cells and use the centroids of the cells as the
anchor points. An obvious advantage of using grid centroids
is that we can easily build a reference system for any trajec-
tory dataset without extra resources or information. The idea
of using grid to adjust trajectories is inspired by the Realm
method [21], but their purpose is to represent spatial objects
in a database with predefined precision.

3.2 Data-based anchors

A space-based reference system, despite its simplicity, may
not capture the distribution of the trajectory data. In other
words, the space partition may be too fine-grained for a
set of sparsely distributed trajectories but too coarse for
another with dense distribution. Another option is to select
a large enough set of historical trajectories and use their
sample points as the anchor points. Since these samples,
called archived samples, represent the travel history of mov-
ing objects in the past, it is more reasonable to rewrite a given
trajectory based on this type of anchor point. Besides, each
anchor point is guaranteed to be a reachable location for a
new trajectory. But using archived samples also has down
sides. First, we must have a sufficient number of historical
trajectories that locate in the same region with the input tra-
jectories. Second, the calibrated trajectory may have a high
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degree of redundancy when the number of archived samples
is large. For instance, in our experiments, we observe there
can be more than 300 archived samples along a street one
hundred meters long. Third, the effectiveness of the refer-
ence system may be affected by the noises residing in the
archived data.

3.3 POI-based anchors

A point of interest (POI) refers to a semantic location such as
a restaurant, hotel, shopping center. POIs are stable in terms
of their locations since a business or facility can usually last
for along period. Besides, POIs have a consistent distribution
with trajectories in the same area, since in most cases people
travel from/to some POIs to perform certain activities. Due
to this property, we can use a POI dataset to build a reference
system for the same area (e.g., within a county/city). How-
ever, we observe that directly using the POIs can be prob-
lematic. Since POIs can be densely distributed in a small
area, each trajectory point can be rewritten with many possi-
ble candidate anchor points within close proximity. As such,
the trajectories after calibration may still have quite different
sample strategies. In order to remedy this problem, we pre-
process the POI dataset by applying a density-based cluster-
ing method (e.g., DBSCAN [15]) to generate a smaller num-
ber of clusters, which will be used as the anchor points. By
this means, POIs in densely populated areas can be merged
into clusters and a cluster becomes an anchor point. As such,
trajectories with similar routes, but different samples, will
have a better chance to be re-synchronized by mapping their
sample points to POI clusters.

3.4 Feature-based anchors

The data-based reference system utilizes the historical
archived trajectory points as the anchor points, which can
have a high degree of redundancy. To remedy this issue, we
can use only some important points in trajectory data, called
features, as the anchor points. Moving objects usually travel
in a constrained space such as road networks, tracks or water-
ways. Therefore, an important feature that can well character-
ize a trajectory is the turning points, at which a moving object
changes its direction significantly. In other words, the main
shape of a trajectory can be described by a few turning points
regardless how many samples it has originally. So intuitively,
if we can rewrite all the trajectories based on turning points,
their shapes can be well preserved and the samples are also
synchronized. We can adopt the algorithm in [10], which
detects point clusters that satisfy both the density require-
ment and the direction change condition, to extract turning
points.
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4 Trajectory calibration

In this section, we discuss in detail about the calibration
process based on a reference system built offline. Specifi-
cally, the calibration process can be divided into two phases:
alignment and complement. The alignment phase maps a tra-
jectory to some anchor points. The number of sample points
in a trajectory may be kept unchanged or reduced since mul-
tiple samples in close proximity can be merged into the same
anchor point. However, a low-sampling-rate trajectory can-
not benefit from this phase alone since the calibrated trajec-
tory will be still low sampled. The complement phase inserts
some anchor points in between the trajectory points after
alignment, by estimating those important but missing anchor
points that the object may pass by.

4.1 Geometry-based calibration

In this part, we present a geometry-based calibration method,
which simply explores the spatial relationship between tra-
jectories and anchor points in space when choosing the
anchor points for alignment and complement.

4.1.1 Alignment

The geometry-based alignment is based on the simple idea
of finding the nearest anchor point for each sample point
of a given trajectory and then mapping the original sample
point to its nearest anchor point. More precisely, each sam-
ple point in a trajectory will be aligned to a nearest anchor
point. In order to avoid the case that a sample point will
be aligned to a faraway anchor point, we can map a sam-
ple point to some anchor points within a distance thresh-
old 7n4is; and the sample points far away from any anchor
point will be removed. Besides, if several consecutive sam-
ple points, i.e., p;, pi+1, ..., pj, of trajectory T are all close
with each other thus can be aligned to the same anchor point
a, we will only record one copy of a in the aligned trajec-
tory. By this means, we can reduce the unnecessary redun-
dant samples and outliers in some trajectories. The align-
ment process involves a constrained nearest neighbor search
against the anchor point set for each trajectory point, which
has a logarithmic-scale complexity with respect to the num-
ber of anchor points (O (log |.A|)) [33] when some space par-
tition or tree-based index is used. Thus, the complexity of
the alignment is O (N7 -log |.A]), where N7 is the size of the
input trajectory.

4.1.2 Complement
The main idea of the geometry-based complement method is

to add the anchor points around the line segment in between
any two consecutive samples into the calibrated trajectory,

Algorithm 1: Geometry-based Complement

Input: Anchor point dataset .4, aligned trajectory T, Naist
Output: Complemented trajectory T

S; < line segments /; connecting consecutive anchor points a;
and a4 of T,

2 for each l; € S; do

3 Initialize an empty list £ < §;

4 Initialize a candidate complement anchor set C; < ;

5 C; < all anchor points a € A satisfying d(a, l;) < ngis;
6

7

8

9

—

a <« aj;
while true do

Find a* = argmingec,{d(a, a;)};
3 ’ —
if the angle between a’, a* and a;, a; 11 < % then
10 Insert a* to L;
11 a <« a*;
12 Remove a* from C;;
13 if C; is empty then
14 L break ;

15 | Insert the points in £ into T in between a; and ait1;

16 return 7

Fig. 3 An example of the geometry-based complement

based on the intuition that a moving object rarely changes
its direction significantly between two consecutive sampled
locations. The main difficulty of this method lies in that,
after the anchor points nearby the line segments are selected,
how to decide the right insertion order for these points. Algo-
rithm 1 illustrates the main structure of our proposed method.
Basically, given an aligned trajectory T, the geometry-based
method consists four steps. (1) Connect each two adja-
cent anchor points ¢; and a;; by a line segment /; of T
(line 1). (2) Build an anchor point set C; for each line seg-
ment that keeps all the anchored points @ whose distance to /;
is less than a threshold 74;5; (lines 4-5). C; holds all the can-
didate anchor points that are potential to be used. (3) Then
we iteratively find the next anchor point a* from C; to be
inserted which has the minimum distance to the @; (line 8),
and insert ™ in between ¢; and a; 1 if it does not change the
moving trend of /; (lines 9—10). (4) Repeat step 2 and 3 until
C; becomes empty.

The example in Fig. 3 demonstrates how the anchor points
are selected and complemented into the trajectory segment
in between a; and a;11 by using the geometry-based com-
plement algorithm. First we find five candidate anchor points
(a1, az, as, a7 and ag) whose distances with the line segment
l; are less than ng;s. Then these points are sequentially con-
nected in the order of their distances with a;, and none of
them conflicts with the major direction from a; to a; 4.
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The complexity of the above algorithm is dependent on
two factors: the length of aligned trajectory T (i.e., the sum
of the lengths of the line segments) and the number of anchor
points “close” to T. Let L denote the average length of
a trajectory segment and p the average density of anchor
points in the given reference system. Then the average num-
ber of anchor points that are close to each line segment is
N, = 2L - p - ngis- Since these anchor points need to be
sorted based on their distances with a;, the overall complex-
ity is O(Nt - Ny log N,), where N7 is the average size of
the aligned trajectory.

The geometry-based calibration has two major drawbacks.
First, it takes a greedy strategy to align each trajectory point
in an isolated manner, which ignores the relationship between
anchor points. Second, the anchor points inserted in the com-
plement step are all around the trajectory segments, which
means it can only increase the sampling rate of the trajectory
while keep the shape unchanged. But sometimes the shape of
a trajectory has changed due to the loss of some descriptive
samples (e.g., the one at turning points), in which case we
need to complement the shape of the trajectory.

4.2 Model-based calibration

To further improve the calibration performance, we propose
a more advanced model-based calibration approach, which
explores the correlations between anchor points that are
learned from a historical trajectory archive, and leverages the
power of the Hidden Markov Model (HMM) and Bayesian
inference to find the most probable alignment sequence and
complement points, respectively. The model-based calibra-
tion consists of three steps: deriving anchor transition proba-
bility, global alignment and inferring complementary points.
The first step learns from a historical trajectory dataset, the
transition probability of an object moving from one anchor
point to another. In the second step, we feed the anchor tran-
sition probability as well as the spatial relationship between
sample points and anchor points into the HMM to derive
the global optimal alignment. The third step also utilizes the
anchor transition probability to infer the likelihood of one or
multiple anchor points being passed through by the routes in
between two aligned anchor points, and then complement the
trajectory by inserting those anchor points whose likelihoods
are more than a certain threshold.

4.2.1 Anchor transition probability

In this part, we will derive the transition probability between
anchor points. First of all, a reference map, represented as a
directed graph G (V, E), is built to indicate the direct transi-
tion probability between two anchor points. Given areference
system and a historical trajectory dataset, we can construct
the reference map in the following steps:
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Fig. 4 An example of the reference map

1. We add each anchor point in the reference system to the
vertex set V of the reference map.

2. We add a directed edge from a; to aj, denoted by
e(aj, aj), if there exists a trajectory T in the historical
trajectory dataset traveling from a; to a; directly, i.e.,
two consecutive points p;, p;4+1 of T are in close vicin-
ity of ¢; and a;, respectively. We denote such a trajectory
by T(ai — da j)-

3. Each edge e(a;, a;) is annotated with the number of
T(a; — aj).

After the reference map has been constructed, we can
immediately get the 1-step transition probability from a; to
aj as follows, if e(a;, a;) exists in the map:

IT (a; — aj)|

ey

Pri(a; — aj) = T 5 0]
l

where T (a; — ) represents the trajectories traveling from
a; to any other anchor point. Figure 4 gives an example of
the reference map, where the direction of arrow represents
the transition relationship between two anchor points and the
number around each arrow indicates how many trajectories
travel through the two anchor points consecutively. Based
on this reference map, we can derive the 1-step transition
probability, e.g., Pri(a; — as) = g.

A-step transition probability The first-order transition prob-
ability is not sufficient for inferring the relationship between
anchor points without an edge. To address this issue, we
leverage the first-order probability to get higher-order tran-
sition probabilities. First, a transition matrix M with m; ; =
Pri(a; — aj) is defined. It is easy to get that M 2 contains
all the second order transition probability, and entries m; ;
(after normalization) in M 4+ M? correspond to the 2-step
transition probability, which is the likelihood of transition
from a; to a; within two steps. Analogously, we can get
the A-step transition probability by evaluating the matrix
M = M + M? + ... + M*. But it is not efficient to
evaluate M ' during the calibration process since multipli-
cation of large matrix is very expensive. In this paper, we
pre-compute the transition matrix offline, by setting A to be
sufficiently large to cover the most pairs of anchor points
within the average distance of trajectory sample points.

Background transition probability Sometimes due to the
sparsity of historical data, it cannot reflect all the transition
relationships between two anchor points even though they
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are close to each other. To get a complete reference map, we
define a background transition matrix B by considering the
spatial proximity between two anchor points. Each entry b; ;
of B, which represents the background transition probability
from a; to a;, is defined as e—dlaiaj)

Finally, we define the transition probability from a; to
aj, denoted by Pr(aj|a;), to be the normalized sum of the
A-step transition probability and the background transition
probability, i.e.,

Pi,j
Pil+pi2+ -+ DiA

Pr(ajla;) =

©))

where p; ; = mllj)‘ +bi ;.

4.2.2 Global alignment

The geometry-based approach aligns each individual point
in an isolated manner, which does not make use of the cor-
relation between anchor points. Next, we propose an HMM-
based approach to find the most probable alignment by
utilizing the transition probability in the derived reference
map. In particular, the candidate anchor points are sequen-
tially generated and evaluated on the basis of their likeli-
hoods. When a new trajectory sample point is to be aligned,
past hypotheses of the solution are extended to account
for the new observation. Among all candidates in the last
stage, the surviving path of anchor points with the high-
est joint probability is then selected as the final solution.
In contrast to local alignment results in the geometry-based
approach, the HMM-based approach takes into account the
anchor points in a collective manner when it generates the
alignment.

Given a trajectory T, we treat each point p; € T as an
observed state and identify a set of candidate anchor points
A;, whose distance with p; is less than a certain threshold
naist- Each of these candidates is regarded as a hidden state in
the HMM. Each hidden state a; € A; has an emission prob-
ability, Pr(p;|a;), which is the likelihood of observing the
point p; conditioned on a; being the ground truth. Intuitively,
we would assign a higher probability to an anchor point if
it is closer to p;. In this paper, we assume p; follows a nor-
mal distribution with a; as the mean and a constant o as the
variance, i.e., Pr(p;la;) = N(a;, o). The transition prob-
ability between adjacent hidden states in the Markov chain,
i.e., Pr(a;|a;—1), can be obtained from the reference map that
is derived earlier. Here we will adopt the first-order Markov
chain based on the assumption of the 1-dependency, i.e., the
probability of the current state is only dependent on the pre-
vious one, since the influence between two distant anchor
points is usually very small.

Finally, we can compute the posterior probability of all
hidden state variables given a sequence of observations, i.e.,

Pr(ak|pi1, ..., pn) Yar € Ag. It can be rewritten as
Pr(aklpt, ..., Pk, Pka1s -y Pn) 3)
& Pr(aklp1, - -, pr) Pr(ak| pk+1s - - -5 pn) “4)

where Pr(ax|pi, ..., pr) is the forward probability and
Pr(ak| px+1, ..., pn) the backward probability. We can
apply the forward-backward algorithm [7] to calculate the
probability of each candidate anchor point and select the most
probable alignment sequence.

Since the forward-backward algorithm has the time com-
plexity of O (T -N?), where T is the length of sequence and N
is the number of symbols in the state alphabet, the time com-
plexity of the global alignment algorithm is O (N7 - |A[%),
where Nt is size of raw trajectory and | A| is the total number
of candidate anchor point sets (i.e., |[A1 U Ay U --- U A,)|).
Theoretically |A| can be arbitrarily big that may cause this
algorithm inefficient. In this work, we consider a physical
constraint that is the distance between possible hidden states
(anchor points) and the observation (a sample point) should
be within a threshold 74;s. In other words, not all the sample
points have hidden states. Moreover, since the distribution of
some kind of anchor points, such as POIs and turning points,
are not very dense, the amount of hidden states for a certain
observation is not big.

4.2.3 Inferring complementary points

Next, we discuss how to infer the possible anchor points to be
inserted in between two consecutive points a; and @;4 in an
aligned trajectory T=]la,...,aq, di+1, ..., a,]. The main
idea is that if an anchor point participates in more possible
paths, it is more likely to be a valid complementary point in
the calibrated trajectory. Therefore, we accumulate the prob-
abilities of the possible paths that contain the anchor point as
the probability of it being a complementary point. However,
this accumulation process is only for each consecutive pair
(a;, ajy1). After proceeding to the next pair, the probabili-
ties of all anchor points will be initialized to zero again. The
Algorithm 2 illustrates the main structure of this approach.

We denote the probability of an anchor point a* being
passed by the original route of T from a; to a;4; by
Pr;(a*|T). The aim of this step is to find the anchor points a*
such that Pr; (a*|T) is greater than a pre-defined confidence
threshold ncong (lines 13-14).

Pr;(a*|T) is defined as follows (lines 11-12):

Pri@Ty= >

PeP Py (aj,ai+1)

Pri(P|T) - exist(P, a*) 3)

@ Springer



102

H. Suetal.

Algorithm 2: Model-based Complement

Input: A-step transition matrix M1, transition probability
Pr(ajla;), aligned trajectory T, Neonfi

Output: Complemented trajectory 7
1 for each a; € T do
2 S(a; — aj4+1) < candidate complementary points in
between a; and a; | based on M'?;
Generate the path tree from g; to a;+ by using S(a; — aj41);
PPy (aj,aj+1) < all paths from a; to a;1 in the path tree;
for each P € PPy (a;, ajy1) do

Calculate Pr; (P|T) by using transition probability
| Pr(ajlai);
7 Initialize a list of complementary points £ <« ;
8 for each a* € S(a; — aj4+1) do

A B W

9 Pr;(a*|T) < 0;

10 for each P € P P;(a;,ait+1) do

1 if a* € P then

12 | Pri(@*[T)+ = Pr;(P|T);

13 if Pr;(@*|T) > Nconyi then

14 | Adda*to L;

15 Insert all the anchor points of £ into T in between a; and
L dit+1;

16 return 7

where P P, (a;, a;j+1) is the set of possible paths which are
constructed by using anchor points and connect a; and a; 41
within A intermediate steps. exist(P,a™) is an indicator,
whose value is equal to one if a* lies in the path P, and
zero otherwise. In the sequel, we will discuss how to obtain
P Py (a;, ai+1) and compute Pr; (P|T), respectively.

Generate the possible paths In order to obtain P P; (a;, a;11),
we need to enumerate all the possible paths from a; to a; 4
within A hops. Let N(a;) denote the anchor points in the
reference map that are directly reachable from a; in the ref-
erence map. We build a path tree from a; to a; 41 to help us
find possible paths from a; to a;+1 (line 3-4). A path tree
from a; to a; 4 is built according to the following four rules:
(1) the root of the tree is a;; (2) the height of the tree is A 4 1;
(3) the child nodes of a; are N (a;); (4) a;+ must be the leaf
node. An example of a path tree from a; to a¢ in illustrated
by Fig. 5a. With the help of the path tree, finding all the paths
P of PP3(ay, ag) is simplified to visiting the tree from root
ay to all the leaf nodes.

However, the above process can be very time consuming
when A is large and/or each anchor point connects many
other anchor points. In order to reduce the search space in
the path tree, we can utilize the A-step transition matrix M '
that is pre-computed with the reference map (line 2). Based
on the A-step transition matrix, it is easy to derive the set of
destinations S(a; —) that can be reached from a; within A
steps. Similarly, we can also get the set of sources S(— a;1)
that can reach a; 4 within A steps. The joint set S(a; —
ai+1) = S(a; =) N S(— a;4+1) then contains all the anchor
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Fig. 5 An original path tree and its optimized path tree

points on the paths from a; to a@;4; within A steps. After
that, we can delete the nodes that does not exist in S(a; —
a;+1) and their child nodes in the path tree, by which means
many impossible paths can be filtered out and the search
space gets reduced substantially. Notably, we do not actually
remove the sub-paths from the path tree. Instead, we simply
exclude the node that cannot be reached from either source
and destination point within A steps (by probing the transition
matrix) when building the path tree. Continuing with the
previous example, from M'3 we know that a3 can never
reach ag within 3 steps, so a3 and its child nodes can be
deleted from the original path tree. The optimized path tree
is shown in Fig. 5b.

Evaluate Pr,-(P|T) Now we need to evaluate the prob-
ability of a path P that connects a; and a;4; within
A steps, conditioned on the observed alignment T =
lai,...,ai, ait1, ..., a,] (line 6), i.e.,

Pr;(P|T) = Pr;(a}, a3, .. , )

(6)

%
.,ak|a1,...,a,~,a,~+1,...

wherek < Aandaj, a3, ..., af are the points on path P. The
resulting trajectory will be [ay, ..

., dy).

However, the exact evaluation of Eq. (6) is too expensive
to be feasible for calibration. To address this issue, we make
the assumption that the probability of an anchor point is only
affected by its precedent in a path. Then Eq. 6 can be simpli-
fied as follows:

* *
'7ai7a17"'aakaai+]a

Pri(af, a3, ..., aflal, ..., ai,ait1, ..., ap)
=Pr;(a],....aflai, ai+1)
_ Pr(af|a;) Pr(aj|ay) ... Pr(a;y1lay) o
Pr(aiilai)

The time complexity of Algorithm 2 is O (Nt - |PP?),
where Nt is the size of the aligned trajectory and | P P| is the
average number of paths connecting two consecutive anchor
points of 7 within A steps. Let d, denote the average out
degree of an anchor point in the reference map, then |P P|
can be evaluated as d”. Usually the value of A is very small,
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which makes the practical time cost of Algorithm 2 reason-
able. Besides, with the help of optimized path tree, only a
small subset of the possible paths needs to be checked. The
effect of this optimization will be verified in the experiment
(Sect. 7.3.7).

5 Calibration using temporal information

We all know that trajectory has two dimensions of infor-
mation, spatial information and temporal information. In
the previous section, we introduce the calibration meth-
ods, geometry-based calibration and model-based calibra-
tion, which only use the spatial information. Therefore, with
some modification, we can adopt these two calibration to use
both spatial and temporal information to do calibration. The
usage of both spatial and temporal information in calibra-
tion mainly has two extrusive advantages than the calibra-
tion methods only use spatial information. The first one is
that with temporal information we can assign a time stamp
to each anchor point of a calibrated trajectory, and with the
time stamp the calibration technique can support trajectory
distance measures which are sensitive to the temporal infor-
mation, i.e., SED [13] and STLCSS [46]. The second advan-
tages is that the accuracy of the complement phase of the
model-based calibration can be improved since with tempo-
ral information we can better infer the original continuous
trajectory from the aligned trajectory.

Adopting the temporal information of the two calibration
methods can be also divided into two phases: (1) during align-
ment, we need to assign a proper time stamp to the aligned
anchor point; (2) during complement, we need to infer a pos-
sible time stamp to the inserted anchor point.

5.1 Geometry-based calibration with temporal information

The geometry-based calibration with temporal informa-
tion approach does not affect how a raw trajectory is
aligned to the reference system or how to complement the
aligned trajectory with some more anchor points. Based on
unchanging geometry-based calibration, we assign proper
time stamp to each anchor point of the calibrated trajec-
tory in this the temporal version geometry-based calibration
method.

5.1.1 Temporal sensitive alignment of geometry-based
calibration

In the geometry-based alignment introduced in Sect. 4.1.1,
a sample point p is aligned to its nearest anchor point
within distance 714;s;. Since several consecutive sample points
Di» Pi+1, - .., pj of atrajectory T may be aligned to a same

anchor point a, we assign p; - t, the first time T reaching a,
toa-t.

5.1.2 Temporal sensitive complementation of
geometry-based calibration

The geometry-based complement (Sect. 4.1.2) assumes the
trajectory T = [ay, ..., ai, dij+1, - .., ay] Was in linear uni-
form motion when moving from one aligned anchor point g;
to its consecutive anchor point a;+1 and interpolates anchor
points along the straightline [a;, a;+1]. Based on the assump-
tion, we can easily infer the time stamp of the interpolated
anchor point a,’c“ in between [a;, a;+1] by calculating the time
interval moving from g; to a’. So the time stamp assigned to
aj; is given by the following algorithm:

(@it1-t—a;-t)-d(a;,a) -

¥ —>
aja; - ajaiy|
ag-t=a;-t+

e H
d(a;,ait1) - aia}f) aiai |

5.2 Temporal-model-based calibration

Model-based calibration utilize the knowledge learned from
historical trajectories to do statistical-based alignment and
complement. Unlike the geometry-based calibration with
temporal information, the model-based calibration with tem-
poral information may affect the location of how to interpo-
late an aligned trajectory during complement phase. The new
model-based calibration with temporal information is named
temporal-model-based calibration.

5.2.1 Cost matrix

In Sect. 4.2.1, we have introduced the transition relationship
between anchor points can be modeled by a graph, where the
nodes of the graph are anchor points and the edges represent
the transition direction and probability. Besides, itis observed
that the time cost between two locations with low Euclidean
distance are relatively stable. Thus, we can record the time
costt(a; — aj) for edge a; to a; by using the mean time for
all trajectories Tq,—4; moving from a; to a; directly spend
on moving the edge, that is:

_ T.,_ T,
zTeTaﬁa/- aj -t—a; -t
t(a; — aj) = :

|’I[‘a,~—>aj|

where a, -t is the time stamp on T s anchor point a,,. Then
a cost matrix D indicating the average time cost between
anchor points is defined with d; ; = t(a; — a;).
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5.2.2 Temporal sensitive alignment of model-based
calibration

Like the alignment of geometry-based calibration, a sample
point p of a trajectory are assigned to an anchor point a
within the distance of n4,. So we can directly assign p -
t to the time stamp of the aligned a. Similarly, if several
consecutive sample points p;, pi41, ..., p; are aligned to
the same anchor point a, then we assign p; -t toa - 1.

5.2.3 Temporal sensitive complement of model-based
calibration

With temporal information, we can estimate the original path
of the trajectory better. In other words, if the time dura-
tion between two consecutive aligned anchor points a; and
aj+1 1s close to the average time cost of one certain path
P € PPy (ai,aj+1), then P has a high possibility to be the
original path among others. So the probability Pr;(P|T),
which indicates the probability of a path P that connects
a; and a;41 within A steps, conditioned on the observed
alignedtrajectory? = la1,...,ai,aiy1,...,a,],isnotonly
affected by the frequency of P but also the time cost of P.
Thus, the following equation is used to measure the Pr; (P [T)
instead of Eq. 6:

Pr;(P|T) = C - Prf(P|T) -SHP|T) 8)

where C is a normalization parameter which satisfies

Z Pr;(P|T) =1

PePP,(ai,ait1)

Prif (P|T) indicates the frequency of P to be the real path
between ¢; and a;11; S} (P|T) represents the similarity
between the real-time cost and the time cost of P. Thus,
Prif (P|T) can be easily evaluated by the following equation:

P/ (P|T)
=Pri (af,a3,....aflal, ..., a;, aiv1, ..., an)
= Pr; (af,...,aglai, ai+1)
_ Pr (afla;) Pr (a3la}) ... Pr(ais1laf) )
Pr (ait1lai)

S;(Pﬁ) describes the intuition that the average historical
time cost of a path P should be close to the real-time cost.
In other words, P is unlikely the real path if the average
historical time cost of P is significantly larger or smaller
than the real-time cost. Thus, the Sf (P|T) is defined as
following:
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= exp (—

=exp(—
+- 1@l = aiy)]
tla; = ai) +t(af — a}) + - +1(af — ajy1)

real time cost — time cost of P ')

time cost of P

(@1 -t —aj-t) = [t(a; — af) +t(a] — a3)

t(a; — af) +1(af — a3) +---+ta — ajy1)

) (10)

where a; - t is the time stamp assigned to a;; t(a; — a;)
is average time cost learned from historical trajectories,
which is d; ; of the cost matrix. Here the time inter-
val aj41 -t and a; - t are given in alignment phrase.
Hai—at)s lat—ad)s - - - > lai—a; ;) CaN be directly obtained
from the cost matrix, which means time complexity of the
operation is O(1). So evaluating Eq. (10) can be efficient.

6 Handling reference system updates

Although the reference system is usually stable, in practice
local updates that changes part of the reference system could
happen, e.g., the opening of a new Walmart store, which could
be an important new POI. Both triggering update every time
an anchor pointis added and running periodically when a new
version of anchors is collected can be the option of handling
the updating of reference system. In particular, we observed
if the newly added anchor point a* locates in the area where
the existing anchor points are sparsely distributed, then trig-
gering update instantaneously can significantly improve the
calibration effect for the trajectories nearby.

Thus, taking a naive approach, we would re-calibrate all
the rewritten trajectories based on the updated reference sys-
tem every time an anchor point changes, which incurs very
high and unnecessary cost, especially when the model-based
calibration methods are used (where all the transition proba-
bilities need to be retrained). Actually, one can easily observe
that a local update (addition or deletion) to an anchor point
a* rarely affects places far away from a*. For example, a
new Walmart store opened in New York does not affect the
calibration of the trajectories in Newark. Thus, if an anchor
point is modified of one existing reference system, we do not
need to re-calibrate all the trajectories already been calibrated
by using the previous reference system. So in this section,
we discuss how to use delta update methods to handle local
updates to a reference system, including both addition and
deletion of anchor points. In the following, we explain our
update algorithms for geometry-based and model-based cal-
ibration, respectively. The update algorithms can be mainly
divided into two phases: realignment and re-complement. For
ease of exposition, we only discuss how to handle addition of
an anchor point. The case of anchor points deletion is similar
to the addition case and thus is omitted.
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6.1 Handling updates for geometry-based calibration

The geometry-based calibration method only utilizes the geo-
metric information of the reference system and the input tra-
jectories. Therefore, when a new anchor point is added, one
can simply repeat the alignment and complement algorithm
introduced in Sect. 4 to rewrite a trajectory. More importantly,
such rewriting can be limited to a few affected trajectories
within certain distance from the newly added anchor points,
or even segments of the affected trajectories. In this section,
we discuss how to reduce the number of trajectories and the
number of segments within a trajectory that need to be rewrit-
ten.

6.1.1 Realignment of geometry-based calibration

Let us denote the set of sample points from all the raw tra-
jectories by P. A sample point p € P need to be realigned
on the updated reference system, if and only if a* is p’s
nearest neighbor on the updated reference system, and a*
within n4s; from p. Let us denote the nearest neighbor of p
by NN (p). We can formally define the set of sample points
which need realignment as follows, denoted by

Py = {p € P |dist(p,a*) < ngiss Na* € NNi(p)}

Thus, the anchor-based trajectories that need to be realigned,
denoted by T, is the set of trajectories which has at least
one sample point from P,.

Given anewly inserted anchor pointa™*, P, can be quickly
identified by three steps: (1) issue a reverse 1-nearest neigh-
bor query on a*, (2) issue a range query on a* which returns
all the sample points within distance ng to a*, and (3)
take an intersection of the two result sets. Efficient index
structures, such as MRkNNCoP-tree [1], can facilitate the
reverse 1-nearest neighbor query. Furthermore, after getting
P+, only those trajectories which have at least one sample
point in P+ need to be realigned.

6.1.2 Re-complementation of geometry-based calibration

Let us denote the trajectories which need to be re-
complemented by T.. T, consists of two parts: (1) the
realigned trajectories, i.e., T, and (2) the trajectories whose
line segments are within 7y from the newly added anchor
point a*. We can formally define T, as below:

T = To ULT | Api, piv1) € T.dist(a*, (pi. pis1))
< ndisl}

Part (2) can be identified by issuing a range query on a*
which returns all the trajectory segments within 74 to a*.
We can use spatial indices, such as R-Tree, to speed up the

range query. Notably, within T, only those segments within
Naist to a™ need to be re-complemented.

6.2 Handling updates for model-based calibration

Unlike the geometry-based calibration method, the model-
based calibration method utilizes statistical information
learned from historical trajectories. Therefore, in order to
handle reference map update, we first update the reference
map with low cost, and then carry out the realignment and
re-complement processes.

6.2.1 Updating the reference map and cost matrix

Let G(V, E) denote the reference map learned from the exist-
ing reference system, and G*(V*, E*) denote the reference
map learned from the updated reference system by adding
a new sample point a*. Clearly, according to the construc-
tion procedure of a reference map, we have V* = V U {a*};
while E* differs from E by two parts: (1) some edges start-
ing or ending at ™ are added, i.e., (a, a*) and/or (a*, a) for
some a # a* and (2) some previous edges connecting anchor
points (a, a’) are deleted, where a, a’ are close to a* (within
ndis: from a*). We define the set of anchor points affected by
the insertion of a* (a, a’ as above) as the impact set S of a*.

Now we are up to derive an updated 1-step transition
matrix M* from G*(V*, E*). It is easy to see that M* dif-
fers from the original 1-step transition matrix M only on the
entries corresponding to anchor points in &. Adopting the
calculation Eq. (1), M* can be easily generated by simply
updating M at S and add a new row and a new column cor-
responding to a*. What is more, in order to speed up the
updating, we can store a matrix R where r;; indicates how
many trajectories directly moving from a; to a;. Since the
model-based alignment and complement is based on the A-
step transition probability, which is constructed from the 1-
step transition probability, in next paragraphs, we will intro-
duce how to update the transition matrix in A steps.

Firstly, we introduce an important concept—the impact
blanket of an anchor point a, denoted by by (a). b, (a) is
defined as the neighbors within X steps from point a, that is,
all the nodes that can reach a or be reached from a in X steps.
We abuse the notation alittle by using b, (&) = |, 56 b;.(a).
Clearly, in the updated A-step transition matrix M*!**, one
entry M; *1 * is different from M; ! /)L if and only if anchor pomts
aj,aj € bA(G) We have the followmg theorem:

Theorem 1 For anchor points a; ¢ b, (S),

1:a 1A 1 A 1A
M =M Mt =M
Proof (Sketch) M; *1 A £ Ml.l’:jA if and only if there exists a
path from g; to a; that pass through one edge which connects

two points in &, say a and a’. Therefore, a; must be in either
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b; (a) or b; (a’). We reach a contradiction. We can prove
M.*i“ = M,l;)‘ similarly. O

b, (&) can be easily computed by traversing the updated
reference map G*(V*, E*). In order to compute M *Ld e
update M ' the entries corresponding to by (&), that is, the
transition probability from some anchor pointinb; (&) to any
anchor pointinb, (&). Let Mg‘kl é)\G),bA( &) denote these entries.

1A :
We can compute Mb,\(G),bA(G) by the equation below.

#1104 _ A *2
My, (&) b = Mb, (&)1, T Mb, () b,(8)
A
+o My o) b, 0) (1D

Importantly, to compute M;f(e) by (&) Ve do not need to
multiply M* by k times. Instead, we only need to multiply
* . .
.Mbk,l(bk (€)).bi_1 (b (&) by k times, .a.s only ancl.1c.>r. points
in br_1(b, (&)) will affect the transition probabilities. We
have the following result about the complexity of our update

algorithm.

Theorem 2 Let the size of by (b, (&)) be n, then the time
complexity of computing Eq. 11 is at most O (An>3729).

Proof (Sketch) The complexity follows from the fact that
we need to do A matrix multiplication and the state of the
art matrix multiplication algorithm has a time complex-
ity 0(n>37*) [49]. Since matrices to be multiplied are
always sparse, the time complexity of the equation is at most
0(}\‘ i’l2'3729). 0

As for the updating of the cost matrix D, only the aver-
age time cost d; ; between anchor points a; and a;, where
a;, aj € G, need to be changed. We can compute the new
d; ; by the following equation:

. i, _ T T
d/ B dl] * (r,] — nde]ete)+ zTGT(“i—Nﬁ)nCW aj . t—al. -t
e rij — Ndelete+|T(a; — aj)new|

12)

where ngeere denotes the number of deleted trajectories
which passing a; to aj, T(a; — aj)pew is the added tra-
jectories which passing a; to a;.

6.2.2 Realignment of model-based calibration

Although the model-based alignment utilizes the power of the
whole trajectory, it shares the same idea with the geometry-
based calibration that sample points needs to be mapped to
some local anchor point within the distance threshold 7g;s;.
However, differently, now any sample point which is within
ndis: of a* could be mapped to a*. Therefore, we can compute
the set of trajectories which need to be realigned, i.e., T, by
issuing a range query on @™ to return all the sample points
within 145 to a*.
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6.2.3 Re-complement of model-based calibration

Model-based complement tries to interpolate between any
two consecutive anchor points of an aligned trajectory with
high- confidence anchor points. Thus, the trajectories which
need to be re-complemented are not simply those trajecto-
ries near the newly inserted anchor point a*. As model-based
complement utilizes the global information, some anchor
point far away (at most A steps from the a and @’) can be
inserted into a consecutive segment (a, a’).

Interpolation of a segment (a, a’) may result in a different
set of anchor points if and only if there exists a path with
length less than A connecting a and a’, which pass through
some anchor points in b, (&), due to the changes in the tran-
sition probability corresponding to b, (&). We denote the set
of trajectories which need to be re-complemented by T.. T,
is defined as follows

T, ={T | 3(a,d’) € T,a € b, (S) Vvd €b,(5)}

As b, (6) is already computed when we update the reference
map and transition matrix, T, can be easily computed as a
by-product. We can re-complement the trajectories in T, by
following the algorithm in Sect. 4.2.3.

7 Experiment

In this section, we conduct extensive experiments to validate
the effectiveness of our proposed calibration system, which
entail different combinations of reference systems and cali-
bration methods. All the algorithms in our system are imple-
mented in Java and run on a computer with Intel Core 17-2600
CPU (3.40GHz) and 8 GB memory.

7.1 Experiment setup
7.1.1 Data preparation

Trajectory dataset We use a real trajectory dataset generated
by 33,000+ taxis in a large city over 3 months. In total, this
dataset has more than 100,000 trajectories. We define a tra-
jectory as a high-sampling-rate trajectory if the average time
interval between consecutive sample points is less than 10
seconds. According to this criterion, we select 11,028 high-
sampling-rate trajectories from the dataset, and then divide
them into two equal parts. One of them, called the training
dataset, serves as an archived dataset which will be used for
building a reference system, finding turning points and train-
ing the reference map. The other one, called the test dataset,
is used for testing the effectiveness of calibration.

Manipulated trajectory dataset We re-sample each trajectory
T in the test dataset to obtain three counterparts with varied
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Table 3 Calibration methods
Anchor points Calibration Method
Geometry-based Model-based Temporal-model-based
Sample points N/A SP
Grid centroids J GC
Archived samples V4 AS
POI clusters V4 POI+G
POI clusters Vv POI+M
POI clusters v POI+TM
Turning points J TP+G
Turning points Vv TP+M
Turning points N TP+TM

sampling rates, i.e., a sample per 50, 100, 150s, denoted as
Ts0, Thoo0, T150. These trajectories refer to the same original
route as the high sampled trajectory 7 but have different
sampling rates.

7.1.2 Anchor point

Grid centroids We divide the area of the large city into 1,570
by 1,358 cells, each with a side of 100 m, and get 2,132,060
grid centroids.

Archived samples We use the 1,485,284 sample points in the
training dataset as the anchor points to build the data-based
reference system.

POI clusters We purchase about 510,000 POI points of the
same city from a reliable third-part company. Approximately
17,000 POI clusters are obtained using DBScan and the geo-
metric center of each cluster is used as the anchor point.

Turning points We extract about 32,000 potential locations of
turning points from the training dataset, and finally generate
2,400 turning points with the method described in Sect. 3.

7.2 Evaluation approach
7.2.1 Calibration methods

We propose four types of anchor points and three calibration
methods (geometry-based calibration, model-based calibra-
tion and model-based calibration with temporal information),
which lead to twelve combinations of calibration process.
However, the only difference between geometry-based cali-
bration and geometry-based calibration with temporal infor-
mation is whether the anchor points of a rewritten trajectory
are with time stamps or not. Thus, given a sample-based
trajectory T, let Ty and 7> denote the calibrated anchor-
based trajectory of T applied by geometry-based calibra-

tion and geometry-based calibration with temporal informa-
tion, respectively. The anchor point sequences of T; and T
are the same, but the anchor points of 7> have time stamps
while anchor points of 77 have not. In the experiment, given
any anchor-based trajectory T, the distance d (T}, T) and the
distance d (7>, T) measured by spatial-only distance mea-
sures (Euclidean distance, DTW, LCSS and EDR) are all
the same. So the geometry-based calibration and geometry-
based calibration with temporal information are not com-
pared in the spatial-only distance measure experiments. We
do not use the model-based calibration and model-based cal-
ibration with temporal information with the grid centroids
and archived samples, since their cardinalities are very large
that renders the inference process not efficient. Therefore,
in the following experiments, we will apply the geometry-
based approach to all types of anchor points, and the model-
based and temporal-model-based calibration approaches on
POI clusters and turning points only. All these calibration
strategies and their abbreviations are listed in Table 3, in
which SP stands for the method of using the raw trajectories
without any calibration.

7.2.2 Parameters
Table 4 lists all the parameters we used throughout the exper-

iments that all the parameters are assigned the default values
unless specified explicitly.

Table 4 Parameter settings

Notation Explanation Default value
Ndist Range of tolerance 50m
Neonfi Confidence threshold of model-based 0.8
complementing
SD of the distribution of anchor points 10m
A Maximum number of steps in 10

transition matrix
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from the same route

Fig. 6 Visualization of calibration effect
7.3 Performance evaluation
7.3.1 Visualization of calibration effect

Before conducting the quantitative performance evaluation,
we give an intuitive illustration for the calibration effect
by visualizing the results. Figure 6a shows two trajecto-
ries with different sampling rates but referring to the same
route. It can be imagined that conducting similarity analy-
sis on them directly will result in a poor quality answer.
Figure 6b illustrates their calibration result by using POI-
based anchor points (represented by solid squares). For the
high sampled trajectory, geometry-based and model-based
approaches produce the same result (only POI+M cali-
bration result is shown for the sake of conciseness). But
they make difference on how to choose the complementary
anchor points for the low-sampled trajectory. Specifically,
geometry-based approach can only complement the anchor
points that are spatially “around” the trajectory segments
(e.g.,a¢, ag, ao, ai4, ai7), whereas the model-based method
can choose more anchor points that are actually on the origi-
nal route and thus gain better calibration result (i.e., the blue
dashed line is more similar with the red solid line). Figure 6¢
demonstrates the calibration effects by using turning points
as the reference system. We can see that turning points can
give more precise and concise representation for both high
sampled and low-sampled trajectories. Besides, the advan-
tage of the model-based method is more obvious as we can
see it fully recovers the original route for the low-sampled
trajectory.

7.3.2 Effect on similarity measures: self-comparison

In the first set of experiments, we evaluate how the cal-
ibration methods can improve the effectiveness of trajec-
tory similarity measures. For each trajectory T of the test
dataset, we use Euclidean distance (ED), DTW, LCSS, EDR,
SED and STLCSS (ED, DTW, LCSS and EDR only con-
sider the spatial information of trajectory, while SED and
STLCSS consider both spatial and temporal information of
trajectory) to calculate the distances between T and its three
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(c¢) Calibration with turning point based
anchors

low-sampling-rate counterparts, i.e., d(T, Ts0), d(T, Tip0)
and d(T, T150). Analogously, we use these six measures to
calculate the distances between T and their calibrated low-
sampling-rate counterparts, i.e., d(T, Ts0), d(T, T 100) and
d(T, T 09). Since each pair of trajectories in comparison
refers to the same original route, a smaller distance value
means better effectiveness of the similarity measure. Fig-
ure 7 shows the results of the normalized distances (i.e., dis-
tance over the size of trajectory) based on the raw trajectories
(denoted by SP) and trajectories with different calibration
schemes. Not surprisingly, all distances gradually increase
with the drop of sampling rate since more sample points char-
acterizing the major shapes of trajectories are lost. However,
raw trajectories have considerably greater distances than the
calibrated trajectories do at all sampling rates, which demon-
strates the ability of the proposed calibration methods to
improve the accuracy of the common similarity measures.
A general phenomenon from this figure is that, the POI and
TP based methods achieve better effectiveness since the cor-
responding distance values are very close to the ground truth
(zero), especially for ED and DTW distance. Besides, by
learning the knowledge hidden in the historical data, model-
based approach and model-based calibration with temporal
information (i.e., POI+M, POI+TM, TP+M, TP+TM)
lead to even better performance compared with the geometry-
based approaches (i.e., POl + G, TP 4 G). What is more, the
temporal-model-based approach (i.e., POI+TM, TP +TM)
outperforms model-based approach (i.e., POI+M, TP + M)
in most cases. Consequently, the combination of turning
points as the reference system and model-based calibration
with temporal information (i.e., TP +TM) turns to be the
most robust approach in terms of the capability of recog-
nizing the trajectories of the same route, as we can see that
the distance based on it is always the smallest among all the
methods.

7.3.3 Effect on similarity measures: cross-comparison

A good calibration method should not only improve the abil-
ity to recognize the trajectory variants of the same route,
but can also preserve the distance between any trajecto-
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Fig. 7 Distance between the trajectories referring to the same original route.

ries regardless of their sampling strategies. In this experi-
ment, we randomly select 5,000 trajectory pairs from the
test dataset, and for each pair (T4, Tp) we use the six dis-
tance measures to calculate the distances between them,
denoted as d(T4, Tp). d(Ta, Tp) is regarded as the ground
truth of the distance between the routes of 74 and 75. Then
we calculate the distances between T4 and different vari-
antsof T'g,1.e.,d(Ta, Tpso), d(Ta, Tg10oo) andd(T s, Tg150).
Finally, we put T4, Tp and its variants through the calibra-
tion system, and re-calculate the distances between them,
ie.d(Ta,Tgso),d(T A, Tgioo) andd(T 4, T g150). Inorder
to illustrate how well these distances resemble their ground
truth in a more intuitive way, we show in the results the dis-
tance deviation (dev) calculated by the following equation
instead of the original distances:

|d(V(Ta), V(Tp) —d(Ta, Tp)|
d(TAa TB)

dev(V(Ty), V(Tp)) =

where V(T) denotes the variance of T (e.g., with differ-
ent sampling rates and/or calibration). The results are shown
in Fig. 8, where smaller deviation means that the evalu-
ated distance is closer to the ground truth. As we can see
that most average deviations of the raw trajectories are over
50 %, and increase quickly with the drop of sampling rate. To
the contrary, all the distance deviations between calibrated
trajectories are smaller compared with the raw trajectories,
which demonstrates the usefulness of our calibration meth-
ods in preserving the distances when the sampling strate-
gies vary. Consistent with the previous experiment, POI and
TP based approaches obtain much better performance as

their dev are all below 0.3, and even <0.1 for DTW dis-
tance. Again, the model-based approaches outperform the
geometry-based approaches for all distance measures, and
TP+M and TP+ TM approaches achieve the best calibra-
tion results for most distance measures.

7.3.4 Resynchronization capability

In this set of experiments, we evaluate the resynchroniza-
tion capability of our calibration system. Intuitively, an
effective calibration system should transform a specific tra-
jectory into the one with similar sampling rate regard-
less of its original sampling rate. Thus, for each trajec-
tory in the test dataset, we calibrate its low-sampling-
rate counterparts and obtain the calibrated trajectories, i.e.,
Ts0, T100, T 150, and then compare the size between T (T')
and T50(T50), TIOO(TIOO)a T15()(T150). Figure 9 shows how
the average sizes of the raw trajectories and the calibrated
trajectories change with the sampling rate (10, 50, 100 and
1505s). As we can see from this figure, the sizes of the raw
trajectories decrease significantly with the drop of sampling
rate. To the contrary, the average sizes of calibrated trajecto-
ries much more stable with the variation of sampling rates,
which verifies our expectation that the reference systems are
effective in resynchronizing all the trajectories with more
unified sampling rates.

7.3.5 Effect of confidence threshold

Next, we test how the confidence threshold 7¢, used in
the model-based and model-based calibration with tem-
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Fig. 8 Distance deviation of calibrated trajectories from the ground truth
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Fig. 9 Evaluation of resynchronization capability

poral information (i.e., POI+M, POI+TM, TP+ M and
TP+ TM) affect the calibration performance. Recall that a
higher 1o results in fewer but more accurate anchor points
inserted into the calibrated trajectory. In order to work out
a good trade-off between the completeness and correctness
of the complementary points, we tune the confidence thresh-
old 1confi from 0.5 to 1 with the step of 0.1. Meanwhile, we
calculate the edit distance between the calibrated trajectories

80 Rate 50—— 80 Rate 50——
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@ 24 ® 24
= 22 = 22
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(a) POI+M (b) POI+TM

and their low-sampling-rate counterparts using the POl + M,
POI+TM, TP+M and TP+TM methods with different
Neonfi- As shown in Fig. 10, generally all the distance values
decrease when the confidence threshold rises, since a lot of
incorrect insertions are avoided. However, when the thresh-
old goes too high (>0.8), the distances start to increase, which
means the calibration effectiveness gets worse. The reason is
that (almost) no anchor points can have high enough confi-
dence to be complemented into the trajectories, thus leaving
the low-sampling-rate trajectories largely incomplete. Based
on the observations of this experiment, we recommend the
threshold with the value between 0.8 and 0.9 to be appropri-
ate.

7.3.6 Calibration time cost

We also evaluate the calibration time cost, which is especially
important for online calibration systems. The average time
cost for calibrating a single trajectory is shown in Fig. 11,
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Fig. 10 Edit distance of high rate trajectories and low rate trajectories with different confidence
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Fig. 11 Average time cost for calibrating one trajectory in millisecond

from which we observe that all the methods can calibrate
a trajectory within tens of milliseconds. GC turns out to
be the most inefficient approach, because the cardinality of
grid centroids is too large, which increases the search space
in geometry-based alignment and complement. Besides, the
order of time costs for GC, AS, POI + G and TP + G is con-
sistent with the number of anchor points in respective ref-
erence systems. This implies that the efficiency of calibra-
tion is heavily dependent on the cardinality of anchor points.
The geometry-based approach constantly runs faster than the
model-based approach and temporal-model-based approach,
since these two approach involves expensive global align-
ment and inference on the reference map. In geometry-
based approaches, alignment costs longer times than com-
plement, while complement costs longer in model-based
approaches. The global alignment takes at least twice times
longer than geometry-based alignment. As well, the model-
based complementation takes more than twice times longer
than geometry-based complement. Model-based approach
is slightly faster than the temporal-model-based approach,
since the temporal-model-based needs to infer the spare time
matrix.

7.3.7 Effect of transition matrix optimization

Recall that we have used the pre-computed transition matrix
M " to accelerate the model-based calibration in both align-
ment and complement phases. In this experiment, we eval-
uate the effect of this optimization by comparing the run-
ning time of the POI4+M and TP 4+ M approaches with and
without using the transition matrix. Figure 12a, b demon-
strate the average time cost and the number of probed anchor
points for calibrating a single trajectory. As expected, the
pre-computation in the transition matrix brings significant
speed-up to both approaches.

7.3.8 Effect on similarity queries

The ultimate purpose of calibration is to improve the robust-
ness and effectiveness of similarity-based analysis for trajec-
tories. The last set of experiments is conducted to verify if

1
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Fig. 12 Effect of transition matrix optimization

TP+M

the K-nearest neighbor search—the most important type of
similarity query—can benefit from our proposals. We first
randomly choose 500 query trajectories from the test dataset
and find their 20 NNs, which are considered as the ground
truth of this KNN query. Then we keep the query trajecto-
ries unchanged and transform all the trajectories in the test
dataset by dropping sampling rates and applying calibration
methods. Finally, the same kNN queries are issued against the
transformed datasets and the query precision is defined as the
proportion of the correct results (the one existing in ground
truth) in the new kNN result set. As shown in Fig. 13, though
the precisions based on all distance measures reduce with the
decrease of sampling rate, calibration methods can improve
the accuracy of kNN search results. This benefit is especially
obvious for turning point-based approaches as their preci-
sions are constantly improved by around 20 % compared with
the ones without any calibration.

7.3.9 Cost of updating of reference system

In these experiments, we evaluate the number of affected tra-
jectories which need to be re-calibrated when a new anchor
point is added to an existing reference system. Also, we eval-
uate both the time cost of re-calibrating the trajectories and
the time cost of rebuilding the reference map of model-based
calibration with temporal information approach. The average
number of affected trajectories when adding a new anchor
point to the existing reference system is shown in Fig. 14a,
from which we can observe that the number of affected tra-
jectories varies a lot due to the category of reference systems.
The number of affected trajectories using SP and POI as ref-
erence system is about 1 and 3, respectively, while those
number of TP reference system is more than 20. The time
cost of each calibration method except GC+ G is shown
in Fig. 14b. We can see that all the methods can calibrate
a trajectory within hundreds of milliseconds. Model-based
approach and temporal-model-based approach are less effi-
cient than geometry-based approach. TP+TM costs the most
time re-calibrating the calibrated trajectory set. In Fig. 14c,
we demonstrate the power of our optimization method intro-
duced in 6.2.1 in reducing the cost of adding an anchor point
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Fig. 14 Time cost of handling the update of reference system

to the existing reference system. We can see that it takes
about 28,000 and 700ms to update the whole reference map
of POI and TP, respectively, while it takes about 660 and
360 ms to updating the partial reference map of POI and TP,
respectively. Updating the partial reference map can save at
least 48 % to even 77 % time, and all the time cost of partial
reference map updating can be controlled in 1 s.

7.4 Experiments on other dataset

To further verify our observations, we use another trajectory
dataset, and a POI set obtained from Sina Weibo. Since they
show the similar results as in our paper, for the sake of pre-
sentation brevity, we do not include all the results of new
experiments in this manuscript. Instead, we report the exper-
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(b) Update time cost

(c) Time cost with optimization

iment results in a long-version technique report and put it on
our website. You can reach the report through the following
link: https://sites.google.com/site/technicalreportuq/.

8 Related work

To our knowledge, there is no existing work on trajectory
calibration or trajectory rewriting. However, the assigning
trajectory sample points to some semantical anchor points,
i.e., POI, share the similar motivation of some research works
of construction semantic trajectories, which we will firstly
review. The building reference system process has the sim-
ilar purpose with extracting road network from trajectory
data. Also, although the trajectory calibrating is not restricted
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on road networks, the alignment phase shares similar idea
of Map-matching technique. Thus, both extracting road net-
work from trajectory data and Map-matching technique will
be reviewed. In our model-based calibration approach, we
leverage the historical trajectory data to find the best align-
ment and infer the possible intermediate anchor points to
complement the trajectory, which share similar inspiration
and techniques with the work on uncertainty management of
trajectories and hot route discovery. Therefore, in this sec-
tion, we will review these two lines of related work. As the
goal of this work is to improve the effectiveness of similarity-
based analysis, the distance measures studied in this paper
are also reviewed at last.

8.1 Constructing semantic trajectories

Several works have studied the problem of assigning seman-
tic information to raw trajectories. Spaccapietra et al. [41]
proposes a trajectory conceptual model, which models tra-
jectories as a set of stops and moves. Alvares et al. [2]
extended [41] by proposing a method to extract stops and
moves of trajectories, where the stops are represented by
interesting spatial locations, such as hotels, airports and traf-
fic lights, instead of sample points. Furletti et al. [17] focuses
on inferring human activities by analyzing the categories of
interesting spatial locations. All the three works focus on
inferring the semantic meaning of the stops in trajectories,
while our work simply uses semantic objects as reference
points, and only focuses on the spatial relationship between
semantics objects and trajectories.

8.2 Extracting road network from trajectory

Extracting road network from trajectories is one of the most
important approaches. References [5,14,40] start with raw
GPS traces and create road maps. The geometric aggregation
of individual GPS tracks from passive mapping to generate
attributed graph data structures as thus routable road infor-
mation can be largely carried out in an automatic way [5].
References [14] and [40] not only generate reachable road
network, but also infer lane structure. Heipke [23] adopts
Crowdsourcing technique that it treats each GPS module as
Crowdsourcer and proposes efficient algorithms to build real-
time road network.

8.3 Map-matching techniques

Map-matching is the process of aligning a sequence of
observed positions with the road network. There are two
groups of map-matching algorithms: local/incremental
method and global method. The local/incremental method
[20,47,48] finds local best geometry match greedily, while
the global method finds the global optimal match for the

entire trajectory. The global method proposed in [3] uses
Frechét distance to measure the distance between raw tra-
jectory and the matching sequence. Lou et al. [31] proposes
an algorithm that uses temporal information of trajectory to
do map-matching and manages to get a high accuracy for
low-sampling-rate GPS trajectories. Statistical methods are
also widely used. Syed et al. [43] proposes a fuzzy logical
based method that is able to handle noisy, imprecise input.
Zheng et al. [54] proposes an algorithm which firstly extracts
the reference trajectories, which are near the given trajectory,
and then uses the information extracted from the reference
trajectories to conduct map-matching.

There are three main differences between map-matching
and calibration. First, the purposes are different. Map-
matching tries to map sample-based trajectories to the road
network, while calibration is to improve the effectiveness of
trajectory distance measures. Second, the inputs are different.
Road network is required in map-matching, and historical tra-
jectories are also needed in recent map-matching techniques.
However, calibration only requires historical trajectory as the
input. Third, the outputs are different. The output of Map-
matching is a continuous path, which is lack of temporal
information. The output of calibration is a sequence of anchor
points with or without time stamp. The most widely used dis-
tance measures (ED, DTW, LCSS and EDR) are measuring
the distance on point-based trajectories; the spatial-temporal
distance measure (SED and STLCSS) require the temporal
information on the path. Besides in order to construct the
continuous path, Map-matching may need to artificially add
several low-confidence paths when the trajectory is low sam-
pled. But calibration only adds the anchor point with high
confidence to the aligned trajectory.

8.4 Managing uncertainty of trajectories

Several works have addressed the uncertainty issues of mov-
ing objects. Wolfson et al. [50,51] proposed an information
cost model, which captures uncertainty and deviation in the
moving objects updating problem. Pfoser et al. [36] models
moving objects with a concept of spatial zones that define
an object’s whereabouts during two consecutive sampling
positions as an ellipse under constraint maximum velocity.
Trajcevski et al. [45] proposes a three-dimensional cylinder
to measure a new concept of uncertain trajectory in order to
limit errors that could occur while capturing the movement
of an object. Based on the model, a set of spatiotemporal
operators and algorithms are proposed for continuous range
queries and nearest neighbor queries [44]. Cheng et al. [11]
proposes a new model, which shows that the location uncer-
tainties are updated at every time instant and range queries
are issued at a current time point. Zhang et al. [52] designs
an integrated indexing structure for inferring the future loca-
tion of uncertainty moving objects. An intuitive model for an
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uncertain trajectory is proposed in Zheng et al. [53] to rep-
resent object movement along a road network, providing a
unified probability distribution function (pdf) for the possible
locations of a moving object at a given time instant. Zheng et
al. [54] is the most relevant work in completing trajectories.
The method of Zheng et al. [54] requires the input of road
network, while calibration does not. Meanwhile, the process
[54] of guessing which point is on the trajectory does not
give a concrete existing probability of the point. The guess-
ing process is not controlled by a confidence score.

8.5 Hot route discovery

Lietal. [29] extracts hot routes by using a density-based algo-
rithm FlowScan based on a concept called “traffic density-
reachable.” Sacharidis et al. [39] investigates efficient ways
to find and monitor hot motion paths that are defined as those
visited by a certain number of moving objects. Nevertheless
these two works are limited to mine frequently visited paths
only. The focus of [18,19,32,55] is on mining trajectory pat-
terns to help find the popular routes from a start location to a
destination. Giannotti et al. [ 18] proposes to mine a sequence
of temporally annotated points called T-pattern, in order to
find all T-patterns with sufficiently high support. Similarly,
in [19,32,55], frequent paths or sequences are explored by
existing sequential pattern mining algorithms. However, not
every pair of start and end locations is able to match pat-
terns given by these works. Chen et al. [10] evaluates the
probability from a start point to the destination, but they only
consider the forward probability from one place to another
without considering the backward probability.

8.6 Trajectory distance measures

There are a large number of trajectory distance measures,
among which Euclidean distance, DTW, LCSS and EDR are
the most representative. DTW [27] is originally introduced
for signal processing, which allows time-shifting in compar-
ison. LCSS [26] is proposed based on the concept of the
longest common subsequence, which is robust to noise by
allowing skip of some sample points. EDR [9], which is based
on edit distance, is also robust to noise and addresses some
deficiencies in LCSS. Dauria et al. [13] proposed a spatial-
temporal Euclidean distance measure (SED). The distance of
SED stands for the average distance between the comparing
two trajectories at the same time. More precisely, it models
two comparing trajectories as two continuous function map-
ping time to space and this distance measure restrict to con-
sider only pairs of contemporary instantiations of objects,
i.e., for each time instant, it compares the positions of the
objects at that moment. Vlachos et al. [46] introduced a time
sensitive LCSS (STLCSS) distance measure. This distance
measure involves two threshold, distance threshold and time
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threshold, that two points of the comparing two trajectories,
respectively, will be regarded the same if and only if both
the distance and the time interval between the two points
are no bigger than the distance threshold and time threshold,
respectively.

Different distance measures have different capabilities.
For example, LCSS, STLCSS and EDR are robust to noise.
So recall the experiments in Sects. 7.3.2, 7.3.3 and 7.3.8, that
SED has a better performance than other distance measures.
This is because SED is robust to low trajectory sampling rate.
Among all the mentioned distance measures, only SED treats
trajectories as continuous paths by connecting every two con-
secutive points by lines. If a moving object moves along a
straight line (a frequent pattern in networks), no matter what
the sampling rate is the continuous path generated by SED
has similar shape of the original trajectory. Thus, SED has a
better tolerance in low-sampling-rate trajectories than others.
Even though the better capacity in handling the reducing of
trajectories sampling rate, SED has low efficiency and low
tolerance to noise. Thus, SED is not widely as ED, DTW,
LCSS and EDR in reality.

9 Conclusions

In this paper, we have taken an important step toward
effective calibration of trajectories with different sampling
strategies to make them compatible when using many
existing trajectory similarity measures. After studying the
impact of trajectory heterogeneity on similarity measures,
we have proposed a framework of trajectory calibration.
We have examined four different types of anchor points,
which can be used to build stable reference systems. On
top of that, four calibration approaches, the spatial-only
geometry-based, spatial-temporal geometry-based approach,
spatial-only model-based approach and the spatial-temporal-
model-based approach, are designed to align and comple-
ment trajectory data using the anchor points in the refer-
ence system. Extensive experiments have been conducted
using a real trajectory dataset and a range of commonly used
trajectory similarity measures. We have demonstrated that
the calibration process can significantly improve the effec-
tiveness of most popular trajectory similarity measures. The
temporal-model-based calibration approach, which is based
on using turning points to build the reference system, is
shown to be particularly effective. This calibration process
and its algorithms can be easily integrated with most existing
works on trajectory processing and mining, to reduce their
reliance on high-quality (densely sampled) trajectory data
and to improve their similarity measure effectiveness. The
ideas from this work open a new direction for future research,
such as novel indexing methods and query processing algo-
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rithms with calibrated trajectories based on the underlying
reference system.
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